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Abstract—Influence maximization (IM) is a representative and classic problem that has been studied extensively before. The most

important application derived from the IM problem is viral marketing. Take us as a promoter, we want to get benefits from the influence

diffusion in a given social network, where each influenced (activated) user is associated with a benefit. However, there is often

competing information initiated by our rivals that diffuses in the same social network at the same time. Consider such a scenario, a user

is influenced by both our information and our rivals’ information. Here, the benefit from this user should be weakened to a certain

degree. How to quantify the degree of weakening? Based on that, we propose an overall evaluation on benefits of influence (OEBI)

problem. We prove the objective function of the OEBI problem is not monotone, not submodular, and not supermodular. Fortunately, we

can decompose this objective function into the difference of two submodular functions and adopt a modular-modular procedure to

approximate it with a data-dependent approximation guarantee. Because of the difficulty to compute the exact objective value, we

design a group of unbiased estimators by exploiting the idea of reverse influence sampling, which can improve time efficiency

significantly without losing its approximation ratio. Finally, numerical experiments on real datasets verified the effectiveness of our

approaches regardless of performance and efficiency.

Index Terms—Overall evaluations, influence maximization, submodularity, modular-modular proceduce, sampling techniques, social net-

works, approximation algorithm

Ç

1 INTRODUCTION

THE online social media, such as Twitter, Facebook,
Wechat, and LinkedIn, have been booming in the recent

decade and have become a dominating method to contact
others and make friends [1]. People are more inclined to
share their comments about some hot issues at every
moment in these platforms. By the end of December 2019,
there were more than 3.725 billion users active in these
social media. The relationships among the users on these
social platforms can be denoted by social networks. A large
number of messages can be shared rapidly over the net-
works. Subsequently, influence maximization (IM) [2] was
formulated to focus on the problem of selecting a small sub-
set of users (seed set) for an information cascade to maxi-
mize the expected follow-up adoptions (influence spread).
It is a natural generalization for viral marketing. The IM
problem was based on the two influence diffusion models,
independent cascade model (IC-model) and linear thresh-
old model (LT-model), and they can be summarized into
the trigger model. Besides, Kempe et al. [2] proved the

expected influence spread is monotone and submodular,
thereby a ð1� 1=eÞ-approximation can be obtained by the
greedy algorithm implemented by the Monte-Carlo (MC)
simulations.

Since this seminal work, it derives a series of optimiza-
tion problems, such as profit maximization (PM) [3], [4], [5],
competitive IM [6], [7], [8], [9], and influence blocking [10],
[11]. Consider us as a promoter to initiate an information
cascade, we aim to get benefits from the influence spread
started from our selected seed set in a social network. If a
user is activated during the influence diffusion, we can get a
benefit associated with her. Suppose there exists cost
needed to pay when selecting a seed set, the profit is defined
by the total benefits of influence spread minus the cost of
this seed set, where the PM problem aims to maximize the
expected profit. However, this is only an idealized state,
where there is no competitor diffusing its cascade simulta-
neously. Generally, more than one type of information can
flood the same network. In the competitive IM problem,
there are multiple information cascades diffusing their
respective influence independently, where it assumes a user
can only be activated by one cascade successfully. It aims to
select a seed set to maximize our own expected influence
spread or to minimize the influence spread from other com-
peting cascades (influence blocking).

Combining the PM and competitive IM problem toge-
ther, it formulates a competitive PM problem that maxi-
mizes our own expected profit when there are multiple
information cascades diffusing on the same network. How-
ever, this model has a crucial drawback because it assumes
that each user can only be activated by one cascade. Actu-
ally, for a user in a social network, she may be influenced
by multiple cascades from different promoters. If a user is
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activated by our cascade but activated by rivals’ cascades
contemporarily, the benefit we can get from her will be
weakened, even be negative. This is very different from the
existing competitive models in [6], [7], [8], [9]. Let us con-
sider the following example.

Example 1. Take us as anApple carrier, wewant to popular-
ize a new iPhone across a given network by initiating an
influence diffusion. If a user is influenced by us, we can
get a benefit from her according to her appraisal of our
product. When there is a rival existing such as Samsung, it
will promote its new phone by diffusing the influence as
well. If a user is influenced by both Samsung and us, its
appraisal of our product is very likely to be reduced after
comparing our product with Samsung. The benefit we can
get from her will be reduced even to be negative.

Based on this realistic scenario, we propose an overall
evaluation on benefits of influence (OEBI) problem, where
we define how to quantify and maximize the benefits of our
targeted influence diffusion disturbed by the rival’s influ-
ence diffusion. We show that the OEBI problem is NP-hard
and its objective function is not monotone, not submodular,
and not supermodular. Because there is no direct approach
to approximating it with a theoretical bound, we decom-
pose this objective function into the difference of two mono-
tone and submodular functions. Then, we adopt a modular-
modular procedure [12] that replaces the first submodular
function with one of its lower bound and the second sub-
modular function with one of its upper bound. Thus, a
data-dependent approximation ratio can be obtained by this
procedure. Moreover, it is #P-hard to compute the exact
objective value under the IC-model [13] and LT-model [14].
Even though we can estimate our objective value by use of
MC simulations, the terrible time inefficiency is unavoid-
able, which restricts its scalability to larger networks. Based
on the idea of reverse influence sampling (RIS) [15], we
design a group of unbiased estimators to estimate the value
of our objective function. If the number of samplings is large
enough, its estimation error is neglectable. Next, we take
this estimator as the input of modular-modular procedure,
which reduces the running time greatly while maintaining
the approximation guarantee. Finally, we conduct several
experiments to evaluate the superiority of our proposed
method to other heuristic algorithms, where they support
the effectiveness of our method strongly.

Organization. Section 2 surveys the-state-of-art works.
Section 3 is dedicated to introduce diffusion model, back-
ground, and define the OEBI problem formally. The mono-
tonicity, submodularity, and computability are presented in
Section 4. Section 5 is the main contributions, including
algorithm design, sampling techniques, and approximation
guarantee. Numerical experiments and performance analy-
sis are presented in Section 7, and Section 8 is the conclusion
for this paper.

2 RELATED WORK

Influence Maximization. Kempe et al. [2] came up with the IC-
model and LT-model, formulated the IM problem as a
monotone submodular maximization problem, and gave a
greedy algorithm that achieves ð1� 1=e� "Þ-approximation

implemented by MC simulations. Chen et al. proved it is #P-
hard to compute the expected influence spread given a seed
set under the IC-model [13] and LT-model [14]. Besides,
they devised two efficient heuristic algorithms to solve the
IM problem and evaluate their scalability. Contemporarily,
a series of heuristic algorithms emerged, such as cost-effec-
tive lazy forward strategy [16] and degree discount heuris-
tics [17]. Brogs et al. [15] made a breakthrough. They
proposed the concept of RIS to estimate the expected influ-
ence spread, which is scalable in practice and has a theoreti-
cal bound at the same time. Then, a series of researchers
designed more efficient algorithms that achieve
ð1� 1=e� "Þ-approximation based on the RIS. Tang et al.
[18], [19] proposed TIM/TIM+ algorithms first and then
develop a more efficient IMM based on the martingale anal-
ysis. Besides, it was improved further by SSA/DSSA [20]
and OPIM-C [21].

Competitive IM and Profit Maximization. Bharathi et al. [6]
studied the competitive IM first and generalized it as a
game of influence diffusion with multiple competing cas-
cades. Lu et al. [22] created a comparative IC-model that
includes all settings of influence propagation from competi-
tion to complementarity. Wu et al. [8] proposed two heuris-
tic algorithms to achieve influence blocking maximization
under the competitive IC-model. Arazkhani et al. [9]
designed a community based algorithm to minimize the
bad effect of misinformation under the multi-compaign IC-
model. Tong et al. [23] proposed an independent multi-cas-
cade model and studied a multi-cascade IM problem under
this model systematically, where they designed efficient
algorithms and obtained a data-dependent approximation
guarantee. In the classic PM problem [3], [24], they usually
considered the cost of a seed set is modular with respect to
the seed node in this seed set, which implies the profit func-
tion is still submodular but not monotone. It can be general-
ized as the unconstrained submodular maximization
problem that has a constant approximate guarantee [25].
Tong et al. [26] considered the coupon allocation in the PM
problem, and designed efficient randomized algorithms to
achieve ð1=2� "Þ-approximation with high probability. Guo
et al. [27] proposed a constrained budgeted coupon problem
and provided a continuous double greedy algorithm with a
valid approximation.

Non-Submodular Maximization. However, many realistic
problems derived from the IM do not satisfy the submodu-
larity. For a monotone non-submodular function, we can
use the supermodular degree [28] and curvature [29] to ana-
lyze the approximation of greedy algorithm to maximize it.
Then, Lu et al. [22] devised a sandwich approximation
framework, which can obtain a data-dependent approxima-
tion ratio by maximizing its submodular upper and sub-
modular lower bounds, then return the solution that can
maximize the original objective function as the final result.
However, our objective function of the OEBI problem is not
monotone. For a non-monotone non-submodular function,
it can be decomposed into the difference of two submodular
functions [30], which can be approximated effectively by
the submodular-supermodular procedure [30] and modu-
lar-modular procedure [12].

Even though there are many existing researches about
competitive IM and influence blocking problem shown as
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[8], [9], [10], [11], [23], their models and basic assumptions
are very different from us. They all tried to initiate a positive
cascade to compete with the rival’s influence diffusion.
Assumed that each user can be activated by at most one cas-
cade, they aimed to maximize the expected influence spread
of positive cascade. In our OEBI problem, the formulation of
competitiveness and definition of benefit are more practical
where each user can be activated by our cascade and rival’s
cascade. We aim to evaluate how the rival’s cascade weak-
ens our influence spread comprehensively, and under such
circumstances, how to maximize the benefits of our
expected influence spread. The objective function is non-
monotone and non-submodular, which is totally different
from the monotone submodular maximization problem in
the above works. Besides, to overcome the intrinsically high
computational complexity, we design an efficient random-
ized algorithm to solve our OEBI problem with a satisfac-
tory approximation guarantee based on the RIS and
modular-modular procedure.

3 PROBLEM FORMULATION

In this section, we introduce the diffusion model first and
then formulate the OEBI problem. The frequently used
notations in this paper are shown in Table 1.

3.1 Diffusion Model and Realization

Let G ¼ ðV;EÞ be a directed graph that represents a social
network where V ¼ fv1; v2; . . . ; vng is the set of n users, E ¼
fe1; e2; . . . ; emg is the set of m directed edges. For each
directed edge ðu; vÞ 2 E, it models their friendship where u
(resp. v) is an incoming neighbor (resp. outgoing neighbor)
of v (resp. u). Moreover, the set of incoming neigbhbors
(resp. outgoing neighbors) of node u 2 V is denoted by
N�ðvÞ (resp. NþðvÞ).

Given a seed set S � V , the influence diffusion model is a
discrete-time stochastic process started from the seed nodes
in S. In the beginning, all nodes in the seed set S are active,
but the other nodes are inactive. At time step ti, we denote
by Si the current active node set. Thereby we have S0 :¼ S
at t0. Under the IC-model [2], there is a diffusion probability
puv 2 ð0; 1� associated with each edge ðu; vÞ 2 E. At time
step ti for i � 1, we have Si :¼ Si�1 first; then, each new acti-
vated node u 2 ðSt�1nSt�2Þ in the last time step has one
chance to activate its each inactive outgoing neighbor vwith
the probability puv. We add v into Si if u activates v success-
fully. The influence diffusion stops when no node can be
activated further. The problems we will discuss in the sub-
sequent sections are defaulted on the IC-model, but they
can be extended to other diffusion models easily.

Here, a specific IC-model based on graph G can be
defined as V ¼ ðG;P Þ where P ¼ fpe1 ; pe2 ; . . . ; pemg is the
set of m edge probabilities. Given a specific IC-model V, we
define g � V as a realization sampled from V, which is an
instance of influence diffusion on this probabilistic graph.
Under the IC-model, a realization is residual graph built by
removing each edge ðu; vÞ 2 E with probability 1� puv.
Thereby we have Pr½g� ¼Q

e2EðgÞ pe
Q

e2EðGÞnEðgÞð1� peÞ and
there is 2m possible realizations in total.

Given a seed set S � V and a realization g, we denote by
IgðSÞ the set of nodes that can be reachable from at least one
node in this seed set and realization. Thus, the expected
number of active nodes over all possible realizations
(expected influence spread) can be expressed as

sVðSÞ ¼ Eg�V jIgðSÞj
� � ¼ X

g2GðVÞ
Pr½g� � jIgðSÞj; (1)

where GðVÞ is the collection of all possible realizations sam-
pled from V. The IM problem is to select a seed set S � V
where jSj 	 k such that the expected influence spread sðSÞ
can be maximized. Given a set function h : 2V ! R and any
two sets S; T � V , it is monotone if hðSÞ 	 hðT Þ when S �
T � V , submodular if hðS [ fugÞ � hðSÞ � hðT [ fugÞ �
hðT Þ when S � T � V and u =2 T , and supermodular if
hðS [ fugÞ � hðSÞ 	 hðT [ fugÞ � hðT Þ when S � T � V
and u =2 T . Based on that, we have the expected influence
spread sð�Þ is monotone non-decreasing and submodular
under the IC-model [2].

3.2 Problem Definition

Consider a company, it wants to promote its new product
by starting a cascade diffusing over the social network.
Obviously, the expected influence spread is the benefit it
can obtain. However, this is only in an ideal world
because it does not consider whether there is another rep-
resenting a competing product started by a rival company
that diffuses over the social network at the same time.
Thus, we can no longer evaluate this company’s benefit
only by the expected influence spread due to the rival’s
disturbance.

Given a social networkG ¼ ðV;EÞ, there are multiple cas-
cades diffusing on this network simultaneously. A user is
referred as C-active if she is activated by cascade C. Con-
sider such a scenario, we define a positive cascade Cp which
represents the influence diffusion for the new product we

TABLE 1
The Frequently Used Notations Summarization
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want to promote over the network. There exists a rival cas-
cade Cr represents the influence diffusion for a competing
product started by some rival company. Now, due to the
existence of this competing cascade, our benefit from the
influence spread of cascade Cp will be disturbed and
impaired to some extent. Given a rival seed set Sr, we need
to find a positive seed set Sp and start this positive cascade
such that it can avoid the negative effects of the rival cas-
cade starting from Sr as much as possible.

Next, we discuss how to quantify the disturbance
caused by the rival cascade to our benefit. Given a social
network G ¼ ðV; EÞ, we consider a positive cascade Cp dif-
fuses under the IC-model Vp ¼ ðG; PP Þ and a rival cas-
cade Cr diffuses under the IC-model Vr ¼ ðG; PRÞ, where
PP (resp. PR) is an edge probability distribution of Vp

(resp. Vr). These two cascades diffuse over the network G
respectively and independently. Then, we suppose each
node u 2 V is associated with a benefit weight pðuÞ 2 Rþ,
which implies the benefit can be obtained from the fact
that u is Cp-active but not Cr-active. In other words, it is
the earning from activating user u by our positive cascade
but not activating it by the rival cascade. Moreover, we
suppose each node u 2 V is associated with a disturbed
benefit weight qðuÞ 2 R with qðuÞ 	 pðuÞ, which implies
the earning can be obtained from the fact that u is
Cp-active and Cr-active. Here, the disturbed benefit
weight describes the degree of disturbance caused by the
rival cascade. For a user u 2 V , her degree of disturbance
caused by the rival cascade rests with its disturbed bene-
fit weight qðuÞ. If qðuÞ 2 ½0; pðuÞ�, it means that the rival
cascade will not cause a negative effect on this node u
even though it cuts down the benefit can be obtained
from activating this node by positive cascade. If qðuÞ 2
ð�1; 0Þ, it means that the rival cascade will cause a nega-
tive effect on this node. Thus, this q controls the degree of
disturbance caused by the rival cascade.

Given a rival seed set Sr � V , the expected overall benefit
from our positive seed set Sp can be defined as

fðSpÞ ¼ Eg�VpEg0�Vr ½fg;g0 ðSpÞ� (2Þ
¼

X
g2GðVpÞ

Pr½g�
X

g02GðVrÞ
Pr½g0� � fg;g0 ðSpÞ; (3Þ

where fðSpÞ is the expectation over the realizations sampled
from the IC-model Vp and Vn. Given the two realizations
g � Vp and g0 � Vr, the overall benefit of influence diffusion
can be defined as

fg;g0 ðSpÞ ¼
X

u2IgðSpÞnIg0 ðSrÞ
pðuÞ þ

X
u2IgðSpÞ\Ig0 ðSrÞ

qðuÞ; (4)

where the first term is the benefit from nodes activated only
by Cp and the second term is the disturbed benefit from
nodes activated by both Cp and Cr.

Let us look at an example shown in Fig. 1. Shown as
Fig. 1a, the positive seed set is Sp ¼ fv1g and the rival seed
set Sr ¼ fv2g in the beginning. Then, the influence spread
started from Sp is shown as Fig. 1b, which is a realization
sampled from its IC-model Vp. Similarly, the influence
spread started from Sr is shown as Fig. 1c, which is a reali-
zation sampled from its IC-model Vr. From here, we can see

that they diffuse respectively and independently. Finally,
node v2 and v5 are activated by both the positive and rival
cascades, thereby we have IgðSpÞ \ Ig0 ðSrÞ ¼ fv2; v5g shown
as Fig. 1d. Therefore, we have the overall benefit under this
realization is fg;g0 ðSpÞ ¼ pðv1Þ þ pðv4Þ þ pðv6Þ þ qðv2Þ þ qðv5Þ.
The overall evaluation on benefits of influence (OEBI) prob-
lem can be defined as follows.

Problem 1 (OEBI). Given a social network G ¼ ðV;EÞ, a rival
seed set Sr, diffusion model Vp and Vr, and a budget k, the
OEBI problem aims at finding a positive set set Sp � V with
jSpj 	 k such that its expected overall benefit fðSpÞ can be max-
imized. That is

S
p 2 arg max
jSpj	k

fðSpÞ; (5)

where the expected overall benefit fðSpÞ has been defined in
Equs. (2) and (4).

4 FURTHER DISCUSSIONS ABOUT OEBI

In this section, we analyze the properties of OEBI problem
and introduce how to decompose its objective function.

4.1 The Properties

Given the rival seed set Sr ¼ ;, the OEBI problem can be
reduced to the classical IM problem if we assume pðuÞ ¼ 1
for each u 2 V . Thus, the OEBI problem is NP-hard through
inheriting the NP-hardness of IM problem [2] under the IC-
model. Moreover, it is #P-hard to compute the expected
overall benefit because of the #P-hardness to compute the
expected influence spread under the IC-model [13]. Next,
we will analyze the monotonicity, submodularity, and
supermodularity of the expected overall benefit function
fðSpÞwith respect to Sp step by step.

Theorem 1. The objective function of the OEBI problem fðSpÞ is
not monotone with respect to Sp.

Proof.We consider the simplest case where the graph G has
only one node. Here, we have V ¼ fvg ands E ¼ ;. Given

Fig. 1. This is an example to demonstrate the diffusion precess caused
by a positive cascade and a negative cascade, where the green nodes,
yellow nodes, and blue nodes are activated by the positive cascade, rival
cascade, and both positve and rival cascades.
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a rival seed set Sr ¼ fvg, the expected overall benefit
fðfvgÞ ¼ qðuÞ and fð;Þ ¼ 0. Subsequently, we have
fðfvgÞ � fð;Þ � 0 if qðuÞ � 0; and fðfvgÞ � fð;Þ 	 0 if
qðuÞ 	 0. Thus, the monotonicity of fðSpÞ depends on the
definition of dusturbed earning weights. tu

Theorem 2. The objective function of the OEBI problem fðSpÞ is
not submodular with respect to Sp and not supermodular with
respect to Sp.

Proof. Take a counterexample to prove it, we assume p ¼
pðuÞ and q ¼ qðuÞ for each node u 2 V with q 2 ð�1;�pÞ.
Shown as Fig. 2, we can see that fðfv2; v4gÞ ¼ 2p� q and
fðfv1; v4gÞ ¼ 5p� q. First, we have fðfv2; v4gÞ � fðv4Þ ¼
pþ q < fðfv1; v2; v4gÞ � fðv1; v4Þ ¼ 0, thereby fðSpÞ is not
submodular with respect to Sp. Then, we have
fðfv4; v5gÞ � fðv4Þ ¼ 2p > fðfv1; v4; v5gÞ � fðv1; v4Þ ¼ 0,
thereby fðSpÞ is not supermodular with respect to Sp. tu

4.2 Decomposition of Our Objective Function

From the above subsection, the expected overall benefit is
non-monotone, non-submodular, and non-supermodular.
Therefore, it is hard to get an effective solution with an
approximation ratio. Narasimhan et al. [30] proposed a
DS decomposition, which pointed out any set function
can be decomposed into the difference of two submodular
set functions. Even that, whether such two submodular
set functions can be found in polynomial time is still
unknown. Look at Equ. (4), the overall benefit fg;g0 ðSpÞ
under the g � Vp and g0 � Vr can be re-arranged as

fg;g0 ðSpÞ ¼
X

u2IgðSpÞ
pðuÞ �

X
u2IgðSpÞ\Ig0 ðSrÞ

ðpðuÞ � qðuÞÞ: (6)

Thus, we can decompose the expected overall benefit as
fðSpÞ ¼ wðSpÞ � zðSpÞ, where wðSpÞ and zðSpÞ are defined as
follows, that is

wðSpÞ ¼ Eg�Vp

X
u2IgðSpÞ pðuÞ

h i
(7Þ

zðSpÞ ¼ Eg�VpEg0�Vr

X
u2IgðSpÞ\Ig0 ðSrÞ

lðuÞ
� �

; (8Þ

where we denote lðuÞ ¼ pðuÞ � qðuÞ. Similarly, we denote
wgðSpÞ ¼

P
u2IgðSpÞ pðuÞ under the g � Vp and zg;g0 ðSpÞ ¼P

u2IgðSpÞ\Ig0 ðSrÞ lðuÞ under the g � Vp and g0 � Vr.

Theorem 3. The function wðSpÞ is monotone non-decreasing
and submodular with respect to Sp.

Proof. The function wðSpÞ is the objective function of
weighted IM problem. It can be reduced to weighted

maximum set cover problem, which is monotone non-
decreasing and submodular since pðuÞ � 0 for any
u 2 V . tu

Theorem 4. The function zðSpÞ is monotone non-decreasing and
submodular with respect to Sp.

Proof. Given a rival seed set Sr, realization g � Vp, and
g0 � Vr, we consider the monotonicity and submodu-
larity based on zg;g0 ðSpÞ. First, it is apparent that
zg;g0 ðSpÞ is monotone non-decreasing with respect to
Sp. Then, there are two positive seed set S1

p and S2
p

with S1
p � S2

p . For any node in Ig0 ðSrÞ, if it is reachable

from node v but is not reachable from S2
p , it must not

be reachable from S1
p since S1

p � S2
p . Thereby we have

zg;g0 ðS1
p [ fvgÞ � zg;g0 ðS1

pÞ � zg;g0 ðS2
p [ fvgÞ � zg;g0 ðS2

pÞ
because of lðuÞ � 0 for any u 2 V , which implies that

zg;g0 ðSpÞ is submodular with respect to Sp. Besides,
yðSpÞ is a linear combination of zg;g0 ðSpÞ, thus zðSpÞ is
monotone non-decreasing and submodular. tu
Therefore, the expected overall benefit fðSpÞ has been

decomposed into the difference of two monotone submodu-
lar functions wðSpÞ and zðSpÞ definitely.

5 ALGORITHM DEGISN AND SPEEDUP

From the last section, our objective function is not mono-
tone, not submodular, and not supermodular. Fortu-
nately, it can be decomposed into the difference of two
monotone submodular functions. Iyer et al. [12] proposed
a modular-modular procedure to minimize the difference
between two submodular functions approximately. We
have known that fðSpÞ ¼ wðSpÞ � zðSpÞ. We can find a
modular lower bound of wð�Þ and a modular upper
bound of zð�Þ that are tight at current set Sp. Thus, the
difference between the lower bound of wð�Þ and the
upper bound of zð�Þ is a lower bound of the objective
function fð�Þ. The main idea of modular-modular proce-
dure is to maximize this lower bound in each iteration,
which can be done in polynomial time. It can guarantee
to increase our objective value in each iteration.

First, we need to define the modular upper bound
and modular lower bound for a given submodular
function.

5.1 Modular-Modular Procedure

Given a submodular function bð�Þ, it has two modular upper
bounds based on a given setX � V , that is

mb
X;1ðY Þ ¼ bðXÞ �

X
j2XnY

bðjjXnjÞ þ
X

j2Y nX
bðjj;Þ (9)

mb
X;2ðY Þ ¼ bðXÞ �

X
j2XnY

bðjjV njÞ þ
X

j2Y nX
bðjjXÞ; (10)

where bðSjT Þ ¼ bðS [ T Þ � bðT Þ, mb
X;1ðY Þ � bðY Þ, and

mb
X;2ðY Þ � bðY Þ. They are tight at set X, so we have

mb
X;1ðXÞ ¼ mb

X;2ðXÞ ¼ fðXÞ.
Given a setX � V , we define a permutation a of V as a ¼

fað1Þ;að2Þ; . . . ;aðnÞg where a’s chain contains X. Denote
by Sa

i ¼ fað1Þ;að2Þ; . . . ;aðiÞg, we have Sa
jXj ¼ X, in other

Fig. 2. This is an example to demonstrate the submodularity and super-
modularity in Theorem 2.
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words, we put all the elements in X prior to the elements in
V nX. Then, we define

hb
X;aðaðiÞÞ ¼ bðSa

i Þ � bðSa
i�1Þ; (11)

where hb
X;aðY Þ ¼

P
v2Y hb

X;aðvÞ and hb
X;aðY Þ 	 bðY Þ for any

Y � V . Here, hb
X;aðY Þ is a lower bound of bðY Þ. It is tight at

setX, wo we have hb
X;aðXÞ ¼ bðXÞ.

According to the definition of Equs. (7) and (8), we adopt
the modular-modular proceduce to approximate it, which is
formulated in Algorithm 1.

Algorithm 1.Modular-Modular

Input: A set function f : 2V ! R

1: Initialize:Xt  ;, t 0
2: whileXtþ1 6¼ Xt do
3: Selects a permutation at that contains Xt where the ele-

ment inXt are ranked ahead
4: Xtþ1  argmaxjY j	k hw

Xt;at
ðY Þ �mz

XtðY Þ
n o

5: t tþ 1
6: end while
7: returnXt

Theorem 5. The objective function fðXtÞ is monotone non-
decreasing with respect to t. If the hw

Xt;at
ðY Þ �mz

XtðY Þ in line
4 of Algorithm 1 reaches a local maximum under the OðnÞ dif-
ferent permutations at and both upper bounds, then the fðY Þ is
a local maximum.

Proof. Regardless of what the upper bound we use, in any
iteration t, we have

fðXtþ1Þ ¼ wðXtþ1Þ � zðXtþ1Þ (12Þ
� hw

Xt;atðXtþ1Þ �mz
XtðXtþ1Þ (13Þ

� hw
Xt;atðXtÞ �mz

XtðXtÞ (14Þ
¼ wðXtÞ � zðXtÞ (15Þ
¼ fðXtÞ; (16Þ

where In Equ. (13) is based on the definitions of the
upper bound and lower bound, In Equ. (14) is because
the Xtþ1 maximizes the value of hw

Xt;at
ð�Þ �mz

Xtð�Þ, and
Equ. (15) is due to the tightness at set Xt.

Suppose the Algorithm 1 converges at Xtþ1 ¼ Xt, we
consider the OðnÞ different permutations at which are
placed with different elements at position atðjXtjÞ and
atðjXtþ1jÞ. First, we have hw

X;aðSa
i Þ ¼ wðSa

i Þ,mz
Xt;1
ðXtnjÞ ¼

zðXtÞ � zðjjXtnjÞ ¼ zðXtnjÞ, and mz
Xt;2
ðXt [ jÞ ¼ zðXtÞþ

zðjjXtÞ ¼ zðXt [ jÞ. At the convergence, we have
hw
Xt;at
ðXtÞ �mz

XtðXtÞ � hw
Xt;at
ðY Þ �mz

XtðY Þ for any Y �
V under the OðnÞ different permutations at and both
upper bounds. Given a at with atðjXtjÞ ¼ i and atðjXtj þ
1Þ ¼ j, we have

fðXtÞ ¼ wðXtÞ � zðXtÞ (17Þ
¼ hw

Xt;atðXtÞ �mz
Xt;1ðXtÞ (18Þ

� hw
Xt;atðXtniÞ �mz

Xt;1ðXtniÞ (19Þ
¼ fðXtniÞ; (20Þ

and

fðXtÞ ¼ wðXtÞ � zðXtÞ (21Þ
¼ hw

Xt;atðXtÞ �mz
Xt;2ðXtÞ (22Þ

� hw
Xt;atðXt [ jÞ �mz

Xt;2ðXt [ jÞ (23Þ
¼ fðXt [ jÞ: (24Þ

Therefore, fðXtÞ is a local maximum at the
convergence. tu

Algorithm 2.ModularMax

Input: A permutation at and a setXt

1: Initialize: a map unitValue ¼ fg
2: Initialize: a setXtþ1  ;
3: zero hw

Xt;at
ð;Þ �mz

Xtð;Þ
4: for each u 2 V do
5: unitValue½u�  hw

Xt;at
ðfugÞ �mz

XtðfugÞ � zero
6: end for
7: for i ¼ 1 to k do
8: Select u
 2 maxu2V nXtþ1unitValue½u�
9: if unitValue½u
� < 0 then
10: Break
11: end if
12: Xtþ1  Xtþ1 [ fu
g
13: end for
14: returnXtþ1

In each iteration of this algorithm, we need to maximize a
modular function shown as in line 4 of Algorithm 1, which
can be implemented easily. For example, we can compute
the objective value for each node u 2 V and then select all
those which has a non-negative objective value. In the itera-
tion t, given a permutation at and a set Xt, the algorithm
that selects a set Y where jY j 	 k to maximize the modular
function hw

Xt;at
ðY Þ �mz

XtðY Þ is shown in Algorithm 2. The
update rule in Algorithm 2 is according to hðujSÞ ¼
hðujT Þ ¼ hðuj;Þ for any set S; T � V if hð�Þ is a modular
function.

As for how to select a permutation at in each iterationXt,
the optimal solution is to select a permutation a
 such that
at

 2 argmaxatmaxjY j	kfhw

Xt;at
ðY Þ �mz

XtðY Þg, however it is
very difficult to execute. There are n! permutations in total.
Thus, a heuristic choice is to order the permutation at

according to the magnititude of objective value for each
node u 2 V . We will compare the impact of different permu-
tations on algorithm performance in later experiments.

According to Equs. (9) and (10), we have two upper
bounds for a submodular function. Thereby the upper
bound of the optimal value of our expected overall benefit
fðS
pÞ can be defined as follows:

pðXÞ ¼ max
jY j	k
fminfmw

X;1ðY Þ;mw
X;2ðY Þg � hz

X;aðY Þg; (25)

where minfmw
X;1ðY Þ;mw

X;2ðY Þg is aimed to make this upper
bound tighter. It can be solved similar to the process of
Algorithm 2. Then, for any set X, we have pðXÞ �
maxjY j	kfðY Þ. Denote by S�p the seed set returned by Algo-
rithm 1, we have pðS�pÞ � fðS
pÞ, then we are able to estimate
the approximation ratio by fðS�pÞ=pðS�pÞ.
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5.2 Sampling Techniques

Given a seed set Sp, we adopt the technique of reverse influ-
ence sampling (RIS) to estimate fðSpÞ due to its #P-hard-
ness. Consider the IM problem under the IC-model
V ¼ ðG;P Þ, we introduce the concept of reverse reachable
set (RR-set) first. A random RR-set R can be generated by
three steps: (1) Selecting a node u 2 V uniformly; (2) Sam-
pling a realization g � V; and (3) Collecting those nodes
that can reach u in realization g and putting them into R. A
RR-set rooted at node u is a collection of nodes that are
likely to influence u. A larger expected influence spread a
seed set S has, the higher the probability that S intersects
with a random RR-set is. Given a seed set S and a random
RR-set R, we have sVðSÞ ¼ n � Pr½R \ S 6¼ ;�.

Back to our OEBI problem, the expected overall benefit
can be denoted by fðSpÞ ¼ wðSpÞ � zðSpÞ. Thus, given a seed
set Sp, we require to estimate wðSpÞ and zðSpÞ respectively.
Here, we denote by pðV Þ ¼P

v2V pðvÞ and lðV Þ ¼P
v2V lðvÞ

respectively for convenience. For the wðSpÞ, a random RR-
set Rw can be generated by

1) Selecting a node u 2 V with probability pðuÞ=pðV Þ.
2) Sampling a realization g � Vp.
3) Collecting those nodes that can reach u in realization

g and putting them into Rw.
Given a seed set Sp and a random RR-set Rw, we have

wðSÞ ¼ pðV Þ � Pr½Rw \ Sp 6¼ ;�. For the zðSpÞ, a random RR-
set Rz can be generated by

1) Selecting a node u 2 V with probability lðuÞ=lðV Þ.
2) Sampling a realization g � Vp and a realization g0 �

Vr independently.
3) Collecting those nodes that can reach u in realization

g and putting them into Rz;1; Collectiong those
nodeds that can reach u in realizationg g0 and putting
them into Rz;2. Then, we have Rz ¼ ðRz;1; Rz;2Þ.

Lemma 1. Given a seed set Sp, a rival seed set Sr, and a random
RR-set Rz ¼ ðRz;1; Rz;2Þ, we have

zðSpÞ ¼ lðV Þ � Pr Sp \Rz;1 6¼ ; ^ Sr \Rz;2 6¼ ;
� �

: (26)

Proof. We denote by Rz;1ðg; uÞ the RR-set rooted at node
u under the realization g � Vp. According to Equ. (8),
we have zðSpÞ ¼ Eg�VpEg0�Vr ½Pu2IgðSpÞ\Ig0 ðSrÞ lðuÞ� ¼

P
u2V

Prg�Vp; g0 � Vr½Sp \Rz;1ðg; uÞ 6¼ ; ^ Sr \Rz;2 ðg0; uÞ 6¼
;� � lðuÞ ¼ lðV Þ �Pu2V Prg�Vp;g0�Vr ½Sp\ Rz;1ðg; uÞ 6¼ ; ^ Sr \
Rz;2ðg0; uÞ 6¼ ;� � ðlðuÞ=lðV ÞÞ ¼ lðV Þ � Prg�Vp;g0�Vr;u½Sp \Rz

ðg; g0; uÞ 6¼ ; ^ Sr \Rzðg; g0; uÞ 6¼ ;�. Equ. (26) can be estab-
lished equivalently. tu
As mentioned above, we have to generate two collections

of RR sets, Rw ¼ fR1
w;R

2
w; . . . ; R

�
wg to estimate wðSpÞ and

Rz ¼ fR1
z; R

2
z; . . . ; R

m
z g to estimate zðSpÞ. Then, we define the

following two estimations

FRwðSpÞ ¼ 1

�
�
X�
i¼1

I½Sp \Ri
w 6¼ ;� (27)

FRzðSpÞ ¼ 1

m
�
Xm
i¼1

I½Sp \Ri
z;1 6¼ ; ^ Sr \Ri

z;2 6¼ ;�: (28)

They are the fractions of RR-sets covered by Sp where I½�� is
an indicator such that I½Sp \Ri

w 6¼ ;� ¼ 1 if Sp \Ri
w 6¼ ;, or

else I½Sp \Ri
w 6¼ ;� ¼ 0. Then, we can defined the following

two unbiased estimators

ŵðSpÞ ¼ pðV Þ � FRwðSpÞ; ẑðSpÞ ¼ lðV Þ � FRzðSpÞ; (29)

where ŵðSpÞ is an unbiased estimator of wðSpÞ and ẑðSpÞ is
an unbiased estimator of zðSpÞ. Thus, we have f̂ðSpÞ ¼
ŵðSpÞ � ẑðSpÞ. Next, we need to bound the gap between
ground-truth values and our estimators.

Lemma 2 (Chernoff-Hoeffding). Let X1; X2; . . . ; Xu be a
series of random variables sampled from a distribution X with
expectation E½X� independently and identically in the set
f0; 1g. Given an error " > 0, we have

Pr
Xu

i¼1 Xi � u � E½X� � þ"
h i

	 exp � 2"2

u

� �
(30)

Pr
Xu

i¼1 Xi � u � E½X� 	 �"
h i

	 exp � 2"2

u

� �
: (31)

According to the Lemma 2, we can get the relationship
between pðV Þ � FRwðSpÞ and its real value wðSpÞ.
Lemma 3. Given a collection of RR-sets Rw with jRwj ¼ � and

any d 2 ð0; 4Þ, we have

Pr wðSpÞ � ŵðSpÞ � pðV Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2�
ln

4

d

� �s" #
� 1� d

4
(32)

Pr wðSpÞ 	 ŵðSpÞ þ pðV Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2�
ln

4

d

� �s" #
� 1� d

4
: (33)

Proof. To show In Equ. (32), it is equivalent to prove
Pr½wðSpÞ < ŵðSpÞ � pðV Þ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1=ð2�ÞÞ lnð4=dÞp � 	 d=4.
Thus, we have

Pr wðSpÞ < pðV Þ � FRwðSpÞ � pðV Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2�
ln

4

d

� �s" #

¼ Pr � � FRwðSpÞ � � � wðSpÞ
pðV Þ >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

2
ln

4

d

� �s" #

	 exp � 2 � �2 ln 4
d

	 

�

� �
¼ d=4;

(34)

where In Equ. (34) based on Lemma 2.
Similarly, to show In Equ. (33), it is equivalent to

prove Pr½wðSpÞ > ŵðSpÞ þ pðV Þ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1=ð2�ÞÞ lnð4=dÞp � 	
d=4. Thus, we have
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Pr wðSpÞ < pðV Þ � FRwðSpÞ þ pðV Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2�
ln

4

d

� �s" #

¼ Pr � � FRwðSpÞ � � � wðSpÞ
pðV Þ < �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

2
ln

4

d

� �s" #

	 exp � 2 � �2 ln 4
d

	 

�

� �
¼ d=4;

(35)

where In Equ. (35) based on Lemma 2. tu
Lemma 4. Given a collection of RR-sets Rz with jRzj ¼ m and

any d 2 ð0; 4Þ, we have

Pr zðSpÞ � ẑðSpÞ � lðV Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2m
ln

4

d

� �s" #
� 1� d

4
(36)

Pr zðSpÞ 	 ẑðSpÞ þ lðV Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2m
ln

4

d

� �s" #
� 1� d

4
: (37)

Proof. It can be derived similar to the proof process of
Lemma 3, which is based on Lemma 2. tu
Given an unbiased estimator ŵðSpÞ, an upper bound and

a lower bound of wðSpÞ can be defined with at least 1� d=4
probability. That is

wuðSpÞ ¼ ŵðSpÞ þ pðV Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2�

� �
ln

4

d

� �s
(38)

wlðSpÞ ¼ ŵðSpÞ � pðV Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2�

� �
ln

4

d

� �s
: (39)

Given a collection of RR-sets Rz with jRzj ¼ m, any d 2
ð0; 4Þ, and an unbiased estimator ẑðSpÞ, an upper bouand
and a lower bound of zðSpÞ can be defined at least 1� d=4
probability in the same way. That is

zuðSpÞ ¼ ẑðSpÞ þ lðV Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2m

� �
ln

4

d

� �s
(40)

zlðSpÞ ¼ ẑðSpÞ � lðV Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2m

� �
ln

4

d

� �s
: (41)

Based on Equs. (38), (39), (40), and (41), we can derive a
lower bound for our objective value fðSpÞ naturally.
Lemma 5. Given any seed set Sp � V , we can take wuðSpÞ �

zlðSpÞ as an upper bound of fðSpÞ with at least 1� d=2 proba-
bility and wlðSpÞ � zuðSpÞ as a lower bound of fðSpÞ with at
least 1� d=2 probability.

Proof. To estimate the fðSpÞ, we have

Pr½fðSpÞ 	 wuðSpÞ � zlðSpÞ�
� Pr½ðwðSpÞ 	 wuðSpÞÞ ^ ðzðSpÞ � zlðSpÞÞ�
¼ ð1� d=4Þ � ð1� d=4Þ
� 1� d=2:

Similarly, we have

Pr½fðSpÞ � wlðSpÞ � zuðSpÞ�
� Pr½ðwðSpÞ � wlðSpÞÞ ^ ðzðSpÞ 	 zuðSpÞÞ�
¼ ð1� d=4Þ � ð1� d=4Þ
� 1� d=2:

Therefore, we have wlðSpÞ � zuðSpÞ 	 fðSpÞ 	 wuðSpÞ �
zlðSpÞwith a high probability. tu
Next, we are going to discuss how to compute the upper

bound of our objective value pðS�pÞ according to the solution
S�p returned by Algorithm 1 with our sampling techniques
(computing all functions by our unbiased estimators). The
unbiased estimator of pðSpÞ is denoted by p̂ðSpÞ, and the
value of p̂ðSpÞ can be obtained by f̂ð�Þ ¼ ŵð�Þ � ẑð�Þ. It is
implemented by the same way as using Equ. (25), except
that f̂ð�Þ is used instead of fð�Þ to compute the upper and
lower bounds. Here, ŵðSpÞ and ẑðSpÞ are monotone and sub-
modular with respect to Sp as well since they can be
reduced to the classic set coverage problem. According to
their submodularity, we have p̂ðXÞ � maxjY j	kf̂ðY Þ for any
setX,. From the Lemma 5, the objective value fðSpÞ is upper
bounded by wuðSpÞ � zlðSpÞ with a high probability.
Thereby we have the following conclusions.

Lemma 6. Given the solution S�p returned by Algorithm 1 with
our sampling techniques, for any seed set jSpj 	 k and any d 2
ð0; 4Þ, we have

fðSpÞ 	 p̂ðS�pÞ

þ pðV Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2�
ln

4

d

� �s
þ lðV Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2m
ln

4

d

� �s
;

(42)

holds with at least 1� 2=d probability.

Proof. According to Lemma 5, we have Pr½fðSpÞ 	 wuðSpÞ �
zlðSpÞ� � 1� d=2. Thus, we have fðSpÞ 	 wuðSpÞ �
zlðSpÞ ¼ ŵðSpÞ � ẑðSpÞ þ pðV Þ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1=ð2�ÞÞ lnð4=dÞp þ lðV Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1=ð2mÞÞ lnð4=dÞp ¼ f̂ðSpÞ þ pðV Þ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1=ð2�ÞÞ lnð4=dÞp þ lðV Þ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1=ð2mÞÞ lnð4=dÞp 	 p̂ðS�pÞþ pðV Þ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1=ð2�ÞÞ lnð4=dÞp þ
lðV Þ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1=ð2mÞÞ lnð4=dÞp

due to the fact that p̂ðS�pÞ �
maxjSpj	kf̂ðSpÞ. It holds with at least 1� d=2 probability. tu

Theorem 6. The approximation guarantee achieved by the solu-
tion S�p returned by Algorithm 1 with our sampling techniques
satisfies as follows: fðS�pÞ=maxjSpj	kfðSpÞ �

wlðS�pÞ � zuðS�pÞ
p̂ðS�pÞ þ pðV Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2� ln

4
d

	 
q
þ lðV Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2m ln

4
d

	 
q ; (43)

holds with at least 1� d probability.
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Proof. Based on Lemma 5, we have fðS�pÞ � wlðS�pÞ � zuðS�pÞ
holds with at least 1� d=2 probability. Then based on the
Lemma 6, we have maxjSpj	kfðSpÞ 	 p̂ðS�pÞ þ pðV Þ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1=ð2�ÞÞ lnð4=dÞp þ lðV Þ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1=ð2mÞÞ lnð4=dÞp

holds with at

least 1� d=2 probability. Thereby the approximation (43)
is established with at least 1� d probability. tu

6 NUMERICAL EXPERIMENTS

In this section, we carry out several experiments on differ-
ent datasets to validate the performance of our proposed
algorithms. It aims to test the efficiency of modular-modular
procedure, shown as Algorithm 1, and its effectiveness com-
pared to other heuristic algorithms. All of our experiments
are programmed by Python, and run on Windows machine
with a 3.40 GHz, 4 core Intel CPU and 16 GB RAM. There
are three datasets used in our experiments: (1) NetScience
[31]: a co-authorship network, co-authorship among scien-
tists to publish papers about network science; (2) Wiki [31]:
a who-votes-on-whom network, which comes from the col-
lection Wikipedia voting; (3) Bitcoin [32]: a who-trusts-
whom network of people who trade using Bitcoin on a plat-
form called Bitcoin Alpha. The statistical information about
these three datasets is represented in Table 2. For an undi-
rected graph, each undirected edge is replaced with two
reversed directed edges.

6.1 Experimental Settings

The diffusion process is based on the IC-model by default.
Under the IC-model, we set the diffusion probability puv ¼
1=jN�ðvÞj for each ðu; vÞ 2 E as the inverse of v’s in-degree,
which has been given by many existing researches about
the IM problem. For each node u 2 V , there is a benefit
weight and a disturbed benefit weight associated with it.
We sample the benefit weight pðuÞ from [0,1] uniformly and
sample the corresponding disturbed benefit weight qðuÞ
from ½�1; pðuÞ� uniformly for each u 2 V .

Consider the modular-modular procedure, we have to
define amodular lower bound for the functionwð�Þ and amod-
ular upper bound for the function zð�Þ. Here, we denote
“Modmod-1” to imply that we use the first upper bound
mz

X;1ðY Þ defined in Equ. (9) and “Modmod-2” to imply that we
use the second upper bound mz

X;2ðY Þ defined in Equ. (10).
Then, we need to compare our modular-modular procedure
with other heuristic algorithms, especially for Greedy algo-
rithm.Greedy algorithm is shown inAlgorithm3,which selects
the node with the maximummarginal expected overall benefit
in each iteration until there is no positive marginal gain can be
obtained.Other heuristic algorithms are shown as follows.

1) Random: it selects k nodes uniformly from the node
set.

2) MaxDegree: it selects k nodes with the largest out-
degree.

3) InfMax: it is similar to the greedy algorithm, but sub-
stitutes the overall benefit fð�Þwith benefit wð�Þ.

Their objective vaules are all estimated on the same col-
lection of RR-sets, where the number of random RR-set Rw

and Rz is denoted by u ¼ � ¼ m. Here, we set the parameter
d ¼ 0:1, which means that the approximation ratios can be
satisfied with at least 0.9 probability.

Algorithm 3. Greedy

Input: A set function f : 2V ! R

1: Initialize: Sp  ;
2: for i ¼ 1 to k do
3: Select u
 such that u
 2 argmaxu2V nSpfðujSpÞ
4: if fðu
jSpÞ < 0 then
5: Break
6: end if
7: Sp  Sp [ fu
g
8: end for
9: return Sp

To get a lower bound, the optimal permutation selections
is very hard, thus we give several heuristic strategies to get
that efficiently. For the permutation at that contains Xt in
each iteration, there are four heuristic selection strategies to
get it, which are shown as follows. (1) Alpha-1: rearranging
Xt and V nXt randomly and respectively, and then
concatenating them together as a at; (2) Alpha-2: sorting Xt

and V nXt respectively from largest to smallest according to
the expected overall benefit fðuÞ for each u 2 V , and then
concatenating them together as a at; (3) Alpha-3: sorting Xt

and V nXt respectively from largest to smallest according to
the expected benefit wðuÞ for each u 2 V , and then
concatenating them together as a at; and (4) Alpha-4: sorting
Xt and V nXt respectively from smallest to largest according
to the zðuÞ for each u 2 V , and then concatenating them
together as a at. Then, we will test which strategy is the best.

6.2 Experimental Results

1) Permutation Selection. Fig. 3 shows the performance com-
parison of modular-modular procedure under the afore-
mentioned four permutation selections. Shown as Fig. 3, the
solution achieved under the Alpha-2 that permutates
according to the expected overall benefit has the best perfor-
mance. Thus, in the follow-up experiments, we default that
modular-modular procedures we will use are implemented
under the Alpha-2. The performance under the Alpha-3 is
slightly worse than that under the Alpha-2. The perfor-
mance under the Alpha-4 is extremely worse, which implies
this heuristic selection is invalid. Moreover, the perfor-
mance under the Alpha-1 with random permutation selec-
tion is unstable, where the expected benefit is sometimes
large sometimes small.

2) Performance of Different Algorithms. Figs. 4, 5, and 6
show the performance comparison with other heuristic
algorithms under the different datasets. In these figures, we
test the algorithms under the different number of RR-sets.
Obviously, the estimations will be more and more accurate
as the number of RR-sets increases, but the gap looks

TABLE 2
The Datasets Statistics ðK ¼ 103Þ

Dataset n m Type Avg.Degree

Netscie 0.40 K 1.01 K undirect 5.00

Wikivot 1.00 K 3.15 K directed 6.20

Bitcoin 4.00 K 25.1 K directed 12.5
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inconspicuous from these figures. Then, wemake the follow-
ing observations. First, the expected overall benefit increases
as the budget increases at least on a budget less than 30.
Then, the performances achieved by Greedy andModmod-2
algorithms are very close under the all datasets. The per-
formances achieved by Modmod-1 algorithm are unstable
under the different datasets, which have good results under
the Netscie and Wikivot datasets but a bad result under the
Bitcoin dataset. It implies that the selection of upper bounds
is a critical factor that affects the results of the modular-mod-
ular procedure. In general, the performance of Modmod-2 is
better than that of Modmod-1. A possible reason is that the

second upper bound is tighter than the first upper bound,
especially for using in larger datasets.

6.3 Approximation and Running Time

1) Approximation. The approximation ratios of our modular-
modular procedure when k ¼ 20 are shown in Table 3.
From the Table 3, we can see that the approximation ratio
improves as the number of RR-sets increases since the esti-
mation errors in In Equ. (42) can be reduced gradually.
Besides, the approximation has been improved more obvi-
ously with the increase of the number of RR-sets under the

Fig. 3. The performance comparison of four permutation selections
under the different datasets and upperbounds.

Fig. 4. The performance comparison with other heuristic algorithms
under the Netscie dataset.

Fig. 5. The performance comparison with other heuristic algorithms
under the Wikivot dataset.

Fig. 6. The performance comparison with other heuristic algorithms
under the Bitcoin dataset.
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Bitcoin dataset because a larger dataset requires a larger
number of RR-sets to get an accurate estimation.

2) Running Time. The running times of our modular-mod-
ular procedure when k ¼ 20 are shown in Table 4. From the
Table 4, the running time increases as the number of RR-
sets increases generally because the estimation of objective
value is more time-consuming, which causes the modular
maximization process shown as Algorithm 2 is more time-
consuming. However, this is not strict to say that since the
number of iterations varies under different circumstances,
where Modmod-2 needs to update Xt more times than
Modmod-1 actually. Fig. 7 shows the running time compari-
son with other heuristic algorithms under the Bitcoin data-
set. Shown as Fig. 7, the running time of Modmod-2 is the
highest among all these algorithms, but the running time of
Modmod-1 lies between InfMax and Greedy. This is since
Modmod-2 needs to be iterated more times to achieve con-
vergence, which explains the reason why its performance is
better than the performance of Modmod-1.

6.4 Further Discussion

According to the above analysis, we have known that the per-
formances (expected overall benefits) obtained by Greedy
and Modmod-2 algorithms are very similar, even Greedy
algorithm sometimes performs better. In addition, Greedy
algorithm also performs better in running time. Does this
mean that our modular-modular procedure is meaningless?
The answer is “No”. For a non-monotone, non-submodular,
and non-supermodularmaximization problem, it is extremely
difficult to solve itwith a theoretical guarantee. Greedy is only
a heuristic strategy that has no approximation guarantee, thus
we cannot determine whether its solution is good or bad.
Given our modular-modular procedure, we can obtain a

worst approximation ratio that is around 0.5. If Greedy per-
forms better than Modmod-2 algorithm, which at least shows
that the approximation ratio of Greedy is greater than that of
Modmod-2. This is equivalent to finding an apprxomation
ratio for Greedy algorithm. Because of the high time complex-
ity of modular-modular procedure, its theoretical value is
greater than its practical application value. Therefore, how to
reduce time complexity is a problemworth considering in the
future. Also, thiswork can be used as a general framework for
this kind of problems in social computing.

7 CONCLUSION

In this paper, we consider the disturbance of rival’s influence
on our benefits we can get from the influence diffusion in
social networks and propose an OEBI problem formally,
which is a generalization for a number of realistic scenarios.
Then, we quantify this disturbance, define our objective
function, and show its properties about monotonicity and
submodularity. To solve it, we decompose it into the differ-
ence of two monotone and submodular functions, and apply
modular-modular procedure to get a solution according to
their lower bound and upper bound. Then, we design a
series of efficient unbiased estimators to approximate it with
a data-dependent approximation guarantee but reduce run-
ning time significantly. The approximations and running
times are verified and analyzed by numerical simulations.

Our modular-modular procedure with sampling techni-
ques can be considered as a general framework to address
non-monotone and non-submodular maximization prob-
lem. However, its performance in running time is still not
satisfactory, which is worth considering again in the future.
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