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Abstract
Memory prefetching improves performance across many
systems layers. However, achieving high prefetch accuracy
with low overhead is challenging, as memory hierarchies
and application memory access patterns become more com-
plicated. Furthermore, a prefetcher’s ability to adapt to new
access patterns as they emerge is becoming more crucial
than ever. Recent work has demonstrated the use of deep
learning techniques to improve prefetching accuracy, albeit
with impractical compute and storage overheads. This paper
suggests taking inspiration from the learning mechanisms
and memory architecture of the human brain—specifically,
the hippocampus and neocortex—to build resource-efficient,
accurate, and adaptable prefetchers.

CCS Concepts
•Computer systems organization→Architectures;Neu-
ral networks; Heterogeneous (hybrid) systems; • Com-
puting methodologies→ Bio-inspired approaches.
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1 Introduction
Memory prefetching is a performance optimization used
widely across several hardware and software layers of mod-
ern computer systems. Prefetching proactively brings data
from slower levels of memory to faster ones, anticipating its
future use. Although well-studied, prefetching continues to
be explored, especially as emerging memory hierarchies em-
brace heterogeneity [22], disaggregation [27], vertical/hori-
zontal tiering [31], and compute in memory [48].

Early prefetchers targeted patterns that were easy to cap-
ture, such as strides, and were sufficient for well-understood
applications, such as those in SPEC [4]. However, systems
and applications today are far more complex and dynamic,
rendering simple approaches ineffective. There is a growing
interest in developing prefetchers that can adapt to the dy-
namic execution by learningmemory access patterns instead
of detecting pre-programmed rules [11, 18, 40].

Recent studies have begun exploring the viability of deep
learning (DL) for prefetching [11, 18, 30, 40]. In theory, DL
should improve prefetching because it is inherently data-
driven, and should naturally adapt to applications and their
environments. Indeed, these studies show that, in idealized
simulations, DL outperforms non-learning prefetch methods
in accuracy. However, all of these approaches have three
main shortcomings that impede their real-world adoption.
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First, the deep neural networks (DNNs) in prior work use
impractically high compute and storage resources, even as
much as entire applications (§2.1). A more efficient and light-
weight learning structure is crucial for real-world systems.

Second, prior approaches train their models offline, with-
out learning continuously from the system execution. This
is partly necessary due to the overhead of DNN training.
However, such models can then fail to adapt to evolving
application phases, configurations, inputs, and other sys-
tem dynamics. Offline training also requires labeled datasets,
which can be impractical to collect at scale.

Third, even if we were to optimize resource usage, online
DNNs still face the challenge of catastrophic interference.
This issue is well known in machine learning (ML) [23, 28],
and describes the tendency of DNNs to drastically forget pre-
viously learned information when learning new information.

We consider the fundamental challenge of accurately learn-
ing memory access patterns online without interference. We
argue that we can develop a robust solution by incorporating
principles of learning found in the human brain. We note
that the problem of learning access patterns is similar to a
task that the human brain encounters continuously, which
is to discover generalizable structure from its experiences.

In particular, we take inspiration from the cognitive theory
of Complementary Learning Systems (CLS) [32], which mod-
els the human brain as an online learning system. CLS theory
posits that the brain avoids catastrophic interference using
interleaved replay, a process where it interleaves the learning
of new and old information. Combining this insight with
bio-inspired Hebbian networks, which use far less resources
than DNNs, helps us build efficient, online prefetchers.

Many principles from CLS have already seen use in the ML
community [13, 16, 44, 49]. Their objectives and constraints,
however, differ from ours. In addition to maximizing model
accuracy, we must further account for metrics like train-
ing and inference latency, prefetch timeliness, and usage
of memory/network bandwidth. The combination of these
constraints motivates a more domain-specific solution.
As we discuss how CLS principles can improve upon DL

approaches, we also present expected implementation chal-
lenges with two real contexts: disaggregated systems [27]
and CPU-GPU systems [3]. We specifically choose these
because they experience high cross-node communication
latency and operate in relatively resource-constrained set-
tings. Thus, they stand to greatly benefit from intelligent
memory prefetching. They also provide the opportunity to
implement CLS principles in software, offering a faster path
to immediate impact in production systems.

2 DL for Prefetching and Limitations
Prior DL techniques for cache or memory prefetching used
transformers [30, 45] or Long Short-TermMemories (LSTMs)

[18, 20, 40]. TheseDNNs use an application’s recent cache/mem-
ory accesses and instructions to predict its next accesses, and
have been shown to achieve high accuracy. However, they
have unreasonable resource overheads and are only trained
offline, thus remaining only simulated ideals.
Certain works have explored more lightweight learning

algorithms for systems, such as reinforcement learning [11],
gradient boosting [41], and small DNNs [24]. Unfortunately,
these approaches too, were only evaluated in simulation,
and we find in our testing that the lightweight models fail to
match the prefetching accuracy of larger DNNs. Our goal is to
develop online, accurate and resource-efficient prefetchers.

2.1 Overheads of DL-based Prefetching
DL-based prefetching incurs untenable compute and storage
overheads. A state-of-the-art LSTM-based cache prefetcher
[40] requires over 1GB of storage using 32-bit parameters.
This exceeds the memory capacity of some nodes in our tar-
get systems [27, 39]. We model this DNN for memory-page
prefetching in a disaggregated system [27], and aggressively
compress it to nearly 1MB by reducing its input-embedding
dimension, and the number of output classes.We compile this
model on an Intel i7-8700 CPU, and measure its performance.
We evaluate CPU performance because, for the inference
times we target, which are around 1-10 𝜇s [7, 27, 39], accel-
erator offloading is not clearly beneficial. Figure 1 shows the
prefetcher’s deployment.

Figure 1: A DNNmemory prefetcher. The gray area and
dashed lines indicate steps during training.
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(a) Inference time for various number of future predictions.
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Figure 2: Inference and training latency of a state-of-
the-art LSTM prefetcher on an Intel i7-8700 CPU.
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(a) Strides without replay
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(b) Ptrs and Indirects without replay
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(c) Index and Ptr Offsets without replay
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(d) Strides with replay
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(e) Ptrs and Indirects with replay
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(f) Index and Ptr Offsets with replay

Figure 3: Catastrophic interference (a-c) and the effect of replay (d-f) during online prefetch learning. Confidence
on the older pattern is shown in red, while the current one is in blue.

Figure 2 shows the LSTM latencies with one and two
threads, and with parameter quantization (e.g., FP32 to INT8)
during inference [29]. The LSTM takes >150 𝜇s per inference
and >1ms per example for training, which are orders of
magnitude higher than our target. Multi-threading is ineffec-
tive because LSTMs have poor parallelism [42]. Even after
quantization, LSTM inference still takes >60 𝜇s.

Table 1: Memory Access Patterns
Pattern Code Behavior

Stride a[i] Accessing data at regular delta such as streaming
patterns or array traversal.

Pointer chase *ptr Pseudorandom accesses to different parts of the
memory. E.g. linked list traversal

Indirect stride *(a[i]) Accessing data at regular delta from a base address.
E.g. array of object pointers.

Indirect index b[a[i]] Accessing data at indices that are at regular delta
from a constant base address.

Pointer offset *ptr
*(ptr+i)

Pseudorandom accesses and adjacent data. E.g.
transform on a list/tree.

2.2 Difficulty of Online Prefetch Learning
The scale of modern systems and dynamism of their applica-
tions makes it impractical to collect representative datasets
with which DNN prefetchers can be trained offline. Instead,
it is ideal if the model can adapt to changing memory access
behavior by learning online. Unfortunately, learning online
makes the DNN vulnerable to catastrophic interference [32].

Catastrophic interference occurs when a DNN trained on
one pattern begins learning a different, unrelated pattern.
The weight updates made when learning the new pattern
overwrite the values that were critical in learning the older
pattern, causing the DNN to completely forget the older
one. Such interference is avoided during offline training by
mixing training data and learning over it in multiple passes.
This is not the case when learning online.

We use the LSTM from §2.1 to illustrate catastrophic in-
terference with online prefetch learning. We first train the
LSTM on a single memory access pattern (e.g., a constant
stride) until it achieves perfect accuracy, simulating learning

over a single application phase. Next, we present the LSTM
with another access pattern (e.g., pointer chasing) to learn.
We monitor the LSTM’s confidence on the current and previ-
ous patterns, which is the probability it assigns to the correct
prediction. We select different pairs of patterns from those in
Table 1, adapted from prior work [10]. For a pair of patterns,
we generate a trace of 1000 accesses with each pattern. We
use these data structure-level prefetching patterns to avoid
confounding effects possible in page-level prefetching.
Figures 3a-3c show our results. As the LSTM learns the

current task, its confidence on the older task drops abruptly,
demonstrating catastrophic interference. In some cases, the
confidence on the first pattern recovers partially, indicating
some knowledge transfer. Nonetheless, the final confidence
is poor. Such a prefetcher will be ineffective when patterns
repeat, which is the case with many applications.

3 Hippocampal-Neocortical Inspired
Prefetching

Figure 4 shows the brain’s learning architecture in CLS the-
ory. Learning occurs through a complementary relationship
between two regions of the brain: the neocortex and the
hippocampus. The neocortex, similar to DNNs, slowly learns
the structure underlying the information it encounters; i.e.,
the rules behind a memory access pattern. Meanwhile, the
hippocampus quickly memorizes the information it encoun-
ters — i.e., the exact memory accesses — in a compressed
format, likely by separating each access and storing them in
an associative memory [35, 36]. Over time, this information
is decompressed and replayed in the neocortex, interleaving
the learning of old and new tasks, thus mitigating interfer-
ence [25, 32]. Furthermore, CLS theory models the networks
in the brain using biologically-inspired Hebbian networks,
which have much lower resource needs compared to stan-
dard DNNs. We show how each of these ideas help overcome
the limitations of standard DNNs for prefetching.
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Figure 4: Memory architecture of the brain in CLS the-
ory. Each block is modeled with a Hebbian neural net-
work. Solid lines show information storage paths and
dashed lines show recall and replay.

3.1 Overcoming Resource Overheads
Brain-inspired prefetch networks are resource efficient for
two reasons. The first reason is that they use a Hebbian
update rule, which is much simpler than that of standard
DNN learning. When learning with Hebbian networks, a
network weight 𝑤𝑖 𝑗—connecting an input neuron 𝑎𝑖 and
output neuron 𝑏 𝑗—is increased if both neurons are non-zero,
and decreased if the input neuron (𝑎𝑖 ) is inactive while the
output (𝑏 𝑗 ) is active. The simplified update rule [15, 36] is:

Δ𝑤𝑖 𝑗 = (𝑏 𝑗 ≠ 0) [(𝑎𝑖 ≠ 0) − (𝑎𝑖 == 0)] (1)

This update scheme requires far fewer operations than con-
ventional training of DNNs.

The second advantage of brain-inspired networks comes
from their use of sparsity. These networks are sparse in
their connectivity, meaning a node connects to only 1-25% of
the nodes in adjacent layers unlike all-to-all connections in
DNNs. Additionally, they are sparse in their representations,
in that only 1-25% of the network’s hidden layer neurons are
activated on an input. As a result, the storage and compute
needs of these networks are a fraction of those for DNNs.

We prototype a sparseHebbian neural network for prefetch-
ing. The network has a single hidden layer of 1000 neurons,
with 12.5% connectivity between layers, and 10% sparsity
in the hidden layer. Like an LSTM, our network also uses a
recurrent state to capture sequence memory.
Table 2 compares the resource needs of our Hebbian net-

work with that of the LSTM from §2.2. We list the lower
bound for the number of operations (Ops) in the LSTM, as its
exact value varies with the implementation of transcendental
functions (e.g., sigmoid and tanh). The Hebbian network is
nearly 3× smaller than the LSTM with nearly an order of
magnitude fewer Ops. Hence, the Hebbian training and in-
ference times, shown in Figure 2, are proportionately lower.

Table 2: Resource Needs of Hebbian vs LSTM networks
Model Parameters #Ops (inference) #Ops (training)

LSTM 170 k > 170k FP > 400k FP
Hebbian 49 k 14k INT 64k INT

We also compare the networks’ prefetching accuracy with
multiple applications that have various memory access pat-
terns: TensorFlow [6] training ResNet-50 [19], PageRank [34]
using GraphChi [26], mcf [4], and graph500 [1]. For each
application, we collect a trace of 2 billion memory accesses
and simulate them with a memory sized at 50% of the trace’s
footprint. We deploy both prefetchers as shown in Figure 1,
with a miss history length of 1 input to the networks, and
measure the percentage of misses removed compared to a
baseline without prefetching. Figure 5 shows the results. Our
network has comparable accuracy to the LSTM, even while
consuming far fewer resources, showing the effectiveness of
Hebbian learning.
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Figure 5: Online memory prefetching performance of
Hebbian and LSTM networks.

3.2 Overcoming Catastrophic Interference
In CLS theory, catastrophic interference is mitigated by re-
playing past memories stored in the hippocampus. Building
a full hippocampal-like storage is an open problem requiring
consideration on selectively storing and sampling accesses
into it. Therefore, in this work, we will focus on showing
the benefits of replay for online prefetch learning without
resource limitations on the hippocampal storage.
We perform the experiments in §2.2 that showed cata-

strophic interference again, but with replay. We implement
replay by retraining the network on the first pattern using
a 0.1× smaller learning rate after each training/inference of
the second. Figures 3d-3f shows the new results. While the
models without replay experienced catastrophic interference,
performing replay lets the network learn the new pattern
without forgetting the old one. Even if the old pattern were
to repeat, the network would maintain prediction accuracy
without needing to re-learn it.

4 Target Systems for Online Prefetching
We target two environments for an initial deployment of
our brain-inspired prefetcher: disaggregated systems [27]
and CPU-GPU unified virtual memory (UVM) systems [3].
Both systems, shown in Figure 6, have data movement that
incurs high communication latencies [7, 27], and stand to
benefit from intelligent prefetching. However, the systems
differ in a few critical ways that lead to requiring different
types of prefetch strategies. One difference is the impact
of a page miss. In disaggregated systems, CPU cores fault
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Figure 6: Architectures of our target systems. Black
lines indicate page miss notifications and prefetch re-
quests. Red lines indicate data movement paths.

only on one page at a time, indicating that the prefetcher
should be optimized to hide latency. In GPUs, the SIMT (sin-
gle instruction multiple thread) execution can produce many
concurrent faults, and the lockstep execution model means
that a single fault can stall many threads. This suggests that a
throughput-optimized prefetcher would be more appropriate
for this system.

Our target systems also differ in the location from which
the prefetchers can obtain information about memory ac-
cesses, and where the compute and memory resources to
run prefetching are available. These parameters determine
where the prefetcher should be placed. In the UVM system,
software-level information on memory accesses is only avail-
able in the CPU-located driver. Therefore, all prefetching
decisions must ultimately be made from this centralized lo-
cation. This contrasts with the disaggregated system, where
scarce resources on the switch necessitate a decentralized
approach with a separate prefetcher per node.

The different placement of the prefetcher in each system,
in turn, results in unique design spaces. For example, the
prefetcher in the UVM system can take advantage of its
global view to make better-informed decisions, but may re-
quire more processing to ensure that it can isolate the individ-
ual access patterns in the combined access streams. However,
such interleaving of access streams may naturally offer more
resistance to catastrophic interference, reducing replay costs.

In contrast, the prefetcher in the disaggregated system is
less likely to see interleaved access streams since it has a
separate prefetcher per CPU. Therefore, the prefetcher net-
work could be smaller to learn the access patterns. With the
decentralized architecture, it is easier to integrate application-
specific, profile-guided prefetch optimizations.

5 Future Research Challenges
Our initials results with prefetchers based on the hippocampal-
neocortical interaction are promising. Harnessing the full
benefits of such a prefetcher requires solving important chal-
lenges to replicate the CLS architecture in Figure 4 in com-
puter systems. We present these issues, beyond the target
system-specific ones discussed in §4.

5.1 Training Instances
Training on every prefetch inference, as done in our experi-
ments (§3.1), can be unnecessary and resource-consuming,
especially because training is more expensive than inference.
Possible alternatives are to train on a batch of samples at
once, and/or to only train on certain misses. Training only on
some misses reduces overall training costs, but requires care.
Simple approaches, such as randomly deciding which sam-
ples to train on, may miss cases that are critical for the model
to understand the application. A more intelligent sampling
process could use confidence measures from the model to
filter less-information carrying samples, or to avoid training
on well-learned cases.

5.2 Prefetch Output and Miss History
There are two main parameters for the prefetcher’s output:
length, which is the number steps predicted into the future;
and width, which is the number of predictions made at each
step. The ideal values for these parameters are determined by
the system architecture and application behavior. Consider
our design from §3.1, where the network is trained only
to predict the next miss. If the time between misses is less
than the inference latency, even a perfect model will always
prefetch too late. In that case, a more effective method is to
predict a sequence of misses further into the future.

Regarding prefetchwidth, throughput-bound environments
like the UVM system might benefit more from predicting
multiple prefetches at a time, even if they have slightly less ac-
curacy. The same could be said for read-heavy workloads. On
the other hand, systems where the network is the bottleneck
require a prefetcher that is highly selective and confident
about bringing in data to minimize communication.
In order to learn how to predict with a given length and

width, a prefetcher must maintain a miss history. For ex-
ample, when prefetching multiple steps into the future, a
window of past misses is required to construct appropriate
training examples. Thus, the prefetch length determines a
minimum history size. Beyond this, the ideal history size
depends on the reuse distances in the access patterns of the
application. If the current pattern has short reuse distances,
then only a few entries in the miss history are necessary,
while it is the opposite for patterns with longer reuse dis-
tances. Thus, configuring the prefetch length, width, and the
access history will require intelligent co-design.

5.3 Encoding Data for Prefetching
Most prior work on ML-based prefetching encodes addresses
and strides as one-hot vectors, which are then indexed into
an embedding table to obtain a dense representation that is in-
put to the prefetcher [18, 30, 40]. This aligns with approaches
used for words in natural language processing, but storing
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embeddings can become expensive (e.g., >500MB [40]). It
also inflates compute costs, as the output layer grows linearly
with the number of embedding vectors.

A more fundamental issue is that addresses and strides
can be a poor proxy for understanding the inherent behavior
of an application. We found that, as of now, neither the
LSTM nor the Hebbian network perform well on caching
applications like memcached [17] and cachebench [12]. This
is because these applications are almost entirely pointer-
based, and the access patterns are difficult to learn from
addresses or strides.
Ideally, the representation of the input data should more

closely resemble how addresses “flow” at the data structure
level (e.g. tree nodes, pointer chains). We have found that
insights from the cognitive theories can provide inspiration
here as well. There is evidence that the hippocampus en-
codes locations optimizing for vector-based navigation [33].
A similar encoding for addresses could better represent paths
through data structures. Other brain-inspired work has ex-
plored ways of representing symbols that allow the efficient
detection of relations in neural networks [8]. An analog of
such an approach for prefetching would be an address em-
bedding optimized for detecting pointers that are logically
(as opposed to numerically) close to one another.

5.4 Implementing Replay
In our experiments to demonstrate the utility of replay, we
assumed that we could store all past examples, and interleave
them later. A full implementation must trade the storage/-
compute costs of replay with its benefits for learning. One
simple approach is to use a fixed-size buffer. This, however,
could lose important information as entries are evicted. A
more principled approach could save space by filtering less
important examples, perhaps using confidence as a measure,
or freeing entries that have already been consolidated due
to replay, thus not needed further learning [32]. Yet another
alternative is to average similar examples, producing single
representative cases.

Another challenge in incorporating replay is to define ap-
plication phases so that they can be replayed. However, phase
characteristics can vary significantly between applications,
making it difficult to manage replay with a single parameter
setting (buffer size, time limits, miss counts, etc.). This could
motivate an interface for application developers to directly
tune replay parameters, or to indirectly indicate phase behav-
ior and timings. Another approach, also inspired by cognitive
theories, is to identify contexts or phases using clustering of
abstract representations learned by the network [14].

Finally, our preliminary studies also show only one form
of replay. Cognitive literature describes many forms of re-
play [46], each with their own benefits and challenges. Some
methods such as hindsight or simulation replay, where the

prefetcher artificially generatesmemory sequences and learns
them, can be helpful in avoiding replay storage costs alto-
gether. Such sequences could be generated by rules that
are determined with profile-guided techniques, or through
generative networks i.e., trading off compute for memory.
Another alternative could generate hidden layer values, com-
plete the forward pass, and train on the output to reinforce
existing behavior. We leave such ideas for future research.

5.5 Availability
Since training actively changes the weights of a neural net-
work, it may be important to block inference during train-
ing. This is an availability issue, which motivates a protocol
where training is applied to a separate model copy, which is
later redeployed when the live model’s confidence/accuracy
decreases. However, it is possible that simpler approaches
could also suffice for two reasons. One, because prefetch-
ing is not correctness-critical, inference requests are safe
to drop. Second, neural networks can have noise-robust or
noise-smoothing effects, meaning that small perturbations to
weights do not cause large changes in the network’s output,
especially since our training method explicitly seeks to pre-
serve the network’s prior performance [21, 35]. This could
allow inference to remain accurate even when concurrent
with training. We expect this property to require further
study, as it could significantly optimize a real prefetcher
deployment, but may be sensitive to the many details of
practical implementation.

6 Conclusion
Recent deep learning approaches to prefetching have shown
promising results, but only in idealized simulations. Their
real implementation is impeded due to resource overheads
and learning limitations. This paper explores how one might
address these issues using principles and models of the hip-
pocampus and neocortex, as well as some challenges we
should expect in implementing them. We ultimately expect
more challenges to appear in designing and deploying such
models, but we hope this paper serves as a starting point for
implementing efficient and intelligent learning algorithms
for all relevant systems contexts.
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