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Abstract
Striking a balance between minimizing bandwidth consump-
tion and maintaining high visual quality stands as the para-
mount objective in volumetric content delivery. However,
achieving this ambitious target is a substantial challenge, es-
pecially for mobile devices with constrained computational
resources, given the voluminous amount of 3D data to be
streamed, strict latency requirements, and high computa-
tional load. Inspired by the advantages o�ered by neural
radiance �elds (NeRF), we propose, for the �rst time, to de-
liver volumetric videos by utilizing neural-based content
representations. We delve deep into potential challenges and
explore viable solutions for both video-on-demand (VOD)
and live video streaming services, in terms of the end-to-end
pipeline, real-time and high-quality streaming, rate adapta-
tion, and viewport adaptation. Our preliminary results lend
credence to the feasibility of our research proposition, o�er-
ing a promising starting point for further investigation.
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Figure 1: Comparison of volumetric content rendered on
HoloLens, with NeRF (left) and point cloud (right).

1 Introduction
Holographic communication [9], a major bene�ciary of 3D
content delivery, harnesses volumetric content to construct
holograms that depict 3D objects or scenes, thereby o�er-
ing an immersive experience for users. A key characteristic
of volumetric content is its provision of six degrees of free-
dom (6DoF) in movement, enabling users to not only change
viewing angles but also freely navigate in the 3D space.

While there have been increasing e�orts in recent years to
optimize volumetric content delivery and enhance its quality
of experience(QoE) [19, 23, 29, 73–76], existing work still
falls short in several areas. For example, traditional repre-
sentation methods with point clouds and meshes [46, 54]
have limitations when it comes to representing dynamic el-
ements [32, 41] and lighting e�ects [10, 63], owing to their
discrete nature. Thus, these techniques often fail to achieve
photo-realistic rendering quality, a�ecting the QoE.
The latest advancements in implicit neural representa-

tions, such as neural radiance �elds (NeRF) [38], have gained
popularity as an attractive alternative for representing volu-
metric content with high visual quality [16, 37, 47], as shown
in Figure 1. NeRF is a neural-based method for generating
high-quality images through novel view synthesis. Rather
than relying on discrete points or polygons, it leverages a
multilayer perceptron (MLP) to depict a scene as a continuous
function, enabling the rendering of photo-realistic images
for an immersive viewing experience. It maps a continuous
space of 3D position and viewing direction to a density and
view-dependent radiance, leading to the creation of a 2D
image through volume rendering, a process that aggregates
colors along each ray.

Given that the vanilla NeRF is computationally intensive
and primarily suited for static scenes, recent work concen-
trates on optimizing the performance of NeRF [6, 15, 26, 70]
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and extending it for dynamic scenes [13, 44, 45, 56, 57, 64].
Nevertheless, current endeavors have yet to address the net-
working and systems challenges associated with streaming
volumetric content with NeRF.

In this paper, we propose to deliver volumetric content by
leveraging neural-based representations. Our goal is to make
NeRF-based volumetric video streaming systems practical
by boosting network e�ciency and enhancing QoE. Despite
extensive research towards NeRF for dynamic scenes, the
design and implementation of NeRF-based volumetric video
streaming systems still pose the following challenges: (1)
the trade-o�s between model size, inference time, and visual
quality; (2) the feasibility of incorporating rate and viewport
adaptation into NeRF models; and (3) the stringent real-time
requirement for live video streaming.
Our research aims to provide novel insights and poten-

tial strategies for real-time, high-quality volumetric video
streaming systems by leveraging the power of NeRF. The mo-
tivation to utilize NeRF for representing volumetric content
comes from the inherent capability of NeRF to synthesize
photo-realistic 3D scenes directly from 2D images, an at-
tribute particularly valuable for outdoor scenes [35], where
content capturing via RGB-D cameras is less e�ective. Driven
by these remarkable capabilities, our work delves into the
potential challenges and solutions in applying NeRF-based
methods for video-on-demand (VOD) and live streaming ser-
vices. In summary, our work has the following contributions.
•We �rst explore the research challenges tied to NeRF-based
volumetric content delivery in VOD services and propose po-
tential solutions (§3.2-§3.4). For example, high-resolution im-
age rendering is still demanding due to the increased latency
for processing more pixels. We propose to leverage foveated
rendering [3, 39], which reduces the total number of to-be-
rendered pixels and decreases the overall computation load.
On the other hand, delivering NeRF models over the Internet
to represent volumetric content may be bandwidth-intensive.
Thus, we propose to explore model compression [60], rate
adaptation with scalable neural networks [7, 69], and view-
port adaptation to alleviate bandwidth consumption.
• We then investigate NeRF-based live volumetric video
streaming, a promising avenue for next-generation services
such as telesurgery [8] and remote collaboration [61] (§3.5).
The main challenges stem from the need for real-time and
continuous learning since future frames in a live setting are
unknown. Given that the real-time training of NeRF models
remains challenging, we propose an acceleration approach
that involves o�ine pre-training of the model for the initial
scene, followed by frame-speci�c �ne-tuning based on pixel
alterations between subsequent frames.
• Finally, we study the feasibility of NeRF-based volumetric
content delivery that utilizes state-of-the-art NeRF models

for dynamic scenes. Our preliminary results indicate that
there exists a trade-o� between model size, inference time,
and visual quality. In addition, current methods commonly
train a singular NeRF model for all frames in the video, and
the model size stays the same despite using chunks with
varying numbers of frames, making it less suitable for video
streaming applications. These results underscore the impor-
tance of further optimizations to make NeRF-based volumet-
ric video streaming practical.

2 Background
Traditional Volumetric ContentRepresentationsmainly
utilize geometry structures such as point clouds [19, 29],
meshes [10, 72], and voxels [12, 42]. Point clouds are ef-
fective for non-manifold structures [11], yet their absence
of spatial connectivity [50, 58] may cause holes. Meshes
excel in o�ering surface detail and e�cient rendering via
rasterization [5, 27]. However, their reliance on a �xed topol-
ogy [32, 41] hampers modeling topological changes. Fur-
thermore, they often struggle to model occlusions and op-
tical e�ects [10, 63], restricting their potential for generat-
ing photo-realistic 3D models. Comparatively, voxels sur-
pass point clouds with their regular structure and editing
e�ciency [68], and provide internal features and facilitate
volumetric operations for topological �exibility [17, 36] com-
pared to meshes. However, typical voxelization strategies,
which map voxels to occupancy �elds [36] or signed distance
functions [17], still demand signi�cant memory, con�ning
their application to simple geometric shapes [38, 43].
Neural Radiance Fields. Beyond traditional geometric rep-
resentations of volumetric content, the advent of neural net-
works has introduced more innovative methods. With MLP
models, NeRF [38] leverages the plenoptic function [1] to
construct an implicit, continuous representation of a volu-
metric scene. For rendering, NeRF utilizes a di�erentiable
version of ray marching [22] that involves querying the neu-
ral network at multiple positions along each camera ray to
generate color and density values. The inherent di�erentia-
bility of this approach facilitates the optimization of scene
representation, e�ectively narrowing the gap between 2D
image pixels and 3D properties of the scene [21, 33]. Hence,
NeRF serves as an e�cient method [35, 59, 71] for synthesiz-
ing novel views from 2D images, e�ectively capturing the
dynamic interplay of light and color within the 3D space.
Learning-based Immersive Content Representations.
In addition to NeRF, there are several other learning-based
approaches to represent immersive content [4, 31, 32]. Neural
volume [31] conducts volume rendering for view synthesis,
similar to NeRF. It utilizes an encoder-decoder network archi-
tecture wherein the decoder generates a volume containing
RGB and opacity values. MVP [32] is a follow-up of neural
volume [31]. It combines the neural volume and traditional
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3D mesh to represent volumetric content, enabling practi-
tioners to strike a balance between rendering quality and
latency. Despite these viable alternatives, NeRF, with its rela-
tively easy implementation and high-quality representation
capabilities, is our primary focus in this paper.
Streamable NeRF. The original NeRF is designed mainly for
static scenes, making it not applicable for streaming. To adapt
NeRF for free-view volumetric videos, early studies either
directly integrated the time dimension as an additional input
to NeRF [13, 67] or employed a secondary MLP to model
and learn deformations for each video frame [44, 45, 49].
However, these methods bear several limitations, includ-
ing slow rendering speed [13, 67], di�culty in representing
large-scale motion or dynamic events such as topological
changes [13, 44, 49], and large model size alongside lengthy
training periods [44, 49]. To address these challenges, recent
e�orts proposed several innovative solutions, for example,
utilizing latent codes to represent the frames with the goal
of reducing the model size and training time [25], as well as
dynamically detecting foreground objects to accommodate
the representation of large movements [30, 57, 66].

3 NeRF-based Volumetric Content Delivery
In this section, we start with outlining the end-to-end pipelines
for streaming volumetric videos by delivering NeRF models.
Subsequently, we delve into an in-depth exploration of the re-
search challenges associated with VOD services. Finally, we
pivot to discussing the distinct research challenges inherent
to live video streaming.

3.1 End-to-end Pipeline
Figure 2 depicts the end-to-end pipeline of VOD and live
video streaming scenarios. The setups encompass three com-
ponents: the client, the client’s edge server (referred to as
“edge”), and the video content server (referred to as “server”).
On the client side, the user wears an MR headset to watch
videos to gain a truly immersive experience. Given the re-
source constraints of mobile headsets, the user is assisted by
an edge that executes volume rendering based on a trained
NeRF model. The data exchange between the client and the
edge is as follows. During streaming, the client sends the
headset’s 6DoF pose to the edge. The edge then creates the
input parameters of the NeRF model based on the received
pose. After that, it performs volume rendering with NeRF’s
output and sends the rendered image back to the user’s head-
set. The main variation between di�erent setups resides in
the communication between the server and the edge.
VOD Service. Current research in computer vision and
graphics communities generally trains a single NeRF model
for all video frames. In this setup, the server transmits the
trained model to the edge prior to streaming, and during
streaming, there is no data transmission between the server
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Figure 2: End-to-end pipelines of VOD and live video stream-
ing for NeRF-based volumetric content delivery. Top: Data
delivery from the server to the edge forVOD,where the server
trains an MLP for the whole video (a) and trains an MLP for
each chunk of the video (b), respectively. Middle: Data de-
livery from the server to the edge for live video streaming,
where the �ne-tuning is conducted on the server (c) and the
edge (d), respectively. Bottom: Data exchange between the
client and the edge for VOD and live video streaming (e).

and the edge, as shown in Figure 2 (a). However, we ar-
gue that an ideal setup should divide the video into sev-
eral chunks, each represented by a separate NeRF model,
as demonstrated in Figure 2 (b). This setup is driven by the
following two considerations. First, training a model for an
entire video could result in a large model size, particularly
for long videos. Furthermore, given that the model is not
divisible (§3.3), this could prolong startup time, negatively
impacting QoE [28]. Second, in real-world scenarios, users
may watch only portions of a video, which can lead to ine�-
ciencies if a single model is used for the entire video.
LiveVideo Streaming.ApplyingNeRF for live video stream-
ing requires continuous learning (�ne-tuning) of the NeRF
model since the future frame is unknown. This process can
be conducted on either the edge or the server, as shown
in Figures 2 (c) and (d). This choice presents a trade-o� be-
tween end-to-end latency and bandwidth requirements, war-
ranting further exploration. Fine-tuning on the server could
potentially decrease training latency, as servers usually pos-
sess better computational resources. However, transmitting
the �ne-tuned model over the Internet may demand higher
bandwidth than images, introducing additional latency if
the network is congested or has limited bandwidth. Con-
versely, while o�oading the �ne-tuning task to the edge
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device might reduce bandwidth requirements, the computa-
tional resources at the edge might be insu�cient for rapid
model �ne-tuning, leading to high end-to-end latency.

3.2 Real-time and High-quality Streaming
Real-time and high-quality NeRF-based volumetric video
streaming demands a delicate balance between (model) trans-
mission latency, rendering latency, and visual quality. This
presents two substantial challenges as follows.
Delivery of NeRF models. A common strategy to acceler-
ate frame rendering involves a trade-o� between the storage
footprint and frame rendering latency. For instance, Muller et
al. [40] simpli�ed the MLP model for real-time rendering by
employing multi-level hash tables to encode low-dimension
inputs into high-dimensional features, which preserves nec-
essary information for high-quality rendering. This strategy
reduces the rendering latency at the cost of increased storage
usage, incurring the challenge of high bandwidth require-
ments for transmitting NeRF models (e.g., 245.2 MB for a
200-frame video processed by the model of Peng et al. [47],
as shown in §4.2) from the server to the edge. Moreover, the
inherent requirement of large models for high-resolution
content could further increase the bandwidth needed for
model transmission.
To address the above issue, we propose to leverage ad-

vanced compression techniques to reduce the model size for
storage and transmission, without signi�cantly a�ecting vi-
sual quality. For instance, the vector-quantized auto-decoder
compression method, proposed by Takikawa et al. [60] for
static scenes, could be adapted to dynamic videos. However,
the computation overhead associated with decompression
operations is typically high [60]. Thus, it is critical to facili-
tate real-time decompression while minimizing the usage of
computation resources, to preserve su�cient computational
capacity for frame rendering on the edge.
Frame Rendering. Despite the advancements in NeRF ac-
celeration, further improvements are needed to achieve real-
time rendering of high-resolution images for dynamic scenes.
For example, the state-of-the-art design by Peng et al. [47],
while e�cient for rendering 512⇥612 images, may fail to
maintain real-time rendering of high-de�nition content (e.g.,
with a resolution of 1920⇥1080). We propose to employ
foveated rendering [3, 39] inspired by the characteristics
of the human visual system (HVS) to solve this problem.
The HVS features a high-resolution foveal area and a pe-
ripheral region where resolution gradually decreases [18].
Accordingly, foveated rendering reduces computation over-
head without perception loss by focusing computation re-
sources on rendering the high-resolution fovea region in
detail, while reducing the rendering quality in the peripheral
vision. By reducing the total number of pixels to be rendered,
foveated rendering can signi�cantly decrease the overall

computational load. Our proposed foveated rendering can
selectively march more rays in the foveal region and fewer
in the peripheral regions.

3.3 Rate Adaptation
In NeRF-based volumetric video streaming, where the NeRF
models are transmitted over the Internet, rate adaptation
becomes a crucial aspect. This method, similar to traditional
2D video streaming, may require substantial bandwidth (e.g.,
streaming at 30 FPS with a resolution of 512⇥612 [47] neces-
sitates ⇠300 Mbps). Under dynamic network conditions, a
common strategy is to adjust image resolution based on the
predicted available bandwidth [20, 34]. However, in the case
of NeRF-based streaming, altering the model size dynami-
cally is impractical due to the intrinsic design of NeRF.
The original NeRF utilizes an MLP model that is not di-

rectly capable of handling di�erent rendering resolutions
through the adjustment of model size. In NeRF, all the model
parameters contribute to the 3D scene reconstruction [14].
Due to the intricate interconnection of weight parameters
within the model, omitting even a small portion could poten-
tially disrupt the process and result in reconstruction failure.
A straightforward extension of traditional rate adaptation
schemes to NeRF-based video streaming involves training
di�erent MLP models to handle various output resolutions
by modifying their depth and width. However, this approach
could lead to substantial increases in memory and storage
requirements, making it less than ideal.
To address this challenge, we propose to extend the scal-

able video coding (SVC) [55] to NeRF by exploring scalable
neural networks [7, 69], such as slimmable networks [24]
and progressive networks [53]. These networks are designed
to be segmented into multiple executable sub-networks of
varying widths and depths, each trained to accommodate
a particular rendering resolution. For example, a narrower
sub-network would manage low-resolution outputs, whereas
a wider sub-network, with the narrower ones incorporated,
would accommodate high-resolution content. By dynami-
cally adjusting the network size, the enhanced NeRF model
could support various rendering resolutions.

3.4 Viewport Adaptation
Viewport adaptation is a prevalent strategy in immersive
video streaming, aiming at bandwidth reduction by deliver-
ing mainly video content that the viewer is anticipated to
consume, rather than the entire scene [19, 51]. In bandwidth-
hungry NeRF-based volumetric video streaming, viewport
adaptation is a critical component. There are two basic re-
quirements for its application in immersive video streaming:
content segmentation for selective transmission and view-
port prediction for content selection. The latter has been
extensively studied in immersive video streaming, such as
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360° video streaming [51] and point-cloud-based volumetric
video streaming [19]. The former, however, is non-trivial
for NeRF-based video streaming, for which a single MLP is
typically trained to represent the whole scene. However, as
illustrated in §3.3, to gain high-quality reconstruction, we
need to transmit all parameters of the MLP model, undermin-
ing the bandwidth-saving bene�t of viewport adaptation.

A straightforward solution is to partition the whole scene
intomultiple voxels and represent each voxel with anMLP [40,
52]. However, this solution may be con�ned only to the
bounded scene [52]. Moreover, determining the optimal num-
ber of cells is non-trivial. A �ne-grained segmentation strat-
egy may incur high segmentation and storage overhead,
while a limited number of cells might reduce the e�ectiveness
of viewport adaptation. An innovative approach involves uti-
lizing attention mechanisms [62] to assign weights to NeRF
parameters. During streaming, this adaptability allows us to
rank and stream high-weight parameters for the viewer’s
speci�c viewport, optimizing bandwidth consumption.

3.5 Live Video Streaming
Di�erent fromVOD services, live volumetric video streaming
enables more exciting use cases, such as telesurgery [8] and
remote collaboration [61]. In this section, we outline several
challenges and potential solutions related to NeRF-based live
volumetric video streaming.
Real-time and Continuous Learning. Live video stream-
ing presents the complex challenge of real-time, continuous
training of NeRF models for novel view synthesis since the
content of future frames remains unknown. Training NeRF
models is notoriously time-consuming [2, 48], intensifying
this challenge. To mitigate this issue, we propose a solution
hinged on the observation that the variation of content be-
tween frames may be limited. Hence, once the initial scene
model is trained, there is no need for retraining from scratch.
For subsequent frames, we can �ne-tune the pre-trained
model by feeding features extracted from the altered con-
tent [71], potentially expediting continuous training.
Even though we still need to train the models for the

initial scene, its impact on QoE is likely to be limited due
to the following two reasons. First, in real-world scenarios,
the initial scene is generally known before streaming com-
mences, such as the recording studio, allowing us to pre-train
the NeRF model o�ine. Second, recent advancements have
signi�cantly accelerated the NeRF training process [16].
Viewport Adaptation. In the context of live video stream-
ing, we could conduct viewport adaptation on the transmit-
ted multiple-view images. For each frame, we could poten-
tially transmit only the content within the user’s predicted
viewport, e�ectively reducing the number of delivered pixels.
This approach could potentially decrease both the size of the
transmitted images and the model. Consequently, it could

(a) (b)

Figure 3: Qualitative comparisons of reconstructions at res-
olution 400 with 10 (a) and 50 (b) training input frames, re-
spectively (a monocular synthetic dataset [49]).

alleviate the bandwidth demand for live streaming schemes,
as shown in Figure 2 (c) and (d). However, a caveat to con-
sider is that the transmitted multi-view images are used to
�ne-tune the MLP, which is trained on the previous frames.
Given that the user’s viewport is likely to change over time,
the content in the current frame might not be present in the
previous ones, making it di�cult to �ne-tune the model for
the current frame. Devising an e�ective strategy to overcome
this challenge necessitates further investigation.

4 Preliminary Results

4.1 Experiment Setup
We reproduce two state-of-the-art NeRFmodels, the dynamic
MLP-maps [47] and Tensor4D [56], which are specialized
for dynamic 3D reconstruction and rendering with dense
and sparse input views, respectively. We leverage the RGB
datasets associated with the aforementioned models that
capture foreground dynamic scenes within bounded regions.
In particular, for the dynamic MLP-maps model, we utilize
the NHR [65] dataset that contains images at a resolution
of 1224⇥1024, captured by an array of up to 80 synchro-
nized cameras. For the Tensor4D model, we employ a syn-
thetic dataset from D-NeRF [49] that consists of images with
800⇥800 resolution, captured by a single monocular camera.
To explore the trade-o�s between model size, inference

time, and visual quality, we experiment with two di�erent
settings. In the �rst setting, we train themodel corresponding
to di�erent chunks by partitioning the input frames. In the
second setting, we generate images at di�erent resolutions,
with the downsampling ratios set to 2 and 4, utilizing the
same pre-trained models. These models are implemented in
vanilla PyTorch and executed on a machine with an NVIDIA
GeForce RTX 3060 GPU and an Intel Core i7-12700K CPU.

4.2 Experimental Results
Model Size. In the context of volumetric video streaming
based on NeRF representations, the server transmits the pre-
trained MLP model to the edge. Therefore, the size of the
model crucially determines the initial startup time, in�uenc-
ing the QoE. In this paper, we train the vanilla MLP-maps
model with 200 frames of a video in the NHR dataset, result-
ing in a large model size of 245.2MB. We then investigate the
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Sparse-view in Tensor4D [56] Dense-view in MLP-maps [47]
Resolutions Time (s) Resolutions Time (s)
200⇥200p 7 306⇥256p 0.02
400⇥400p 28 612⇥512p 0.07
800⇥800p 115 1224⇥1024p 0.20

Table 1: Comparison of rendering time per frame at di�erent
resolutions in sparse and dense view cases.

impact of using chunks with varying frame numbers on the
model size and reconstruction quality. We train the “lego”
model following the Tensor4D con�guration with chunk
sizes of 10 and 50 (i.e., number of input frames). Despite the
variation in chunk size, the model size remains consistent at
197.9MB. Figure 3 shows the reconstructed images at reso-
lution 400 for a monocular synthetic dataset, trained with
10 and 50 input frames, respectively. This �gure indicates
that smaller chunk sizes yield higher quality reconstructions,
featuring detailed aspects and no artifacts, despite the model
size remaining the same. This suggests that a model trained
with a smaller number of inputs potentially retains more
detailed information without compressing as much data.
Inference Time. Table 1 shows a comparison of rendering
time per frame at varying resolutions, both in sparse and
dense view cases. The table illustrates that rendering high-
resolution images typically requires more time, highlighting
the need for a balance between video quality and rendering
time. Furthermore, a noteworthy observation from the ta-
ble is that the rendering time for the dense view using the
MLP-maps model exhibits a signi�cant improvement over
the sparse view on the Tensor4D model. This enhancement
potentially paves the way for achieving real-time rendering
at the cost of requiring dense views with more cameras.
Visual Quality. Figures 4 and 5 depict reconstructed images
at various resolutions and the ground truth for the monocu-
lar synthetic dataset with the Tensor4D model and the NHR
dataset with the MLP-maps model. The qualitative compari-
son of these images reveals that, generally, as the resolution
increases, the reconstructed images become clearer with en-
hanced details, such as the granularity of the “lego”, and the
de�ned facial features and clothing folds. Despite the models
producing photo-realistic images, there are still visible dis-
crepancies compared to the ground truth. Therefore, there
is still signi�cant room for improvement in terms of visual
quality for NeRF-based volumetric content representation.
Discussion. Our preliminary results demonstrate the in-
herent trade-o�s between model size, inference time, and
visual quality in NeRF-based volumetric video streaming. We
observe a considerable discrepancy in rendering time with
sparse and dense view inputs, even though the perceived
di�erence in the visual quality of the reconstructed images is
small. In the case of dense-view inputs, the MLP-maps model

(a) (b) (c) (d)

Figure 4: Qualitative comparisons of (a) – (c): reconstruc-
tions at resolutions of 200, 400, and 800, respectively. (d): the
ground truth at a resolution of 800 (a monocular synthetic
dataset [49]).

(a) (b) (c) (d)
(a) (b) (c) (d)

Figure 5: Qualitative comparisons of (a) – (c): reconstructions
at resolutions of 256, 512, and 1024, respectively. (d): the
ground truth at a resolution of 1024 (NHR dataset [65]).

is already capable of achieving real-time rendering. However,
a prevalent issue is that current models tend to train a sin-
gular NeRF model on all frames in the video. This approach
results in the NeRF model with a high storage cost, making
it less suitable for video streaming applications. Therefore,
additional design and optimization are required to achieve
practical NeRF-based volumetric content delivery.

5 Conclusion
In this paper, we charted an ambitious research agenda, fo-
cusing on neural-based volumetric video streaming. This
approach harnesses the strengths of NeRF, aiming for photo-
realistic visual quality. To reduce bandwidth consumption
and ultimately enhance the QoE, we delved into the unique
challenges related to NeRF-based volumetric content deliv-
ery in VOD and live video streaming services and proposed
potential solutions to these problems. Our preliminary re-
sults suggest a delicate balance that needs to be maintained
between model size, inference time, and visual quality. We
hope that our work will inspire future research endeavors
in NeRF-based volumetric video streaming, ultimately deliv-
ering immersive content with high visual quality, e�cient
bandwidth usage, and low end-to-end latency.
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