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Abstract—The current National Airspace System (NAS) is 
reaching capacity due to increased air traffic, and is based 
on outdated pre-tactical planning. This study proposes a more 
dynamic airspace configuration (DAC) approach that could 
increase throughput and accommodate fluctuating traffic, ideal 
for emergencies. The proposed approach constructs the airspace 
as a constraints-embedded graph, compresses its dimensions, and 
applies a spectral clustering-enabled adaptive algorithm to gener- 
ate collaborative airport groups and evenly distribute workloads 
among them. Under various traffic conditions, our experiments 
demonstrate a 50% reduction in workload imbalances. This 
research could ultimately form the basis for a recommendation 
system for optimized airspace configuration. Code available at 
https://github.com/KeFenge2022/GraphDAC.git. 

I. INTRODUCTION 

The National Airspace System (NAS) comprises a complex 

interplay of airports and facilities, ensuring safe and smooth air 

travel. Air traffic control (ATC), primarily handled by human 

controllers, issues directives to pilots to avoid collisions and 

other dangers [1]. In ATC, controllers’ workload is crucial to 

safety [2] and is mitigated by manually dividing and merging 

airspace into groups with dedicated personnel. This practice 

is termed Airspace Configuration (AC). 

Airspace is typically pre-configured according to historical 

plans, with minor alterations by Air Traffic Control (ATC) 

managers [1]–[3]. However, with growing use of advanced 

technologies like Unmanned Aircraft Systems (UAS), this 

reliance on human expertise may prove insufficient for the 

increasing complexity of airspace dynamics [4]. Furthermore, 

conventional ATC struggles to react swiftly to emergencies, 

causing traffic congestion and delays [5], [6]. As a result, 

Dynamic Airspace Configuration (DAC), a real-time, data- 

driven approach, has gained attention. Unlike static historical 

models, DAC adjusts to traffic demand while accommodating 

constraints such as weather, fleet diversity, congestion, and 

sector complexity [7], [8]. 

Several methods have been proposed for Dynamic Airspace 

Configuration (DAC), but their real-world effectiveness is 

debatable. For example, Dynamic Airspace Sectorization [9] 

overlooks controllers’ coordination workload and reconfigura- 

tion cost, creating entirely new configurations for each day’s 

segment. SectorFlow [10] groups flight trajectories to mini- 

mize airspace complexity, assigning airspace to each cluster. 

Its improved version refines initial partition using gradient 

search and keeps flow intersections off sector boundaries [11]. 

CellGeoSect [12], a cell clustering method, visualizes the 

airspace as hexagonal cells, maximizes flow connectivity, and 

balances flight counts between clusters. It then modifies the 

design to avoid significant flow’s geometric constraints. How- 

ever, these methods can decrease efficiency as controllers may 

be unfamiliar with newly assigned airports and consequently 

bring safety concerns. 

This study introduces a practical, adaptive algorithm for 

airspace configuration, which modifies existing configurations 

with minimal changes, rather than designing entirely new 

ones. This method entails a three-stage graph-based clustering 

method. Firstly, we built simulated airspace from open-source 

data. We then convert the airspace into a relation graph that 

embeds the operational constraints. This is done by only 

connecting the geographically adjacent airports and setting 

their edge weights negatively related to their gross workloads. 

Secondly, considering that airports within the relation graph 

are sparsely connected, we then increase the computation 

efficiency by mapping each airport in the relation graph into a 

low-dimension space, in which Singular value decomposition 

(SVD) [13], [14] and Autoencoder [15] are compared. Finally, 

we perform a spectral clustering-enabled adaptive algorithm on 

the low-dimensional space to get the new configuration with 

the traffic-center pattern surrounded by the non-busy airports. 

The contributions of our work are as follows: 

• We propose a graph clustering-enabled algorithm for 

DAC: we allow configuration change around adjacent 

airports to minimize collaboration costs while balancing 

the ATC controllers’ workload. 

• We propose a three-stage graph clustering method: we 

construct a graph from airspace with embedded spatial- 

temporal constraints, then reduce the graph dimension 

and perform an adaptive clustering to get the final sector 

configuration, in which each busy sector is regarded as 

the center and is surrounded by non-busy airports. Our 

experiments show that our method can reduce sector 

workload unbalanced level by over 50% in different 

traffic conditions. 

• We investigated the efficacy of reducing the dimensions 

of a graph using linear and non-linear methods: SVD 

(Singular Value Decomposition) and Autoencoder. Our 

findings demonstrate that SVD effectively reduces col- 

laboration workload when transitioning to new config- 
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urations. On the other hand, the autoencoder excels at 

minimizing workload imbalances for new configurations. 

The remainder of this paper is organized as follows: A 

literature review of related work is presented in Section II. 

We present the methodology in Section III. Evaluation and 

discussion are presented in Section IV and conclusions in 

Section V. 

II. RELATED WORK 

The leading solution for Dynamic Airspace Configuration 

(DAC) currently involves tactical, dynamic adjustment of 

airspace to minimize demand and capacity imbalances [3]. 

This section will summarize commonly employed solutions. 

First, dynamically creating entirely new controlled airspace. 

Controlled airspace sector boundaries are newly created every 

time without relying on pre-existing structures. This approach 

is also referred to as dynamic sectorization. It is important to 

note that air traffic controllers need the training to work on 

a specific airspace set [3]. So that previous work mentioned 

[10], [12] following this path is not desirable operationally 

since ATC personnel cannot familiarize themselves with the 

newly assigned airports [9]. 

The second approach is to stick to existing building blocks, 

e.g., airspace modules, that can be dynamically combined to 

form a controlled airspace sector [9]. Currently, this approach 

is more desirable operationally. A controlled airspace sector 

is operated by a small team of controllers and comprised 

of one or more airspace modules. In both the U.S. and 

European airspace, controlled airspace can be combined with 

others or split into smaller controlled regions to balance the 

workload equally across available ATC resources and airports 

[3]. Several examples incorporating various constraints are as 

follows: 

In [1], a promising framework is proposed to realize DAC. 

First, features for evaluating air traffic controllers’ workload 

are extracted from the flight radar track, and sector operation 

history. These feature vectors are fed into a neural network 

re-configuration into the cost function, this approach ensures 

the stability of the configuration by making the busiest airspace 

modules (SBBs) a fixed central component of each controlled 

airspace sector. Only the generic SAMs change from one 

configuration to the next. The approach works best when the 

airspace is divided into small SAMs and SBBs. 

Spectral clustering is applied in [16] and [9] to balance 

air traffic controllers’ workload. These works first transform 

the airspace configuration problem into a graph partitioning 

problem and address it with spectral clustering. The main idea 

of spectral clustering is first to perform eigendecomposition on 

the adjacency matrix to extract essential components, then use 

the k-means clustering algorithm to divide the airspace. The 

graph uses vertices and links to model airports, waypoints, and 

air routes, then project real flight trajectories onto the graph as 

edge weight. The key idea of spectral clustering is to reduce 

the graph dimension to help the clustering algorithm focus on 

the most critical feature. However, eigendecomposition is a 

linear operation that may not have the flexibility to capture 

the main component of complex air traffic patterns [17]. 

In general, the previous works contains the following draw- 

backs: (a) Omiting the consideration that only close airport 

should collaborate. (b) Involving complicated hyperparameters 

that are not self-adjusted. (c) The time complexity is high. This 

is the primary motivation for our research. 

III. METHODOLOGY 

A. Problem Definition & Datasets 

We try to find an optimal plan to allocate non-busy airports’ 

air traffic control resources to assist busy airports with possibly 

more delays. Our goal is to balance the workload of different 

airports during emergency evacuations or other busy scenarios. 

We use a metric called the Regional Unbalanced Level (RUL) 

to quantify the workload of handling regular or delayed flights. 

We first calculated the average number of non-delayed and 

delayed flights handled by airports within each cluster, where 

m is the total number of flights in the cluster i: 

to provide a workload indication for the ATC in terms of 

high, normal, or low. Their algorithm generates different 
new configurations by splitting airports into several smaller 

Fi = k=1 fk 

m 
m  dk

 

(1) 

airspace modules when the workload is high or merging with Di =   k=1  
m (2) 

other airports when the workload is low. Next, the tree search 

methods explore all possible partitions while restricting them 

to be operationally valid. This ensures the algorithm builds 

an optimal airspace partition where the workload is balanced 

across the airports and uses the restrictions to lower the 

reconfiguration cost. 

We then calculated the variance of the Fi and Di over all 

clusters, noted as S. This value helps to quantify the workload 

unbalance within the whole airspace in scope. n is the number 

of clusters in the configuration, D and F are the mean workload 

of delayed and on-time flights:   n  
(D − D)2 

Sergeeva et al. [9] proposed to model dynamic airspace 

configuration as a graph partitioning problem that can be 

optimized with a genetic algorithm. They define two different 

types of airspace modules. Those airspace modules that “are 

SD =   i=1 i  

n − 1 
n  (Fi − F )2 

SF = i=1 

n − 1 

(3) 

 

(4) 

permanently busy areas with a high traffic load” are designated 

to be “Sector Building Blocks” (SBBs). Less busy and more 

generic airspace modules are called “Sharable Airspace Mod- 

ules” (SAMs). A controlled airspace sector should consist of 

at least one SBB and multiple SAMs. Instead of incorporating 

Where high SD or SF indicate the workload of handling 

delayed or regular flights are highly different across different 

clusters. We assume that airports within the same cluster are 

collaborating with each other to handle emerging workloads. 

Therefore, smaller SD or SF are preferred. 



B. Dataset 

Flight Delays and Cancellations were published by The U.S. 

radial-based kernel is chosen to encode the workload into edge 

weight, defined as below: 

Bureau of Transportation in 2015 [18]. This dataset includes 

statistics tracking the on-time performance of domestic flights 
loadij = 

di + dj 

fi + fj 
(5) 

operated by large air carriers. The original data has a total 

of 30 attributes, however, not every attribute was recorded for 

each flight, thus columns with more than 25% missing values 

are removed. For the rest of the data, only the related attributes 

are kept, including the scheduled date, airline, origin and 

destination airport, departure time, and delay time. Canceled 

or diverted flights are removed. To reduce computation load, 

departure delay is transformed into the binary label, 0 is a 

non-delay flight and 1 is a delayed flight. We focused on the 

21 airports in Florida. 

C. Hybrid Graph Modeling for Airspace 

Modeling air traffic system in the form of a graph can 

effectively preserve the spatial and temporal information in the 

system [19]. We used a novel data structure Hybrid Airport 

Adjacency Graph (HAG) to model the airspace of incorporat- 

ing geographical adjacency and workload-based mergeability. 

The procedures are as follows: 

Step 1: Generating Initial Airport Adjacency Graph (IAG): 

We identify if two nodes are connectible based on the 

geographic location. Mathematically, we define that if two 

airports, V 1 and V 2 are connected if V 2’s is the closest 

neighbor geographical neighbor of V 1 at the same azimuth. 

Figure 1 is an example taken from central Florida. When 

setting the azimuth to 120 degrees, node MCO has three 

connected nodes which are SFB, TPA, and MLB. Whereas, 

PIE, DAB are not connected to MCO because they are not the 

closest node inside the 120 azimuths. The size of the azimuth 

is a tuning parameter, where a smaller azimuth resulting a 

more dynamic graph, but may result in connecting to a non- 

realistic node that is too far away. 

 

Fig. 1. Illustration of Initial Airport Adjacency Graph (IAG). The example 
airports are from central Florida. 

 

Step 2: Creating Hybrid Airport Adjacency Graph (HAG): 

We assigned edge weights for each connection of airports. 

In HAG, airports that are less busy should have stronger 

connections to each other, and the busy airports should be 

far away from each other to avoid being clustered together. In 

other words, the edge weight is negatively related to the total 

workload quantified by the estimated delay flights and delay 

ratio in the future two hours between the nodes. A modified 

wi,j = B((1−λ)(100loadij )+λdij−shift) (6) 

where i and j are two connected nodes, d is the number of 

delayed flights in this time window, f is the total number of 

flights in this time window. Thus, loadij is the percentage 

of delayed flights of node i and j and normalized between 

0 and 1. We only use the percentage of delayed flights as 

an indicator of the ATC workload, a more comprehensive 

workload can be explored in the future and substituted here. 

dij is the geographical distance between the two airports. 

λ is the geographical weight factor in balancing between 

considering geographical distance and gross delay ratio, this 

factor is automatically adjusted in our program. B ∈ (0, 1) 
is the base, such a base is to satisfy the negative relation 

between workload and the edge weight. The sift is set as 300 

as it is numerically more stable. Mathematically, the larger 

the edge weight between two nodes (airports), the more likely 

they should be connected to collaborate and form a cluster. 

D. Adaptive Clustering for Pre-Allocation 

We developed an adaptive clustering algorithm for par- 

titioning the fine-tuning of the collaboration airports, with 

Spectral Clustering [20] as a key component. Mathematically, 

spectral clustering first performs Eigen Decomposition of the 

adjacency matrix of the Hybrid Airport Adjacent Graph to 

project data from a higher dimension to a lower dimension to 

remove redundancy and noise, then, clustering is done on the 

low-dimension representation of data [20]. Our procedures are 

as follows: 

Step 1: Construct Hybrid Airport Adjacency Graph with 

λ = 0, in this way, the initial clustering will not consider the 

geographical location of airports. 

Step 2: Compress the HAG’s adjacency matrix, we explore 

the following methods: 

• SVD: we calculate the degree matrix of the graph; The 

degree matrix is a diagonal matrix where the value at 

entry (i, i) is the degree of the node i. Then calculate the 

eigenvalues and eigenvectors of the degree matrix; then 

we sort them based on the eigenvalues. 

• Autoencoder: we use the encoder to compress each air- 

port in the graph (each row) into lower dimensions. This 

autoencoder contains two Dense layers for its encoder 

and decoder respectively. 

Step 3: We perform the k-means clustering algorithm with 

an initial k value equal to half of the airports on the low- 

dimension graph to get the initial clustering result. 

Step 4: Scan each cluster in the initial clustering result, if 

any cluster contains more than three airports or with a diame- 

ter greater than 100 nautical miles (the typical transmission 

range that aircraft can communicate directly). We increase 

the number of clusters by 1 and simultaneously, increase the 

geographical weight λ by 0.1, but λ can not exceed 0.5. 



Step 5: We repeat the clustering procedure as described in 

Step (1) until all clusters satisfy the criteria defined in Step 4. 

Steps 4 and 5 make the clustering process adaptive and this 

algorithm can gradually evolve to use geographical constraints 

to create clusters with reasonable spatial size. Therefore, we 

do not require select dedicate k and λ values for different 

scenarios. 

After spectral clustering on HAG, the airports that are 

geographically close and with relatively low workloads are 

combined as a new cluster. Simultaneously, the busy airports 

with more delayed flights will be picked up and isolated. 

E. Fine-Tuning for Dynamic Workload Balancing 

In this stage, we aim to merge different airports’ governing 

regions to rebalance the workload of the area when there is 

an abrupt increase in travel demand or flight delays. For this 

purpose, we have the following assumptions: 

Assumption I: All flight plans are known at least two hours 

in advance from flight plans or predictions. 

Assumption II: The abrupt increase in travel demand under 

emergency situations could cause significant delays in flights. 

In our experiment, if an airport’s delayed flights within the 

predicted time window are greater than 2 delayed flights per 

hour (with a regional airport) or with a delay percentage 

within this time window being 30% (medium or large airports), 

we then mark this airport as a busy airport and needs external 

assistance. 

Assumption III: The nearby airport that used to assist 

a busy airport should: (a) have fewer delayed flights if the 

category of the airports is identical, or a lower percentage of 

delay if the category of the airport is different. 

Based on assumptions II and III, we develop the fine-tuning 

algorithm for each busy airport as follows: 

• Step 1: we created a ranked list of busy airports based 

on (a) a user-defined priority level with a default value 

of zero, (b) the number of delayed flights, (c) delay ratio, 

and (d) number of scheduled flights within the predicted 

time window. Here, the user-defined priority level can be 

filled when there’s an emergent situation. 

• Step 2: we scanned all airports within 100 nautical 

miles of the busy airports in step one and determine if 

a specific airport can be merged to assist an adjacent 

busy airport based on these criteria: (a) distance, (b) 

less number of predicted delayed flights, (c) lower delay 

ratio. Specifically, we created a ranked list of non-busy 

candidates and picked the closest one. 

• Step 3: if any two airports are selected as a collaborative 

pair, we created a new cluster containing only the two 

airports, to prevent airspace conflict, we also ensure that 

there’s no other busy airport within the combined airspace 

before establishing the collaboration relationship. 

In general, the algorithm allows reallocating more resources 

from less busy regions in the airspace. 

IV. EVALUATION & DISCUSSION 

This section examines the efficiency of the graph clustering- 

based dynamic airspace configuration method under different 

 

 

(a) 
 

 

(b) 

Fig. 2. Airspace configuration generated at different times on 12/24 (a) 7:00- 
9:00, (b) 12:00-14:00. 

 

 

scenarios. Additionally, we compare the computational effi- 

ciency of Autoencoder and SVD for graph compression. 

A. DAC with different scenarios 

1) Different times on the same day: We tested the DAC 

algorithm on December 24th, 2015, a day with heavy flight 

traffic due to the holiday season. Three distinct 2-hour time 

windows are selected: 7:00-9:00 for low traffic, 12:00-14:00 

for high traffic, and 19:00-21:00 for medium traffic. The 

experiment results show that the algorithm changes the config- 

uration based on the different traffic conditions successfully, 

and the workload unbalanced level of the new configuration 

in terms of handling regular and delayed flights has been 

significantly reduced at all different traffic conditions, as seen 

in Table I. 

As in Figure 2, for low traffic conditions between 7:00- 

9:00, the airspace configuration algorithm combines adjacent 

sectors to balance the workload, such as MCO with SFB, 

FXE with FLL, and PNS with VPS; In the meantime, several 

airports are isolated independently because there is no non- 

busy airport within a reasonable range and without airspace 

overlap with busy airports, such as MIA and EYW. When the 



TABLE I 

REDUCTION ON UNBALANCE LEVEL AFTER RECONFIGURATION AT 

DIFFERENT TIMES ON THE SAME DAY 

 

 Handling regular 

flights 

Handling delayed 

flights 

7:00-9:00 (Low traffic) 42.85% 10.8% 

12:00-14:00 (High traffic) 56.9% 61.04% 

19:00-21:00 (Medium traffic) 42.86% 60.1% 

 

 

 

traffic load is high during 12:00-14:00, the algorithm changes 

the configuration to balance the workload among sectors to 

adapt to the increasing traffic load. 

 

(a) 

 
(b) 

Fig. 3. Summary of airspace reconfiguration actions within Dec 24th 2015 
(a) Merged airspace. (b) Airspaces that need further separation. 

 

We also noticed some common patterns. First, the airspace 

merging actions in the three time periods are summarized in 

Figure 3(a). The three most frequent merges are FLL-FXE, 

MCO-SFB, and TPA-PIE. These airports are selected to merge 

into collaborative pairs because a) executive airports are not 

usually as busy as large international airports even if they 

are closely located, so they can always assist busy airports. 

Secondly, Figure 3(b) shows that MIA and its nearby airports 

are extremely busy all day round, which makes it impossible 

to find a collaborative airport that is less busy. 

2) Same time for different days: We also evaluate the 

algorithm on different dates, three high-traffic volume dates are 

selected, which are 7/3, 11/25 (one day before Thanksgiving), 

and 12/31 (one day before the new year) in 2015. we also 

compare the airspace configuration results on the busy hours 

(12:00 PM to 14:00 PM) on these low-traffic days: 2/17, 6/9, 

and 9/8, 2015. Our algorithm significantly decreases unbalance 

level of the ATC’s workload in both busy and non-busy 

scenarios as shown in table II. 

 

 
(a) 

 

(b) 

Fig. 4. Summary of airspace reconfiguration actions observed on 12:00 PM 
to 14:00 PM on different days of 2015: (a) airspaces that are merged. (b) 
airspaces that need further separation. 

 

 

TABLE II 

REDUCTION ON UNBALANCE LEVEL AFTER RECONFIGURATION 

AT THE SAME TIMES ON DIFFERENT DAYS 
 

High traffic dates Handling regular 
flights 

Handling delayed 
flights 

7/3 56.77% 56.37% 

11/25 59.1% 62.5% 

12/31 56.9% 59.9% 

   

Low traffic dates Handling regular 
flights 

Handling delayed 
flights 

2/17 64.1% 66.7% 
11/25 60% 67.1% 

12/31 53% 44.5% 

 

 

There are also some common merging strategies employed 

for both high and low traffic conditions. As shown in figure 

4, the actions taken most frequently are the merging between 

FLL-FXE, MCO-SFB, PGD-RSW and PIE-TPA, showing that 

large international airports are always busy all year round and 

need assistance from other regional or executive airports. GNV 

is surrounded by medium and busy airports and is dynamically 

assigned as a flexible collaborator. Our algorithm also indicates 

that some busy airports in southern Florida are surrounded by 

airports that are busy simultaneously. Consequently, they can 

not find collaborative peers and further divisions are needed 

in their internal airspace. 



B. Comparison of pre-clustering graph data compression 

methods 

SVD and Autoencoder (AE) are employed to reduce the 

dimension of the HAG’s adjacency matrix. In general, both 

techniques yield low-dimension graphs that preserve a sig- 

nificant amount of essential information, but each has its 

own advantages. Specifically, SVD excels in preserving the 

embedded constraints within the graph, whereas the AE is 

particularly adept at achieving balanced clustering. In Figure 

6, the clustering results of the SVD-compressed graph adhere 

to the adjacency constraint that we only want to merge 

geographically close airports. Comparably, an AE allows the 

algorithm to deviate slightly. For instance, when using the 

AE depicted in (a) for compression, certain clusters, such as 

clusters 0 and 7 contain airports that are not directly connected. 

To compare the impact of the dimension of the latent space 

to the strictness of AE, multiple AEs were trained with varying 

latent dimensions (2, 5, 10 and 15). We found that there is a 

certain pattern when AEs do not follow the restrictions. As in 

figure 5, AEs always mistakenly combine ECP, TLH and DAB 

together or VRB, PBI, MIA, and EYW together, but this kind 

of error can easily be fixed by a post-processing algorithm. 

Additionally, AEs are much faster than SVD after training, 

making them more suitable for use in real time. As in table 

III, as the dimension of the graph continues to increase, SVD 

is much slower than AEs. This is because the computation 

of trained AEs can easily get accelerated by hardware. Also, 

AEs can leverage past training experiences, unlike SVD which 

starts computation from scratch each time. 

This is because the computation of trained AEs can easily 

get accelerated by hardware. Also, SVD has to start compu- 

tation from scratch every time while AEs can leverage past 

experiences from training. 

 
TABLE III 

COMPARISON OF TIME REQUIRED IN REAL-TIME APPLICATION BETWEEN 
SVD AND AUTOENCODER 

 

HAG’s dimension SVD prediction 
(10−5 second) 

Autoencoder 
prediction (10−5 

second) 

Autoencoder 
Training time 

(second) 

7*7 43.9 1.16 27.78 
10*10 44.8 1.70 27.04 
15*15 44.5 4.06 69.47 
18*18 48.1 3.30 64.67 

21*21 373.8 3.54 65.98 

 

 

 

V. CONCLUSION 

We’ve introduced an innovative method for dynamic 

airspace reconfiguration, using a graph model to balance air 

traffic controllers’ workload. This model incorporates geo- 

graphical adjacency and ATC workloads, utilizing a spectral 

clustering-enabled adaptive algorithm to generate new con- 

figurations based on predicted delay and flight plans. The 

algorithm groups high-workload airports as centers surrounded 

by lesser-engaged airports, redistributing ATC resources for 

 

 

 

   
 

 
Fig. 5. Error patterns of autoencoder in pre-clustering graph data compression. The result of the first row and second row are generated by AE when the 
latent space is 2 dimensions and 10 dimensions respectively. 



 

 

(a) 
 

 
(b) 

Fig. 6. Comparison of pre-clustering compression method on the final result 
of DAC (a) Nonlinear: Autoencoder and (b) Linear: SVD. 

 

 

workload equilibrium. The model outperforms static airspace 

configurations, reducing workload imbalance by over 55% 

under high traffic volume, as confirmed through evaluations 

during various time windows and traffic conditions. Our real- 

data simulations indicated that Miami and Sarasota airspace 

requires further partitioning to improve performance, as our 

DAC algorithm struggled to locate less busy airports within 

60 miles for collaboration. Furthermore, Key West airport’s 

remote location hindered collaboration with busy airports to 

share emergent workloads. 

Our future direction includes improving airspace ATC work- 

load assessment by considering metrics beyond delayed and 

total flights. Additionally, we plan to explore neural networks’ 

potential in generating comprehensive airspace configuration 

plans. 
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