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Abstract—Influence maximization (IM) is a representative and classic problem that has been studied extensively before. The most
important application derived from the IM problem is viral marketing. Take us as a promoter, we want to get benefits from the influence
diffusion in a given social network, where each influenced (activated) user is associated with a benefit. However, there is often
competing information initiated by our rivals that diffuses in the same social network at the same time. Consider such a scenario, a user
is influenced by both our information and our rivals’ information. Here, the benefit from this user should be weakened to a certain
degree. How to quantify the degree of weakening? Based on that, we propose an overall evaluation on benefits of influence (OEBI)
problem. We prove the objective function of the OEBI problem is not monotone, not submodular, and not supermodular. Fortunately, we
can decompose this objective function into the difference of two submodular functions and adopt a modular-modular procedure to
approximate it with a data-dependent approximation guarantee. Because of the difficulty to compute the exact objective value, we
design a group of unbiased estimators by exploiting the idea of reverse influence sampling, which can improve time efficiency
significantly without losing its approximation ratio. Finally, numerical experiments on real datasets verified the effectiveness of our

approaches regardless of performance and efficiency.

Index Terms—Overall evaluations, influence maximization, submodularity, modular-modular proceduce, sampling techniques, social net-

works, approximation algorithm

1 INTRODUCTION

HE online social media, such as Twitter, Facebook,

Wechat, and LinkedIn, have been booming in the recent
decade and have become a dominating method to contact
others and make friends [1]. People are more inclined to
share their comments about some hot issues at every
moment in these platforms. By the end of December 2019,
there were more than 3.725 billion users active in these
social media. The relationships among the users on these
social platforms can be denoted by social networks. A large
number of messages can be shared rapidly over the net-
works. Subsequently, influence maximization (IM) [2] was
formulated to focus on the problem of selecting a small sub-
set of users (seed set) for an information cascade to maxi-
mize the expected follow-up adoptions (influence spread).
It is a natural generalization for viral marketing. The IM
problem was based on the two influence diffusion models,
independent cascade model (IC-model) and linear thresh-
old model (LT-model), and they can be summarized into
the trigger model. Besides, Kempe et al. [2] proved the
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expected influence spread is monotone and submodular,
thereby a (1 — 1/e)-approximation can be obtained by the
greedy algorithm implemented by the Monte-Carlo (MC)
simulations.

Since this seminal work, it derives a series of optimiza-
tion problems, such as profit maximization (PM) [3], [4], [5],
competitive IM [6], [7], [8], [9], and influence blocking [10],
[11]. Consider us as a promoter to initiate an information
cascade, we aim to get benefits from the influence spread
started from our selected seed set in a social network. If a
user is activated during the influence diffusion, we can get a
benefit associated with her. Suppose there exists cost
needed to pay when selecting a seed set, the profit is defined
by the total benefits of influence spread minus the cost of
this seed set, where the PM problem aims to maximize the
expected profit. However, this is only an idealized state,
where there is no competitor diffusing its cascade simulta-
neously. Generally, more than one type of information can
flood the same network. In the competitive IM problem,
there are multiple information cascades diffusing their
respective influence independently, where it assumes a user
can only be activated by one cascade successfully. It aims to
select a seed set to maximize our own expected influence
spread or to minimize the influence spread from other com-
peting cascades (influence blocking).

Combining the PM and competitive IM problem toge-
ther, it formulates a competitive PM problem that maxi-
mizes our own expected profit when there are multiple
information cascades diffusing on the same network. How-
ever, this model has a crucial drawback because it assumes
that each user can only be activated by one cascade. Actu-
ally, for a user in a social network, she may be influenced
by multiple cascades from different promoters. If a user is
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activated by our cascade but activated by rivals’ cascades
contemporarily, the benefit we can get from her will be
weakened, even be negative. This is very different from the
existing competitive models in [6], [7], [8], [9]. Let us con-
sider the following example.

Example 1. Take us as an Apple carrier, we want to popular-
ize a new iPhone across a given network by initiating an
influence diffusion. If a user is influenced by us, we can
get a benefit from her according to her appraisal of our
product. When there is a rival existing such as Samsung, it
will promote its new phone by diffusing the influence as
well. If a user is influenced by both Samsung and us, its
appraisal of our product is very likely to be reduced after
comparing our product with Samsung. The benefit we can
get from her will be reduced even to be negative.

Based on this realistic scenario, we propose an overall
evaluation on benefits of influence (OEBI) problem, where
we define how to quantify and maximize the benefits of our
targeted influence diffusion disturbed by the rival’s influ-
ence diffusion. We show that the OEBI problem is NP-hard
and its objective function is not monotone, not submodular,
and not supermodular. Because there is no direct approach
to approximating it with a theoretical bound, we decom-
pose this objective function into the difference of two mono-
tone and submodular functions. Then, we adopt a modular-
modular procedure [12] that replaces the first submodular
function with one of its lower bound and the second sub-
modular function with one of its upper bound. Thus, a
data-dependent approximation ratio can be obtained by this
procedure. Moreover, it is #P-hard to compute the exact
objective value under the IC-model [13] and LT-model [14].
Even though we can estimate our objective value by use of
MC simulations, the terrible time inefficiency is unavoid-
able, which restricts its scalability to larger networks. Based
on the idea of reverse influence sampling (RIS) [15], we
design a group of unbiased estimators to estimate the value
of our objective function. If the number of samplings is large
enough, its estimation error is neglectable. Next, we take
this estimator as the input of modular-modular procedure,
which reduces the running time greatly while maintaining
the approximation guarantee. Finally, we conduct several
experiments to evaluate the superiority of our proposed
method to other heuristic algorithms, where they support
the effectiveness of our method strongly.

Organization. Section 2 surveys the-state-of-art works.
Section 3 is dedicated to introduce diffusion model, back-
ground, and define the OEBI problem formally. The mono-
tonicity, submodularity, and computability are presented in
Section 4. Section 5 is the main contributions, including
algorithm design, sampling techniques, and approximation
guarantee. Numerical experiments and performance analy-
sis are presented in Section 7, and Section 8 is the conclusion
for this paper.

2 RELATED WORK

Influence Maximization. Kempe et al. [2] came up with the IC-
model and LT-model, formulated the IM problem as a
monotone submodular maximization problem and gave a

greedy algorithm that achieves (1 — 1/e — ¢)-a prox1mat10n
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implemented by MC simulations. Chen et al. proved it is #P-
hard to compute the expected influence spread given a seed
set under the IC-model [13] and LT-model [14]. Besides,
they devised two efficient heuristic algorithms to solve the
IM problem and evaluate their scalability. Contemporarily,
a series of heuristic algorithms emerged, such as cost-effec-
tive lazy forward strategy [16] and degree discount heuris-
tics [17]. Brogs et al. [15] made a breakthrough. They
proposed the concept of RIS to estimate the expected influ-
ence spread, which is scalable in practice and has a theoreti-
cal bound at the same time. Then, a series of researchers
designed more efficient algorithms that achieve
(1 —1/e—¢)-approximation based on the RIS. Tang et al.
[18], [19] proposed TIM/TIM+ algorithms first and then
develop a more efficient IMM based on the martingale anal-
ysis. Besides, it was improved further by SSA/DSSA [20]
and OPIM-C [21].

Competitive IM and Profit Maximization. Bharathi et al. [6]
studied the competitive IM first and generalized it as a
game of influence diffusion with multiple competing cas-
cades. Lu et al. [22] created a comparative IC-model that
includes all settings of influence propagation from competi-
tion to complementarity. Wu et al. [8] proposed two heuris-
tic algorithms to achieve influence blocking maximization
under the competitive IC-model. Arazkhani et al. [9]
designed a community based algorithm to minimize the
bad effect of misinformation under the multi-compaign IC-
model. Tong et al. [23] proposed an independent multi-cas-
cade model and studied a multi-cascade IM problem under
this model systematically, where they designed efficient
algorithms and obtained a data-dependent approximation
guarantee. In the classic PM problem [3], [24], they usually
considered the cost of a seed set is modular with respect to
the seed node in this seed set, which implies the profit func-
tion is still submodular but not monotone. It can be general-
ized as the unconstrained submodular maximization
problem that has a constant approximate guarantee [25].
Tong et al. [26] considered the coupon allocation in the PM
problem, and designed efficient randomized algorithms to
achieve (1/2 — €)-approximation with high probability. Guo
et al. [27] proposed a constrained budgeted coupon problem
and provided a continuous double greedy algorithm with a
valid approximation.

Non-Submodular Maximization. However, many realistic
problems derived from the IM do not satisfy the submodu-
larity. For a monotone non-submodular function, we can
use the supermodular degree [28] and curvature [29] to ana-
lyze the approximation of greedy algorithm to maximize it.
Then, Lu et al. [22] devised a sandwich approximation
framework, which can obtain a data-dependent approxima-
tion ratio by maximizing its submodular upper and sub-
modular lower bounds, then return the solution that can
maximize the original objective function as the final result.
However, our objective function of the OEBI problem is not
monotone. For a non-monotone non-submodular function,
it can be decomposed into the difference of two submodular
functions [30], which can be approximated effectively by
the submodular-supermodular procedure [30] and modu-
lar-modular procedure [12].

Even though there are many existing researches about
competitive IM and influence blocking problem shown as
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TABLE 1
The Frequently Used Notations Summarization

Notation Description

G = (V,E) | an instance of the social network

1= (G, P) | an instance of IC-model

oq(S) Expected influence spread of S under 2

g A realization sampled from a given model

1,(S) The set of nodes that are reachable from S
in the realization g

Cp/Cy Positive cascade / Rival cascade

Sp/ Sy Positive seed set / Rival seed set

p(u) Benefit of a C),-active not C'.-active user

q(u) Benefit of a C),-active and C).-active user

I(u) l(u) = p(u) — q(u)

f(Sp) Expected overall benefit from S,

w(Sp)/2(Sp)| f(Sp) = w(Sp) — 2(Sp)

m% (Y) A modular upper bound of submodular
function b that is tight at set X

RS (V) A modular lower bound of submodular
function b that is tight at set X

w(Sp)/2(Sp)| Unbiased estimator of w(S,) and z(.Sp)

[8], [9], [10], [11], [23], their models and basic assumptions
are very different from us. They all tried to initiate a positive
cascade to compete with the rival’s influence diffusion.
Assumed that each user can be activated by at most one cas-
cade, they aimed to maximize the expected influence spread
of positive cascade. In our OEBI problem, the formulation of
competitiveness and definition of benefit are more practical
where each user can be activated by our cascade and rival’s
cascade. We aim to evaluate how the rival’s cascade weak-
ens our influence spread comprehensively, and under such
circumstances, how to maximize the benefits of our
expected influence spread. The objective function is non-
monotone and non-submodular, which is totally different
from the monotone submodular maximization problem in
the above works. Besides, to overcome the intrinsically high
computational complexity, we design an efficient random-
ized algorithm to solve our OEBI problem with a satisfac-
tory approximation guarantee based on the RIS and
modular-modular procedure.

3 PROBLEM FORMULATION

In this section, we introduce the diffusion model first and
then formulate the OEBI problem. The frequently used
notations in this paper are shown in Table 1.

3.1 Diffusion Model and Realization

Let G = (V, E) be a directed graph that represents a social
network where V = {vy,v9,...,v,} is the set of n users, E =
{e1,€2,...,en} is the set of m directed edges. For each
directed edge (u,v) € E, it models their friendship where u
(resp. v) is an incoming neighbor (resp. outgoing neighbor)
of v (resp. u). Moreover, the set of incoming neigbhbors
(resp. outgoing neighbors) of node u € V' is denoted by
N~ (v) (resp. N*(v)).

Given a seed set S C V, the influence diffusion model is a
discrete-time stochastic process started from the seed nodes
in S. In the beginning, all nodes in the seed set S are active,
but the other nodes are inactive. At time step ¢;, we denote
by S; the current active node set. Thereby we have S := S
at tg. Under the IC-model [2], there is a diffusion probability
Puw € (0,1] associated with each edge (u,v) € E. At time
step ¢; for i > 1, we have S; := S;_; first; then, each new acti-
vated node u € (S;_1\S;_2) in the last time step has one
chance to activate its each inactive outgoing neighbor v with
the probability p,,. We add v into S; if v activates v success-
fully. The influence diffusion stops when no node can be
activated further. The problems we will discuss in the sub-
sequent sections are defaulted on the IC-model, but they
can be extended to other diffusion models easily.

Here, a specific IC-model based on graph G can be
defined as Q = (G,P) where P = {pec,,Pe,,---;De,} is the
set of m edge probabilities. Given a specific IC-model (), we
define g ~ () as a realization sampled from (), which is an
instance of influence diffusion on this probabilistic graph.
Under the IC-model, a realization is residual graph built by
removing each edge (u,v) € E with probability 1 — py,.
Thereby we have Prlg] = [[.cp) Pe [Lccpc) gy (1 — Pe) and
there is 2" possible realizations in total.

Given a seed set S C V and a realization g, we denote by
I,(S) the set of nodes that can be reachable from at least one
node in this seed set and realization. Thus, the expected
number of active nodes over all possible realizations
(expected influence spread) can be expressed as

0a(S) =Epa[l,(S)]] = D Prlg- [1,(5)l, m

9€6(Q)

where G(Q1) is the collection of all possible realizations sam-
pled from . The IM problem is to select a seed set S C V
where |S| < k such that the expected influence spread o(S)
can be maximized. Given a set function 4 : 2" — R and any
two sets S,T C V, it is monotone if h(S) < h(T) when S C
T CV, submodular if A(SU{u})—h(S)>h(TU{u})—
hMT) when SCTCV and u¢ T, and supermodular if
h(SU{u}) —h(S) <h(TU{u})—h(I) when SCTCV
and u ¢ T. Based on that, we have the expected influence
spread o(-) is monotone non-decreasing and submodular
under the IC-model [2].

3.2 Problem Definition

Consider a company, it wants to promote its new product
by starting a cascade diffusing over the social network.
Obviously, the expected influence spread is the benefit it
can obtain. However, this is only in an ideal world
because it does not consider whether there is another rep-
resenting a competing product started by a rival company
that diffuses over the social network at the same time.
Thus, we can no longer evaluate this company’s benefit
only by the expected influence spread due to the rival’s
disturbance.

Given a social network G = (V; E), there are multiple cas-
cades diffusing on this network simultaneously. A user is
referred as C-active if she is activated by cascade C. Con-
sider such a scenario, we define a positive cascade C,, which
represents the influence diffusion for the new product we
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want to promote over the network. There exists a rival cas-
cade C, represents the influence diffusion for a competing
product started by some rival company. Now, due to the
existence of this competing cascade, our benefit from the
influence spread of cascade C, will be disturbed and
impaired to some extent. Given a rival seed set \S,, we need
to find a positive seed set S, and start this positive cascade
such that it can avoid the negative effects of the rival cas-
cade starting from .S, as much as possible.

Next, we discuss how to quantify the disturbance
caused by the rival cascade to our benefit. Given a social
network G = (V, E), we consider a positive cascade C, dif-
fuses under the IC-model O = (G, PP) and a rival cas-
cade C, diffuses under the IC-model Q" = (G, PR), where
PP (resp. PR) is an edge probability distribution of
(resp. )'). These two cascades diffuse over the network G
respectively and independently. Then, we suppose each
node u € V is associated with a benefit weight p(u) € R,
which implies the benefit can be obtained from the fact
that u is Cp-active but not C,-active. In other words, it is
the earning from activating user v by our positive cascade
but not activating it by the rival cascade. Moreover, we
suppose each node v € V is associated with a disturbed
benefit weight g(u) € R with g(u) < p(u), which implies
the earning can be obtained from the fact that w is
Cp-active and C,-active. Here, the disturbed benefit
weight describes the degree of disturbance caused by the
rival cascade. For a user u € V, her degree of disturbance
caused by the rival cascade rests with its disturbed bene-
fit weight g(u). If g(u) € [0, p(u)], it means that the rival
cascade will not cause a negative effect on this node u
even though it cuts down the benefit can be obtained
from activating this node by positive cascade. If g(u) €
(—00,0), it means that the rival cascade will cause a nega-
tive effect on this node. Thus, this ¢ controls the degree of
disturbance caused by the rival cascade.

Given arival seed set S, C V, the expected overall benefit
from our positive seed set S, can be defined as

f(Sp) = ngﬂl‘Eg’NQ" [fg.g’(sp)] (2)
= Z PI‘LC]] Z Pr[gq : fg.g’(Sp)v (3)
9eG(QP) geg(Q")

where f(S,) is the expectation over the realizations sampled
from the IC-model ()” and Q". Given the two realizations
g~ QP and ¢ ~ QF, the overall benefit of influence diffusion
can be defined as

p(u) + q(u), 4)
uely(Sp)nly (Sr)

fgy’ (Sp) =

>

uely(SNy (S:)

where the first term is the benefit from nodes activated only
by C, and the second term is the disturbed benefit from
nodes activated by both C,, and C..

Let us look at an example shown in Fig. 1. Shown as
Fig. 1a, the positive seed set is S, = {v;} and the rival seed
set S, = {vo} in the beginning. Then, the influence spread
started from S, is shown as Fig. 1b, which is a realization
sampled from its IC-model €. Similarly, the influence
spread started from S, is shown as Fig. 1c, which is a reali-
zation sampled from its IC-model )". From here, we can see

IEEE TRANSACTIONS ON BIG DATA, VOL. 9, NO. 2, MARCH/APRIL 2023

(a) The initial state

13t

(d) The final state

(b) A realizating g ~ QP

(c) A realization g’ ~ Q"

Fig. 1. This is an example to demonstrate the diffusion precess caused
by a positive cascade and a negative cascade, where the green nodes,
yellow nodes, and blue nodes are activated by the positive cascade, rival
cascade, and both positve and rival cascades.

that they diffuse respectively and independently. Finally,
node v, and vs are activated by both the positive and rival
cascades, thereby we have I,(S,) N I;(S,) = {v2,v5} shown
as Fig. 1d. Therefore, we have the overall benefit under this
realization is f,;(S,) = p(v1) + p(va) + p(vs) + a(v2) + q(v5).
The overall evaluation on benefits of influence (OEBI) prob-
lem can be defined as follows.

Problem 1 (OEBI). Given a social network G = (V, E), a rival
seed set S, diffusion model OF and Q", and a budget k, the
OEBI problem aims at finding a positive set set S, C V with
|Sp| < k such that its expected overall benefit f(S,) can be max-
imized. That is

S, € arg e f(Sp), (%)

where the expected overall benefit f(S,) has been defined in
Equs. (2) and (4).

4 FURTHER Discussions ABouT OEBI

In this section, we analyze the properties of OEBI problem
and introduce how to decompose its objective function.

4.1 The Properties

Given the rival seed set S, = (), the OEBI problem can be
reduced to the classical IM problem if we assume p(u) = 1
for each u € V. Thus, the OEBI problem is NP-hard through
inheriting the NP-hardness of IM problem [2] under the IC-
model. Moreover, it is #P-hard to compute the expected
overall benefit because of the #P-hardness to compute the
expected influence spread under the IC-model [13]. Next,
we will analyze the monotonicity, submodularity, and
supermodularity of the expected overall benefit function
f(S,) with respect to S, step by step.

Theorem 1. The objective function of the OEBI problem f(S,) is
not monotone with respect to S,,.

Proof. We consider the simplest case where the graph G has
only one node. Here, we have V = {v} ands E = (. Given
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(@) Sp = {v2,va} (b) Sp = {v1,v4}

Fig. 2. This is an example to demonstrate the submodularity and super-
modularity in Theorem 2.

a rival seed set S, = {v}, the expected overall benefit
f({v}) =q(u) and f(@) =0. Subsequently, we have
f{v}) = f(0) 20 if g(u) >0; and f({v}) - f(0) <O if
g(u) < 0. Thus, the monotonicity of f(S,) depends on the
definition of dusturbed earning weights. ]

Theorem 2. The objective function of the OEBI problem f(S,) is
not submodular with respect to S, and not supermodular with
respect to S),.

Proof. Take a counterexample to prove it, we assume p =
p(u) and ¢ = ¢(u) for each node u € V with ¢ € (—o0, —p).
Shown as Fig. 2, we can see that f({vs,v4}) =2p — g and
f({v1,v4}) = 5p — q. First, we have f({ve,v4}) — f(vs4) =
p+q < f({vi,ve,v4}) — f(v1,v4) = 0, thereby f(S,) is not
submodular with respect to S,. Then, we have

f{va,v5}) = flva) =2p > f({vr,v4,05}) — f(vr,v0) =0,
thereby f(S,) is not supermodular with respect to S,. O

4.2 Decomposition of Our Objective Function
From the above subsection, the expected overall benefit is
non-monotone, non-submodular, and non-supermodular.
Therefore, it is hard to get an effective solution with an
approximation ratio. Narasimhan et al. [30] proposed a
DS decomposition, which pointed out any set function
can be decomposed into the difference of two submodular
set functions. Even that, whether such two submodular
set functions can be found in polynomial time is still
unknown. Look at Equ. (4), the overall benefit f, /(S,)
under the g ~ O and ¢ ~ )" can be re-arranged as

> plw) -

uely(Sp)

fo.g(Sp) = (p(u) — q(u)). (6)

u€ly(Sp)Nly (Sr)

Thus, we can decompose the expected overall benefit as
f(Sp) = w(Sy) — 2(Sp), where w(S,) and z(S,) are defined as
follows, that is

w(S)) =By [ Y, 6 PW)] ()

A8 = BByt [y 50 (@] O

where we denote [(u) = p(u) — g(u). Similarly, we denote
wy(Sp) =X er,(s,) P(w) under the gNQT’ and z,4(S,) =

uel,(8,)01, (5, l(u) under the g ~ O and ¢ ~ €)'

Theorem 3. The function w(S,) is monotone non-decreasing
and submodular with respect to S,,.

Proof. The function w(S,) is the objective function of
weighted IM problem. It can be reduced to weighted

maximum set cover problem, which is monotone non-
decreasing and submodular since p(u) >0 for any
ueV. a

Theorem 4. The function z(S,) is monotone non-decreasing and
submodular with respect to S,,.

Proof. Given a rival seed set S,, realization g ~ QF, and
g ~Q, we consider the monotonicity and submodu-
larity based on z,,(S,). First, it is apparent that
24¢(S,) is monotone non-decreasing with respect to
Sp. Then, there are two positive seed set S} and S
with S} C S2. For any node in I,(S,), if it is reachable
from node v but is not reachable from Sf,, it must not
be reachable from S} since S} C S2. Thereby we have
Zg.q (’5’71; U{v}) - Zg,g’(SII;) 2 Zg,g’(sz U{v}) — Zg9.q (Sz)
because of [(u) > 0 for any uw € V, which implies that
244(8p) is submodular with respect to S,. Besides,
y(Sp) is a linear combination of z,,(S,), thus 2(S,) is
monotone non-decreasing and submodular. 0

Therefore, the expected overall benefit f(S,) has been
decomposed into the difference of two monotone submodu-
lar functions w(S,) and z(S,) definitely.

5 ALGORITHM DEGISN AND SPEEDUP

From the last section, our objective function is not mono-
tone, not submodular, and not supermodular. Fortu-
nately, it can be decomposed into the difference of two
monotone submodular functions. Iyer et al. [12] proposed
a modular-modular procedure to minimize the difference
between two submodular functions approximately. We
have known that f(S,) = w(Sy) — 2(S,). We can find a
modular lower bound of w(-) and a modular upper
bound of z(-) that are tight at current set S,. Thus, the
difference between the lower bound of w(:) and the
upper bound of z(-) is a lower bound of the objective
function f(-). The main idea of modular-modular proce-
dure is to maximize this lower bound in each iteration,
which can be done in polynomial time. It can guarantee
to increase our objective value in each iteration.

First, we need to define the modular upper bound
and modular lower bound for a given submodular
function.

5.1 Modular-Modular Procedure
Given a submodular function b(-), it has two modular upper
bounds based on a given set X C V, that is

mbe (V) =b(X) = Y b(iX\j)+ Y b(jl0) ©)
jex\y JEV\X

mho (V) =b(X) = Y bV + Y b(iIX), (10
jeX\Y JEY\X

where  b(S|T) =b(SUT) —b(T), mh (Y)>b(Y), and

mXQ( ) > b(Y). They are tight at set X, so we have
mljm(X) mg{,Z(X) = f(X).

Given a set X C V, we define a permutation o of V asa =
{a(1),a(2),...,a(n)} where &’s chain contains X. Denote
by S¥ = {a(1),a(2),...,a(i)}, we have S%, = X, in other
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words, we put all the elements in X prior to the elements in
V\X. Then, we define

My (i) = b(S571);

where h% (V) =3, v hY o(v) and bl (V) < b(Y) for any
Y C V. Here, hlj(a( ) is a lower bound of b(Y). It is tight at
set X, wo we have hfy ,(X) = b(X).

According to the definition of Equs. (7) and (8), we adopt
the modular-modular proceduce to approximate it, which is
formulated in Algorithm 1.

b(S%) — (11)
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and
FX) *w(Xt) 2(X") (21)
}tct’(Xf) M 5(X') (22)
hf gt (XU ) = m o (X1 U ) (23)
= f(Xf Uj). (24)
Therefore, f(X!) is a local maximum at the
convergence. ]

Algorithm 1. Modular-Modular

Algorithm 2. ModularMax

Input: A set function f: 2V — R

1: Initialize: X! «— (,¢t < 0

2: while X**! £ X! do

3:  Selects a permutation o that contains X' where the ele-
ment in X’ are ranked ahead

4: X arg max‘y‘q{hxf sY) = mi(t(Y)}

5: t—t+1

6: end while

7: returnX’

Theorem 5. The objective function f(X') is monotone non-
decreasing with respect to t. If the h}t (YY) = m3, (Y) in line
4 of Algorithm 1 reaches a local maximum under the O(n) dif-
ferent permutations o' and both upper bounds, then the f(Y') is
a local maximum.

Proof. Regardless of what the upper bound we use, in any
iteration ¢, we have

Fxh = w(Xt“) —2(X") (12)
o (XD = mi (X (13)

hi g (XT) = mi (X7) (14)

= w(X") - 2(X") (15)

= f(X"), (16)

where In Equ. (13) is based on the definitions of the
upper bound and lower bound, In Equ. (14) is because
the X! maximizes the value of h%, ,(-) —mi,(-), and
Equ. (15) is due to the tightness at set X".

Suppose the Algorithm 1 converges at X! = X', we
consider the O(n) different permutations o' which are
placed with different elements at position o (|Xt\) and
o' (| X)), First, we have h ,(S¢) = w(S“) (X)) =
AX) = 241 X"\j) = 2(X\j), and m3, (X' UJ) = 2(X")+

2(j]1XY) = 2(X'Uj). At the Convergence we have
R ot (X1) = mi (XF) > 1Y, 4 (Y) —m3,(Y) for any Y C
V under the O(n) different permutations o' and both
upper bounds. Given a o' with /(| X'|) =4 and o' (| X*| +
1) = j,wehave

FXY) = ’W(Xf) A X") (17)
P o (X - M (X " (18)

> hi, (XI\D) — mie  (XM\i) (19)

= f(X"\i), (20)
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Input: A permutation o and a set X*
: Initialize: a map unitValue = {}
2: Initialize: a set X! «— )

3: zero — Y, (0) —m3. (0)

4: foreachu € V do

5: unitValuelu] — hf, ,({u})
6

7

8

—_

—mi.({u}) — zero
: end for
: fori=1tokdo
: Select u* € max, ¢ yi+1unitValue[u]

9: if unitValue[u*] < 0 then

10: Break
11: end if
12: Xf,+1 — Xt+1 U {’U,*}

13: end for
14: returnX?*!

In each iteration of this algorithm, we need to maximize a
modular function shown as in line 4 of Algorithm 1, which
can be implemented easily. For example, we can compute
the objective value for each node v € V and then select all
those which has a non-negative objective value. In the itera-
tion ¢, given a permutation o' and a set X', the algorithm
that selects a set Y where |Y| < k to maximize the modular
function hY, (Y) —m?%,(Y) is shown in Algorithm 2. The
update rule in Algorithm 2 is according to h(u|S) =

h(u|T) = h(u|d) for any set S,T C V if h(-) is a modular
function.

As for how to select a permutation o in each iteration X?,
the optimal solution is to select a permutation «* such that
al € argmaxgmaxyy|<p{hy, (V) —m% (Y)}, however it is
very difficult to execute. There are n! permutations in total.
Thus, a heuristic choice is to order the permutation o
according to the magnititude of objective value for each
node u € V. We will compare the impact of different permu-
tations on algorithm performance in later experiments.

According to Equs. (9) and (10), we have two upper
bounds for a submodular function. Thereby the upper
bound of the optimal value of our expected overall benefit
f(S,) can be defined as follows:

(25)

7(X) = max{min{my, (Y), mx»(Y)} — h

V|<k X,ot(Y)}:
where min{m{y ,(Y),m%,(Y)} is aimed to make this upper
bound tighter. It can be solved similar to the process of
Algorithm 2. Then, for any set X, we have n(X)>
maxjy|<f(Y). Denote by S) the seed set returned by Algo-
rithm 1, we have 7(S;) > f(S;), then we are able to estimate

the approximation ratio by f ( ) /(S0
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5.2 Sampling Techniques

Given a seed set S, we adopt the technique of reverse influ-
ence sampling (RIS) to estimate f(S,) due to its #P-hard-
ness. Consider the IM problem under the IC-model
Q = (G, P), we introduce the concept of reverse reachable
set (RR-set) first. A random RR-set R can be generated by
three steps: (1) Selecting a node v € V uniformly; (2) Sam-
pling a realization g ~ ); and (3) Collecting those nodes
that can reach u in realization g and putting them into R. A
RR-set rooted at node w is a collection of nodes that are
likely to influence u. A larger expected influence spread a
seed set S has, the higher the probability that S intersects
with a random RR-set is. Given a seed set S and a random
RR-set R, we have o (S) =n-Pr[RN S # 0].

Back to our OEBI problem, the expected overall benefit
can be denoted by f(S,) = w(S,) — 2(S,). Thus, given a seed
set S, we require to estimate w(S,) and z(.S,) respectively.
Here, we denote by p(V) =3 .y p(v) and [(V) =3 o U(v)
respectively for convenience. For the w(S,), a random RR-
set R,, can be generated by

1)  Selecting a node u € V with probability p(u)/p(V).
2) Sampling a realization g ~ Q7.
3) Collecting those nodes that can reach u in realization
g and putting them into R,
Given a seed set S, and a random RR-set R,, we have
w(S) = p(V) - Pr[R, N S, # 0. For the z(S,), a random RR-
set R. can be generated by

1)  Selecting a node u € V with probability i(u)/I(V).

2) Sampling a realization g ~ ()’ and a realization ¢ ~
Q" independently.

3) Collecting those nodes that can reach u in realization
g and putting them into R.;; Collectiong those
nodeds that can reach v in realizationg ¢ and putting
them into R, 5. Then, we have R, = (R, 1, R.2).

Lemma 1. Given a seed set S,, a rival seed set S, and a random
RR-set R, = (R, R 2), we have
2(S,) =1UV)-Pr[S,NR.1 #0AS, N R., #0)]. (26)
Proof. We denote by R.;(g,u) the RR-set rooted at node
u under the realization g ~ Q” According to Equ. (8),
we have Z(S ) = EgorByor [P ers,) )1y (Sr) Y Hw)] =2 er
Progr. g ~Q[S,N Ray( g, V£ BAS N Ry (o u) #
m l( ) = l(V) : ZUEV PrQNQP g ~Q" [S n szl (g’ ) 7& @ A Sr N
R.o(g,u) # 0] - ((w)/UV)) =UV) - Pryear goarulSp N R:
(9,d,u) #DNS, NR.(g,d,u) # 0]. Equ. (26) can be estab-
lished equivalently. O

As mentioned above, we have to generate two collections
of RR sets, R, = {R.,R2,...,R)\} to estimate w(S,) and

={RLR? ..., R‘} to estimate 2(S,). Then, we define the
followmg two estlmatlons

A
Z}IS NR #

i=1

Fr,( (27)

>«|H

w

"
Y IS, N R, #OAS.NRL, # 0.

i=1

(28)

’;\'—‘

They are the fractions of RR-sets covered by .S, where I[-] is
an indicator such that I[S, N R, # 0] = 1 if S, N R}, # 0, or
else I[S, N Ri, # (] = 0. Then, we can defined the following
two unbiased estimators

w(Sy) = p(V) - Fr,,(5p); 2(Sp) = UV) - Fr.(5p), (29)
where w(S)) is an unbiased estimator of w(S,) and 2(S5,) is
an unbiased estimator of z(S,). Thus, we have f(s ) =
Ww(S,) — 2(S,). Next, we need to bound the gap between
ground-truth values and our estimators.

Lemma 2 (Chernoff-Hoeffding). Let X;,X>,..., X, be a
series of random variables sampled from a distribution X with
expectation E[X] independently and identically in the set
{0,1}. Given an error ¢ > 0, we have

] > +€} < exp(—%z)

(30)

Py, Xi—0-E[X

(31

Pr[z; X, —60-EX] < —s} < exp(—%).

According to the Lemma 2, we can get the relationship
between p(V') - Fr, (Sp) and its real value w(S,).

Lemma 3. Given a collection of RR-sets R, with |R,,| = A and
any § € (0,4), we have

Pr [w(sp) > @(S,) — p(V) %m(%) >1 —g (32)
Pr [w(sp) < @(S,) +p(V) %m <§)} >1- g 33)

Proof. To show In Equ. (32), it is equivalent to prove
Priw(S,) < @(Sy) —p(V) - /(1/(24)) In(4/8)] < 6/4.
Thus, we have

A w(S, An(2
=Pr|\: Fg,(S,) p(X(/) : ~ §1n<3)] oy
A n (4
< eXP<_ W)
=4§/4,

where In Equ. (34) based on Lemma 2.

Similarly, to show In Equ. (33), it is equivalent to
prove  Prfu(S,) > (S,) + p(V) - /(1/(2\) In(4/8)] <
3/4. Thus, we have
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Pr {w(SI,) < p(V) - Fr,(S,) +p(V) -

- X w(Sp) A (4
2 .A1n<4>
< _ 221G
con( 2221
=4§/4,
where In Equ. (35) based on Lemma 2. O

Lemma 4. Given a collection of RR-sets R, with |R.| = u and
any § € (0,4), we have

(37)

Proof. It can be derived similar to the proof process of
Lemma 3, which is based on Lemma 2. O

Given an unbiased estimator @(.5,), an upper bound and
a lower bound of w(S,) can be defined with at least 1 — §/4
probability. That is

(38)

w(S,) = i(S,) — p(V)- <21A)1 (4> (39)

Given a collection of RR-sets R, with |R.| =pu, any 8§ €
(0,4), and an unbiased estimator £(S,), an upper bouand
and a lower bound of z(S,) can be defined at least 1 — §/4
probability in the same way. That is

2ul(8) = £(S,) +1(V) -/ (i) In @ (40)
2(8,) = 4(S,) — 1(V) -/ (i) In (%) (41)

Based on Equs. (38), (39), (40), and (41), we can derive a
lower bound for our objective value f(S,) naturally.

Lemma 5. Given any seed set S, C 'V, we can take w,(S,) —
21(Sp) as an upper bound of f(S,) with at least 1 — §/2 proba-
bility and w;(Sy) — 2,(S,) as a lower bound of f(S,) with at
least 1 — §/2 probability.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on October 02,2023 at 00:00:13 UTC
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Proof. To estimate the f(S,), we have

Pr(f(Sy) < wu(Sp) — 21(Sp)]
> Pr(w(Sp) < wu(Sp)) A
— (1—8/4)- (1—6/4)

>1-48/2.

(2(Sp) = 21(Sp))]

Similarly, we have

Pr(f(Sp) = wi(Sy) — 2u(Sp)]

> Pr(w(Sp) = wi(Sp)) A (2(Sp) < zu(Sp))]
=(1-8/4)-(1-4/4)
>1-5/2.
Therefore, we have w;(S)) — z,(S,) < f(Sp) < w,(S,) —
21(Sp) with a high probability. O

Next, we are going to discuss how to compute the upper
bound of our objective value 7(S;) according to the solution
S, returned by Algorithm 1 with our sampling techniques
(computing all functions by our unbiased estimators). The
unbiased estimator of 7(S,) is denoted by 7(S,), and the
value of 7(S,) can be obtained by FO)y=w() = 2(). It is
implemented by the same way as using Equ. (25), except
that f(-) is used instead of f(-) to compute the upper and
lower bounds. Here, w(S,) and %(S,) are monotone and sub-
modular with respect to S, as well since they can be
reduced to the classic set coverage problem. According to
their submodularity, we have 7(X) > maxy|<;f(Y) for any
set X,. From the Lemma 5, the objective value f(S,) is upper
bounded by w,(Sy)—z(S,) with a high probability.
Thereby we have the following conclusions.

Lemma 6. Given the solution S) returned by Algorithm 1 with

our sampling techniques, for any seed set |S,| < k and any § €
f(Sp) < a(S))

(0,4), we have
’ ﬁln

holds with at least 1 — 2/8 probability.

Lo (4 (42)
2 "\3)"

Proof. According to Lemma 5, we have Pr[f(S,) < w,(S,) —

z(Sp)] > 1 78/2 Thus, we have f(S,) < w,(S,)—
21(Sp) = W(S,) — +p V) V(1/(2X))) In(4/8) + L(V)-
V(1/(2p)) In 4/(S p(V) - /(1/(2X)) In(4/8)+ U(V) -

\/(1/( ))1n(4/3)<ﬂ(5°) p(V) - /(1/(2X)) In(4/5) +
v/(1/(21))In(4/8) due to the fact that 7(S)) >

de‘ s,|<kf(Sp). It holds with at least 1 — §/2 probab111ty 0

Theorem 6. The approximation guarantee achieved by the solu-
tion S returned by Algorithm 1 with our sampling techniques
satisfies as follows: f(S;)/maxs, <t f(S,) >

wi(Sy) — 2u(S))

#(S5) + (V) /55 1n(3) +UV) 5 n(5)

2u

) (43)

holds with at least 1 — Sfarobabzlzt
om |IEEE Xplore. Restrictions apply.
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TABLE 2
The Datasets Statistics (K = 10%)
Dataset n m Type Avg.Degree
Netscie 0.40 K 1.01K undirect 5.00
Wikivot 1.00 K 3.15K directed 6.20
Bitcoin 4.00K 251K directed 12.5

Proof. Based on Lemma 5, we have f(S;) > wi(S;) — z.(S})
holds with at least 1 — /2 probability. Then based on the
Lemma 6, we have max,<if(Sy) <7a(S;)+p(V)-

V(1/(2A)) In(4/8) + (V) - 1/(1/(21)) In(4/8) holds with at
least 1 — §/2 probability. Thereby the approximation (43)
is established with at least 1 — § probability. 0

6 NUMERICAL EXPERIMENTS

In this section, we carry out several experiments on differ-
ent datasets to validate the performance of our proposed
algorithms. It aims to test the efficiency of modular-modular
procedure, shown as Algorithm 1, and its effectiveness com-
pared to other heuristic algorithms. All of our experiments
are programmed by Python, and run on Windows machine
with a 3.40 GHz, 4 core Intel CPU and 16 GB RAM. There
are three datasets used in our experiments: (1) NetScience
[31]: a co-authorship network, co-authorship among scien-
tists to publish papers about network science; (2) Wiki [31]:
a who-votes-on-whom network, which comes from the col-
lection Wikipedia voting; (3) Bitcoin [32]: a who-trusts-
whom network of people who trade using Bitcoin on a plat-
form called Bitcoin Alpha. The statistical information about
these three datasets is represented in Table 2. For an undi-
rected graph, each undirected edge is replaced with two
reversed directed edges.

6.1 Experimental Settings

The diffusion process is based on the IC-model by default.
Under the IC-model, we set the diffusion probability p,, =
1/|N~(v)| for each (u,v) € E as the inverse of v's in-degree,
which has been given by many existing researches about
the IM problem. For each node u € V, there is a benefit
weight and a disturbed benefit weight associated with it.
We sample the benefit weight p(u) from [0,1] uniformly and
sample the corresponding disturbed benefit weight ¢(u)
from [—1, p(u)] uniformly for each u € V.

Consider the modular-modular procedure, we have to
define a modular lower bound for the function w(-) and a mod-
ular upper bound for the function z(-). Here, we denote
“Modmod-1” to imply that we use the first upper bound
m¥ (V) defined in Equ. (9) and “Modmod-2” to imply that we
use the second upper bound m%,(Y) defined in Equ. (10).
Then, we need to compare our modular-modular procedure
with other heuristic algorithms, especially for Greedy algo-
rithm. Greedy algorithm is shown in Algorithm 3, which selects
the node with the maximum marginal expected overall benefit
in each iteration until there is no positive marginal gain can be
obtained. Other heuristic algorithms are shown as follows.

1) Random: it selects k£ nodes uniformly from the node
set.

2) MaxDegree: it selects £ nodes with the largest out-
degree.
3) InfMax: it is similar to the greedy algorithm, but sub-
stitutes the overall benefit f(-) with benefit w(-).
Their objective vaules are all estimated on the same col-
lection of RR-sets, where the number of random RR-set R,
and R, is denoted by 6 = X\ = . Here, we set the parameter
8 = 0.1, which means that the approximation ratios can be
satisfied with at least 0.9 probability.

Algorithm 3. Greedy

Input: A set function f : 2" — R

1: Initialize: S, < 0

2: fori=1to kdo

3: Select u” such that u™ € argmax,ey\s, f(ulS,)
4 if f(u*|S,) < Othen
5 Break

6 end if

7: Sp — SpU{u*}
8:

9:

end for
return S,

To get a lower bound, the optimal permutation selections
is very hard, thus we give several heuristic strategies to get
that efficiently. For the permutation o' that contains X! in
each iteration, there are four heuristic selection strategies to
get it, which are shown as follows. (1) Alpha-1: rearranging
X' and V\X' randomly and respectively, and then
concatenating them together as a «'; (2) Alpha-2: sorting X'
and V\ X! respectively from largest to smallest according to
the expected overall benefit f(u) for each u € V, and then
concatenating them together as a of; (3) Alpha-3: sorting X'
and V\ X" respectively from largest to smallest according to
the expected benefit w(u) for each w €V, and then
concatenating them together as a &'; and (4) Alpha-4: sorting
X" and V\ X' respectively from smallest to largest according
to the z(u) for each v €V, and then concatenating them
together as a o'. Then, we will test which strategy is the best.

6.2 Experimental Results

1) Permutation Selection. Fig. 3 shows the performance com-
parison of modular-modular procedure under the afore-
mentioned four permutation selections. Shown as Fig. 3, the
solution achieved under the Alpha-2 that permutates
according to the expected overall benefit has the best perfor-
mance. Thus, in the follow-up experiments, we default that
modular-modular procedures we will use are implemented
under the Alpha-2. The performance under the Alpha-3 is
slightly worse than that under the Alpha-2. The perfor-
mance under the Alpha-4 is extremely worse, which implies
this heuristic selection is invalid. Moreover, the perfor-
mance under the Alpha-1 with random permutation selec-
tion is unstable, where the expected benefit is sometimes
large sometimes small.

2) Performance of Different Algorithms. Figs. 4, 5, and 6
show the performance comparison with other heuristic
algorithms under the different datasets. In these figures, we
test the algorithms under the different number of RR-sets.
Obviously, the estimations will be more and more accurate
as the number of RR-sets increases, but the gap looks
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Fig. 4. The performance comparison with other heuristic algorithms
under the Netscie dataset.

inconspicuous from these figures. Then, we make the follow-
ing observations. First, the expected overall benefit increases
as the budget increases at least on a budget less than 30.
Then, the performances achieved by Greedy and Modmod-2
algorithms are very close under the all datasets. The per-
formances achieved by Modmod-1 algorithm are unstable
under the different datasets, which have good results under
the Netscie and Wikivot datasets but a bad result under the
Bitcoin dataset. It implies that the selection of upper bounds
is a critical factor that affects the results of the modular-mod-
ular procedure. In general, the performance of Modmod-2 is
better than that of Modmod-1. A possible reason is that the
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Fig. 6. The performance comparison with other heuristic algorithms
under the Bitcoin dataset.

second upper bound is tighter than the first upper bound,
especially for using in larger datasets.

6.3 Approximation and Running Time

1) Approximation. The approximation ratios of our modular-
modular procedure when k=20 are shown in Table 3.
From the Table 3, we can see that the approximation ratio
improves as the number of RR-sets increases since the esti-
mation errors in In Equ. (42) can be reduced gradually.
Besides, the approximation has been improved more obvi-
ously with the increase of the number of RR-sets under the
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TABLE 3
Approximation Ratios of Modular-Modular Proceduce
When k = 20
Netscie Wikivot Bitcoin
0 md-1 md-2 md-1 md-2 md-1 md-2
2K 0.50 0.50 0.44 0.44 0.31 0.40
5K 0.51 0.51 0.44 0.44 0.31 0.41
10K 0.50 0.50 0.47 0.47 0.31 0.42
15K 0.50 0.51 0.50 0.50 0.32 0.42
20K 0.52 0.53 0.51 0.51 0.32 0.45
TABLE 4
Running Time (Seconds) of Modular-Modular Proceduce
When k = 20
Netscie Wikivot Bitcoin
0 md-1 md-2 md-1 md-2 md-1 md-2
2K 03 05 10 052 092 0384
5K 09 28 24 083 255 0935
10K 17 53 44 154 232 1195
15K 23 64 65 410 445 2587
20K 27 57 82 285 537 2493

Bitcoin dataset because a larger dataset requires a larger
number of RR-sets to get an accurate estimation.

2) Running Time. The running times of our modular-mod-
ular procedure when k = 20 are shown in Table 4. From the
Table 4, the running time increases as the number of RR-
sets increases generally because the estimation of objective
value is more time-consuming, which causes the modular
maximization process shown as Algorithm 2 is more time-
consuming. However, this is not strict to say that since the
number of iterations varies under different circumstances,
where Modmod-2 needs to update X' more times than
Modmod-1 actually. Fig. 7 shows the running time compari-
son with other heuristic algorithms under the Bitcoin data-
set. Shown as Fig. 7, the running time of Modmod-2 is the
highest among all these algorithms, but the running time of
Modmod-1 lies between InfMax and Greedy. This is since
Modmod-2 needs to be iterated more times to achieve con-
vergence, which explains the reason why its performance is
better than the performance of Modmod-1.

6.4 Further Discussion

According to the above analysis, we have known that the per-
formances (expected overall benefits) obtained by Greedy
and Modmod-2 algorithms are very similar, even Greedy
algorithm sometimes performs better. In addition, Greedy
algorithm also performs better in running time. Does this
mean that our modular-modular procedure is meaningless?
The answer is “No”. For a non-monotone, non-submodular,
and non-supermodular maximization problem, it is extremely
difficult to solve it with a theoretical guarantee. Greedy is only
a heuristic strategy that has no approximation guarantee, thus
we cannot determine whether its solution is good or bad.
Given our modular-modular procedure, we can obtain a
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Fig. 7. The running time comparison with other heuristic algorithms
under the Bitcoin dataset.

worst approximation ratio that is around 0.5. If Greedy per-
forms better than Modmod-2 algorithm, which at least shows
that the approximation ratio of Greedy is greater than that of
Modmod-2. This is equivalent to finding an apprxomation
ratio for Greedy algorithm. Because of the high time complex-
ity of modular-modular procedure, its theoretical value is
greater than its practical application value. Therefore, how to
reduce time complexity is a problem worth considering in the
future. Also, this work can be used as a general framework for
this kind of problems in social computing.

7 CONCLUSION

In this paper, we consider the disturbance of rival’s influence
on our benefits we can get from the influence diffusion in
social networks and propose an OEBI problem formally,
which is a generalization for a number of realistic scenarios.
Then, we quantify this disturbance, define our objective
function, and show its properties about monotonicity and
submodularity. To solve it, we decompose it into the differ-
ence of two monotone and submodular functions, and apply
modular-modular procedure to get a solution according to
their lower bound and upper bound. Then, we design a
series of efficient unbiased estimators to approximate it with
a data-dependent approximation guarantee but reduce run-
ning time significantly. The approximations and running
times are verified and analyzed by numerical simulations.
Our modular-modular procedure with sampling techni-
ques can be considered as a general framework to address
non-monotone and non-submodular maximization prob-
lem. However, its performance in running time is still not
satisfactory, which is worth considering again in the future.
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