
GraphDAC: A Graph-Analytic Approach to

Dynamic Airspace Configuration

Ke Feng1a, Dahai Liu2b, Yongxin Liu2b, Hong Liu2b, Houbing Song1a
1University of Maryland, Baltimore County, MD 21250 USA

2Embry-Riddle Aeronautical University, FL 32114 USA
a{kfeng1,songh}@umbc.edu, b{liu89b, LIUY11, liuho}@erau.edu

Abstract—The current National Airspace System (NAS) is
reaching capacity due to increased air traffic, and is based
on outdated pre-tactical planning. This study proposes a more
dynamic airspace configuration (DAC) approach that could
increase throughput and accommodate fluctuating traffic, ideal
for emergencies. The proposed approach constructs the airspace
as a constraints-embedded graph, compresses its dimensions, and
applies a spectral clustering-enabled adaptive algorithm to gener-
ate collaborative airport groups and evenly distribute workloads
among them. Under various traffic conditions, our experiments
demonstrate a 50% reduction in workload imbalances. This
research could ultimately form the basis for a recommendation
system for optimized airspace configuration. Code available at
https://github.com/KeFenge2022/GraphDAC.git.

I. INTRODUCTION

The National Airspace System (NAS) comprises a complex

interplay of airports and facilities, ensuring safe and smooth air

travel. Air traffic control (ATC), primarily handled by human

controllers, issues directives to pilots to avoid collisions and

other dangers [1]. In ATC, controllers’ workload is crucial to

safety [2] and is mitigated by manually dividing and merging

airspace into groups with dedicated personnel. This practice

is termed Airspace Configuration (AC).

Airspace is typically pre-configured according to historical

plans, with minor alterations by Air Traffic Control (ATC)

managers [1]–[3]. However, with growing use of advanced

technologies like Unmanned Aircraft Systems (UAS), this

reliance on human expertise may prove insufficient for the

increasing complexity of airspace dynamics [4]. Furthermore,

conventional ATC struggles to react swiftly to emergencies,

causing traffic congestion and delays [5], [6]. As a result,

Dynamic Airspace Configuration (DAC), a real-time, data-

driven approach, has gained attention. Unlike static historical

models, DAC adjusts to traffic demand while accommodating

constraints such as weather, fleet diversity, congestion, and

sector complexity [7], [8].

Several methods have been proposed for Dynamic Airspace

Configuration (DAC), but their real-world effectiveness is

debatable. For example, Dynamic Airspace Sectorization [9]

overlooks controllers’ coordination workload and reconfigura-

tion cost, creating entirely new configurations for each day’s

segment. SectorFlow [10] groups flight trajectories to mini-

mize airspace complexity, assigning airspace to each cluster.

Its improved version refines initial partition using gradient

search and keeps flow intersections off sector boundaries [11].

CellGeoSect [12], a cell clustering method, visualizes the

airspace as hexagonal cells, maximizes flow connectivity, and

balances flight counts between clusters. It then modifies the

design to avoid significant flow’s geometric constraints. How-

ever, these methods can decrease efficiency as controllers may

be unfamiliar with newly assigned airports and consequently

bring safety concerns.

This study introduces a practical, adaptive algorithm for

airspace configuration, which modifies existing configurations

with minimal changes, rather than designing entirely new

ones. This method entails a three-stage graph-based clustering

method. Firstly, we built simulated airspace from open-source

data. We then convert the airspace into a relation graph that

embeds the operational constraints. This is done by only

connecting the geographically adjacent airports and setting

their edge weights negatively related to their gross workloads.

Secondly, considering that airports within the relation graph

are sparsely connected, we then increase the computation

efficiency by mapping each airport in the relation graph into a

low-dimension space, in which Singular value decomposition

(SVD) [13], [14] and Autoencoder [15] are compared. Finally,

we perform a spectral clustering-enabled adaptive algorithm on

the low-dimensional space to get the new configuration with

the traffic-center pattern surrounded by the non-busy airports.

The contributions of our work are as follows:

• We propose a graph clustering-enabled algorithm for

DAC: we allow configuration change around adjacent

airports to minimize collaboration costs while balancing

the ATC controllers’ workload.

• We propose a three-stage graph clustering method: we

construct a graph from airspace with embedded spatial-

temporal constraints, then reduce the graph dimension

and perform an adaptive clustering to get the final sector

configuration, in which each busy sector is regarded as

the center and is surrounded by non-busy airports. Our

experiments show that our method can reduce sector

workload unbalanced level by over 50% in different

traffic conditions.

• We investigated the efficacy of reducing the dimensions

of a graph using linear and non-linear methods: SVD

(Singular Value Decomposition) and Autoencoder. Our

findings demonstrate that SVD effectively reduces col-

laboration workload when transitioning to new config-

ar
X

iv
:2

3
0
7
.1

5
8
7
6
v
1

[m

at
h
.O

C
]

2
9

 J
u

l
2
0
2
3

https://github.com/KeFenge2022/GraphDAC.git

m

urations. On the other hand, the autoencoder excels at

minimizing workload imbalances for new configurations.

The remainder of this paper is organized as follows: A

literature review of related work is presented in Section II.

We present the methodology in Section III. Evaluation and

discussion are presented in Section IV and conclusions in

Section V.

II. RELATED WORK

The leading solution for Dynamic Airspace Configuration

(DAC) currently involves tactical, dynamic adjustment of

airspace to minimize demand and capacity imbalances [3].

This section will summarize commonly employed solutions.

First, dynamically creating entirely new controlled airspace.

Controlled airspace sector boundaries are newly created every

time without relying on pre-existing structures. This approach

is also referred to as dynamic sectorization. It is important to

note that air traffic controllers need the training to work on

a specific airspace set [3]. So that previous work mentioned

[10], [12] following this path is not desirable operationally

since ATC personnel cannot familiarize themselves with the

newly assigned airports [9].

The second approach is to stick to existing building blocks,

e.g., airspace modules, that can be dynamically combined to

form a controlled airspace sector [9]. Currently, this approach

is more desirable operationally. A controlled airspace sector

is operated by a small team of controllers and comprised

of one or more airspace modules. In both the U.S. and

European airspace, controlled airspace can be combined with

others or split into smaller controlled regions to balance the

workload equally across available ATC resources and airports

[3]. Several examples incorporating various constraints are as

follows:

In [1], a promising framework is proposed to realize DAC.

First, features for evaluating air traffic controllers’ workload

are extracted from the flight radar track, and sector operation

history. These feature vectors are fed into a neural network

re-configuration into the cost function, this approach ensures

the stability of the configuration by making the busiest airspace

modules (SBBs) a fixed central component of each controlled

airspace sector. Only the generic SAMs change from one

configuration to the next. The approach works best when the

airspace is divided into small SAMs and SBBs.

Spectral clustering is applied in [16] and [9] to balance

air traffic controllers’ workload. These works first transform

the airspace configuration problem into a graph partitioning

problem and address it with spectral clustering. The main idea

of spectral clustering is first to perform eigendecomposition on

the adjacency matrix to extract essential components, then use

the k-means clustering algorithm to divide the airspace. The

graph uses vertices and links to model airports, waypoints, and

air routes, then project real flight trajectories onto the graph as

edge weight. The key idea of spectral clustering is to reduce

the graph dimension to help the clustering algorithm focus on

the most critical feature. However, eigendecomposition is a

linear operation that may not have the flexibility to capture

the main component of complex air traffic patterns [17].

In general, the previous works contains the following draw-

backs: (a) Omiting the consideration that only close airport

should collaborate. (b) Involving complicated hyperparameters

that are not self-adjusted. (c) The time complexity is high. This

is the primary motivation for our research.

III. METHODOLOGY

A. Problem Definition & Datasets

We try to find an optimal plan to allocate non-busy airports’

air traffic control resources to assist busy airports with possibly

more delays. Our goal is to balance the workload of different

airports during emergency evacuations or other busy scenarios.

We use a metric called the Regional Unbalanced Level (RUL)

to quantify the workload of handling regular or delayed flights.

We first calculated the average number of non-delayed and

delayed flights handled by airports within each cluster, where

m is the total number of flights in the cluster i:

to provide a workload indication for the ATC in terms of

high, normal, or low. Their algorithm generates different
new configurations by splitting airports into several smaller

Fi = k=1 fk

m
m dk

(1)

airspace modules when the workload is high or merging with Di = k=1
m (2)

other airports when the workload is low. Next, the tree search

methods explore all possible partitions while restricting them

to be operationally valid. This ensures the algorithm builds

an optimal airspace partition where the workload is balanced

across the airports and uses the restrictions to lower the

reconfiguration cost.

We then calculated the variance of the Fi and Di over all

clusters, noted as S. This value helps to quantify the workload

unbalance within the whole airspace in scope. n is the number

of clusters in the configuration, D and F are the mean workload

of delayed and on-time flights: n
(D − D)2

Sergeeva et al. [9] proposed to model dynamic airspace

configuration as a graph partitioning problem that can be

optimized with a genetic algorithm. They define two different

types of airspace modules. Those airspace modules that “are

SD = i=1 i

n − 1
n (Fi − F)2

SF = i=1

n − 1

(3)

(4)

permanently busy areas with a high traffic load” are designated

to be “Sector Building Blocks” (SBBs). Less busy and more

generic airspace modules are called “Sharable Airspace Mod-

ules” (SAMs). A controlled airspace sector should consist of

at least one SBB and multiple SAMs. Instead of incorporating

Where high SD or SF indicate the workload of handling

delayed or regular flights are highly different across different

clusters. We assume that airports within the same cluster are

collaborating with each other to handle emerging workloads.

Therefore, smaller SD or SF are preferred.

B. Dataset

Flight Delays and Cancellations were published by The U.S.

radial-based kernel is chosen to encode the workload into edge

weight, defined as below:

Bureau of Transportation in 2015 [18]. This dataset includes

statistics tracking the on-time performance of domestic flights
loadij =

di + dj

fi + fj
(5)

operated by large air carriers. The original data has a total

of 30 attributes, however, not every attribute was recorded for

each flight, thus columns with more than 25% missing values

are removed. For the rest of the data, only the related attributes

are kept, including the scheduled date, airline, origin and

destination airport, departure time, and delay time. Canceled

or diverted flights are removed. To reduce computation load,

departure delay is transformed into the binary label, 0 is a

non-delay flight and 1 is a delayed flight. We focused on the

21 airports in Florida.

C. Hybrid Graph Modeling for Airspace

Modeling air traffic system in the form of a graph can

effectively preserve the spatial and temporal information in the

system [19]. We used a novel data structure Hybrid Airport

Adjacency Graph (HAG) to model the airspace of incorporat-

ing geographical adjacency and workload-based mergeability.

The procedures are as follows:

Step 1: Generating Initial Airport Adjacency Graph (IAG):

We identify if two nodes are connectible based on the

geographic location. Mathematically, we define that if two

airports, V 1 and V 2 are connected if V 2’s is the closest

neighbor geographical neighbor of V 1 at the same azimuth.

Figure 1 is an example taken from central Florida. When

setting the azimuth to 120 degrees, node MCO has three

connected nodes which are SFB, TPA, and MLB. Whereas,

PIE, DAB are not connected to MCO because they are not the

closest node inside the 120 azimuths. The size of the azimuth

is a tuning parameter, where a smaller azimuth resulting a

more dynamic graph, but may result in connecting to a non-

realistic node that is too far away.

Fig. 1. Illustration of Initial Airport Adjacency Graph (IAG). The example
airports are from central Florida.

Step 2: Creating Hybrid Airport Adjacency Graph (HAG):

We assigned edge weights for each connection of airports.

In HAG, airports that are less busy should have stronger

connections to each other, and the busy airports should be

far away from each other to avoid being clustered together. In

other words, the edge weight is negatively related to the total

workload quantified by the estimated delay flights and delay

ratio in the future two hours between the nodes. A modified

wi,j = B((1−λ)(100loadij)+λdij−shift) (6)

where i and j are two connected nodes, d is the number of

delayed flights in this time window, f is the total number of

flights in this time window. Thus, loadij is the percentage

of delayed flights of node i and j and normalized between

0 and 1. We only use the percentage of delayed flights as

an indicator of the ATC workload, a more comprehensive

workload can be explored in the future and substituted here.

dij is the geographical distance between the two airports.

λ is the geographical weight factor in balancing between

considering geographical distance and gross delay ratio, this

factor is automatically adjusted in our program. B ∈ (0, 1)
is the base, such a base is to satisfy the negative relation

between workload and the edge weight. The sift is set as 300

as it is numerically more stable. Mathematically, the larger

the edge weight between two nodes (airports), the more likely

they should be connected to collaborate and form a cluster.

D. Adaptive Clustering for Pre-Allocation

We developed an adaptive clustering algorithm for par-

titioning the fine-tuning of the collaboration airports, with

Spectral Clustering [20] as a key component. Mathematically,

spectral clustering first performs Eigen Decomposition of the

adjacency matrix of the Hybrid Airport Adjacent Graph to

project data from a higher dimension to a lower dimension to

remove redundancy and noise, then, clustering is done on the

low-dimension representation of data [20]. Our procedures are

as follows:

Step 1: Construct Hybrid Airport Adjacency Graph with

λ = 0, in this way, the initial clustering will not consider the

geographical location of airports.

Step 2: Compress the HAG’s adjacency matrix, we explore

the following methods:

• SVD: we calculate the degree matrix of the graph; The

degree matrix is a diagonal matrix where the value at

entry (i, i) is the degree of the node i. Then calculate the

eigenvalues and eigenvectors of the degree matrix; then

we sort them based on the eigenvalues.

• Autoencoder: we use the encoder to compress each air-

port in the graph (each row) into lower dimensions. This

autoencoder contains two Dense layers for its encoder

and decoder respectively.

Step 3: We perform the k-means clustering algorithm with

an initial k value equal to half of the airports on the low-

dimension graph to get the initial clustering result.

Step 4: Scan each cluster in the initial clustering result, if

any cluster contains more than three airports or with a diame-

ter greater than 100 nautical miles (the typical transmission

range that aircraft can communicate directly). We increase

the number of clusters by 1 and simultaneously, increase the

geographical weight λ by 0.1, but λ can not exceed 0.5.

Step 5: We repeat the clustering procedure as described in

Step (1) until all clusters satisfy the criteria defined in Step 4.

Steps 4 and 5 make the clustering process adaptive and this

algorithm can gradually evolve to use geographical constraints

to create clusters with reasonable spatial size. Therefore, we

do not require select dedicate k and λ values for different

scenarios.

After spectral clustering on HAG, the airports that are

geographically close and with relatively low workloads are

combined as a new cluster. Simultaneously, the busy airports

with more delayed flights will be picked up and isolated.

E. Fine-Tuning for Dynamic Workload Balancing

In this stage, we aim to merge different airports’ governing

regions to rebalance the workload of the area when there is

an abrupt increase in travel demand or flight delays. For this

purpose, we have the following assumptions:

Assumption I: All flight plans are known at least two hours

in advance from flight plans or predictions.

Assumption II: The abrupt increase in travel demand under

emergency situations could cause significant delays in flights.

In our experiment, if an airport’s delayed flights within the

predicted time window are greater than 2 delayed flights per

hour (with a regional airport) or with a delay percentage

within this time window being 30% (medium or large airports),

we then mark this airport as a busy airport and needs external

assistance.

Assumption III: The nearby airport that used to assist

a busy airport should: (a) have fewer delayed flights if the

category of the airports is identical, or a lower percentage of

delay if the category of the airport is different.

Based on assumptions II and III, we develop the fine-tuning

algorithm for each busy airport as follows:

• Step 1: we created a ranked list of busy airports based

on (a) a user-defined priority level with a default value

of zero, (b) the number of delayed flights, (c) delay ratio,

and (d) number of scheduled flights within the predicted

time window. Here, the user-defined priority level can be

filled when there’s an emergent situation.

• Step 2: we scanned all airports within 100 nautical

miles of the busy airports in step one and determine if

a specific airport can be merged to assist an adjacent

busy airport based on these criteria: (a) distance, (b)

less number of predicted delayed flights, (c) lower delay

ratio. Specifically, we created a ranked list of non-busy

candidates and picked the closest one.

• Step 3: if any two airports are selected as a collaborative

pair, we created a new cluster containing only the two

airports, to prevent airspace conflict, we also ensure that

there’s no other busy airport within the combined airspace

before establishing the collaboration relationship.

In general, the algorithm allows reallocating more resources

from less busy regions in the airspace.

IV. EVALUATION & DISCUSSION

This section examines the efficiency of the graph clustering-

based dynamic airspace configuration method under different

(a)

(b)

Fig. 2. Airspace configuration generated at different times on 12/24 (a) 7:00-
9:00, (b) 12:00-14:00.

scenarios. Additionally, we compare the computational effi-

ciency of Autoencoder and SVD for graph compression.

A. DAC with different scenarios

1) Different times on the same day: We tested the DAC

algorithm on December 24th, 2015, a day with heavy flight

traffic due to the holiday season. Three distinct 2-hour time

windows are selected: 7:00-9:00 for low traffic, 12:00-14:00

for high traffic, and 19:00-21:00 for medium traffic. The

experiment results show that the algorithm changes the config-

uration based on the different traffic conditions successfully,

and the workload unbalanced level of the new configuration

in terms of handling regular and delayed flights has been

significantly reduced at all different traffic conditions, as seen

in Table I.

As in Figure 2, for low traffic conditions between 7:00-

9:00, the airspace configuration algorithm combines adjacent

sectors to balance the workload, such as MCO with SFB,

FXE with FLL, and PNS with VPS; In the meantime, several

airports are isolated independently because there is no non-

busy airport within a reasonable range and without airspace

overlap with busy airports, such as MIA and EYW. When the

TABLE I

REDUCTION ON UNBALANCE LEVEL AFTER RECONFIGURATION AT

DIFFERENT TIMES ON THE SAME DAY

 Handling regular

flights

Handling delayed

flights

7:00-9:00 (Low traffic) 42.85% 10.8%

12:00-14:00 (High traffic) 56.9% 61.04%

19:00-21:00 (Medium traffic) 42.86% 60.1%

traffic load is high during 12:00-14:00, the algorithm changes

the configuration to balance the workload among sectors to

adapt to the increasing traffic load.

(a)

(b)

Fig. 3. Summary of airspace reconfiguration actions within Dec 24th 2015
(a) Merged airspace. (b) Airspaces that need further separation.

We also noticed some common patterns. First, the airspace

merging actions in the three time periods are summarized in

Figure 3(a). The three most frequent merges are FLL-FXE,

MCO-SFB, and TPA-PIE. These airports are selected to merge

into collaborative pairs because a) executive airports are not

usually as busy as large international airports even if they

are closely located, so they can always assist busy airports.

Secondly, Figure 3(b) shows that MIA and its nearby airports

are extremely busy all day round, which makes it impossible

to find a collaborative airport that is less busy.

2) Same time for different days: We also evaluate the

algorithm on different dates, three high-traffic volume dates are

selected, which are 7/3, 11/25 (one day before Thanksgiving),

and 12/31 (one day before the new year) in 2015. we also

compare the airspace configuration results on the busy hours

(12:00 PM to 14:00 PM) on these low-traffic days: 2/17, 6/9,

and 9/8, 2015. Our algorithm significantly decreases unbalance

level of the ATC’s workload in both busy and non-busy

scenarios as shown in table II.

(a)

(b)

Fig. 4. Summary of airspace reconfiguration actions observed on 12:00 PM
to 14:00 PM on different days of 2015: (a) airspaces that are merged. (b)
airspaces that need further separation.

TABLE II

REDUCTION ON UNBALANCE LEVEL AFTER RECONFIGURATION

AT THE SAME TIMES ON DIFFERENT DAYS

High traffic dates Handling regular
flights

Handling delayed
flights

7/3 56.77% 56.37%

11/25 59.1% 62.5%

12/31 56.9% 59.9%

Low traffic dates Handling regular
flights

Handling delayed
flights

2/17 64.1% 66.7%
11/25 60% 67.1%

12/31 53% 44.5%

There are also some common merging strategies employed

for both high and low traffic conditions. As shown in figure

4, the actions taken most frequently are the merging between

FLL-FXE, MCO-SFB, PGD-RSW and PIE-TPA, showing that

large international airports are always busy all year round and

need assistance from other regional or executive airports. GNV

is surrounded by medium and busy airports and is dynamically

assigned as a flexible collaborator. Our algorithm also indicates

that some busy airports in southern Florida are surrounded by

airports that are busy simultaneously. Consequently, they can

not find collaborative peers and further divisions are needed

in their internal airspace.

B. Comparison of pre-clustering graph data compression

methods

SVD and Autoencoder (AE) are employed to reduce the

dimension of the HAG’s adjacency matrix. In general, both

techniques yield low-dimension graphs that preserve a sig-

nificant amount of essential information, but each has its

own advantages. Specifically, SVD excels in preserving the

embedded constraints within the graph, whereas the AE is

particularly adept at achieving balanced clustering. In Figure

6, the clustering results of the SVD-compressed graph adhere

to the adjacency constraint that we only want to merge

geographically close airports. Comparably, an AE allows the

algorithm to deviate slightly. For instance, when using the

AE depicted in (a) for compression, certain clusters, such as

clusters 0 and 7 contain airports that are not directly connected.

To compare the impact of the dimension of the latent space

to the strictness of AE, multiple AEs were trained with varying

latent dimensions (2, 5, 10 and 15). We found that there is a

certain pattern when AEs do not follow the restrictions. As in

figure 5, AEs always mistakenly combine ECP, TLH and DAB

together or VRB, PBI, MIA, and EYW together, but this kind

of error can easily be fixed by a post-processing algorithm.

Additionally, AEs are much faster than SVD after training,

making them more suitable for use in real time. As in table

III, as the dimension of the graph continues to increase, SVD

is much slower than AEs. This is because the computation

of trained AEs can easily get accelerated by hardware. Also,

AEs can leverage past training experiences, unlike SVD which

starts computation from scratch each time.

This is because the computation of trained AEs can easily

get accelerated by hardware. Also, SVD has to start compu-

tation from scratch every time while AEs can leverage past

experiences from training.

TABLE III

COMPARISON OF TIME REQUIRED IN REAL-TIME APPLICATION BETWEEN
SVD AND AUTOENCODER

HAG’s dimension SVD prediction
(10−5 second)

Autoencoder
prediction (10−5

second)

Autoencoder
Training time

(second)

7*7 43.9 1.16 27.78
10*10 44.8 1.70 27.04
15*15 44.5 4.06 69.47
18*18 48.1 3.30 64.67

21*21 373.8 3.54 65.98

V. CONCLUSION

We’ve introduced an innovative method for dynamic

airspace reconfiguration, using a graph model to balance air

traffic controllers’ workload. This model incorporates geo-

graphical adjacency and ATC workloads, utilizing a spectral

clustering-enabled adaptive algorithm to generate new con-

figurations based on predicted delay and flight plans. The

algorithm groups high-workload airports as centers surrounded

by lesser-engaged airports, redistributing ATC resources for

Fig. 5. Error patterns of autoencoder in pre-clustering graph data compression. The result of the first row and second row are generated by AE when the
latent space is 2 dimensions and 10 dimensions respectively.

(a)

(b)

Fig. 6. Comparison of pre-clustering compression method on the final result
of DAC (a) Nonlinear: Autoencoder and (b) Linear: SVD.

workload equilibrium. The model outperforms static airspace

configurations, reducing workload imbalance by over 55%

under high traffic volume, as confirmed through evaluations

during various time windows and traffic conditions. Our real-

data simulations indicated that Miami and Sarasota airspace

requires further partitioning to improve performance, as our

DAC algorithm struggled to locate less busy airports within

60 miles for collaboration. Furthermore, Key West airport’s

remote location hindered collaboration with busy airports to

share emergent workloads.

Our future direction includes improving airspace ATC work-

load assessment by considering metrics beyond delayed and

total flights. Additionally, we plan to explore neural networks’

potential in generating comprehensive airspace configuration

plans.

ACKNOWLEDGMENT

This research was supported by the Center for Ad-

vanced Transportation Mobility (CATM), USDOT Grant No.

69A3551747125, 270128BB(AWD00237), and by the U.S.

National Science Foundation under Grant No.2231629, Grant

No.2142154, No.2142514 and Grant No.2309760.

REFERENCES

[1] D. Gianazza, “Forecasting workload and airspace configuration with
neural networks and tree search methods,” Artificial intelligence, vol.
174, no. 7-8, pp. 530–549, 2010.

[2] P. Lee, J. Mercer, B. Gore, N. Smith, K. Lee, and R. Hoffman,
“Examining airspace structural components and configuration practices
for dynamic airspace configuration,” in AIAA Guidance, Navigation and
Control Conference and Exhibit, 2008, p. 7228.

[3] S. Zelinski and C. F. Lai, “Comparing methods for dynamic airspace
configuration,” in 2011 IEEE/AIAA 30th Digital Avionics Systems Con-
ference. IEEE, 2011, pp. 3A1–1.

[4] J. Wang, Y. Liu, and H. Song, “Counter-unmanned aircraft system (s)(c-
uas): State of the art, challenges, and future trends,” IEEE Aerospace
and Electronic Systems Magazine, vol. 36, no. 3, pp. 4–29, 2021.

[5] Y. Yang, J. Yu, D. Liu, S.-A. Lee, S. Namilae, S. Islam, H. Gou, H. Park,
and H. Song, “Multiagent collaboration for emergency evacuation using
reinforcement learning for transportation systems,” IEEE Journal on
Miniaturization for Air and Space Systems, vol. 3, no. 4, pp. 232–241,
2022.

[6] Y. Yang, K. Zhang, H. Song, and D. Liu, “Machine learning-enabled
adaptive air traffic recommendation system for disaster evacuation,” in
2021 IEEE/AIAA 40th Digital Avionics Systems Conference (DASC).
IEEE, 2021, pp. 1–8.

[7] P. Kopardekar, K. Bilimoria, and B. Sridhar, “Initial concepts for
dynamic airspace configuration,” in 7th AIAA ATIO Conf, 2nd CEIAT
Int’l Conf on Innov and Integr in Aero Sciences, 17th LTA Systems Tech
Conf; followed by 2nd TEOS Forum, 2007, p. 7763.

[8] P. Kopardekar, K. D. Bilimoria, and B. Sridhar, “Airspace configuration
concepts for the next generation air transportation system,” Air Traffic
Control Quarterly, vol. 16, no. 4, pp. 313–336, 2008.

[9] M. Sergeeva, D. Delahaye, C. Mancel, and A. Vidosavljevic, “Dynamic
airspace configuration by genetic algorithm,” Journal of traffic and
transportation engineering (English edition), vol. 4, no. 3, pp. 300–314,
2017.

[10] C. R. Brinton and S. Pledgie, “Airspace partitioning using flight clus-
tering and computational geometry,” in 2008 IEEE/AIAA 27th Digital
Avionics Systems Conference. IEEE, 2008, pp. 3–B.

[11] C. Brinton, J. Hinkey, and K. Leiden, “Airspace sectorization by dynamic
density,” in 9th AIAA Aviation Technology, Integration, and Operations
Conference (ATIO) and Aircraft Noise and Emissions Reduction Sym-
posium (ANERS), 2009, p. 7102.

[12] G. Sabhnani, A. Yousefi, and J. S. Mitchell, “Flow conforming op-
erational airspace sector design,” in 10th AIAA Aviation Technology,
Integration, and Operations (ATIO) Conference, 2010, p. 9377.

[13] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and
computing, vol. 17, pp. 395–416, 2007.

[14] L. Galluccio, O. Michel, P. Comon, and A. O. Hero III, “Graph based
k-means clustering,” Signal Processing, vol. 92, no. 9, pp. 1970–1984,
2012.

[15] Y. Wang, H. Yao, and S. Zhao, “Auto-encoder based dimensionality
reduction,” Neurocomputing, vol. 184, pp. 232–242, 2016.

[16] J. Li, T. Wang, I. Hwang, and I. Hwang, “A spectral clustering based
algorithm for dynamic airspace configuration,” in 9th AIAA Aviation
Technology, Integration, and Operations Conference (ATIO) and Aircraft
Noise and Emissions Reduction Symposium (ANERS), 2009, p. 7056.

[17] L. Gondara, “Medical image denoising using convolutional denoising
autoencoders,” in 2016 IEEE 16th international conference on data
mining workshops (ICDMW). IEEE, 2016, pp. 241–246.

[18] D. o. Transportation, “2015 flight delays and cancellations,” Feb 2017.
[Online]. Available: https://www.kaggle.com/datasets/usdot/flight-delays

[19] Y. Jiang, S. Niu, K. Zhang, B. Chen, C. Xu, D. Liu, and H. Song,
“Spatial–temporal graph data mining for iot-enabled air mobility predic-
tion,” IEEE Internet of Things Journal, vol. 9, no. 12, pp. 9232–9240,
2021.

[20] A. Ng, M. Jordan, and Y. Weiss, “On spectral clustering: Analysis and an
algorithm,” Advances in neural information processing systems, vol. 14,
2001.

https://www.kaggle.com/datasets/usdot/flight-delays

