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Abstract—Attracted by the inherent security and privacy protection of the blockchain, incorporating blockchain into Internet of Things
(loT) has been widely studied in these years. However, the mining process requires high computational power, which prevents loT
devices from directly participating in blockchain construction. For this reason, edge computing service is introduced to help build the
loT blockchain, where IoT devices could purchase computational resources from the edge servers. In this paper, we consider the case
that loT devices also have other tasks that need the help of edge servers, such as data analysis and data storage. The profits they can
get from these tasks is closely related to the amounts of resources they purchased from the edge servers. In this scenario, IoT devices
will allocate their limited budgets to purchase different resources from different edge servers, such that their profits can be maximized.
Moreover, edge servers will set “best” prices such that they can get the biggest benefits. Accordingly, there raise a pricing and budget
allocation problem between edge servers and IoT devices. We model the interaction between edge servers and loT devices as a multi-
leader multi-follower Stackelberg game, whose objective is to reach the Stackelberg Equilibrium (SE). We prove the existence and
uniqueness of the SE point, and design efficient algorithms to reach the SE point. In the end, we verify our model and algorithms by
performing extensive simulations, and the results show the correctness and effectiveness of our designs.

Index Terms—Internet of Things, blockchain, edge computing, stackelberg game

1 INTRODUCTION

N the past few decades, the Internet of Things (IoT) has

been greatly developed and attracted more and more
attention in academia and industry. The IoT technology
helps integrate data by connecting different types of devi-
ces and has played an irreplaceable role in many fields,
such as smart homes, smart factories, smart grids, and so
on. In the traditional centralized IoT system, all IoT devi-
ces are connected to a centralized cloud server, which is
used to manage devices and coordinate communications
among devices. The most serious drawback of this cen-
tralized architecture is that it faces many problems, such
as single point of failure, poor scalability, and network
congestion [1]. Some studies introduce distributed IoT [2]
and peer-to-peer (P2P) networks [3] to overcome these
problems. However, the above studies didn’t solve the
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inherent threats and wvulnerabilities of the IoT, such as
security and privacy issues [4].

A very effective way to solve the above issues is to incorpo-
rate blockchain into IoT [5]. The blockchain technology has
been widely used since it was first implemented for Bitcoin in
2009 [6]. Blockchain records data as a decentralized public
ledger, it does not require a third party server to store the
data. Instead, data are stored in the form of blocks and main-
tained by all of the members of the blockchain network. The
distributed feature allows blockchain to avoid suffering sin-
gle point of failure which may happen in centralized systems.
The blocks are linked by cryptography, and thus any change
in a block will affect the subsequent blocks. The security of a
blockchain mainly comes from the way that a new block is
generated, which is called mining. To generate a new block,
the members of the blockchain network need to win the com-
petition of solving a hash puzzle which is very computation-
consuming, and the winner will get a reward from the block-
chain network platform. In this paper, we consider that the
IoT blockchain network adopts the Proof-of-Work (PoW) con-
sensus mechanism, as PoW has been verified on the Bitcoin
system [6] for years, and the security of PoW is guaranteed. It
is worth mentioning that some researchers have proposed a
Directed Acyclic Graph (DAG) based blockchain which is
known as tangle for lightweight IoT applications, such as
IoTA [7]. IOTA has many advantages, such as high through-
put, high concurrency, low computing power requirements,
which are very suitable for many IoT scenarios. However,
IOTA is not fully decentralized as it needs the “Coordinator”,
which is a client that sends signed messages called milestones
that nodes trust and use to confirm messagesl. Besides, IOTA

1. It can be seen from the documentation on the IOTA’s official web-
site: https:/ /wiki.iota.org/learn/about-iota/an-introduction-to-iota.
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has not yet been tested on large-scale transactions, so it can-
not be determined whether it will come up with scalability
issues. Therefore, based on security considerations, we do
not adopt IOTA in this paper. Other consensus mecha-
nisms like Proof of Stake (PoS) and Practical Byzantine
Fault Tolerance (PBFT) are also not considered in our
model, as PoS is affected by the Matthew effect, where the
rich get richer phenomenon will happen [8], and PBFT has
poor scalability and high latency [9].

As mentioned before, solving the hash puzzle is compu-
tation-consuming, so it’s hard for the lightweight IoT devi-
ces to participate in the mining process. Fortunately, edge
computing service is helpful for establishing an IoT block-
chain [10], where IoT devices could purchase computational
power from edge servers. Consider such an IoT blockchain
network that contains lots of IoT systems such as smart fac-
tories or smart homes. Each IoT system can be seen as a
group, and all of the groups together maintain the operation
of the blockchain. The IoT blockchain network will attract
nearby IoT systems to join it due to its security and privacy
protection. Motivated by the reward from the blockchain
network platform, the IoT devices in an IoT system will pur-
chase the computational resource from the edge server
which provides hash computing service (hash-server) to par-
ticipate in the mining process. In addition, these IoT devices
may have other tasks that require the help of the edge server
which provides task processing service (task-server). For
example, IoT devices that are used for building smart cities
or realizing augmented reality (AR) need to store and pro-
cess large amounts of data [11], which is very difficult for
lightweight IoT devices to accomplish. Thus it's necessary
for these devices to purchase resources from the task-server,
so that they can perform their tasks with the help of the
task-server. Generally, the more resources they purchase,
the faster and better they perform their tasks, and the more
profits they could get from the tasks. As IoT devices usually
have limited budgets, how to allocate the budgets to pur-
chase different resources from the two kinds of servers so as
to maximize the profits, therefore, is an important problem
for these IoT devices. Besides, in real scenarios, not all IoT
devices have well awareness of how to maximize their prof-
its, and they allocate their budgets based on their preferen-
ces. These IoT devices are called irrational devices, and
should also be considered.

Driven by profit, edge servers will set the unit price of
their resources to maximize their utilities, and accordingly,
there raise a pricing and budget allocation problem between
edge servers and IoT devices. We model the interaction
between edge servers and IoT devices as a multi-leader
multi-follower Stackelberg game, where edge servers are
leaders and IoT devices are followers. The main contribu-
tions of this paper are summarized as follows.

e We introduce the IoT blockchain network with edge
computing, and describe the operation of the IoT
blockchain system.

e We establish a multi-leader multi-follower Stackel-
berg game to model the interaction between edge
servers and IoT devices, in which both rational and
irrational IoT devices are considered in our model.
We prove that the Stackelberg equilibrium of the
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game exists and is unique, and then propose algo-
rithms to find the Stackelberg equilibrium in limited
interactions.

e We perform extensive simulations to validate the
feasibility and effectiveness of our proposed algo-
rithms. Simulation results show that our algorithms
can quickly reach the unique Stackelberg equilib-
rium point compared with the baseline algorithm.

The rest of this paper is structured as follows. Section 2

introduces the related works. Section 3 describes the IoT
blockchain with edge computing. Section 4 presents the
Stackelberg game. Section 5 designs algorithms to get the
Stackelberg equilibrium. Section 6 performs numerical sim-
ulations. And finally, Section 7 concludes this paper.

2 RELATED WORKS

Due to the inherent security and privacy protection proper-
ties of the blockchain, incorporating blockchain technology
into IoT has been widely studied in recent years. Novo [12]
design an architecture for scalable access management in
IoT based on blockchain technology. To address the privacy
and security issues in the smart grid, Gai et al. [13] present a
permissioned blockchain edge model by combining block-
chain and edge computing technologies. Guo et al. [14]
design a blockchain-enabled energy management system to
ensure the security of energy trading between the power
grid and energy stations. Li et al. [15] propose a resource
optimization for delay-tolerant data in blockchain-enabled
IoT. They use the blockchain technology to improve the
data security and efficiency in the IoT system. Liu et al. [16]
propose a blockchain-based approach for the data prove-
nance in IoT, which ensures the correctness and integrity of
the query results. Qi et al. [17] build a compressed and data
sharing framework with the help of blockchain technology,
which provides efficient and private data management for
industrial IoT. Lei et al. [18] design the groupchain which is a
two-chain structured blockchain to ensure the scalability of
the IoT services with fog computing.

There are some works that use the Stackelberg game to
study the interaction among the participators in the edge
computing-based blockchain network, which are closely
related to our work. Chang et al. [19] study the incentive
mechanism for edge computing-based blockchain networks,
in which they aim to find the Stackelberg equilibrium
between the edge service provider and the miners. Yao et al.
[20] use a Stackelberg game to model the pricing and
resource trading problem between the cloud provider and
industrial IoT devices, and they find the near-optimal policy
through a multiagent reinforcement learning algorithm.
Xiong et al. [21], [22] formulate a Stackelberg game to jointly
maximize the profit of mobile devices and the edge server
in mobile blockchain networks. Ding ef al. [23] investigate
the interaction between the blockchain platform and IoT
devices, where their objective is to find the Stackelberg equi-
librium such that both the blockchain platform and IoT
devices could maximize their utility and profits respec-
tively. Guo et al. [24] study a Stackelberg game and double
auction based task offloading scheme for mobile blockchain.
However, all of these existing works only considered the
computational power demand of IoT devices, and didn’t
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Fig. 1. The architecture of the loT blockchain with edge computing.

consider the different budgets of each IoT devices. More-
over, these works assume that all followers have well
awareness of the game, they didn’t consider the influence of
irrational followers in their game models, which is funda-
mentally different from our work.

3 10T BLOCKCHAIN WITH EDGE COMPUTING

In this section, we introduce the model of the IoT blockchain
with edge computing and describe the operation of the
blockchain system. Moreover, we analyze the security and
reliability of the IoT blockchain network.

3.1 System Model

Fig. 1 depicts the architecture of the system model of this
paper. Consider that there is an IoT blockchain network
that adopts the proof-of-work consensus mechanism, and it
has been running for a period of time. The IoT blockchain
network consists of lots of IoT systems such as smart facto-
ries or smart homes. Each IoT system includes a set of IoT
devices and can be seen as a group. Due to the security and
privacy protection brought by the blockchain, the IoT block-
chain network will continuously attract other IoT systems
to join.

In each IoT system, there are two edge servers that pro-
vide hash computing service (hash-server) and task process-
ing service (task-server), respectively. Motivated by the
reward from the blockchain network platform, devices in
the IoT system would like to be miners of the blockchain
network, that is, they will compete with other miners to
scramble the right of generating a new block by solving a
hash puzzle. Due to the limited computational power of
these devices, they will purchase computational resources
from the hash-server and then offload their hash puzzle to
the hash-server during the mining process. Moreover, each
IoT device has its own tasks, such as data collecting, data
analysis, and data processing. IoT devices could benefit
from performing these tasks. However, when the amount of
data is relatively large, it is difficult for these IoT devices to
perform the tasks. Then IoT devices will purchase task proc-
essing resources from the task-server to perform their tasks.
Generally, the more resource they purchase, the faster and
better they perform their tasks, and then the more benefit
they get from these tasks.

3.2 Blockchain System
3.2.1 System Initialization

Before an IoT device joins the blockchain network, it needs
to register with the Authentication Server (AS) which is a

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 2, APRIL-JUNE 2023

trusted institution authorized by the government or the
blockchain platform. For an IoT device s, it first selects its
own identifier ID,, and then gets its public/private key
pair (PK,,SK,) and wallet address WAD,, from AS. The
public/private key pair (PK,,SK,) are generated with
Elliptic Curve Digital Signature Algorithm (ECDSA) asym-
metric cryptography [25], and the wallet address WAD, is
generated from the public key PK,, with SHA256, RIPEMD-
160 and BASE58 algorithms [26]. The AS will store the infor-
mation (ID,, PK,, WAD,) about each IoT device s,,.

3.2.2 Create Transactions

In the IoT blockchain network, IoT devices can trade with
each other, such as purchasing or exchanging sensing data.
For example, if one IoT device wants to purchase sensing
data from another device, they will generate a smart con-
tract and signing with their private key. Then the smart con-
tract will be broadcast to the blockchain network and
waiting to be packaged into a new block. Once reach a con-
sensus, the new block will be added into the blockchain and
the smart contract will be carried out automatically. Besides
the trading information between devices, IoT devices also
could store important and sensitive sensing data into block-
chain. Both the trading records(smart contracts) and sensing
data are considered as transactions.

3.2.3 Building Blocks

IoT devices collect a certain number of transactions in a
period, and package them into a new block. Each block is
composed of two parts: block content and block header. The
block content records the detail of transactions in a Merkle
tree structure. The block header consists of the Merkle tree
root of all the transactions, the previous block hash value
which is used as a cryptographic link that creates the chain,
a version number that used for tracking for software or pro-
tocol updates, a timestamp that records the time at which
the block is generated, and a nonce, which is used for solv-
ing the PoW puzzle. Denoted h4, by the block header
excludes the nonce, the PoW puzzle is to find a nonce a
such that Hash(hgy, + a) < difficulty [6], where di fficulty
is a 256-bits binary number and is controlled by the block-
chain platform to adjust the block generation speed. As the
hash operation is very costly, each IoT device will offload
its PoW puzzle to the hash-server. Once the puzzle is
solved, the hash-server will return the result to the IoT
device immediately. Note that the hash-server doesn’t have
any information about the block content (only knows the
block header), so the hash-server cannot package a new
block by itself, even if it knows the result of the PoW puzzle.

3.2.4 Carrying Out Consensus Process

The device that first solves the POW puzzle gets the right to
generate a new block, and then the new block needs to be
verified by other devices to reach the consensus. By adopt-
ing the group signature and authentication scheme pro-
posed in [27], each IoT system in the blockchain network
can be seen as a group. For a new block which is generated
by a device in group ¢, it needs to pass a two-round valida-
tion before being added in the blockchain. In the first round,
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the block is checked by the devices in group 4, and each
device will validate the transactions recorded in this block.
The block will get a signature if it passes the validation
from a device, and it can be broadcast to other groups for
the second round validation only if it gets all the signatures
of devices in group ¢. In the second round, upon receiving
the block, devices in other groups only check the signature
attached in the block. If more than 51% of the devices agree
with the block, the block reaches the consensus and will be
added into the blockchain. Due to the constraints in mem-
ory, we let each IoT device only stores a certain number of
the latest blocks, which is also applied in [28], [29]. The
whole blockchain is stored in the monitoring nodes [29] in
each group (IoT system), as the monitoring nodes are
authoritative and have larger memory capacities.

3.3 Security and Reliability Analysis

Compared with traditional IoT systems, merging the IoT
system into a blockchain network has many advantages,
especially in terms of security and reliability. Specifically,
the IoT blockchain network inherits the security and reli-
ability performance of the blockchain technology, as shown
in follows.

Distributed ledger: IoT devices carry out transactions in a
P2P manner, and build trust between each other with the
help of the smart contract of the blockchain. Besides, as each
device has the same rights, there is no single point of failure
which may cause extreme damage to the system.

Privacy protection: The communication between IoT devi-
ces is protected with the asymmetric encryption technology,
so even if malicious devices intercept the message, they can-
not know its content.

Integrity: The transactions of IoT devices are recorded in
blocks, which are linked together through cryptography.
An attacker who attempts to tamper with the transactions
of IoT devices needs to dominate the majority of computa-
tion power, which is nearly impossible.

Authentication: In this IoT blockchain network, each new
block needs to pass a two-round validation before it is
added into the blockchain. It's very hard for an attacker to
control a whole group (IoT system), so the new block that
contains illegal transactions cannot pass the first round vali-
dation. Even if some attackers forge the signature of a
group, the illegal block cannot pass the second round
validation.

4 MuLTI-LEADER MULTI-FOLLOWER
STACKELBERG GAME

Considering that a new IoT system now joins the IoT block-
chain network, the IoT devices in this system will purchase
resources from the edge servers to participate in the mining
process and perform their tasks. Driven by profit, the hash-
server and task-server will adjust the unit price of their
resources to maximize their utilities. After the two servers
publish their pricing strategies, each IoT device will deter-
mine its strategy for purchasing resources from the two
servers according to the resource price and their budgets,
such that their profits can be maximized. In this section, we
first give the utility functions of the two servers and the
profit function of each device, and then describe the
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problem to be addressed in this paper. Specifically, we
model the interaction between the two servers and IoT devi-
ces as a multi-leader multi-follower Stackelberg game.

4.1 Utility Function

We assume that each IoT device has a unique budget to pur-
chase resources from edge servers. The amount of resources
they purchase from the two edge servers depends on how
many profits they can get from the trading and are limited
by their budgets. Each IoT device will allocate its budget to
purchase different services from the hash-server and the
task-server to maximize its profit. For the hash-server and
the task-server, they will set the unit price of their resources
to maximize their utilities. Moreover, there is competition
between the two servers. For example, if the unit price of
resources from the hash-server is too high, IoT devices
would purchase more resources from the task-server, and
vice versa. Naturally, we model the interaction between the
two servers and IoT devices as a multi-leader multi-follower
Stackelberg game, where the hash-server and the task-
server act as leaders who first set the unit price of their
resources, and IoT devices act as followers who determine
their strategies according to the leaders’ bids.

We use S = {s1,89,...,5,} to denote the set of IoT devi-
ces, the budget for each device s; € S to purchase resources
is b, where b, > 0. The unit price of resources from the
hash-server and the task-server are denoted by p, and p,
per day, respectively. Let 2/ and z! be the amount of resour-
ces purchased by s; from the hash-server and the task-
server, respectively. The amount of resources purchased
buy each device is limited by its budget, that is,
.T;L *pp + l’f * Pt < b,;,Vsi €S

The profits of each IoT device s; € S includes two parts.
The first part comes from mining new blocks for the block-
chain network, which is related to the amount of resources
z!' purchased by s; from the hash-server. The second part
comes from performing tasks, which is related to the
amount of resources z! purchased by s; from the task-
server. We use P" and P! to denote the two parts of profits,
respectively. In the following, we will describe how to cal-
culate the two parts of profits.

As the blockchain network has been running for a period,
in this paper, we assume that the total hash computational
power of the blockchain network in a period of time in the
future can be estimated and is denoted by H[30]. In the
PoW consensus, the first miner who solves the hash puzzle
has the right to generate a new block and will get the
reward from the blockchain network. The probability of a
miner winning the mining competition is directly related to
the hash computational power. We use pro; to denote the
probability that device s; € S is the first one to solve the
hash puzzle, and pro; can be estimated by

1:?
H+zh ()

pro; =

Generally, the blockchain network will adjust the diffi-
culty of the hash puzzle periodically according to the total
hash computation power in the network to stabilize the
block generation speed. We assume that an average of N
new blocks are generated per day, and the miners will get a
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reward R for generating a new block. The expected reward
obtained by device s; in per day is pro, RN, and the cost is
x'p;,. Then the expected profit that s; gets from the mining
process in a day is calculated as

Pih = pro;RN — zi‘ph. 2)

The profit P} got by s; comes from performing tasks is
related to the amount of resources purchased by s; from the
task server. We use a logarithmic function to estimate the
benefits of device s; for performing tasks, and then P/ is cal-
culated as

whereo > 0and B > 1 are two constant parameters.
Therefore, the total profit got by device s; is calculated as

P,=P'+ P!

h
— RN

o S+ log (14 i) —xipi (&)

We use Uy, and U; to denote the utility of the hash-server
and task-server, respectively. Assume that the unit hash
resource cost of the hash-server is ¢;, and the unit task
resource cost of the task-server is ¢;. Then the utilities of the
two servers can be calculated as

Uh = ;S(ph - Ch)w?v (5)
U= Zes(pt - Q)mf (6)

The profit P; gots by device s; involves two parts, i.e., P
and P!, which comes from trading with the two servers,
respectively. The first-order derivatives of P/' and P/ are

i - (7)
arf - (H+$:l)2 Ph,
P ap
drt 1+ px br- ®
A h
To make the problem reasonable, the conditions aplh 0) >

ot Bwl
0 and % (0) > 0 should be hold, otherwise, IoT devices will

never purchase resources from the hash-server or the task-
server. Hence, we have p;, < YN and p; < aB. As servers will
never sell their resources at a price below the cost, that is,
pn > ¢, and p; > ¢;. Therefore, in this paper, we assume that

cn <pp <E¥and ¢, < py < ap.

4.2 Problem Formulation

The interaction between the two servers and IoT devices has
two stages. In the upper stage, the hash-server and the task-
server offer a unit price of their resources. In the lower
stage, IoT devices determine their strategies to maximize
their profits according to the price of different services. In
the following, we give a detailed definition of the problem
in each stage.
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Problem 1. The problem in the lower stage (followers side)
max P, 9)

alat
22

st alpy +aip < b, (10)
x> 0,20 > 0. (11)
Problem 2. The problem in the upper stage (leaders side)
max U, (12)
Ph
st. e <pn < 77 (13)
and

max U, (14)

Pt
st. o <p <ap. (15)

Note that in the lower stage, each IoT device make their
decision independently, and in the upper stage, the two
servers are also non-cooperative. Therefore, the problems in
the two stages form a non-cooperative multi-leader multi-
follower Stackelberg game. Our objective is to find the
Stackelberg equilibrium (SE) point of the game, where none
of the players of the game wants to change its strategy uni-
laterally. The SE point in our model is defined as follows.

Definition 1. Let 7 = {a/*, 2!*} be a strategy of IoT device s;,
and we use X* = {x}, x5, ..., z}} to denote the set of strategies
of all of the IoT devices. Let p; and p; be the strategies of the
hash-server and the task-server, respectively. The point
(X*,pj,, py) is the Stackelberg equilibrium point if the following
conditions are satisfied

Pi(x},p;,p}) = Pi(xi,py,,p)),Vsi €S, (16)
Un(p;,,07) = Un(pn, pi)s (17)
Ui(pi,py) = Ui(pes o), (18)

where z; = {x, x} is an arbitrary feasible strategy for any

device s; € S, py, and p, are arbitrary feasible strategies for the
hash-server and the task-server, respectively.

5 SOLUTION OF THE MULTI-LEADER MULTI-
FOLLOWER STACKELBERG GAME

In this section, we analyze the existence and uniqueness of
the Stackelberg equilibrium point of the multi-leader multi-
follower Stackelberg game. We first analyze the lower stage
of the game, in which we consider both rational and irratio-
nal players (followers). The rational players always try to
maximize their profits by optimally allocating their budgets,
while the irrational players lack awareness of the game and
allocate their budgets based on their preferences. Then we
analyze the upper stage of the game, where the two servers
determine their pricing strategies to maximize their utilities.

5.1 Lower Stage (Followers Side) Analysis
5.1.1 Strategies for Rational Followers

The rational followers always decide their buying strategies
based on their profits. In the following, we will describe
how to find the best strategy for each rational follower.
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The second-order derivatives of the profits function P; of
device s; are

9> P, —2RN
G <
PP —ap?
o TPy, (20)
a(xz})”  (1+ pxf)
9P,
— - 21
33;‘?31‘2 1)

Therefore, the profits function P, is strictly concave, and the
problem for each device s; in the lower stage is actually a
convex optimization problem. Sequentially, we use the Kar-
ush-Kuhn-Tucker (KKT) conditions to solve the problem.

Let A1, A2 and A3 be the Lagrange’s multipliers that asso-
ciated with conditions in Egs. (43) and (44). Then we define
the Lagrangian function as follows:

Li = P+ M (b — alpy — 2lp) + Mozl + Agzl. (22)

The KKT conditions (including four groups of condi-
tions) of Problem 1 are listed as follows.
Stationarity conditions

oL; H
- = RN———— —pp, — \ipp, + A2 =0,
8,’],'? (H N :1:?)2 Ph 1P} + 2 (23)
BLi O[,B
- A3 = 0.
8x§ 1 + ﬂ t — Pt 1Pt + 3 (24)
Primal feasibility conditions
by — ', — lpy > 0, (25)
Jc?, Jrf > 0. (26)
Dual feasibility conditions
)\la )\Qa >\3 2 0. (27)
Complementary slackness conditions
A (b; — x?’ph - ;z:ﬁpt) =0, (28)
Dozl = 0, (29)
Azt = 0. (30)

The optimal solution of the problem is taken in one of the
following four cases.

(1) Case 1: 2 = 2! = 0. According to the KKT condition
(28), we have A\; = 0 as b; > 0. Substitute it into KKT condi-
tions (23) and (24), we have X\, = p, — &Y and A3 = p; — aB.
As p, <I¥ and p, < o hold, we have X\, <0 and A3 < 0.
The KKT conditions can only be satisfied when Ay = 0 and
A3 = 0. Thus we need to check whether p, = £¥ and p; = a8
hold, if yes, the optimal solution is z/' = z! = 0, otherwise,
the optimal solution is not in this case.

(2) Case 2: 2! = 0 and ! > 0. In this case, we have A3 = 0
according to the KKT condition (30).

Case 2-1: Consider A\ =0, substitute 1 =0and N\ =0
into (23), we have X\, = p, — ¥ < 0. If p, < £&¥, the KKT
condition (27) cannot be satlsﬁed as X < 0, Wthh means
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A1 = 0 is not feasible in this case. Otherwise, if p;, = B}‘IV,
have A2 = 0. Substitute A\; = A3 = 0 into (24), we have z!
x — 4. Then we need to check whether the primal fea31b111ty
condition (25) is satisfied, if yes, the optimal solution is
(0,2 —1), if no, \; = 0 is not feasible in this case.

‘e B
Case 2-2: Consider A\; > 0, according to (28), we have b, —

we

z'p;, — zlp, = 0. Combining 2! = 0, we have
ﬁ:ﬁ. (31)
bt
Substitute (31) and A3 = 0 into KKT condition (24), we have
af
= -1 (32)
LB+
Substitute (32) and z! = 0 into (23), we have
afpn. RN
A2 = - 33
2= By M (33)

It obvious that z! = p’ > 0 is satisfied. If \; got by (32) satis-
fies Ay > 0 and )\2 got by (33) satisfies Ay > 0, it means all of
the KKT conditions can be satisfied, and thus the optimal
solution can be determined as (0 bl) Otherwise, the optimal
solution is not in Case 2.

(3) Case 3: wh > 0 and z! = 0. In this case, we have Ay =0
according to the KKT cond1t10n (29).

Case 3-1: Consider \; = 0, substitute xﬁ =0and A\ =0
into (24), we have A3 = p; — a8 < 0. If p; < apB, the KKT con-
dition (27) cannot be satisfied as A3 < 0, which implies A\; =
0 is not feasible in this case. Otherwise, if p; = 8, we have
A3 = 0. Substitute A\; =X =0 into (23), we have z! =

RNH

Pn
sibility condition (25) is satisfied, if yes, the optimal solution

is (4 /% — H,0),if no, \; = 0 is not feasible in this case.
Case 3-2: Consider A\; > 0, we have b; — JTthh - m,’fpt =0
according to (28). Combining z! = 0, we have
by.
h L

a=—. (34)
DPh

— H. Then we need to check whether the primal fea-

Substitute (34) and \y = 0 into KKT condition (23), we have

_ RNth
(bi + th)2

Substitute (35) and as;‘ = 0 into (24), we have

—1. (35)

NHpy,
Ny = SNHDP g 36)
(bi + Hpn)

It’s obvious that 2/ = pz > 0 is satisfied. If A\, got by (35) sat-
isfies Ay > O0and /\3 got by (36) satisfies A3 > 0, it means that
all of the KKT condltlons can be satisfied, and thus the opti-
mal solution is ( ,0). Otherwise, the optimal solution is not
in Case 3.

(4) Case 4: 2! > 0 and z! > 0. In this case, we have X\, =
A3 = 0 according to the KKT conditions (29) and (30).

Case 4-1: Suppose A\; = 0, substitute it into the stationarity
conditions (23) and (24), we have

NH 1
x?’f RNH H;:L‘EZE*—. (37
Dh pe B
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As p, < % and p: < ap, it’s easy to know that the condition
(26) is satisfied. Then we check whether the condition (25) is
satisfied. If yes, then the solution shown in Eq. (37) is the
optimal solution. Otherwise, A; =0 is not feasible in this
case.

Algorithm 1. Find Optimal Strategy for a Device s;.
(FOSD)

Input: H, R, N, e, 8, b;, pr, and pt,
Output: The optimal strategy (z!, 2!) for IoT device s;;
// Case 1:
1: ifp, = % && p; = af then
return(0,0);
: end if
// Case 2-1:
N o 1.

o= 1
ioope B

Difp, = Ri\ && b; — x!p, > 0 then
return(O7 zt);
. end if
// Case 2-2:
8: i = b )\1 ,Bb +Pt -1 =

9: 1f)\1 > 0&& Ay > 0 then
10:  return(0,z!);
11: end if
// Case 3-1:

12: xfb =, /BNH _ .
Dh

13: if p, = aB && b; — x?ph > (0 then
14:  return(z!,0);
15: end if

// Case 3-2:
h _ ﬂ. _ _RNHp, _ 1. _ RNHppp: .
16 @ =5 A = G e~ BN = G~ 0B

17: if M >0&&MN3>0 then
18:  return(z!,0);
19: end if
// Case 4-1:
20: xlh: ANH _ pr.gt —a 1.

Ph =y TR
21: if b; — al'py — a!p, > 0 then
22:  return(z!, zl);
23: end if
// Case 4-2:

24: A= b;+ Hpy + 4, B= vRNHpy;
B+\/B2+4Aa) 2_1,
2A 4

26: if \; > 0 then

27 3:? = Ilzi\/\ﬁzb — Hiz) = pﬁim - /19"
28:  ifz! > 0&&z!l > 0then

29: return (z},2);

30: endif

31: end if

@ »

\1.@01&‘?

aBpy,
Bbi+pt

_ RN.
H

25: N =

Case 4-2: Now we consider the case that A; > 0. Accord-
ing to the condition (28), we have b; — x?‘ph - xﬁpt = 0. Solv-
ing conditions (23) and (24), we have

oo [ INH e L (38)

Ph + Mpn pe+Ape B
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Substitute (38) into b; — z!'p;, — zlp, = 0, we have

1 a
1+)\1 1+A17

A-B (39)

where A = b; + Hpy, vRNHp, > 0. Let
=+/1+ A1 > 0, substitute ¢ into (39) and solve the func-

. A/ B2
tion, we have t = w. Ast > 0, we have

+}3pf, > 0,and B =

/B2 X 44
= VT =TT (40)
By solving (40), we have
B+ VB {iAd\
A Sy e “n

Then we check whether \; got by (41) satisfies A; > 0. If
A1 <0, it means that the solutions found in (38) cannot sat-
isfy all of the KKT conditions, and thus the optimal solution
is not in Case 4. Otherwise, we substitute (41) into (38), and
we will get a solution (z, z!). Then we check whether the
solution (z!, z!) satisfies 2 > 0and 2! > 0. If yes, the solu-
tion (2, Z) is the optlmal solution. If no, the optimal solu-
tion is not in Case 4.

The optimal solution will be found in one of the four
cases from Case 1 to Case 4. Based on the above analysis,
we present the algorithm FOSD to solve Problem 1 in the
lower stage. The pseudo-code is shown in Algorithm 1.

5.1.2 Strategies for Irrational Followers

In practice, some game players may not follow the above
method to maximize their profit. We name these players in
the lower stage of the game as irrational followers. The irra-
tional followers include the players who lack awareness of
the game and thus could not make the best decisions, as
well as the players who have individual preferences. For
example, some players may be very confident about the
blockchain network, and they believe that they could get
much more profits from the blockchain network platform in
the future. So they are more inclined to allocate their budg-
ets to purchase computational resources from the hash-
server to participate in the block mining. On the contrary,
some players may not be optimistic about the blockchain
network or even not interested at all, and thus they will not
participate in the block mining. In this subsection, we con-
sider the above two kinds of irrational followers with indi-
vidual preferences, and term them as over-confident followers
and lack of confidence followers, respectively.

The over-confident followers are fanatics of the block-
chain network. For example, in the Bitcoin network, some
people are willing to spend a lot of money to buy mining
machines to participate in block mining in order to gain
benefits. In our work, we consider that the over-confident
followers will allocate all their budgets to purchase compu-
tational resources from the hash-server to participate in the
block mining. Thus for each 57 of the over-confident fol-
lowers, we have z!" = o, and zt=0.

The lack of confldence followers only consider how to
allocate their budgets to purchase task processing resources
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from the task-server to maximize their profits, i.e., m? =0
always holds for each s; of the lack of confidence followers.
Thus the problem in the lower stage (Problem 1) for these
followers (devices) is changed to

max Pl-t (42)
st alp < b, (43)
1"; > 0. (44)

The second-order derivative of the profit function P! of
device s; is
P _
a(z!)?

3

,a/32
(1+ pa})?

Therefore, the above problem is to find the maximum
value for a univariate concave function. The maximum
value point is either where the first derivative of P! is equal
to 0, or the end point of the domain. According to Eq. (8)
when the first derivative of P/ is equal to 0, we have z!

@ _ 1 According to the budget limitation, we have z! > Zt
Therefore for each lack of confldence follower s;, its strat-
egy will be z!' = 0, 2! = = min{ biy

(45)

ﬂpt

5.2 Upper Stage (Leaders Side) Analysis
On the leaders’ side, hash-server and task-server set their
unit prices py, and p; of resources to maximize their utilities
U, and U; which are calculated by Eqs. (5) and (6), respec-
tively. Note that the pricing strategies of leaders will directly
affect the strategies of followers, which has been analyzed in
Section 5.1. Therefore, the strategies of the hash-server and
task-server will affect each other’s utility. The game between
the two servers is non-cooperative and competitive. To maxi-
mize their utilities, each server (leader) should give a suitable
unit price of its resource. For example, for the hash-server, if
the unit price of resource pj, is too high, the rational followers
will prefer to purchase more resources from the task-server,
and thus the hash-server will get a very low utility. On the
contrary, if p, is set too low, although the rational followers
tend to purchase resources from the hash-server, the total
purchased resources are limited due to the budget limitation
of these followers, which also results in a low utility. In the
following, we will show that the game between the two serv-
ers will reach a Nash equilibrium, and we design an algo-
rithm to find the Nash equilibrium point.

The concept of the Nash Equilibrium (NE) of the game
between the two servers is defined as follows.

Definition 2. Let p; and p; be the strategies of the hash-server
and the task-server, respectively, (p;, p;) is the Nash equilib-
rium if the following conditions are satisfied

Un(py,,07) = Un(pns 1), (46)

Ui(p;,pp,) > 47)

where py, and p; are arbitrary feasible strategies for the hash-
server and the task-server, respectively.

Ut(pt:pZ)a

According to the definition, at the NE point, none of

the servers can improve its utility by wunilaterally
Authorized licensed use limited to: Univ of Texas at
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changing its strategy. Therefore, when the game reaches a
NE point, the interaction between the two servers is sus-
pended, and the pricing strategies of the two servers will
never change again. Next, we will prove the existence
and uniqueness of the NE point of the game between the
two servers.

Theorem 1. The NE point of the game between the two servers
exists and is unique.

Proof. As defined in Problem 2, the strategy space of the
two servers is [c;,, %] x [¢;, @B, which is a non-empty,
closed and convex subset of the euclidean space. Next,
we calculate the second order derivatives of utility func-
tions Uy, () and U, ().

We first consider the utility of the hash-server. Accord-
ing analysis in subsection 5.1.1, the amount of purchased
resources w of each rational device s; from the hash-
server must be one of the four following cases: (1) z} =

Rb—\}]H—H 2) .Th: p}lﬂﬁ” H, where )\ = (41); (3)

zh=0;(4) 2l = 17 Then the first order derivative of z/(-)
w1th respect to p;, of these four cases is calculated as

oxh 1

3

oy~ 3 VENH(E) (48)
1 /RNH -3

=9V —(pn) 2 M = (41) (49)

=0 (50)

= —bi(pn)~’ (51)

The second order derivative of z(-) with respect to pj,
of these four cases is calculated as

Rl 3 5
‘> =—vRNH(p,) 2 52
S~ 1V N H ) 52)
3 /RNH _5
1\/1_'_)\(}1) 2, = (41) (53)
-0 (54)
= 2b;(pn) >, (55)

As analyzed in subsection 5.1.2, for each over-confi-
dent device s;, we always have :r’L = ; and thus the sec-
ond order derivative of /(- w1th respect to py, 1s equal to
Eq. (65). For each lack of confidence device s;, x = 0 and

¥l
3(pn)°

According to function (5), the second order derivative
of Uy,(-) with respect to pj, is

82Uh daxh Pl
= 2 i + (ph L)—l . (56)
o 2\ o)’
2.
As p, — ¢ < pp, combining the functions of ik and 9;1) 5,
h
we have - il Uh < 0. Therefore, the utility functlon Un(:) of

the hash-setver is a concave function with respect to py,.

Similarly, we have 3 U)‘ <0, and we know that the

a(pt
utility function Uy(-) of the task-server is a concave func-

tion with respect to p,. Thus the interaction between the
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two servers forms a concave 2-person game. According
to [31], we know that the NE point of the game between
the two servers exists and is unique. ]

After the leaders (the two servers) issue their strategies,
the followers (IoT devices) will determine their strategies for
purchasing different resources from the two servers, as is dis-
cussed in Section 5.1. The interaction between servers and IoT
devices formulates a multi-leader multi-follower Stackelberg
game, and the objective is to find the Stackelberg equilibrium
(SE) point of the game, which is defined as Definition 1. Next,
we will prove that the Stackelberg equilibrium of the game
between servers and IoT devices exists and is unique.

Algorithm 2. Find Nash Equilibrium for Servers. (FNES)

Input: The game between the two servers and IoT devices;
Output: The pricing strategy (py, p;) for the two servers;
1: Initialize: pp =1 (cy + %), py =% (c1 + a);
2: Set two small steps Aj, and A;, and two attenuation coeffi-
cient 8,0, and 8,4 Of steps;
: while true do
Dy = Dh, P = Dis
// Adjust strategy for the hash-server
5:  Calculate Uy, (py, pt), Un(pr + An, pe) and Uy (pr, — An, pi) by
invoking Algorithm FOSD and analysis in subsection 5.1.2
to get strategies for rational and irrational devices;
6: if Uh(ph + A}mpt) 2 Uh(ph,,pt) && Uh (pll, + Ahupt) 2
Uh(ph - A/npt) then
7: pr = min{p;, + Ay, E¥};

8: else if Un(pn — An,pt) > Un(pn,pi) && Un(pn — A, pi) >
Uh(ph + Ah,pt) then
9: pr = max{py — Ap,crn};

10:  endif

// Reduce the step for the hash-server
11:  if pj == p; then
12: A},, = 5f{,,sf . A;,,,'

13:  else
14: Ah = slow * Ah;
15:  endif

// Adjust strategy for the tash-server
16:  Calculate Ui(pi, pn), Ui(pe + Ar,pr) and Uy (pr — Ay, pr) by
invoking Algorithm FOSD and analysis in subsection 5.1.2
to get strategies for rational and irrational devices;
17: if Ui(pe +A,pn) > Ui(pe,pn)  &&  Up(pe + Ar, pr) >
Ut(pf — Atvph) then
18: pr = min{p; + Ay, aB};
19:  else if Ui(p: — Av,pn) > Ui(pe, pr) && Ui(pe — As, pr) >
U(p: + At, p,) then
20: pr = max{p; — Ay, ¢, };
21: endif
// Reduce the step for the task-server
22:  if p, == p, then
23: Ay = 8 fast - Ay

24:  else
25: At = Sslow . At;
26: end if

27: end while
28: return (py,, ;)

Theorem 2. The SE point of the game between servers and IoT
devices exists and is unique.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 2, APRIL-JUNE 2023

Proof. As analyzed in subsection 5.1.1, each rational IoT
device will find its optimal strategy in one of the three cases
from Case 2 to Case 4, which indicates that the strategy of
each rational IoT device is unique after the two servers
give their pricing strategies. We consider two kinds of irra-
tional devices as described in subsection 5.1.2, and each
irrational device also has a unique strategy after the two
servers give their pricing strategies. According to Theorem
1, the game between the two servers has a unique NE
point. Thus we can conclude that the SE point of the game
between servers and IoT devices exists and is unique. O

To find the NE point of the game between the two serv-
ers, we propose an algorithm named FNES to find the final
pricing strategies of the two servers. FNES is an improved
version based on the sub-gradient technique [32], [33], in
which we set two steps for the two servers and set two dif-
ferent attenuation coefficients, so that the algorithm can
converge more quickly. The pseudo-code of algorithm FNES
is shown in Algorithm 2.

In FNES, we first set a feasible pricing strategy for each
server, and two small steps A;, and A; are set to update the
strategies of two servers, respectively. We iteratively adjust
the pricing strategy for each server in turn. For the hash-
server, we will calculate its utility U;, with pricing strategies
Ph, Pr + Ay, and p, — Ay, and the best pricing strategy will
be selected as the latest strategy in the next round. Note that
the value of Uj, is related to the strategy of each IoT device,
and thus we need to invoke the FOSD algorithm as well as
the analysis for irrational followers to get the strategy of
each IoT device. If pricing strategy pj, is changed in a certain
iteration, we will update the step A, with the attenuation
coefficient 8, where 8, is a real number that is close to
(and less than) 1, such as 0.99. Otherwise, we will update
the step A;, with the attenuation coefficient &y, where 84
is a smaller positive real number, such as 0.5. The reason
that we set two different attenuation coefficients is to speed
up the convergence rate of our algorithm. The strategy
adjustment of the task-server is similar to that of the hash-
server, where we use A; to control the step of the pricing
strategy. The algorithm terminates when none of the servers
will change its pricing strategy, and the two steps Aj, and A,
are sufficiently small.

6 SIMULATIONS

In this section, we conduct numerical experiments to vali-
date the feasibility and effectiveness of our algorithms.

6.1 Experimental Settings

In the experiments, we assume the total hash computational
power H of the IoT blockchain network in the next period is
estimated to be 10* GH/s. The mining reward R from the
blockchain platform is set to be 300, and the number of gen-
erated new blocks per day N is set to be 1440. For the profit
function of performing tasks, we set « to be 40 and f to be 2.
The unit resource cost of the hash-server and the task-server
is set to be 10, that is, ¢, = ¢; = 10. We consider there are
500 IoT devices in the IoT system that would like to pur-
chase resources from the two servers, in which 80% of them
are rational followers, 10% of them are over-confident
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Fig. 2. The convergence process of the baseline and FNES with different
initializations.

followers, and 10% of them are lack of confidence followers.
The budget of each device is randomly chosen in [20,90].
For the algorithm FNES, we set the set Ay, = A; =1, 800 =
0.99 and 6,5 = 0.5. Unless other declared, the above are the
default settings of our experiments.

6.2 Results and Analyses
6.2.1 The Convergence of Algorithm FNES

To validate the efficiency of our algorithm, we adopt the
sub-gradient method that is used in [33] as the baseline, in
which we set the step A to be 1 and the attenuation coeffi-
cient is set to be 0.99. Both our algorithm and the baseline
need to set initial values of the pricing strategies for the two
servers. In our simulation, we set three different initializa-
tions named low_init, mid_init and high_init. Specifically,
low_init = (pn,pt) = (cn, ¢t) = (10,10), mid_init = (pp,pt) =
(% (Ch + %)7%(Ct + 0[13)) = (2667 45)/ and high—init = (p}upt)
= (8% aB) = (43.2,80).

Fig. 2 shows the convergence process of the baseline
and FNES with different initializations. We can see that
regardless of the initialization settings, our algorithm and
the baseline algorithm always reach the same Nash Equi-
librium, which implies the correctness of our designs.
Besides, we can see that our algorithms always outperform
the baseline algorithm. Although the baseline algorithm
can quickly close to the Nash Equilibrium, it will oscillate

around the eqluilibrium point, and needs more iterations
Authorized
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Fig. 3. The convergence process of the baseline and FNES with different
steps.

to stabilize to the equilibrium point. In comparison, our
algorithm reaches the equilibrium point very smoothly.
The reason is that the baseline algorithm needs more itera-
tions to wait for the step A to decay to a sufficiently small
level. When we set the initialization as low_init, as shown
in Figs. 2a and 2b, the baseline algorithm almost needs 400
iterations to reach the Nash Equilibrium, while our algo-
rithm only needs about 45 iterations. Similarly, when we
use mid_init and high_init as the initialization, our algo-
rithm needs about 50 and 100 iterations respectively to
reach the Nash Equilibrium, while the baseline algorithm
always needs nearly (or even more than) 400 iterations to
stabilize to the equilibrium point.

We investigate the effect of the step on the convergence
of the baseline algorithm and FNES in Fig. 3, in which we
use low_init as the initialization. We can see that the baseline
algorithm is sensitive to the value of the step A. When we
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increase A from 0.5 to 5, the oscillation phenomenon will be
more obvious, and it needs more iterations to reach the
Nash Equilibrium. On the contrary, our algorithm FNSE
can always converge to the Nash Equilibrium quickly no
matter how the steps A, and A, are set, and it even performs
better when A;, and A; are set to relatively large values. As
shown in Figs. 3b, 3d, 3f, and 3h, when the steps A;, and A,
are set to be 0.5, 1, 2, and 5, FNSE needs about 72, 42, 35,
and 34 iterations, respectively, to reach the Nash Equilib-
rium. By comparison, we can know that the baseline algo-
rithm requires us to carefully design the step value to get a
better convergence effect. In contrast, our algorithm can
adapt to different step values and will not oscillate during
the convergence process.

6.2.2 Parameter Sensitivity

In this subsection, we investigate how the different values of
parameters affect the equilibrium point. Each data point
plotted in this subsection is the average 100 runs unless
other statements.

1) The effect of the percentage of irrational followers (devices):
In our simulations, we consider there are 500 devices in an
IoT system, and the percentage of each of the two kinds of
irrational followers is 10%; the other devices are rational fol-
lowers. To investigate the effect of the percentage of irratio-
nal followers, we keep the percentage of one kind of
irrational followers unchanged, and then increase the num-
ber of another kind of irrational followers from 0% to 30%
with a step size of 5%. Correspondingly, the number of
rational followers is reduced from 90% to 60% with a step
size of 5%.

As shown in Fig. 4, when the percentage of the over-con-
fident followers is increased from 0% to 30%, we can see
that the hash-server will raise its price to get a larger utility,
as the over-confident followers always allocate all of their

budgets to purchase resources from the hash-server. The
task-server also slightly raises its price as it is more competi-
tive due to the higher price or the hash-server. The results
are shown in Figs. 4a and 4b. As both the hash-server and
task-server raise their pricing strategies, the total sold
resources of the two servers will decrease when we increase
the percentage of the over-confident followers, as shown in
Figs. 4c. In 4d, we can see that the average profits of both
rational devices and over-confident devices are significantly
reduced when there are more over-confident devices in the
system, while the average profit of the lack of confidence
devices slightly decreases.

When the percentage of the lack of confidence followers
is increased from 0% to 30%, both the hash-server and task-
server raise their pricing strategies, as shown in Fig. 5a. As
the lack of confidence followers only purchase resources
from the task-server, there will be fewer followers purchase
resources from the hash-server when the percentage of the
lack of confidence followers is increased. Thus total sold
resources and the utilities of the hash-server will decrease,
as shown in Figs. 5b and 5c. In Fig. 5d, we can see that the
average profits of the three kinds of devices will slightly
decrease when there are more lack of confidence devices in
the system. Combining Figs. 4d and 5d, we can see that the
percentage of over-confident followers has a greater impact
on the profits of devices. Moreover, we can also see that
rational devices always get more profits than irrational
devices.

2) The effect of the mining reward R: We investigate the
effect of the mining reward R on the final solution of our
problem, as shown in Fig. 6. When the mining reward R
increases from 200 to 400, the miners (IoT devices) will get
more profit from the mining process, and thus the rational
devices prefer to spend their budget on purchasing hash
computational power. Therefore, the hash-server will give a
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Fig. 5. The effect of the percentage of the lack of confidence followers on (a) pricing strategies of servers, (b) utilities of servers, (c) total sold resour-

ces of servers and (d) average profits of devices.
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Fig. 7. The effect of ¢;, on (a) pricing strategies of servers, (b) utilities of servers, (c) total sold resources of servers and (d) average profits of devices.

higher price to get a larger utility, and the task-server has to
lower its price to attract the devices. The results are shown
in Figs. 6a and 6b. From Fig. 6¢c we can see that the total pur-
chased hash resource of devices decreases as the reward R
increases. This is because the price of the hash resource has
been raised up, and the devices have limited budgets. It
indicates that if the blockchain platform wants to attract
miners to contribute more computational power by increas-
ing the mining reward, it may have an opposite effect. Devi-
ces will get more profit as the mining reward R increases,
especially for rational devices and the over-confident devi-
ces, as shown in Fig. 6d.

3) The effect of the unit resource cost of the servers: We keep
the unit resource cost ¢; of the task-server unchanged, and
increase the unit resource cost ¢, of the hash-server from 10
to 20. As the unit resource cost ¢, raised up, the hash-server
will raise its resource price to get a larger utility. Thus ratio-
nal devices will allocate more budget to purchase resources
from the task-server, and then the task-server will raise its
resource price as it is more competitive. The results are
shown in Fig. 7a. The total purchased hash resource of devi-
ces will decrease due to the above reasons. Meanwhile,
devices will purchase more resources from the task-server,
as shown in Fig. 7c. The utility of the hash-server decreases
with increasing the unit resource cost ¢;. The reason is that
the total sold resources of the hash-server decreases as ¢,
increases. Even though the price p;, has risen, the value p, —
¢y, is almost unchanged. The results are shown in Fig. 7b. As
both of the two servers will bid a higher price as ¢,
increases, devices will get less profit, especially for rational
devices and the over- confident devices, as shown in
Fig. 7d. From Fig. 7, we can conclude that the server with a
lower unit resource cost will be more competitive and thus
obtain more benefits.

4) The effect of the budget of devices: To investigate the effect
of the budget of a device on other rational devices, we con-
sider a small blockchain network as well as a small IoT sys-
tem, in which total hash computational power H is
estimated to be 1000 GH /s, and the number of generated
new blocks per day N is 144. There are 5 rational devices
(81,82, 83, 84, s5) in the IoT system, and the budget of each
device is 50, 60, 70, 80, and 90, respectively. The other
parameters are the same as the default settings in subsection
6.1. If we increase the budget b5 of device s; from 50 to 290,
while the budgets of other devices keep unchanged, the
profit gets by s; will first increase and then decrease slowly,
while the profits of other devices decrease, as shown in
Fig. 8a. The reason is that the increment of the budget b;
will cause servers to raise their resource prices, which in
turn reduces the amount of resources purchased by other
devices, as shown in Fig. 8b. As the resource prices of the
two servers keep rising, device s; can not always get more
profits simply by increasing its own budget. The result indi-
cates that the budget of devices will affect each other’s profit
in an indirect way.
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Fig. 8. The effect of the budget b; of device s;.
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5) The effect of the device collusion: Here we investigate
whether the collusion of rational devices could increase
their profits. We also consider the above small blockchain
network as well as the small IoT system. Assume that device
s1 will collude with device s, that is, device s; will give its
own budget to device s5, and they will share the profits pro-
portionally. The budgets of devices s; and s; are 50 and 90,
respectively, therefore, s; and s; get 5/14 and 9/14 of the
total profits, respectively. We use CP, and CP; to denote
the profits of devices s; and s; after they collude with each
other. As shown in Fig. 9, no matter how the reward R or
the resource cost ¢;, of the hash-server changes, the collusion
between devices s; and s; will not increase their profits, on
the contrary, it will reduce their profits. Therefore, it is
impossible for devices to collude with each other to obtain
more profits, which also contributes to the security of the
blockchain network.

7 CONCLUSION

In this paper, we study the pricing and budget allocation
problem between edge servers and IoT devices in an IoT
blockchain network. We first introduce the architecture of
IoT blockchain with edge computing, and describe the oper-
ation of the IoT blockchain system. Then, we model the
interaction between edge servers and IoT devices as a
multi-leader multi-follower Stackelberg game, in which
both rational and irrational devices are considered. We
prove the existence and uniqueness of the Stackelberg equi-
librium, and design efficient algorithms to get the Stackel-
berg equilibrium point. Finally, our designs are validated
by extensive simulations. In our future work, we will study
how to efficiently solve the equilibrium point when there
are more leaders, and the influence of the competition and
cooperation between leaders on the equilibrium point.
Moreover, the influence of the oligopoly market and market
power on the equilibrium point is also worthy of further
study.
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