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Abstract
While recent work explored streaming volumetric content
on-demand, there is little e�ort on live volumetric video
streaming that bears the potential of bringing more exciting
applications than its on-demand counterpart. To �ll this crit-
ical gap, in this paper, we propose MetaStream, which is, to
the best of our knowledge, the �rst practical live volumetric
content capture, creation, delivery, and rendering system
for immersive applications such as virtual, augmented, and
mixed reality. To address the key challenge of the stringent
latency requirement for processing and streaming a huge
amount of 3D data,MetaStream integrates several innova-
tions into a holistic system, including dynamic camera cal-
ibration, edge-assisted object segmentation, cross-camera
redundant point removal, and foveated volumetric content
rendering. We implement a prototype of MetaStream us-
ing commodity devices and extensively evaluate its perfor-
mance. Our results demonstrate thatMetaStream achieves
low-latency live volumetric video streaming at close to 30
frames per second on WiFi networks. Compared to state-of-
the-art systems, MetaStream reduces end-to-end latency by
up to 31.7% while improving visual quality by up to 12.5%.

CCS Concepts
• Human-centered computing ! Mobile computing;
Visualization systems and tools; • Computing methodolo-
gies ! Volumetric models.
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1 Introduction
Volumetric videos enable six degrees of freedom (6DoF) mo-
tion for viewers by modeling (physical) objects as point
clouds or 3D meshes [36, 48]. When watching a volumetric
video, users can freely explore its content in 3D space by
changing not only viewing directions, which is supported
by 360° videos [37, 65], but also, more importantly, view-
points (i.e., translational position in 3D space), which is a
unique feature of volumetric content. Thus, volumetric con-
tent can be integrated into virtual, augmented, and mixed
reality (VR/AR/MR) applications to o�er a truly immersive
user experience [59]. As the key component of holographic
communication [26] that is envisaged for 6G [70, 71], the cap-
ture, creation, delivery, and rendering of volumetric content
(i.e., volumetric video streaming) has registered numerous
applications in healthcare, education, entertainment, etc.
Existing work on volumetric video streaming [33, 34, 36,

48, 60, 64, 72, 82, 83] mainly focused on video on demand
(VOD) that streams pre-recorded content, and there is little
e�ort on live streaming that simultaneously captures and
delivers volumetric content in real-time. Di�erent from VOD,
live streaming can facilitate more exciting use cases. For ex-
ample, a surgeon can operate on remote patients via their live
volumetric content feed to support telesurgery [25], saving
people’s lives on battle�elds and in underdeveloped areas.
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Video Cameras Data Content Rendering DoF
Volume Creation Overhead

2D Single Low – Low –
360° Multi. Medium 2D Stitch Low 3DoF

Volumetric Multi. High 3D Synthesis High 6DoF
Table 1: Comparison of live streaming for di�erent types of
videos, including regular 2D, 360°, and volumetric videos.

We list the key challenges of live volumetric video stream-
ing, by comparing di�erent types of live streaming including
regular 2D, 360°, and volumetric videos in Table 1. Among
them, volumetric video streaming provides the richest amount
of information of the delivered content by enabling 6DoF
motion and providing a truly immersive experience, at the
cost of high computation and communication overhead. For
example, volumetric video capture requires a multi-camera
setup and generates a high volume of data to process; it de-
mands 3D content synthesis and rendering that consumes
much higher computing resources than 360° videos; and
the required bandwidth for streaming volumetric content is
much higher than 2D and 360° videos. Thus, it is extremely
challenging to design and implement a practical live vol-
umetric video streaming system under the constraints of
o�-the-shelf commodity devices and today’s Internet.
In this paper, we proposeMetaStream, a �rst-of-its-kind

live volumetric content capture, creation, delivery, and ren-
dering system for enhancing the user experience of immer-
sive applications. It consists of three key components: cam-
eras equipped with computation resources (referred to as
smart cameras) to capture and pre-process RGB and depth
frames with the goal of reducing the transmitted data, a
server to optimize the computation overhead of creating
high-quality 3D content and decrease the content-generation
latency, and anMR client to render, in real-time, live volumet-
ric content for seamless integration with the surrounding en-
vironment. In a nutshell,MetaStream achieves low-latency
live volumetric video streaming at close to 30 frames per
second (FPS) by intelligently balancing the trade-o�s be-
tween computation overhead, network resource utilization,
and visual quality of volumetric content. The visual result of
MetaStream is shown in Fig. 1. Our design of MetaStream
involves the following innovations that make it practical.
Adaptivity to Practical Scenarios via Dynamic Camera
Calibration. In multi-camera volumetric video streaming
systems, camera calibration is a critical component that di-
rectly a�ects the performance of the whole streaming ses-
sion [63]. Previous work calibrated cameras in a naive way
(e.g., prede�ned markers [41, 46, 57]), and no movement of
cameras would be allowed after calibration. However, practi-
cal volumetric video streaming systems often involvemoving

Real
Person

Visual 
Result on 

MR Glasses

Figure 1: Visual Results of MetaStream on Microsoft
HoloLens 2 [8].

objects in a wide range, which makes �xed cameras not ap-
plicable. For example, a person walking around in a large
room cannot be always captured by �xed cameras. More-
over, there is an increasing demand for deploying cameras on
mobile platforms such as autonomous vehicles and drones.
In such scenarios, the �xed-camera assumption no longer
holds. To resolve such a challenge,MetaStream develops a
lightweight online calibration method that allows the dy-
namic movement of cameras during streaming. By adopting
ORB feature extraction [67] and tracking algorithms [58],
our calibration method can accurately update the cameras’
6DoF pose during the streaming session.
Collaborative Edge Design for Low-latency Content
Capture and Creation. Existing multi-camera volumetric
video streaming systems su�er from large streaming data size
and high computation overhead for the point cloud genera-
tion, which requires high network bandwidth and powerful
machines [41, 46, 59]. However, to enable the movement of
cameras, captured content should be wirelessly transmit-
ted to the server.MetaStream presents a collaborative edge
pipeline for volumetric video streaming that e�ectively dis-
tributes computing loads across smart cameras and the server,
signi�cantly reducing computing pressure on the server and
decreasing the streaming data size. We also design selective
segmentation on smart cameras to intelligently segment out
target objects from complex backgrounds with low over-
head. The transmission delay is largely reduced by locally
segmenting target objects on smart cameras.
E�cient Point Cloud Synthesis by Removing Redun-
dant Data. Though multiple cameras are required to cap-
ture a complete high-quality point cloud, their �elds of view
(FoVs) could overlap with one another, which generates
a large portion of redundant points in the overlapped re-
gions. Thus, we propose a cross-camera redundancy removal
method that deletes the redundant points. In this way, we
not only improve the visual quality of the complete point
cloud but also reduce the transmitting data size between the
server and the client.
Foveated Rendering of Point Clouds on MR Devices.
Head-mounted displays (HMDs) are becoming a crucial fac-
tor in bringing users an immersive experience in AR/MR
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systems. Motivated by such a trend, we optimize the render-
ing performance for users (i.e., clients who receive and play
the streamed volumetric content) with MR HMDs such as
Microsoft HoloLens 2 [8]. Speci�cally, we propose an em-
pirical foveated rendering method that adaptively renders
volumetric content with di�erent point densities (and thus
visual qualities) based on the user’s foveal area. Additionally,
we utilize the user’s motion as the reference to adaptively
decide the normal of 2D squares for rendered 3D points.
With all these proposed techniques, MetaStream achieves
high-quality rendering with neglectable overhead.
We build a prototype implementation of MetaStream us-

ing commodity devices and thoroughly evaluate its perfor-
mance via live controlled experiments. We summarize our
evaluation results as follows.
• Comparing its performance and a state-of-the-art system
LiveScan3D [46] on di�erent edge devices and in various
wireless network environments,MetaStream keeps nearly
30 FPS in all conditions while the average FPS of LiveScan3D
is only 14.3 FPS (on Jetson Nano [14]).
• With the proposed modules in MetaStream, the visual
quality of the delivered volumetric content that is rendered
on the MR client is 6.84% to 12.5% better than LiveScan3D.
• Compare to LiveScan3D,MetaStream reduces the end-to-
end latency, a key metric of live video streaming, by 31.7%.

2 Background and Motivation

2.1 Background
Volumetric Content Capture and Creation. Point cloud
and 3D mesh are two popular representations of volumetric
content. A point cloud is essentially a set of unstructured 3D
points with color and/or intensity [31]. 3D mesh models an
object using not only vertices but also edges and faces to form
polygons [55, 62]. Di�erent from 3D mesh, the point cloud is
more �exible and easier to manipulate and is thus the focus
of this work. Volumetric content can be captured by RGB-D
cameras (e.g., Intel RealSense [5] and Microsoft Kinect [7])
and various LiDAR scanners [66]. These devices acquire 3D
data by leveraging the time of �ight (i.e., calculating depth
based on the speed of light) or structured light (i.e., light
with a known pattern). In order to get colorful point clouds
for volumetric content delivery, we need to merge RGB and
depth images (frommultiple cameras) to construct 3Dmodels
via proper synchronization, calibration, and �ltering.
Volumetric Video Streaming is an emerging research topic,
in particular to the networking community. We can classify
the state-of-the-art into two categories: direct streaming and
transcoded streaming. The former fetches the encoded 3D
models, either in their full form or segmented parts, before
decoding and rendering them [36, 60], whereas the latter

0.8
0.6
0.4
0.2

0
4K 

Video
8K 360° 
Video

Volumetric
Video

D
at

a 
Si

ze
 (G

B
) 40

1
≈

160
120
80
40
0

4K 
Video

8K 360° 
Video

B
an

dw
id

th
 (M

bp
s) 5400

200
≈

(a) Data size for 1-minute Video (b) Required Bandwidth for Streaming

240

Volumetric
Video

Figure 2: Comparison of 4K, 8K 360�, and volumetric videos.

performs real-time transcoding (e.g., at the edge), which ren-
ders 3D scenes/objects into 2D images based on users’ (pre-
dicted) 6DoF pose and streams transcoded 2D video to the
client [34, 64]. While direct streaming o�ers superior scal-
ability (i.e., the server is stateless) and user interaction, its
downside is the high bandwidth utilization and on-device
decoding overhead caused by the delivery and processing of
3D data. Since the client receives and decodes 2D content,
the network and client-side overheads for transcoded stream-
ing are dramatically reduced, becoming independent of the
complexity of 3D scenes. However, it has two limitations,
heavyweight 3D-to-2D transcoding and potential distortion
of displayed content due to inaccurate viewport prediction.
Existing Live Volumetric Video Streaming Systems.
LiveScan3D [46] is an open-source system for live, 3D data ac-
quisition using multiple Kinect v2 sensors. Bene�ting from
pre-set makers, it allows the user to place sensors in any
con�guration and gather data in near real-time. It has two
main components: LiveScanServer and LiveScanClient. Each
LiveScanClient is equipped with a desktop computer and a
Kinect sensor. It can capture and stream the created point
cloud to the LiveScanServer. The LiveScanServer manages all
LiveScanClients simultaneously. It can merge and compress
point clouds from di�erent LiveScanClients based on the
spatial position of their sensor. Holoportation [59] is another
system that directly connects cameras to the server. By using
powerful GPUs, it can reconstruct a 3D model of humans in
real-time and transmit it to headsets for display [8]. Hu et
al. [40] combine point cloud capturing and streaming as an
entire pipeline and build a prototype, which contains a depth
sensor, an edge-computing device, and a smartphone. Project
Starline [47] utilizes a static setup to capture mainly the up-
per body of a stationary person, which requires multiple
powerful GPUs and custom-built hardware (i.e., not compat-
ible with mobile headsets such as HoloLens 2) to create and
display the 3D representation of captured users.

2.2 Motivation
We next demonstrate the challenges of live volumetric video
streaming over wireless networks and analyze the limita-
tions of state-of-the-art systems. MetaStream is proposed
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Figure 3: System architecture and work�ow ofMetaStream.

to resolve them and realize high-quality live streaming on
commodity networks and devices.

One of the most recent video types that has been studied
for live streaming is 360° video. However, 360° video is not
true 3D content and supports only 3DoF motion (rotation
on G,~, I axes), and thus cannot fully take advantage of the
unique features of MR/AR headsets. For example, it does not
allow users to observe an object in 6DoFwith the headsets. As
shown in Fig. 2, the key challenge of streaming point cloud-
based volumetric videos is the large data size. We compare
point-cloud videos with 4K videos and 8K 360� videos on the
data size of a one-minute video in Fig. 2 (a) and the required
bandwidth for streaming in Fig. 2 (b). A one-minute point-
cloud video at 30 FPS requires over 60 times the data size
compared to an 8K 360� video and 200 times compared to
a 4K video, both at the same frame rate. To guarantee live
video streaming at 30 FPS, the required bandwidth of a raw
point-cloud video is almost 26 times over an 8K 360� video
and 216 times over a 4K video. Due to such a large data size,
point cloud-based live volumetric video streaming is more
challenging than its 2D and 360° counterparts.
Among existing systems of live volumetric video stream-

ing, Holoportation [59] does not optimize the transmission
overhead of high-quality 3D content and requires >1Gbps
network bandwidth. Hu et al. [40] design a system that
streams from a single camera to a mobile phone, which does
not consider point cloud synthesis from multiple cameras.
Starline [47] focuses on capturing and streaming the front
view of the upper body of a user, who sits next to the dis-
play. Thus, we could not conduct apple-to-apple comparisons
with them without modifying their design. In this work, we
choose LiveScan3D [46] as the baseline for comparison.

We observe three key limitations in LiveScan3D [46], which
motivate the design ofMetaStream. First, as directly trans-
mitting point clouds to the content server consumes high
bandwidth, it is challenging to deploy LiveScan3D on WiFi
networks, especially for the multi-camera setup. Second,

due to the constraint of the segmentation method in LiveS-
can3D [46], other objects close to the captured object may be
kept in the segmentation results by mistake. Third, as there
are overlapped areas of the FoVs of cameras, the merged
point cloud contains redundant points, which not only in-
creases transmission data size but also reduces the visual
quality of displayed content.

3 MetaStream Overview
MetaStream is a live volumetric content capture, creation,
delivery, and rendering system that realizes high-quality
video streaming for immersive applications. We depict its
system architecture and work�ow in Fig. 3. Compared to
existing systems [40, 46, 47, 59], the design of MetaStream
addresses the following challenges that exist in practice.
• MetaStream signi�cantly reduces the high transmission
delay caused by the large data size. By exploiting the com-
puting capacity of lightweight edge devices, it dispatches
pre-processing loads on camera-side edge devices and �lters
out redundant RGB and depth data around the target ob-
ject(s) before transmission. Hence, the transmission data size
from cameras to the server is largely reduced, signi�cantly
decreasing the transmission delay.
• MetaStream e�ectively reduces pre-processing overhead
on the camera side without sacri�cing the overall perfor-
mance. By adaptively selecting frames for segmentation
based on cross-frame di�erences, MetaStream keeps accu-
rate and fast deep learning-based segmentation on smart
cameras with limited computing resources.
•MetaStream boosts content creation e�ciency. With the
RGB and depth data of only the target object(s), it takes less
time on the server to create the point clouds and synthesize
them into a complete one because the number of points for
processing is drastically reduced.
• MetaStream improves the applicability for practical sce-
narios where cameras may move and follow the target object
(e.g., a person walking around in a room) during streaming. A
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lightweight yet e�ective dynamic camera calibration method
is proposed by extracting and tracking ORB features [44]
from the environment to realize online camera-pose updates.
•MetaStream accelerates point cloud rendering on MR/AR
devices whose computing resources are limited. It develops
an adaptive foveated rendering technique to signi�cantly
reduce the rendering overhead with a neglectable sacri�ce of
user experience. The rendering overhead is further reduced
by limiting the search space for the foveated area.
With all the above techniques,MetaStream realizes real-

time live volumetric video streaming over a WiFi network.

4 System Design of MetaStream

4.1 Smart Cameras
As shown in Fig. 3, a smart camera consists of two parts: a
depth camera (e.g., Intel L515 [4]) and an edge computing
device (e.g., Jetson Nano [14]). The edge device keeps a per-
sistent wireless connection with the server. Though such a
setup can be easily created in environments such as o�ces
and classrooms, the following challenges exist.
• As the target object (e.g., a person) can move around in a
large space, the cameras need to move to follow the object,
which is not yet supported by existing work [3, 10, 46, 59].
• The camera side of a live volumetric video streaming sys-
tem involves multiple tasks including RGB/depth frames
capturing, object segmentation, and video encoding [46]. To
make the system design practical,MetaStream supports low-
cost portable edge devices on the camera-side, which has
limited computing resources (e.g., only 128 CUDA cores on
Jetson Nano [14]) compared to desktop computers (e.g., 3,584
CUDA cores on Nvidia RTX 3060).

We address the above challenging issues with the follow-
ing methods.
• We design a dynamic camera calibration scheme by lever-
aging a lightweight ORB feature extraction and tracking
algorithm [58], which automatically updates the cameras’
6DoF pose with neglectable overhead during streaming.
•We decrease the transmission data size by segmenting RGB
and depth frames. To reduce the computational cost of seg-
mentation, we design selective segmentation that adaptively
segments frames with low similarity to their neighboring
keyframes and approximates the others with the segmenta-
tion results of keyframes. The segmented RGB and depth1
data are encoded with 2D video encoder (e.g., H.264), which
further reduces transmission data size. Note that we pre-
fer 2D video encoder rather than RGB-D data compression
methods [43, 75] because their current implementations are
expensive and cannot run in real-time on edge devices (e.g.,
⇠0.4s per frame on Jetson Nano [14] with 720p resolution).

1The gray-scale depth frames are converted to RGB frames before encoding.
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Figure 4: Dynamic Camera Calibration.

Dynamic Camera Calibration. Existing volumetric video
capturing systems [3, 10, 46, 59] �x the cameras’ positions,
which limits their adaptivity to practical scenarios. We pro-
pose Dynamic Camera Calibration (DCC) in MetaStream
to address this limitation. The DCC module dynamically
obtains and manages the camera pose in real-time and cali-
brates cameras without any pre-de�ned makers [46].

As shown in Fig. 4, DCC includes two stages: cross-camera
distance measurement (CCDM) and online movement track-
ing (OMT). The CCDM stage is activated when the system is
set up. It is a one-time e�ort and obtains the initial relative
positions across cameras. The OMT stage starts after the
CCDM stage and keeps active during streaming. It continu-
ously updates the relative displacement of each camera when
it moves. By combining the relative displacement with the
initial relative position, the system obtains the poses of all
cameras in real time. Note that we have two assumptions
about the DCC module. First, the moving speed should not
exceed a certain limit to ensure the calibration performance
(e.g., <4.2m/s in our current design). Second, the scene should
contain rich feature points. Nevertheless, such assumptions
can be naturally satis�ed in most real-world scenarios.
CCDM Stage. Once all smart cameras are connected to the
server, the CCDM stage of DCC starts. The smart cameras
are initially placed facing one direction, making their FoVs
overlap with each other. Then, they begin to extract ORB
features [67] from their FoVs and send them to the server.
By designating the position of one camera as the reference,
the server calculates the relative spatial positions of other
cameras by matching their features [44]. In this way, the
server obtains the initial positions of all cameras in the same
coordinate system. Note that for the camera that is selected
as the reference, its initial position is set to the origin of the
coordinate system.
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OMT Stage. Once the cameras’ initial positions are calculated
on the server, the cameras can be moved to other locations.
To make the system more e�cient, the Inertial Measurement
Units (IMU) on the depth cameras [5] are used as motion
monitors. The camera updates its poses only when the IMU
detects movement. The updating method is based on an ORB
tracking algorithm [58], which tracks features on consecutive
frames and acquires the relative displacement of the camera.
Selective Segmentation.The recent success of deep learning-
based schemes enables high-accuracy semantic segmenta-
tion on RGB images [73]. Its �exibility and adaptivity widely
extend the applications of MetaStream in di�erent practi-
cal scenarios. Thus, we apply it on RGB images to separate
the target object from the background. While depth-based
segmentation is lightweight, it is limited to handling envi-
ronmental adaptation due to the lack of recognition capabil-
ity [50]. For example, when a person sits on a chair, depth-
based segmentation may not distinguish between the person
and the chair. By exploiting the similarity between consecu-
tive frames, we propose to selectively segment some frames
and approximate the rest with the segmentation result on
their preceding frame, as shown in Fig. 5. On the one hand,
as segmentation reduces transmission delay and decreases
the redundancy in point cloud synthesis on the server, it
plays an important role in reducing end-to-end latency and
improving the overall performance ofMetaStream. On the
other hand, as executing segmentation on smart cameras
takes time [38, 39] (e.g., 27 to 48 ms on Jetson Nano [14]),
we should reduce the segmentation frequency. Thus, it is
nontrivial to decide whether to segment a frame or not.
When a new frame 58 is sampled from the camera, we

calculate its di�erence from the reference frame 59⇤ and their
di�erence is compared with the threshold \⇡ in the Di�er-
ence Indicator. The reference frame 59⇤ is the last frame that
is segmented by the segmentation model. The threshold \⇡
is the upper bound of the frame di�erence. If the di�erence
between 58 and 59⇤ is less than \⇡ , we directly apply the
segmentation mask of 59⇤ , ( 9⇤ , to 58 (i.e., the segmentation

result of frame 58 is obtained by applying the mask ( 9⇤ to
it); otherwise, we use the segmentation model to generate
the mask of 58 , (8 . In the later case, we update the reference
frame 59⇤ as 58 and update the segmentation mask ( 9⇤ as (8 .
Finally, the segmentation result is stored in the result bu�er.
As the threshold \⇡ determines whether to execute the

segmentation model on frames, it is a critical parameter to
balance segmentation accuracy and resource consumption.
Speci�cally, if \⇡ is higher than most frame di�erences, the
segmentation model is seldom activated and the masks of
most frames are approximated by the mask of their reference
frame. Consequently, we can keep low resource consump-
tion but may sacri�ce segmentation accuracy due to mask
approximation. On the contrary, if \⇡ is lower than most
frame di�erences, we can keep high segmentation accuracy
but have high resource consumption as the segmentation
model is executed frequently. During live volumetric video
streaming, the computing capacity of smart cameras may
vary as multiple tasks run simultaneously on the devices (e.g.,
dynamic camera calibration and frame encoding). Moreover,
the change of the target object’s movement across frames
also varies over time. Thus, we design a threshold updater
to tune \⇡ periodically (every ) second) according to the
computing capacity and the movement change rate.

In the threshold updater, we tune \⇡ based on the records
during the past) second. The performance recorder in Fig. 5
stores the frame di�erences in the past ) second, denoted
as D[C�) ,C ] . First, we calculate the average computing la-
tency of the segmentation model during the past ) second,
denoted as C̄( , and rank the values in D[C�) ,C ] from high to
low, denoted as D̂[C�) ,C ] . Note that C̄( re�ects the computing
capacity of the device in the past) second. We then estimate
the number of executions of the segmentation model that
can be �nished within ) as b) /C̄(c. The actual number of
executions of the segmentation model may not be the same
as b) /C̄(c. For example, if \⇡ is high and the frame di�erence
is relatively low, the number of executions can be lower than
b) /C̄(c, which indicates that more executions could have
been done given a lower \⇡ . Thus, we adjust \⇡ based on
b) /C̄(c and D̂[C�) ,C ] . Speci�cally, we �nd the b) /C̄(c-th value
in D̂[C�) ,C ] and update \⇡ to this value. The intuition is that,
if \⇡ were the b) /C̄(c-th value in D̂[C�) ,C ] , there would be
b) /C̄(c frames processed by the segmentation model. In this
way, we update \⇡ every ) second according to the device
performance and frame di�erences in the past) second. Due
to the change of reference frames with di�erent \⇡ , the num-
ber of executions of the segmentation models may not be
equal to b) /C̄(c when we set \⇡ to the b) /C̄(c-th value in
D̂[C�) ,C ] . However, �nding the optimal solution (the actual
value that leads to b) /C̄(c executions) is time-consuming.
Consequently, we design the above heuristic method.
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When MetaStream starts, we feed the �rst frame into
the segmentation model and take it as the reference frame.
We collect the frames sampled during segmenting the �rst
frame and calculate their di�erences. Among these frames,
we select the one with the highest frame di�erence and take
it as the second reference frame, which is also fed into the
segmentation model. The di�erence between the second and
the �rst reference frames is the initial threshold \⇡ , which
is later updated periodically every ) second as described
above. As ) is a pre-set hyperparameter, we will evaluate
the system performance under di�erent values of ) in §6.2.
Alignment and Encoding. The above segmentation is only
applied to RGB frames, and we align the results to depth
frames with (XG, X~), which is a displacement between the
FoVs of depth and RGB cameras. We apply (XG, X~) to the
segmented pixels’ positions on the RGB frame to obtain the
corresponding positions on the depth frame and remove
its background area. Finally, the segmented RGB and depth
frames are encoded in H.264 format. Speci�cally, we apply a
color �lter to the gray-scale depth frames and convert them
to three channels (corresponding to the R, G, and B channels)
before compression. In such a way, we can directly encode
the converted depth frames with H.264.

4.2 Content Creation Server
To create a complete point cloud of a target object, we need
to combine the outputs from multiple cameras surrounding
the object, which leads to the following challenges.
•Due to discrepancies among cameras and their connections
with the server, the arrivals of frames from di�erent cameras
may be asynchronous, which leads to low-quality content
creation of the object.
• Creating a complete point cloud of an object involves an
extremely high volume of data, which consumes a large
memory footprint and requires high-performance computers
for real-time content creation.
We resolve the above challenges in the following ways.
• We design a lightweight yet e�ective capture synchroniza-
tion module to �nd frames across cameras that are sampled
at approximately the same time.
• We present a two-step content creation work�ow: single-
camera point cloud construction and multi-camera point
cloud synthesis. In this way, we �exibly parallel the single-
camera point cloud construction of di�erent cameras when-
ever their frames arrive at the server. The constructed point
clouds of di�erent cameras are synthesized based on the
cameras’ positions with low computational cost.
Capture Synchronization. Synchronicity is important for
constructing point clouds from multiple cameras. Most ex-
isting setups (e.g., Microsoft Kinect DK [7] and Holoporta-
tion [59]) use a cable to transmit synchronization signals,

which limits the mobility of cameras. Instead, we utilize a
header message to synchronize frames from di�erent cam-
eras. The header message has only 32 bytes which stores
frame capturing time, frame index, frame resolution, and
camera ID.
To synchronize frames across cameras, we set an upper

bound (* ), which is the maximum waiting time once the
�rst frame with a new ID (i.e., an ID that has not been seen
by the server before) is received by the server. After frames
of a new ID start to arrive, the server collects all frames with
this ID that are received within * . If the frames of this ID
from all cameras are received before* , the server �nishes
the collection of frames and sends them to the next module.
Note that when a frame with this ID arrives after * , it is
dropped after decoding. Thus, it does not a�ect the decoding
of subsequent frames because all received frames are decoded
regardless of whether they have missed the deadline.

During the streaming process, we adaptively adjust* . For
every �5 frame IDs, we tune * by adding a value �* . For
each frame ID 8 , we �rst compute the di�erence between the
arrival time of the �rst and last received frames �)8 and then
compute the di�erence between* and �)8 . We then de�ne
�* as the median of these di�erences of the �5 frame IDs.
That is, �* =<4380={�)8 �* }82 [ 5 ,5 +�5 �1] . # is the number
of cameras and 5 is the �rst frame ID in the past �5 frames.
In general, when the network delays between some cameras
and the server are higher than others, the frames of the same
ID arrive at the server asynchronously and the last frame of
the ID may arrive at the server after* (i.e., a positive �* );
when the network delays between cameras and the server
are similar, the frames of the same index number arrive at
the server synchronously and the last frame of the ID may
arrive at the server within* (i.e., a negative �* ).

As the network conditions are temporally correlated [54],
�* of the past �5 frames re�ects the network conditions
between cameras and the server during the past �5 frames,
and we can utilize it to guide the collection of future frames.
Thus, in the past �5 frames, if the frames from cameras
arrive at the server in a wide range, then �* is a positive
large value, and we tune* higher accordingly for the next
�5 frames; if the frames from cameras arrive at the server in
a narrow range (synchronously), then �* is a negative value,
and we tune* lower accordingly for the next �5 frames.
Single-Camera Point CloudConstruction.Given the con-
�guration of cameras, we obtain the horizontal FoV (⌘5 >E),
the vertical FoV (E 5 >E), and the width (3F83C⌘) and height
(3⌘486⌘C ) of the original depth frame. Given a point (G,~) on
the depth frame with depth value I, we calculate its coordi-
nate values as: (3G · tan(⌘5 >E/2) · I,3~ · tan(E 5 >E/2) · I, I),
where 3G = 2 · (G � 3F83C⌘/2)/3F83C⌘ and 3~ = 2 · (~ �
3⌘486⌘C/2)/3⌘486⌘C [32]. As we have aligned the RGB and
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depth frames on the camera, we can directly obtain the cor-
responding RGB values of each point on the depth frame.
In this way, we can create point clouds from cameras by
combining their RGB and depth frames.
Redundant Point Removal. With multiple cameras sur-
rounding an object, there can be overlapping areas sampled
by more than one camera. Removing redundant points in
the overlapping area improves processing and transmission
e�ciency. In our coordinate system, the x-axis denotes left-
ward and rightward directions, the y-axis indicates upward
and downward directions, and the z-axis signi�es forward
and backward directions. Based on the segmentation results
and the point cloud construction, we obtain the left-most
and right-most points of an object, (G; ,~; , I; ) and (GA ,~A , IA ).
From their coordinate values, we can approximately deter-
mine the center point of the object as ( G;+GA2 , ~;+~A2 , I;+IA2 ). We
repeatedly calculate the approximated center point of the
object on each camera. Then, we average over these points
to have a more accurate estimation of the center point of
the object, which is denoted as (G2 ,~2 , I2 ). Consequently, the
center axis of the object is (G2 , I2 ). Additionally, we can iden-
tify the range of the object on the ~-axis, denoted as ~C>? and
~1>CC>< , according to the segmentation results.

We �nd the overlapping area between two adjacent cam-
eras as follows. First, we determine the right-most vertical
boundary of the object in the FoV of the camera on the left
and the left-most vertical boundary of the object in the FoV
of the camera on the right (i.e., G = GA and G = G; ); then, for
the points that lie between the two boundaries on the ob-
ject, they are captured by both cameras. We observe that the
point clouds generated by one camera may exhibit a spatial
o�set relative to the other camera in the overlapping area
caused by the inherent errors in the point cloud construc-
tion, which include measurement errors in the depth data
and precision errors during calibration. Thus, we randomly
sample some points in the overlapping area (i.e., GA  G  G; )
and calculate their distances to the center axis on the same
level ~, ~1>CC><  ~  ~C>? . Once we �nd that the points of
one camera have a smaller distance to the center axis, we
delete all points of that camera in the overlapped area. We
repeatedly loop over all overlapping areas between any two
adjacent cameras to remove all redundant points.
Point Clouds Synthesis and Compression.We synthesize
the point clouds of di�erent cameras into a complete point
cloud of an object by translating the point clouds of other
cameras to the coordinate system of the reference camera
(selected by the dynamic camera calibration module). For
example, for a given point (G,~, I) in the point cloud from
camera 8 , the new position will be (G � G8 ,~ � ~8 , I � I8 ),
where (G8 ,~8 , I8 ) is the coordinate of camera 8 in the coordi-
nate system of the reference camera. Further, we �lter out
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Figure 6: Volumetric Content Rendering Work�ow.

and smooth the synthesized point cloud with a kNN-based al-
gorithm [49], which reduces error points (caused by cameras’
sensing noises) and further improves visual quality [18].

4.3 Mixed Reality Client
We tackle the challenge of limited computing resources on
MR headsets and propose to leverage foveated rendering in
MetaStream to preserve a good user experience with low
overhead. We show the rendering work�ow in Fig. 6.
Depth-assisted Determination of Foveal Size. Foveated
rendering can reduce the computation overhead of head-
sets [61]. It synthesizes content with progressively less detail
outside the eye �xation region by tracking the user’s eye
movement. Compared to traditional applications of foveated
rendering in 2D images/videos [61], foveated rendering on
volumetric content presents unique challenges. For exam-
ple, as the user moves during rendering, the radius of the
foveal area on volumetric content keeps changing due to
the distance variation between the user and the displayed
volumetric content.

We propose a depth-assisted foveated rendering method
to resolve the above challenges. Speci�cally, we determine
the foveal area of the user via the visual focal point and
the central foveal angle U 5 (e.g., U 5 = 7.5� [61]). We draw
a virtual circular cone along with the user’s viewing direc-
tion to the rendered content and take the center point of
the intersection area with the point cloud as the visual focal
point of the user, which is denoted as (G 5 ,~5 , I5 ). Given the
position of the center of the user’s eyes (G4 ,~4 , I4 ), we obtain
the distance between it to the visual focal point on the ren-
dering content, 35 4 =

p
(G 5 � G4 )2 + (~5 � ~4 )2 + (I5 � I4 )2.

Further, the foveal area is a circle with the central point at
(G 5 ,~5 , I5 ) and its radius is A 5 = 35 4 · tan(

U5

2 ).
Fast Search for Foveal Area on Volumetric Content.
After getting the size of the foveal area, MetaStream needs
to calculate which points of the volumetric content are in the
foveal area. However, it may generate nontrivial overhead
on the headset to search for points that locate inside the
user’s foveal area among the whole point cloud. As the user’s
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d 0.5 0.6 0.7 0.8 0.9
Average Score 1.24 2.61 3.37 3.66 3.84
Table 2: Visual Quality for Di�erent d .

foveal area may change fast [61], such overhead lowers user
experience. Thus, we propose to reduce the overhead by
partitioning the point cloud into several small subsets on the
server (before transmitting to the MR client).
Speci�cally, we denote the boundary of the point cloud

(S) on the G-~ plane (the plane that is perpendicular to
the ground) as {-<8=,-<0G ,.<8=,.<0G }. We divide the point
cloud into  ⇥  subsets and each subset S8 9 (1  8, 9   )
contains the points inside the boundary of {(8 � 1) · �- , 8 ·
�- , ( 9 � 1) · �. , 9 · �. }, where �- = -<0G�-<8=

 �1 and �. =
.<0G�.<8=

 �1 . In this way, given each subset’s boundary and
the foveal area, we can determine the subset that contains
the foveal area and search inside only that subset on the
client. Note that we can extend the boundary of each subset
(making neighboring subsets overlap with each other) to sim-
plify the case in which the foveal area includes points from
multiple neighboring subsets. When sending them to the
headset, we compress these subsets individually and mark
each subset with its boundary.
Point Cloud Filtering and Rendering. For points that are
inside the foveal area, we render them at the original density.
For other points, we apply a �lter to reduce the rendering
density by a ratio d . That is, each point is rendered with a
probability of d . We conduct an IRB-approved user study to
�nd the minimal acceptable d . We develop an application to
render and display point clouds with di�erent d (i.e., 0.5, 0.6,
0.7, 0.8, and 0.9) on HoloLens 2. We invite 16 participants,
aged from 23 to 54, and 12 of them have 20/20 corrected
vision.We ask each participant towearHoloLens 2 andwatch
the point clouds with di�erent d (we keep them agnostic to
d and randomly order the �ve point clouds for a fair study).
We ask the participants to provide their mean opinion scores
(MOS) for the visual quality of the point cloud from 1 to
5 (1: bad, 2: poor, 3: fair, 4: good, 5: excellent). The results
are shown in Table 2. The selection of d is to balance the
trade-o� between visual quality and rendering overhead.
Speci�cally, with a large d , there will be a large number of
points to render, which can preserve high visual quality but
lead to a long rendering delay, and vice versa. We observe
a signi�cant increase in MOS (0.76) between d = 0.6 and
d = 0.7 and a small increase between d = 0.7 and d = 0.8.
Consequently, we set d = 0.7.
Besides foveated rendering, we apply motion-based ren-

dering. Speci�cally, we design a motion tracking module to
track the user’s orientation in real-time, as shown in Fig. 6.
We adopt the particle system of Unity engine [16] for ren-
dering on HoloLens 2. In the rendering process, we convert
the (A ,6,1) values of each point into 2D textures and set each

Multi-camera Setup Single Camera
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Nano Battery 

Pack

Figure 7: Testbed of MetaStream.

basic particle (point) as a 2D square to reduce rendering
overhead. Based on the tracked user’s motion, we adjust the
normal of the 2D square to align with the user’s viewing
direction (i.e., making the 2D square perpendicular to the
user’s view). In this way, the rendering of the point cloud of-
fers good visual quality. The rendering overhead is ⇠25.4ms
for a point cloud with 330K points based on our evaluation.

5 Implementation
Hardware: The setup of our testbed is shown in Fig. 7.
Each smart camera is an Intel RealSense L515 [4] mounted
on Nvidia Jetson Nano [14]. The content creation server is
equipped with AMD 5950X CPU and Nvidia RTX 2080S GPU.
The MR client is Microsoft HoloLens 2 [8].
Software: The smart camera and content creation server
are developed on Linux, and the MR client is developed on
Universal Windows Platform (UWP) [9]. On smart cameras,
we implement the dynamic camera calibration module based
on ORB feature extraction and tracking [58], OpenCV [23],
and RealSense SDK [5]; we implement the segmentation and
streaming with RealSense SDK [5], OpenCV [23], Nvidia
Docker [12], TensorFlow [20], and x264 library [19]; the
segmentation model is Segnet [21], compressed by Jetson-
inference [13]. The segmented results are encoded with
H.264 [74] and transmitted to the content server. On the
content creation server, we utilize x264 [19], Open3D [84],
Point Cloud Library (PCL) [68], and Draco [1] to implement
content creation and compression. On the MR client, we
utilize Unity [16] and Mixed Reality Toolkit (MRTK) [11] to
implement foveated content rendering. After decompressing
the received data, we �lter and load the point clouds into
the VFX Graph [17] plugin of Unity based on the foveal data
collected by eye tracking sensor [2] of HoloLens 2.
In total, our implementation consists of 4,500+ lines of

code (LoC): 1,300+ LoC in C++ for the smart camera, 1,500+
LoC in C++ for the content creation server, and 1,700+ LoC
in C# for the MR client.

6 Performance Evaluation
In this section, we evaluate the performance of MetaStream
with live experiments and compare it with the state-of-the-
art, LiveScan3D[46]. We use the FPS, structural similarity
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index measure (SSIM) [18], network throughput, and end-
to-end latency as the metrics for our evaluation. SSIM is a
weighted combination of luminance, contrast, and structure
comparison measurements between two images to measure
their similarity. Its values range between 0 to 1, and 1 means
the target image is the same as the reference image. We
calculate the SSIM2 between the screenshots on HoloLens
2 [8] and the original images from smart cameras. For the
end-to-end latency, we measure the di�erence between the
time when a frame is captured by cameras and the time
when HoloLens 2 [8] renders the point cloud constructed by
the frame. We average the end-to-end latency of all frames
during a streaming session.

6.1 Dynamic Camera Calibration
We �rst evaluate the performance of the dynamic camera
calibration method with a setup of four smart cameras. We
move one of the four cameras by several times (10, 15, 20,
25, and 30) and return it to its original position; we then
compare the SSIM of the same captured object before and
after the camera is moved. As shown in Fig. 8 (a), the SSIM
drops by only 0.02 with the increase in moving times of
the camera, which indicates the robustness of our method
to the movement of a single camera. In Fig. 8 (b), we show
the change of SSIM along with the moving distance of the
target object (a person) from position A to position B in
Fig. 8 (c) following an unplanned route. The four cameras
follow the object, and their routes are shown in Fig. 8 (c).
With the movement of cameras, the SSIM of the captured
object decreases by 0.081 when the moving distance is 8m.
The decrease is caused by the accumulated tracking error,
which is unavoidable in unclosed-loop routes [58]. We will

2The SSIM is measured on the whole point cloud without point �ltering
(§4.3) rather than within the foveal area unless speci�cally mentioned.
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study how to further improve the calibration performance
when the cameras move in future work.

6.2 Selective Segmentation
We then evaluate the performance of the selective segmen-
tation method on a one-minute volumetric video. The video
covers the static scenario and the slow and fast movements
of the target person. We evaluate the performance under
di�erent threshold-update frequencies, )=100, 200, 300, and
500ms. In Fig. 9, we show the cumulative distribution func-
tion (CDF) of SSIM with di�erent ) . As discussed in §4.1,
MetaStream updates the frame-di�erence threshold based
on the records in the past ) second. Consequently, with a
large ) , it may fail to adaptively adjust the threshold based
on the change in the target object’s movement. As shown in
Fig. 9, the SSIM of 92.2% frames is under 0.9when) = 500ms.
Speci�cally, there are two reasons for the low SSIM with

large) . First, when the target object switches from fast move-
ment to slowmovement,MetaStreamwith large) still keeps
a high threshold, and few frames are fed into the segmenta-
tion model, which reduces segmentation accuracy. Second,
when the target object switches from static/slow movement
to fast movement,MetaStream with large) still keeps a low
threshold, and almost all frames are fed into the segmenta-
tion model, which leads to severe segmentation delay. For
live volumetric video streaming, we have the maximumwait-
ing time on the content creation server as described in §4.2.
Thus, the segmentation delay further causes frame drops on
the server, and the dropped frames can cause degradation
in the quality of the synthesized point cloud. Nevertheless,
we observe similar patterns for) = 100ms and) = 200ms. It
indicates that the value of ) does not have to be extremely
small, which means we do not necessarily update the thresh-
old with a high frequency.

6.3 Comparison with LiveScan3D
In the original design of LiveScan3D [46], each camera is con-
nected to a desktop computer, which is connected to a server
via a cable. In our evaluation, we implement LiveScan3D on
the same hardware as MetaStream for a fair comparison.
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6.3.1 Capturing Performance with Di�erent Hardware Con-
figurations. We compare the sending FPS on the camera
side with di�erent types of edge devices: Jetson Nano [14],
TX2 [15], and Xavier [6], and the receiving FPS on the server
under di�erent types of networks: 2.4GHz WiFi, 5GHz WiFi,
and 1Gbps cable. As shown in Fig. 10 (a), MetaStream out-
performs LiveScan3D for the sending FPS by 20.8% to 1.13⇥.
As MetaStream o�oads point cloud synthesis to the server,
its requirement on the computing capability of edge devices
on the camera side is largely lowered. Thus, we hardly ob-
serve any di�erence in sending FPS among the three types
of edge devices. In other words, MetaStream is relatively
robust to edge devices’ computing capability on the camera
side compared to LiveScan3D. Similarly,MetaStream outper-
forms LiveScan3D by 16.1% to 64.7% when we vary the type
of network between smart cameras and the server, as shown
in Fig. 10 (b). Due to the large transmission data size in LiveS-
can3D, the receiving FPS signi�cantly decreases when the
network bandwidth is low (e.g., 2.4GHz WiFi).

6.3.2 FPS under Di�erent Network Bandwidth. In Fig. 11
(a), we compare the end-to-end FPS of MetaStream with
LiveScan3D under di�erent network bandwidths (150, 100,
50, 20, and 10Mbps). Note that the end-to-end FPS refers to
the frame rate observed on the MR client. We vary the net-
work bandwidth on both the network connection from the
smart cameras to the server and that from the server to the
MR client. Overall,MetaStream outperforms LiveScan3D by
23.2% to 3.32⇥. Several factors in the design of MetaStream
contribute to such FPS improvement: (1) the selective seg-
mentation and H.264 encoding on smart cameras, (2) the
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distribution of computation across smart cameras and the
server, and (3) the redundant point removal on the server.

6.3.3 SSIM vs. Resolution of Depth Image In Fig. 11 (b), we
compare the SSIM of MetaStream and LiveScan3D with dif-
ferent frame resolutions of depth images. Bene�ting from the
visual quality improvement by removing redundant points
andmotion-based rendering (§4.3),MetaStream outperforms
LiveScan3D by 6.84% to 12.5%.

6.3.4 Network Throughput. We measure the throughput of
LiveScan3D andMetaStream by continuously streaming live
videos for 10 min. As shown in Fig. 12, the network through-
put of LiveScan3D is much higher thanMetaStream, for both
the link from a randomly selected smart camera to the server
and that from the server to the MR client. As MetaStream
sends 2D videos encoded by H.264, the throughput from the
smart camera to the server is signi�cantly low, around only
12Mbpswith an average FPS of 28.7, as shown in Fig. 12 (a). In
contrast, LiveScan3D generates around 38.1Mbps throughput
with an average FPS of 23.7. Though MetaStream transmits
point clouds from the server to the MR client as LiveScan3D
does, the average throughput ofMetaStream is < 58.1% of
that of LiveScan3D. There are two reasons for this large
throughput improvement. First, MetaStream reduces trans-
mitted data by the DNN-based segmentation model, which
e�ectively segments the target person from the background.
In contrast, due to the limitation of depth-based segmenta-
tion in LiveScan3D, the segmented frames still keep some
background pixels with the target person. Second, the re-
dundant points removal inMetaStream reduces the number
of points in delivered volumetric content without a�ecting
visual quality.

6.3.5 End-to-end Latency. We compare the end-to-end la-
tency of live volumetric video streaming with LiveScan3D
and MetaStream, by breaking it down to each component.
Speci�cally, we divide the streaming procedure into four
parts. The �rst component includes the process from the
camera sampling to H.264 encoding on smart cameras. The
second one includes the process of receiving encoded RGB
and depth data to point cloud compression on the server. The
third one includes the process from receiving the compressed
point cloud to displaying it to the user on the MR client. The
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Figure 13: Breakdown of End-to-end Live Streaming Latency
into Four Components.
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Figure 14: Evaluation of Capture Synchronization (CS).

fourth one includes the two transmission processes (i.e., from
smart cameras to the server and from the server to the MR
client). Note that MetaStream utilizes Jetson Nano as the
edge device for smart cameras. We employ Jetson Xavier [6]
as the edge device for LiveScan3D, which has a much higher
computing capability than Jetson Nano.
As shown in Fig. 13, the latency of each component in

LiveScan3D is higher than that in MetaStream, except for
the computing latency on the server. Overall, the end-to-
end of MetaStream is 31.7% lower than LiveScan3D. The
computing latency on the cameras in MetaStream is only
53.5% of that in LiveScan3D. Though point cloud synthesis
is o�oaded to the server in MetaStream, the computing
latency on the server in MetaStream is only slightly higher
(around 3%) than that in LiveScan3D because of the parallel
pipeline design and redundant point removal inMetaStream.
In addition, we observe the video start-up time is 182 to
193ms in MetaStream and 239 to 247ms in LiveScan3D.

6.4 Ablation Study
We evaluate the e�ect of capture synchronization for 2,000
frames and show the results in Fig. 14. Without synchroniza-
tion, the server reads the streaming bu�er without checking
frame IDs. As a result, frames from di�erent cameras may
be synthesized to one point cloud even if they are not sam-
pled at the same time. As shown in Fig. 14 (a), the number
of unsynchronized frames without capture synchronization
is over twice that with capture synchronization due to net-
work transmission delay. Moreover, with capture synchro-
nization, the SSIM is 28.5% higher than that without capture
synchronization as shown in Fig. 14 (b), which indicates a
higher-quality content creation.
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Figure 16: Evaluation of Foveated Content Rendering.

We evaluate the e�ect of redundant point removal in a
challenging environment, aWiFi network with 50Mbps band-
width. We show the FPS on the MR client in Fig. 15 (a). As
the transmission data size from the server to the headset is
reduced by the redundant point removal, we observe an FPS
increase of 2 to 8. Moreover, the redundant point removal
improves the visual quality of volumetric content. As shown
in Fig. 15 (b), the volumetric content with redundant point
removal reaches an SSIM that is on average 16.4% higher
than that of without redundant point removal.
As shown in Fig. 16 (a), foveated rendering reduces the

rendering time on average by 63.1% on the MR device. While
the SSIM of the whole point cloud with foveated rendering
is 7.2% lower than the regular rendering, the SSIM inside
the foveal area is higher, as shown in Fig. 16 (b). It bene�ts
from both foveated rendering and motion-based rendering
optimization. Note that we set the default rendering density
ratio d = 0.7 based on Table 2, which achieves an SSIM of
0.87 as shown in Fig. 16 (b).

7 Discussion
Limitations. As the �rst practical live volumetric video
streaming system,MetaStream has a few limitations of its
current design. For example, we have not yet optimized
its performance for multi-user scenarios (i.e., there is only
one user receiving video content in MetaStream). Recently,
Zhang et al. [83] propose a research agenda for enabling
multi-user volumetric video streaming over mmWave net-
works through a cross-layer design for VoD applications.
ExtendingMetaStream to multi-user scenarios is challeng-
ing due to the stringent latency requirement of live video
streaming and the diverse network conditions of di�erent
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users. Another demanding future work is to further improve
the accuracy of dynamic camera calibration.
Camera-server Split. Overall,MetaStream bene�ts from
the camera-server split setup from the following aspects.
First, directly transmitting RGB+depth frames to the server
consumesmore network bandwidth and leads to longer delay,
compared to streaming only segmented parts. Second, we
target a scalable multi-camera system where the number of
cameras may be large to further improve the visual quality of
generated volumetric content. If we deploy the segmentation
modules on the edge server, the latency of inference increases
with the number of cameras (i.e., batch size). In comparison,
the latency of executing the segmentation module on each
smart camera is relatively stable.
Enabling Interactive Applications. We plan to extend
MetaStream to support interactive applications with live
volumetric content delivery [26, 59]. Instead of having view-
ers passively receive video content from the broadcaster, we
can set up MetaStream at multiple locations so that geo-
distributed users can interact with each other via the cap-
tured volumetric video of their activities, fully exploiting the
unique feature of volumetric content. Existing work such as
Holoportation [59] may not be suitable for mobile scenarios
due to its high bandwidth requirement (e.g., >1Gbps).
Neural Adaptive Content Delivery. We can further im-
prove the performance ofMetaStream by reducing its mobile
data usage via neural adaptive streaming [78, 79]. Recently,
Zhang et al. [82] propose to lower bandwidth consumption of
volumetric video streaming by delivering low-density point
clouds that will be upsampled to high quality through 3D
super resolution (SR) [51]. While it has been demonstrated
to be feasible to conduct 3D SR on machines equipped with
powerful GPUs, applying the idea to mobile devices remains
a challenging research problem [77], especially for live volu-
metric content delivery.

8 Related Work
Volumetric Video Streaming. The research on volumetric
video streaming is still relatively nascent, and thus there
exist only a few studies on this topic [33, 34, 36, 48, 60, 64, 72,
82, 83]. ViVo [36] proposes several visibility-aware optimiza-
tions such as occlusion and distance visibility to boost the
performance of volumetric video streaming. GROOT [48]
introduces parallel decoding of highly-quality point-cloud
data for delivering volumetric content. The above schemes
directly stream volumetric content. Other approaches ben-
e�t from the remote rendering of volumetric content (i.e.,
transcoding into 2D content) [33, 34, 64]. Given the above
work, content delivery is not the focus of this paper. We can
integrate their main ideas intoMetaStream, as the design of
MetaStream is extensible and orthogonal to them.

Live Video Streaming. There is a plethora of research on
live streaming for not only regular videos [22, 45] but also
360° videos [24, 53, 80]. Skynet [81] utilizes existing P2P
technologies and integrates them with minimal changes to
the existing CDN infrastructure to ensure that the system
scales with the number of users. CNLive [52] and Akamai live
streaming [69] focus on user activities and network tra�c.
Twitch.tv is a live streaming service exclusively for gaming
broadcast [35]. Cicco et al. [27] present a quality adaptation
controller for an adaptive live video streaming system de-
signed by using feedback control theory. Di�erent from the
above work, we investigate live volumetric content capture,
creation, delivery, and rendering and proposeMetaStream,
a practical system to improve content delivery performance
for emerging immersive applications.
3D Object Model Construction. Image-based 3D object
model construction has been extensively studied in computer
vision and graphics communities [28–30, 42, 56, 76]. For
example, KinectFusion [42] is the �rst system that fuses point
clouds intomeshes using a single depth sensor. Fusion4D [28]
is a real-time multi-view nonrigid reconstruction system for
high-quality live performance capture. Montage4D [29] is
an interactive and real-time solution to blend multiple video
textures onto dynamic meshes with nearly indiscernible view
transitions. Di�erent from the mentioned work,MetaStream
not only focuses on creating 3D content in real-time but also
proposes a practical system that can transmit and render 3D
content with low latency.

9 Conclusion
In this paper, we propose a live volumetric content capture,
creation, delivery, and rendering system, MetaStream. We
designMetaStream on low-cost commercial platforms and
achieve close to 30 FPS onWiFi networks. We speci�cally ad-
dress the challenges of calibration of multiple cameras, volu-
metric video capture on resource-constrained smart cameras,
point cloud synthesis for multi-camera setup, and reduction
of transmission delay over WiFi networks. With dynamic
camera calibration, selective segmentation, e�cient point
cloud synthesis, and foveated rendering of point clouds on
MR devices,MetaStream reduces end-to-end latency by up
to 31.7% while improving visual quality by up to 12.5% com-
pared to state-of-the-art systems.

Acknowledgments
We thank the anonymous shepherd and reviewers for their
insightful comments and the voluntary users who partici-
pated in our user study. This work was partially supported
by the U.S. NSF under Grants 2147821, 2147623, 2147624, and
2212296 and a Google Research Scholar Award.



ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Yongjie Guan⇤, Xueyu Hou⇤, Nan Wu, Bo Han, and Tao Han

References
[1] Draco 3D Graphics Compression. https://google.github.io/draco/.
[2] Eye Tracking on HoloLens 2. https://docs.microsoft.com/en-us/

windows/mixed-reality/design/eye-tracking.
[3] HOLOSYS. https://www.4dviews.com/volumetric-systems.
[4] Intel RealSense LiDAR Camera L515. https://www.intelrealsense.com/

lidar-camera-l515/.
[5] Intel RealSense Technology. https://www.intel.com/content/www/us/

en/architecture-and-technology/realsense-overview.html.
[6] Jetson AGX Xavier. https://www.nvidia.com/en-us/autonomous-

machines/embedded-systems/jetson-agx-xavier/.
[7] Microsoft Azure Kinect DK. https://developer.microsoft.com/en-us/

windows/kinect.
[8] Microsoft HoloLens 2. https://www.microsoft.com/en-us/hololens.
[9] Microsoft Universal Windows Platform. https://docs.microsoft.com/

en-us/windows/uwp/get-started/universal-application-platform-
guide.

[10] Mixed Reality Capture Studios. https://www.microsoft.com/en-us/
mixed-reality/capture-studios.

[11] Mixed Reality Toolkit 2. https://docs.microsoft.com/en-us/windows/
mixed-reality/mrtk-unity/mrtk2/?view=mrtkunity-2022-05.

[12] Nvidia Docker. In https://docs.nvidia.com/datacenter/cloud-
native/container-toolkit/user-guide.html.

[13] Nvidia Jetson-inference. https://www.microsoft.com/en-us/mixed-
reality/capture-studios.

[14] Nvidia Jetson Nano Developer Kit. https://developer.nvidia.com/
embedded/jetson-nano-developer-kit.

[15] Nvidia Jetson TX2 Module. https://developer.nvidia.com/embedded/
jetson-tx2.

[16] Unity Real-Time Development Platform. In https://unity.com/.
[17] Visual E�ect Graph. https://unity.com/visual-e�ect-graph.
[18] What are SSIM and PSNR. https://github.com/deterenkelt/Nadeshiko/

wiki/Docs-on-encoding.-SSIM-and-PSNR.
[19] X264 library. https://www.videolan.org/developers/x264.html.
[20] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin, et al. Tensor�ow: Large-scale
machine learning on heterogeneous distributed systems. arXiv, 2016.

[21] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A deep convo-
lutional encoder-decoder architecture for image segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2017.

[22] G. Baig, J. He,M. A. Qureshi, L. Qiu, G. Chen, P. Chen, and Y. Hu. Jigsaw:
Robust Live 4K Video Streaming. In Proceedings of ACM MobiCom,
2019.

[23] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal: Software Tools
for the Professional Programmer, 25(11):120–123, 2000.

[24] B. Chen, Z. Yan, H. Jin, and K. Nahrstedt. Event-driven Stitching for
Tile-based Live 360 Video Streaming. In Proceedings of ACM MMSys,
2019.

[25] P. J. Choi, R. J. Oskouian, and R. S. Tubbs. Telesurgery: past, present,
and future. Cureus, 10(5), 2018.

[26] A. Clemm, M. T. Vega, H. K. Ravuri, T. Wauters, and F. De Turck.
Toward truly immersive holographic-type communication: Challenges
and solutions. IEEE Communications Magazine, 58(1):93–99, 2020.

[27] L. De Cicco, S. Mascolo, and V. Palmisano. Feedback control for adap-
tive live video streaming. In Proceedings of ACM MMSys, 2011.

[28] M. Dou, S. Khamis, Y. Degtyarev, P. Davidson, S. R. Fanello, A. Kowdle,
S. O. Escolano, C. Rhemann, D. Kim, J. Taylor, et al. Fusion4D: Real-
time Performance Capture of Challenging Scenes. ACM Transactions
on Graphics (ToG), 35(4):1–13, 2016.

[29] R. Du, M. Chuang, W. Chang, H. Hoppe, and A. Varshney. Montage4D:
Interactive Seamless Fusion of Multiview Video Textures. In Proceed-
ings of ACM Interactive 3D Graphics (I3D), 2018.

[30] A. Geiger, J. Ziegler, and C. Stiller. StereoScan: Dense 3D Reconstruc-
tion in Real-time. In 2011 IEEE Intelligent Vehicles Symposium (IV),
2011.

[31] T. Golla and R. Klein. Real-time point cloud compression. In 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2015.

[32] Y. Guan, X. Hou, N. Wu, B. Han, and T. Han. DeepMix: mobility-
aware, lightweight, and hybrid 3D object detection for headsets. In
Proceedings of ACM MobiSys, 2022.

[33] S. Gül, D. Podborski, T. Buchholz, T. Schierl, and C. Hellge. Low-latency
cloud-based volumetric video streaming using head motion prediction.
In Proceedings of ACM Workshop on Network and Operating Systems
Support for Digital Audio and Video, 2020.

[34] S. Gül, D. Podborski, J. Son, G. S. Bhullar, T. Buchholz, T. Schierl, and
C. Hellge. Cloud Rendering-based Volumetric Video Streaming System
for Mixed Reality Services. In Proceedings of ACM MMSys, 2020.

[35] W. A. Hamilton, O. Garretson, and A. Kerne. Streaming on Twitch:
fostering participatory communities of play within live mixed media.
In Proceedings of ACM CHI, 2014.

[36] B. Han, Y. Liu, and F. Qian. ViVo: Visibility-Aware Mobile Volumetric
Video Streaming. In Proceedings of ACM MobiCom, 2020.

[37] J. He, M. A. Qureshi, L. Qiu, J. Li, F. Li, and L. Han. Rubiks: Practical
360° Streaming for Smartphones. In Proceedings of ACM MobiSys, 2018.

[38] X. Hou, Y. Guan, and T. Han. NeuLens: spatial-based dynamic accel-
eration of convolutional neural networks on edge. In Proceedings of
ACM MobiCom, 2022.

[39] X. Hou, Y. Guan, T. Han, and N. Zhang. Distredge: Speeding up
convolutional neural network inference on distributed edge devices.
In Proceedings of IPDPS, 2022.

[40] J. Hu, A. Shaikh, A. Bahremand, and R. LiKamWa. Characterizing
real-time dense point cloud capture and streaming on mobile devices.
In Proceedings of ACM Workshop on Hot Topics in Video Analytics and
Intelligent Edges, 2021.

[41] L. Huang, F. Da, and S. Gai. Research on multi-camera calibration and
point cloud correction method based on three-dimensional calibration
object. Optics and Lasers in Engineering, 115:32–41, 2019.

[42] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli,
J. Shotton, S. Hodges, D. Freeman, A. Davison, et al. KinectFusion:
Real-time 3D Reconstruction and Interaction Using a Moving Depth
Camera. In Proceedings of UIST, 2011.

[43] H. Jun and J. Bailenson. Temporal RVL: a depth stream compression
method. In Proceedings of IEEE Conference on Virtual Reality and 3D
User Interfaces Abstracts and Workshops (VRW), 2020.

[44] E. Karami, S. Prasad, and M. Shehata. Image matching using SIFT,
SURF, BRIEF and ORB: performance comparison for distorted images.
arXiv, 2017.

[45] J. Kim, Y. Jung, H. Yeo, J. Ye, and D. Han. Neural-Enhanced Live Stream-
ing: Improving Live Video Ingest via Online Learning. In Proceedings
of ACM SIGCOMM, 2020.

[46] M. Kowalski, J. Naruniec, and M. Daniluk. LiveScan3D: A Fast and In-
expensive 3D Data Acquisition System for Multiple Kinect v2 Sensors.
In Proceedings of International Conference on 3D Vision, 2015.

[47] J. Lawrence, D. B. Goldman, S. Achar, G. M. Blascovich, J. G. Desloge,
T. Fortes, E. M. Gomez, S. Häberling, H. Hoppe, A. Huibers, C. Knaus,
B. Kuschak, R. Martin-Brualla, H. Nover, A. I. Russell, S. M. Seitz, and
K. Tong. Project Starline: A high-�delity telepresence system. ACM
Transactions on Graphics, 40, 2021.

[48] K. Lee, J. Yi, Y. Lee, S. Choi, and Y. M. Kim. GROOT: A Real-Time
Streaming System of High-Fidelity Volumetric Videos. In Proceedings
of ACM MobiCom, 2020.

[49] J. Li, B. M. Chen, and G. H. Lee. So-net: Self-organizing network for
point cloud analysis. In Proceedings of IEEE CVPR, 2018.

https://google.github.io/draco/
https://docs.microsoft.com/en-us/windows/mixed-reality/design/eye-tracking
https://docs.microsoft.com/en-us/windows/mixed-reality/design/eye-tracking
https://www.4dviews.com/volumetric-systems
https://www.intelrealsense.com/lidar-camera-l515/
https://www.intelrealsense.com/lidar-camera-l515/
https://www.intel.com/content/www/us/en/architecture-and-technology/realsense-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/realsense-overview.html
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-agx-xavier/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-agx-xavier/
https://developer.microsoft.com/en-us/windows/kinect
https://developer.microsoft.com/en-us/windows/kinect
https://www.microsoft.com/en-us/hololens
https://docs.microsoft.com/en-us/windows/uwp/get-started/universal-application-platform-guide
https://docs.microsoft.com/en-us/windows/uwp/get-started/universal-application-platform-guide
https://docs.microsoft.com/en-us/windows/uwp/get-started/universal-application-platform-guide
https://www.microsoft.com/en-us/mixed-reality/capture-studios
https://www.microsoft.com/en-us/mixed-reality/capture-studios
https://docs.microsoft.com/en-us/windows/mixed-reality/mrtk-unity/mrtk2/?view=mrtkunity-2022-05
https://docs.microsoft.com/en-us/windows/mixed-reality/mrtk-unity/mrtk2/?view=mrtkunity-2022-05
https://www.microsoft.com/en-us/mixed-reality/capture-studios
https://www.microsoft.com/en-us/mixed-reality/capture-studios
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-tx2
https://developer.nvidia.com/embedded/jetson-tx2
https://unity.com/visual-effect-graph
https://github.com/deterenkelt/Nadeshiko/wiki/Docs-on-encoding.-SSIM-and-PSNR
https://github.com/deterenkelt/Nadeshiko/wiki/Docs-on-encoding.-SSIM-and-PSNR
https://www.videolan.org/developers/x264.html


MetaStream: Live Volumetric Content Capture, Creation, Delivery, and Rendering in Real Time ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

[50] L. Li. Time-of-�ight camera–an introduction. Technical white paper,
2014.

[51] R. Li, X. Li, C.-W. Fu, D. Cohen-Or, and P.-A. Heng. PU-GAN: A Point
Cloud Upsampling Adversarial Network. In Proceedings of ICCV, 2019.

[52] Y. Li, Y. Zhang, and R. Yuan. Measurement and Analysis of a Large
Scale Commercial Mobile Internet TV System. In Proceedings of ACM
SIGCOMM, 2011.

[53] X. Liu, B. Han, F. Qian, and M. Varvello. LIME: Understanding Com-
mercial 360° Live Video Streaming Services. In Proceedings of ACM
MMSys, 2019.

[54] N. M. Luscombe, M. Madan Babu, H. Yu, M. Snyder, S. A. Teichmann,
and M. Gerstein. Genomic analysis of regulatory network dynamics
reveals large topological changes. Nature, 431(7006):308–312, 2004.

[55] A. Maglo, G. Lavoué, F. Dupont, and C. Hudelot. 3D mesh compression:
Survey, comparisons, and emerging trends. ACM Computing Surveys
(CSUR), 47(3):1–41, 2015.

[56] E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, and P. Sayd. Real
Time Localization and 3D Reconstruction. In Proceedings of IEEE CVPR,
2006.

[57] M. Munaro, F. Basso, and E. Menegatti. OpenPTrack: Open source
multi-camera calibration and people tracking for RGB-D camera net-
works. Robotics and Autonomous Systems, 75:525–538, 2016.

[58] R. Mur-Artal and J. D. Tardós. ORB-SLAM2: An open-source slam
system for monocular, stereo, and RGB-D cameras. IEEE Transactions
on Robotics, 33(5):1255–1262, 2017.

[59] S. Orts-Escolano, C. Rhemann, S. Fanello,W. Chang, A. Kowdle, Y. Degt-
yarev, D. Kim, P. L. Davidson, S. Khamis, M. Dou, et al. Holoportation:
Virtual 3D Teleportation in Real-time. In Proceedings of UIST, 2016.

[60] J. Park, P. A. Chou, and J.-N. Hwang. Rate-Utility Optimized Streaming
of Volumetric Media for Augmented Reality. IEEE Journal on Emerging
and Selected Topics in Circuits and Systems, 9(1):149–162, 2019.

[61] A. Patney, M. Salvi, J. Kim, A. Kaplanyan, C. Wyman, N. Benty, D. Lue-
bke, and A. Lefohn. Towards foveated rendering for gaze-tracked
virtual reality. ACM Transactions on Graphics, 2016.

[62] J. Peng, C.-S. Kim, and C.-C. J. Kuo. Technologies for 3D mesh com-
pression: A survey. Journal of visual communication and image repre-
sentation, 16(6):688–733, 2005.

[63] F. Porikli and A. Divakaran. Multi-camera Calibration, Object Tracking
and Query Generation. In Proceedings of International Conference on
Multimedia and Expo, 2003.

[64] F. Qian, B. Han, J. Pair, and V. Gopalakrishnan. Toward Practical Volu-
metric Video Streaming On Commodity Smartphones. In Proceedings
of ACM HotMobile, 2019.

[65] F. Qian, B. Han, Q. Xiao, and V. Gopalakrishnan. Flare: Practical
Viewport-Adaptive 360-Degree Video Streaming for Mobile Devices.
In Proceedings of ACM MobiCom, 2018.

[66] H. Qiu, F. Ahmad, F. Bai, M. Gruteser, and R. Govindan. Augmented
Vehicular Reality. In Proceedings of ACM MobiSys, 2018.

[67] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. ORB: An e�cient
alternative to SIFT or SURF. In Proceedings of ICCV, 2011.

[68] R. B. Rusu and S. Cousins. 3d is here: Point Cloud Library (PCL). In
IEEE International Conference on Robotics and Automation, 2011.

[69] K. Sripanidkulchai, B. Maggs, and H. Zhang. An analysis of live stream-
ing workloads on the internet. In Proceedings of ACM SIGCOMM, 2004.

[70] E. C. Strinati, S. Barbarossa, J. L. Gonzalez-Jimenez, D. Ktenas, N. Cas-
siau, L. Maret, and C. Dehos. 6G: The next frontier: From holographic
messaging to arti�cial intelligence using subterahertz and visible light
communication. IEEE Vehicular Technology Magazine, 14(3):42–50,
2019.

[71] F. Tariq, M. R. Khandaker, K.-K. Wong, M. A. Imran, M. Bennis, and
M. Debbah. A speculative study on 6G. IEEE Wireless Communications,
27(4):118–125, 2020.

[72] J. van der Hooft, T. Wauters, F. D. Turck, C. Timmerer, and H. Hellwag-
ner. Towards 6DoF HTTP Adaptive Streaming Through Point Cloud
Compression. In Proceedings of ACM MM, 2019.

[73] P. Wang, P. Chen, Y. Yuan, D. Liu, Z. Huang, X. Hou, and G. Cottrell.
Understanding convolution for semantic segmentation. In Proceedings
of IEEE Winter Conference on Applications of Computer Vision (WACV),
2018.

[74] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra. Overview of
the H. 264/AVC video coding standard. IEEE Transactions on circuits
and systems for video technology, 13(7):560–576, 2003.

[75] A. D. Wilson. Fast Lossless Depth Image Compression. In Proceedings
of ACM International Conference on Interactive Surfaces and Spaces,
2017.

[76] M. Ye and R. Yang. Real-time simultaneous pose and shape estimation
for articulated objects using a single depth camera. In Proceedings of
IEEE CVPR, 2014.

[77] H. Yeo, C. J. Chong, Y. Jung, J. Ye, and D. Han. NEMO: Enabling
Neural-enhanced Video Streaming on Commodity Mobile Devices. In
Proceedings of ACM MobiCom, 2020.

[78] H. Yeo, S. Do, and D. Han. How will Deep Learning Change Internet
Video Delivery? In Proceedings of ACM HotNets, 2017.

[79] H. Yeo, Y. Jung, J. Kim, J. Shin, and D. Han. Neural Adaptive Content-
aware Internet Video Delivery. In Proceedings of USENIX OSDI, 2018.

[80] J. Yi, M. R. Islam, S. Aggarwal, D. Koutsonikolas, Y. C. Hu, and Z. Yan.
An Analysis of Delay in Live 360° Video Streaming Systems. In Pro-
ceedings of ACM MM, 2020.

[81] H. Yin, X. Liu, T. Zhan, V. Sekar, F. Qiu, C. Lin, H. Zhang, and B. Li.
Design and deployment of a hybrid CDN-P2P system for live video
streaming: experiences with LiveSky. In Proceedings of ACMMM, 2009.

[82] A. Zhang, C. Wang, B. Han, and F. Qian. E�cient Volumetric Video
Streaming Through Super Resolution. In Proceedings of ACMHotMobile,
2021.

[83] D. Zhang, B. Han, P. Pathak, , and H. Wang. Innovating Multi-user Vol-
umetric Video Streaming through Cross-layer Design. In Proceedings
of ACM HotNets, 2021.

[84] Q.-Y. Zhou, J. Park, and V. Koltun. Open3D: A modern library for 3D
data processing. arXiv, 2018.


	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Background
	2.2 Motivation

	3 MetaStream Overview
	4 System Design of MetaStream
	4.1 Smart Cameras
	4.2 Content Creation Server
	4.3 Mixed Reality Client

	5 Implementation
	6 Performance Evaluation
	6.1 Dynamic Camera Calibration
	6.2 Selective Segmentation
	6.3 Comparison with LiveScan3D
	6.4 Ablation Study

	7 Discussion
	8 Related Work
	9 Conclusion
	References

