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Abstract
This position paper explores the challenges and opportuni-
ties for high-quality immersive volumetric video streaming
for multiple users over millimeter-wave (mmWave) WLANs.
While most of the previous work has focused on single-user
streaming, there is a growing need for multi-user immersive
applications such as virtual collaboration, classroom educa-
tion, teleconferencing, etc. While mmWave wireless links
can provide multi-gigabit per second data rates, they su�er
from blockages and high beamforming overhead. This paper
investigates an environment-driven approach to address the
challenges. It presents a comprehensive research agenda that
includes developing a collaborative 3D scene reconstruction
process, material identi�cation, ray tracing, blockage mitiga-
tion, and cross-layer multi-user video rate adaptation. Our
preliminary results show the feasibility and identify the lim-
itations of existing solutions. Finally, we discuss the open
challenges of implementing a practical system based on the
proposed research agenda.
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1 Introduction
3D scene representations by point cloud or polygon mesh
allow users to experience the volumetric video content from
any arbitrary viewpoint [57]. This ability enhances the in-
teractive experience from three degrees of freedom (3DoF)
provided by 360°videos, which allows viewers to change
only the viewing direction, to 6DoF which also enables users

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro�t or commercial advantage and that copies
bear this notice and the full citation on the �rst page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
ImmerCom ’23, October 6, 2023, Madrid, Spain
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0339-3/23/10.
https://doi.org/10.1145/3570361.3613476

to move around the scene. Numerous applications can be
enabled through such an immersive experience including
telepresence, entertainment, education, and healthcare [15].
Despite the promising aspects of volumetric videos, vari-

ous challenges exist in realizing their potential in practice.
Streaming volumetric videos, especially with high quality, re-
quires high bandwidth which makes it challenging for even a
single user [59]. While considering limited bandwidth, prior
works try to stream according to only the viewport. For ex-
ample, ViVo [15], by taking into account the viewpoint, the
distance to displayed content, and their occlusion, reduces
the e�ective bandwidth by an average of 40%, which results
in a 100 to 200 Mbps data rate for a single user. GROOT [23]
accelerates point-cloud operations with GPU-assisted com-
pression to reduce the computation overhead which still
requires 100 to 500 Mbps bandwidth for a single user. These
works consider only single-user experience which is not the
case for many of the applications of volumetric video stream-
ing. In multi-user scenarios, these challenges are more severe,
and meeting the bandwidth requirement with the current
technologies is extremely challenging.

mmWave WLANs (wireless local area networks), o�ering
multi-gigabit per second data rates, are the key to satisfy-
ing the bandwidth requirement of volumetric video stream-
ing to multiple users [59]. However, mmWave performance
scales poorly with an increasing number of users because
of the high overhead of narrow beam management. The de-
fault WLAN 802.11ad protocols sequentially probe the beams
for users. On the other hand, by increasing the number of
users the probability of inter-user blockage also increases,
which forces the process of beam searching to repeat. While
an abundance of previous studies proposed di�erent tech-
niques [4, 18, 26, 33] to reduce beam searching overhead,
these methods are not suitable for highly dynamic multi-user
environments. To address this problem, Zhang et al. [59] ex-
ploit 6DoF motion prediction for multiple users to reduce
the impact of blockages and the beam searching overhead.
SpaceBeam [52] uses LiDAR scanning of the environment
to create a re�ection pro�le of the environment to eliminate
the beam searching overhead. Although the idea of modeling
the re�ection environment is promising, using it in practice
and particularly implementing it on AR/VR devices with
dynamic multi-user movements is a challenging task.
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In this paper, we focus on identifying di�erent aspects of
designing multi-user volumetric video streaming systems
over mmWave WLANs. We speci�cally focus on environ-
ment modeling to reduce the beamforming overhead and
mitigate blockages. We describe the related challenges and
our contributions below.
• In multi-user scenarios, the main obstacle of a practical
mmWave communication is the beam searching overhead.
AP’s complete knowledge of the environment by model-
ing di�erent re�ection surfaces can reduce the overhead.
However, the task of re�ection environment reconstruction
incorporates multiple challenging steps: (1) How can we col-
lect the RGB-D data in a multi-user scenario considering
the dynamic nature of these environments? (2) How can we
perform the 3D reconstruction by combining the collected
RGB-D data into a single mesh in an e�cient yet accurate
manner? and (3) How can we identify the material properties
of each surface robustly in order to estimate the quality of
mmWave re�ections?

We �rst demonstrate the overhead for data collection with
di�erent qualities for RGB images. Our results show that
single-user data collection is not e�cient and can take a long
time according to the quality of RGB images. To address
the �rst challenge, we propose a collaborative data collec-
tion that can reduce the time signi�cantly and can be done
in real-time which can result in an up-to-date 3D map. For
the second challenge, we present the outcome of di�erent
3D reconstruction methods on path detection accuracy. Our
results show that even the recent methods of reconstruc-
tion do not provide the required accuracy (millimeter level)
which needs further improvement. For the third challenge,
We compare the results of two di�erent large-scale material
identi�cation datasets and show that their results are far
from being directly useful in a practical system. Therefore,
we suggest di�erent potential improvements such as combin-
ing the current datasets, using other headset sensors (such as
IR), and/or incorporating the mmWave radar in the material
identi�cation process.
•The e�ectiveness of the re�ectionmodel of the environment
relies on how fast we can get the paths between the TX
and RX from the ray tracer. We �nd that the current ray-
tracingmethods are not suitable for real-time usage, and even
with high computational overhead, they cannot achieve sub-
millisecond speeds (necessary for beamforming). We propose
di�erent acceleration methods such as beam and frustum
traversal with kd-trees, bounding volume hierarchies and
grids, and implementing a fast neural-based ray tracer.
• The ability to predict the paths before starting the commu-
nication allows us to detect and even predict the blockages
and �nd di�erent alternative paths between the AP and the
clients. Our goal is to use this knowledge to mitigate block-
ages. Also, the same approach can be applied to deal with

data rate �uctuations by �nding robust paths between AP
and the clients. We propose a cross-layer rate adaptation
approach. The 3D material map predictions can be used to
set the beams and mitigate the blockage at the physical layer
and set the bu�er size and adapt the video quality at the
application layer according to the quality of the link.
Our ongoing work includes realizing and further opti-

mizing the above ideas and integrating them into a holistic
system that can stream high-quality volumetric videos to
multiple users over mmWave WLANs.
2 Research Agenda
2.1 Collaborative 3D Scene Reconstruction
AR/VR headsets with various sensors provide the necessary
data to accomplish the task of capturing the 3D geometric
structure of the surroundings by means of depth sensing.
This 3D map along with the 6DoF motion can be leveraged
to reduce the overhead of beamforming for mmWave com-
munication. Prior work such as SpaceBeam [52] has shown
the use of RGB-D cameras to perform reconstruction of the
3D model of the environment and use it for mmWave beam-
forming. However, the system operates in an o�ine manner
where a single user is required to scan and reconstruct the
environment in advance. Furthermore, it does not operate in
real-time and cannot directly account for transient changes
(e.g., people moving around) without frequent re-scanning.

When multiple users are consuming the volumetric con-
tent, it is possible to let all users participate in the recon-
struction process. In these scenarios, all users send their
sensor information (e.g., RGB images, depth information,
and 6DoF motion) to the AP, and AP combines the informa-
tion to create a holistic 3D map of the environment. Naive
collaborative o�ine mapping can improve the scanning du-
ration compared to only one user [11, 13]. However, such a
process still happens o�ine and cannot work in a dynami-
cally changing environment. In this research, our goal is to
create a real-time framework for collecting and processing
sensor data and reconstructing the environment at the AP.

Developing such a framework requires us to address mul-
tiple challenges. First, the e�ect of transient changes is more
severe, and depending on the user mobility and the number
of users the model can be incomplete. To handle transient
changes, one approach is to detect and remove transient
objects (e.g., humans) from the RGB-D images and consider
only the static environment in the reconstruction process.
Model incompleteness comes from the fact that users’ FoV
might not cover the entire environment because they are
focused on the volumetric video content or users occlude the
view of each other. To tackle this issue ML approaches can
be used to �ll the missing pieces of the model [10]. Second,
joining the sub-scans of each user to create the full map is not
a trivial task, and the AP needs to accurately determine the
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transformations between each user’s scan. There are some
recent works [5] for integration of di�erent pieces of the
model.
2.2 Material Identi�cation
Material re�ection properties is the main criteria for dis-
tinguishing di�erent re�ection surfaces. Even after having
the 3D geometric model of the environment, re�ection loss
determines where the beams should be guided. There are
many di�erent previous studies that try to measure the re-
�ection loss of common materials for both indoor [45, 51]
and outdoor [21, 22, 42] environments in mmWave band. The
results show a varying behavior for the same material and
there are di�erent values for re�ection losses. To understand
the re�ection properties of a surface, we should follow the
behavior of a radio signal when the signal reaches it. Upon
reaching the surface, the amount of re�ected energy depends
on the material, its roughness and thickness, the polarisation,
and the incident angle. The Fresnel coe�cients for re�ection
and transmission were proposed to describe the e�ect of
polarisation and angle. The Fresnel re�ection factor is for
smooth surfaces, but in the real world, perfectly smooth sur-
faces are rare. Therefore, to take the surface roughness into
consideration, there is another loss that is calculated using
the following equation [52]

A/A~ = 4G? (0.5( 4c�⌘2>B (\ )
_

)2) (1)

where \ is the incident angle, _ is the wavelength, A~ is the
Fresnel re�ection coe�cient, and�⌘ is the standard deviation
of the surface roughness.

Given the variations in the material structure, determining
the components of this equation is extremely challenging.
Therefore, researchers try di�erent sensors to infer the loss.
In this section, we discuss di�erent methods that can be used
based to the availability of the sensors on AR/VR headsets:
(1) IR-based material identi�cation. In addition to RGB
images, IR sensors available on the headsets can provide
extra information about the material properties (e.g., scatter-
ing properties) to achieve higher accuracy. For example, a
multimodal material segmentation model has been designed
that shows the non-RGB imaging modalities including near-
infrared images can help in better discriminating di�erent
material categories [25]. Also, SpaceBeam [52] uses an IR-
based approach to infer the re�ection loss by utilizing IR
intensity over the surface. Their approach is to estimate the
surface roughness and correlate it with the re�ection loss.
This approach is essentially a material property identi�er,
rather than material identi�cation, and it can be utilized
along with other methods.
(2) RGB images material segmentation. Recent ad-
vances in image identi�cation and segmentation and the
availability of large-scale datasets such as MINC [7] and

DMS [50] make it possible to coarsely predict the material
properties of a surface. One important issue with the avail-
able datasets is the fact that they are not designed to be lever-
aged for RF signal propagation. However, with modi�cations,
these approaches can be adapted for the purpose. Material
segmentation using RGB images, which can be easily col-
lected using headsets, can give �ne-grained classi�cation of
surface material in the environments.
(3) mmWave Radar. General category of the material of
the surface (e.g., brick, glass, etc.) along with the roughness
(Equation 1) can give us an accurate prediction of the RF
signal in any frequencies. However, material classi�cation
and roughness predictionmethods are not accurate [7, 50, 52]
and we need live feedback from the same frequency that we
are using for the communication to characterize thematerials
more accurately. For mmWave signals, mmWave radars can
provide an in-band response from the environment to be used
independently or along with the other sensors’ information
to improve the material identi�cation accuracy. Although,
equipping the headsets with these sensors can be challenging,
our research is dedicated to conquering these challenges.
2.3 Robust Real-time Ray-tracing
Scene reconstruction and material identi�cation can only be
useful if AP can detect paths to the clients correctly and in
real time. There are two approaches to ray-tracing that we
plan to explore.
(1) Standard Ray-tracing. Scene reconstruction might not
always accurately match the real world and the generated
mesh can include noise because of the limited accuracy (±1
cm) that should be considered when AP tries to trace the
paths. Signal propagation paths can be determined using
standard ray-tracing methods such as shoot-and-bounce ray-
tracing [27] which do not expect a 3D model with noisy
surfaces. To tackle these issues, SpaceBeam [52] suggested
modi�cations such as path clustering and spurious path prun-
ing. On the other hand, real-time ray-tracing for mmWave
becomes infeasible as the complexity of the 3D model in-
creases. Also, it is crucial to have a ray-tracer that operates
faster than the actual beamforming time in order for it to be
useful. The ray-tracer mentioned in SpaceBeam takes 1.4s
when using CPU and it can go down to 100ms on GPU which
does not o�er any advantage to the mmWave communica-
tion speci�cally in multi-user environments (which is why
a precomputed lookup table is used in the SpaceBeam). In
order to accelerate this process, the methods in optical ray-
tracers such as beam and frustum traversal with the kd-trees
and bounding volume hierarchies and grids can be used to
reduce the number of rays.
(2) Representing Volumetric Radio Frequency Scene
with Neural Networks. Another approach is the adap-
tation of related work in the optical �eld such as NeRF [35]
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Figure 1: (a) mmWave Devices and HoloLen 2 used in the measurement, (b) measurement environment, (c) an
example of collected power angular pro�le.
which uses neural networks to generate novel views of com-
plex 3D scenes, based on a limited set of 2D images. Inspired
by this method, one of the recent works [61] designed a
model which can determine the received signal at any po-
sition with a modest number of signal measurements. The
main challenge in this work is the number of measurements
and the duration it takes to train the model for each environ-
ment. Our goal is to directly use the RGB images to reduce
the number of measurements and use recent advancements
such as Instant-NGP [36] to improve the training time.
2.4 Blockage Mitigation and Cross-Layer Rate

Adaptation
Blockage mitigation and rate adaptation are critical aspects
in the context of multi-user volumetric video streaming over
mmWave WLANs. Blockage has a pronounced e�ect on
mmWave links, and it can reduce the data rate signi�cantly
or even cause a complete outage (especially human block-
age [47]). To overcome this challenge, e�ective blockage
mitigation techniques need to be employed. In these situa-
tions, two approaches can be employed to mitigate blockages.
The �rst approach is to use Multi-AP deployment to mitigate
the blockages. With the dense deployment of multiple APs,
it is possible to perform fast handover between the APs and
reduce the chances of blockage through spatial diversity. In
this scenario, even if one AP is blocked, there might be a
LOS path to another AP, and APs can do dynamic handover
between themselves to overcome the blockage. The second
approach is to leverage the RGB-D images along with pose
information to detect the blockages. Because the main block-
ages come from inter-user occlusions, a machine-learning
model can be trained to detect the persons in the image
and AP can steer the beams around it, ensuring continuous
connectivity and reducing the impact of signal attenuation.

Additionally, rate adaptation plays a key role in optimizing
the QoE. By exploiting the 3D material map to coarsely pre-
dict the mmWave channel conditions and adapting the trans-
mission rate accordingly, we can ensure an optimal trade-o�
between video quality and the available mmWave paths. This
adaptive approach allows for seamless streaming by dynami-
cally adjusting the bu�er size of the video player, resolution,
and compression level to match the varying mmWave paths

(a)

(b)

Figure 2: (a) Point cloud generated from the RGB-D
images and (b) 3D reconstruction example.

and blockage scenarios, thereby delivering an immersive and
uninterrupted volumetric video streaming experience over
mmWave WLANs.
3 Preliminary Results
In order to identify the challenges in designing volumetric
video streaming systems over mmWave WLAN, we perform
an experiment using di�erent existing systems. Our focus
is on environment modeling to reduce the beamforming
overhead and mitigate blockages in mmWave WLANs.
Experimental Setup. We collect data in a university class-
room (9.5 m ⇥ 6 m) as shown in Fig 1b. We use Microsoft
HoloLens 2 to scan the environment by collecting RGB-D
images with di�erent qualities for 3D reconstruction. For
3D environment evaluation including the power angular
pro�le, re�ection path assessment and loss prediction, we
use a pair of mmWave software radio systems. Each of the
mmWave SDRs consists of a phased-array based RF frontend
from Sivers Semiconductors [2] and USRP as the baseband
processor. The Sivers 60 GHz RF frontend has two phased
antenna arrays (one for sending and the other for receiving)
with 64 antenna elements each. We use the default codebook
from Sivers with 63 beams where the main lobe angle of
every beam is approximately 1.5� in Azimuth. We perform a
separate measurement campaign to measure the beam pat-
terns of each beam in the codebook. Fig 1a shows the devices
used in the experiment. We collect the mmWave channel
data (AoA and RSSI for di�erent paths) at 10 TX-RX location
pairs. An example of the power angular pro�le is shown in
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Exp. Capture Time (s) # of Depth Frames RGB Resolution RGB (FPS) Depth (FPS) Reconstruction Time (s)
1 362 362 1920 ⇥ 1080 10 1 152
2 528 2640 1280 ⇥ 720 20 5 995

Table 1: Overhead of environment scanning.
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Figure 3: (a) Path detection results and (b) material
identi�cation results.

Fig. 1c. To get the precise location of the TX and RX, we use
the provided 6DoF pose by the headset as the ground truth.
Environment Scanning Overhead. The process of 3D re-
construction of environment’s material map depends on two
important factors: (1) the quality of the RGB images which
is necessary for the material identi�cation, and (2) the fre-
quency of capturing the depth images which is important in
3D reconstruction. In order to evaluate the overhead of cap-
turing the spatial detail of the environment using HoloLens
2, we perform two data collection experiments. Details of
both experiments are listed in Table 1. In the �rst experiment,
we collect the RGB images with high resolution (1920⇥1080)
which can be useful in material identi�cation but it leads to
lower RGB and depth capturing frequency (10 FPS for RGB
and 1 FPS for depth images). In the second experiment, we
set the RGB resolution to medium quality (1280⇥ 720) which
allows us to increase the capturing frequency to 20 FPS for
RGB and 5 FPS for depth images.

The trade-o� between the quality of the RGB images and
capturing frequency of depth images can cause a large dif-
ference in the scanning time and the reconstruction process
(an example of a reconstructed scene is shown in Fig 2b).
We use the Robust reconstruction method (described below).
Having fewer RGB-D images decreases the scanning and
reconstruction time (as shown in the table), but it results
in missing spatial details which is necessary for mmWave
path detection. On the other hand, having medium-quality
images can provide enough detail in both material detection
and 3D reconstruction.
3D Reconstruction and Path Detection. In this section,
we evaluate the e�ect of 3D reconstruction on path detection
accuracy without considering material information. We use
the medium quality RGB-D information to perform the 3D
reconstruction using three di�erent methods.
(1) PF: The �rst method is called plane �tting (PF) where
after converting the RGB-D data to point cloud (as shown in
Fig 2a), we run the RANSAC algorithm [12] to �nd groups

of points that can create a plane. Then, we �t a plane by
�nding the normal vector and the boundaries. This method
is suitable for simpler environments with mostly �at surfaces
and can remove small noise in the surface reconstruction.
(2) PSR: The second method uses screened Poisson Surface
reconstruction (PSR) [19] to reconstruct mesh from point
clouds. This is a classical geometry-based method that results
in a complete model albeit while sacri�cing accuracy.
(3) Robust: The last model, referred to as Robust, is a high-
quality fusion method that uses accurate geometric registra-
tion to deal with the accumulated pose estimation errors [9].
This model starts with reconstructing locally smooth scene
fragments and deforming these fragments to align them with
each other, obtaining high-quality 3D scene models o�ine.
The resulting 3D models from these 3 methods and the

TX and RX locations from the measurement points are then
input into the RemcomWireless InSite [1] channel simulator.
Finally, the propagation estimation from the simulations is
compared to the measurement results (an example is shown
in Fig 1c). Here, we compare the number of detected paths
and the false positive for each of the methods. Fig 3a shows
the results. Since the experiment environment has mostly
�at surfaces as expected by the simulator, the PF method
outperforms the other methods, but it also increases the false
positive rate signi�cantly. Robust and PSR methods can only
detect 28% and 17% of the paths, respectively. This comes
from the fact that the model noise causes to have surfaces
with high face normal error. The Robust model still performs
better than the PSR method which shows the improvement
in the reconstruction. Further improvement can be tackling
the error in surface normals by considering angle error or
taking advantage of the simplicity of the plane �tting in
removing face noises.
Material Identi�cation. As mentioned in Sec. 2, there
are multiple large-scale datasets for material identi�cation.
However, using them in practice in the context of signal
propagation can be challenging. In this section, we use pre-
trained models on MINC [7] and DMS [50] datasets and
evaluate the material identi�cation on 25 RGB images from
the collected medium-quality data by the headset. Our goal
is to see the performance of existing models in identifying
common materials in an indoor classroom environment.
We carefully annotate the RGB images according to the

categories in MINC and DMS datasets separately. We run
both models and compare their accuracy based on two met-
rics. Pixel accuracy is the number of correctly identi�ed
pixels, and intersection over union (IoU) is the overlap of
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the ground truth and prediction region over the union of
them. The results are shown in Fig. 3b. Results indicate
that the model trained on DMS with pixel accuracy=66.74%
and IoU=39.53% outperforms the MINC with pixel accu-
racy=44.03% and IoU=35.26% in both metrics. Despite the fact
that the DMS dataset was collected over fewer images, the
model is trained on polygon labels which is di�erent from
the MINC which is trained on points. This aspect causes to
have optimized boundaries and higher accuracy because of
less noise. Another key aspect that makes DMS better is the
diversity of material categories which is important in signal
propagation. For example, because the MINC dataset does
not include whiteboard and ceiling tile categories, they are
usually detected as painted and tile categories that have dif-
ferent signal propagation properties. On the other hand, in
DMS the accuracy in some of the categories is not high and
can cause misidentifying some categories of materials. For
example, our results show that DMS has di�culty in identify-
ing whiteboards and plastic. This can happen because of two
reasons: (1) the number of samples and their scene diversity
(di�erent lighting, angle, etc.) for some of the categories, and
(2) the similarity between materials which is one of the most
important di�culties in material segmentation tasks.
In general, although these two datasets are the largest

material collections, they cannot be directly used for the task
of material identi�cation in the context of signal propaga-
tion. Improving the segmentation models, combining both
datasets and modifying the categories, and adding more sam-
ples while making the categories more speci�c to RF prop-
agation (as opposed to visual classi�cation) are important
outstanding problems.
4 Related Work
Multi-user AR, VR, and 360� Video Streaming. Recent
studies investigated the support of multiple users in the �elds
of AR [31, 43, 60], VR [24, 28, 34], and 360� video stream-
ing [6, 8, 41]. For example, SPAR [43] targets minimizing
the spatial inconsistencies of visual content and reducing
initialization latencies, by taking the positions of virtual
objects into consideration. Coterie [34] reduces bandwidth
demands by leveraging the consistency in background con-
tent across consecutive frames. Bao et al. [6] and M5 [59]
leverage multicast to deliver shared content across multiple
users. Our work leverages mmWave networks for volumetric
video streaming, which are highly susceptible to inter-user
blockages. To address this, we propose a novel approach
that involves collaborative 3D scene reconstruction among
multiple users. By detecting multiple paths to the AP with
the 3D scenes and the pose of headsets, our approach can
e�ectively mitigate blockage e�ects.

Volumetric Video Streaming. Existing work [15, 23, 30,
57, 59] centered on addressing the computation and bandwidth-
intensive nature of volumetric video streaming. For example,
early work reduced the computation overhead and band-
width requirement of mobile volumetric video streaming by
leveraging visibility-aware optimizations (e.g., ViVo [15]) and
accelerating point-cloud decompression with GPU-assisted
compression scheme (e.g., GROOT [23]). Recent e�orts in-
clude Vues [30] that improves the quality of experience (QoE)
by transcoding a point cloud frame into multiple 2D images,
YuZu [57] that enhances the volumetric video streamingwith
super-resolution, and M5 [59] that performs 6DoF motion
prediction for adapting mmWave beams and dynamically
prefetches content to mitigate the impact of blockage for
multi-user streaming. MetaStream [14] expands these video-
on-demand works to a practical live volumetric content cap-
ture, creation, delivery, and rendering system. Di�erent from
these works, we focus on supporting the volumetric video
streaming with mmWave networks on AR/VR headsets and
propose a research agenda that mitigates the blockage e�ects
for providing a stable and high QoE during video streaming.
60 GHzWLANs. The performance evaluation of mmWave
channels is carried out in 5G communications and other
networks [44, 46, 48, 58, 63]. The blockage loss [29], avoid-
ance [32], prediction, and mitigation [3, 20, 39, 53, 55] have
been thoroughly studied. Several mmWave network mod-
els for mobility management [16, 17, 37, 49], interference
cancellation, reduction and avoidance [38, 40, 54], and beam
selection and management [18, 26, 56, 62] have been de-
signed. However, the aforementioned solutions re�ect only
on physical layer knowledge for improving link resiliency
and do not leverage the information that is available through
AR/VR headsets that includes RGB and depth information.
5 Conclusion
This position paper identi�es several key areas that pose on-
going challenges for the development of practical mmWave
communication for multi-user volumetric video streaming.
We propose a holistic research agenda and identify the ex-
isting challenges by conducting preliminary experiments
utilizing a mmWave testbed and Microsoft HoloLens 2. We
show that while collaborative 3D scene reconstruction holds
the potential to create environment-driven mmWave beam-
forming solutions, current approaches fall short and novel
solutions that encompass material identi�cation and e�cient
ray tracing are needed for blockage mitigation and allevia-
tion of beamforming overhead.
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