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Abstract

In a sweep cover problem, mobile sensors move around to collect information from 

positions of interest (PoIs) periodically and timely. A PoI is sweep-covered if it is 

visited at least once in every time period t. In this paper, we study approximation 

algorithms on three types of sweep cover problems. The partial sweep cover prob-

lem (PSC) aims to use the minimum number of mobile sensors to sweep-cover at 

least a given number of PoIs. The prize-collecting sweep cover problem aims to 

minimize the cost of mobile sensors plus the penalties on those PoIs that are not 

sweep-covered. The budgeted sweep cover problem (BSC) aims to use a budgeted 

number N of mobile sensors to sweep-cover as many PoIs as possible. We propose 

a unified approach which can yield approximation algorithms for PSC and PCSC 

within approximation ratio at most 8, and a bicriteria (4,
1

2
)-approximation algorithm 

for BSC (that is, no more than 4N mobile sensors are used to sweep-cover at least 
1

2
opt PoIs, where opt is the number of PoIs that can be sweep-covered by an opti-

mal solution). Furthermore, our results for PSC and BSC can be extended to their 

weighted version, and our algorithm for PCSC answers a question proposed in Liang 

et al. (Theor Comput Sci, 2022) on PCSC.
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1 Introduction

Sweep cover problems have been widely studied in Wireless Sensor Networks 

(WSNs). Instead of providing continuous coverage for positions of interest (PoIs), 

a sweep cover problem aims to visit PoIs periodically, which plays an important 

role in wildlife protection, environment monitoring, etc. For example, to protect 

wild animals, static sensors are spread in their habitat, and the information col-

lected by the static sensors need to be gathered regularly by mobile sensors. In 

such a setting, mobile sensors are required to move along designed trajectories 

(called sweep-routes) to visit PoIs periodically. A PoI is sweep-covered if it is 

visited at least once in every time period t (t is called the sweep-period).

The concept of sweep cover was proposed in [14]. Cheng et al. [11] were the 

first to study approximation algorithm on the sweep cover problem. They pro-

posed a min-sensor sweep cover problem (MinSSC), the goal of which is to use 

the minimum number of mobile sensors to sweep-cover all PoIs. They proved that 

MinSSC cannot be approximated within factor 2 unless P = NP . Nice approxima-

tion algorithms exist. For example, Gorain and Mandal [20] gave a 3-approxima-

tion algorithm for the MinSSC problem.

After that, various sweep cover models are proposed, the goals of which 

include minimizing the number of mobile sensors [20, 25, 31], controlling their 

speeds [36, 37], finding the shortest sweep-routes [9, 13, 30], minimizing the 

maximum sweep-period [15, 16] and maximizing the number of covered PoIs 

using limited mobile sensors [22, 26, 28].

Note that most previous works consider a full sweep cover version, requiring 

All PoIs to be sweep-covered. In many real applications, meeting the coverage 

requirement of every PoI is too expensive. It might be sufficient to sweep-cover 

only a part of the PoIs. For example, in the wildlife monitoring example, some 

distant locations may be ignored. This motivates us to propose the partial sweep 

cover problem (PSC).

Another sweep cover problem that allows some PoIs to be ignored is the prize-

collecting sweep cover problem (PCSC) proposed by Liang et  al. in [27], the 

goal of which is to minimize the cost of mobile sensors plus the penalty incurred 

by un-covered PoIs. A 5-approximation algorithm was presented assuming that 

there exist a constant number of base stations and every mobile sensor has to 

go through some base station. The reason why a constant number of base sta-

tions is assumed is because in the expression of their running time, the number of 

base stations appears in the exponent. In the conclusion part of [27], it was asked 

whether there is a constant approximation algorithm for the PCSC problem with-

out base station assumption.

The budgeted sweep cover problem (BSC) also allows some PoIs to be ignored, 

which can be viewed as a dual version of the PSC problem. In BSC, the number 

of mobile sensors is given, the goal is to sweep-cover as many PoIs as possible. 

This problem was proposed by Huang et al. in [22]. However, they assume that 

the mobile sensors can only choose their routes from a given set of alternatives. 

They did not consider the general case. Liang et  al. [28] considered the BSC 
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problem in a special setting, when all PoIs are placed on a line. It is open whether 

there is a performance guaranteed approximation algorithm for the BSC problem 

in a general setting.

In this paper, we present a unified algorithm for PSC, PCSC and BSC, obtaining 

theoretically guaranteed approximation ratios.

1.1  Related work

Starting from Cheng et al. [11], sweep cover problems have been extensively stud-

ied. In [25], by a reduction from the traveling salesman problem (TSP), the authors 

proved that MinSSC cannot be approximated within factor 2 in metric graph unless 

P = NP . Assuming that the optimal sweep-route is a shortest Hamiltonian cycle and 

mobile sensor are uniformly deployed on the cycle to sweep-cover PoIs, they gave 

a 2-approximation algorithm for MinSSC. In [20], Gorain found that grouping the 

mobile sensors is more efficient, that is, PoIs are divided into groups, a group of 

PoIs are sweep-covered by a same set of mobile sensors cooperatively. It can be 

shown that under grouping strategy, the number of mobile sensors can be signif-

icantly reduced. Making use of a minimum spanning forest to group sensors, the 

authors designed a 3-approximation algorithm for MinSSC. In Gorain et  al. [21] 

considered two types of sensors, mobile and static, with different costs. The goal is 

to sweep cover all PoIs using mixed sensors with the minimum total cost. By guess-

ing the number of static sensors in an optimal solution, they gave an 8-approxima-

tion algorithm.

Considering limited energy, some researchers [10, 29] proposed distance/ time 

constrained sweep cover problems, which means that each mobile sensor can travel 

at most distance D (or time T) before visiting some base station for charging. Gao 

et al. [15] considered a dual problem of MinSSC, min-max sweep period problem 

(Min-MaxSP). Given limited mobile sensors, Min-MaxSP aims to sweep-cover all 

PoIs such that the maximum sweep-period is minimized. In Gao et al. [16] consid-

ered a non-cooperative version of the Min-MaxSP problem, where mobile sensors 

work independently along their own trajectories. In all these literatures, theoretically 

guaranteed approximation ratios were obtained. Note that all these works consid-

ered the full version of the sweep cover problems, that is, all PoIs are required to be 

sweep-covered.

The prize-collecting sweep cover problem (PCSC) was proposed in [27]. A 

5-approximation algorithm was proposed under the assumption that there are con-

stant number of predefined base stations and every mobile sensor has to go through 

some base station. The reason why the algorithm requires the number of base sta-

tions to be upper bounded by a constant is because its running time exponentially 

depends on the number of base stations. A question was asked in its conclusion sec-

tion: is there a constant approximation algorithm for the PCSC problem without 

base station assumptions?

The BSC problem was first studied by Huang et al. [22], assuming that the mobile 

sensors can choose their routes from given alternatives. This assumption makes 

the problem transformed into the budgeted set cover problem, and thus a (1 −
1

e

)
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-approximation follows. In Nie et  al. [38] studied the weighted BSC problem, the 

goal of which is to collect the maximum weight from sweep-covered PoIs using lim-

ited mobile sensors. Heuristic algorithms were given. When PoIs are deployed on a 

line, Liang et al. [28] presented the first performance guaranteed algorithms for the 

weighted BSC problem: if the mobile sensors have the same speed, then an optimal 

solution can be obtained; if the mobile sensors have a constant number of speeds, 

then a 
1

2
-approximation algorithm was given; and if all sensors have different speeds, 

then a 
1

2
(1 −

1

e

)-approximation algorithm was proposed. For the BSC problem in a 

general setting, we have not seen any work with theoretically guaranteed approxima-

tion ratio.

For the studies on some other variants of the sweep cover problem, the read-

ers may refer to the survey in Chapter 11 of [35]. Our algorithms will make use of 

approximation algorithms for various related tree problems.

The prize-collecting Steiner tree problem (PCST) is a step stone of our algo-

rithm for the PCSC problem. It was first introduced by Balas [5], and the first con-

stant-approximation algorithm was given by Bienstock et al. [7]. In Goemans and 

Williamson [19] designed a primal-dual scheme (known as the GW-algorithm) to 

achieve approximation ratio at most 2. Note that the natural LP formulation of the 

PCST problem has integrality gap 2. In Archer et al. [1] successfully broke the bar-

rier and presented an algorithm with approximation ratio less than 1.9672.

Our algorithm for the PSC problem is based on an approximation algorithm 

for the minimum tree spanning k-vertices problem (k-MST). The first non-trivial 

approximation algorithm for k-MST was given by Ravi et al. [33], achieving approx-

imation ratio O(
√

k) . After a series of improvements [2, 3, 6, 8, 12, 17], Gary [18] 

finally obtained a 2-approximation.

The budgeted spanning tree problem (BST) is a step stone of our algorithm for 

the BSC problem. Form the beginning of this century, the approximation ratios for 

the BST problem were reduced from (5 + �) [23] to (4 + �) [24], and recently to 2 in 

[32].

1.2  Our contributions

Our contributions are summarized as follows:

• We propose a new sweep cover problem, the partial sweep cover problem (PSC). 

In many applications, it is wasteful to satisfy the coverage requirement of every 

PoI. Sweep covering only a part of PoIs might be more economic.

• A framework is proposed to solve the mentioned sweep cover problems. Apply-

ing the framework, we obtain an 8-approximation algorithm for PSC. For PCSC, 

we obtain a lagrangian multiplier preserving algorithm with factor 8 (8-LMP), 

which is a stronger result than 8-approximation. This result answers the open 

question proposed in [27], asking whether there exists a constant-approximation 

algorithm for PCSC without base stations. As for BSC, all previous works either 

focus on special settings or are heuristic algorithms. We design the first perfor-
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mance-guaranteed algorithm in a general case, obtaining a bicriteria (4,
1

2
)-algo-

rithm, that is, no more than 4N mobile sensors can be used to sweep-cover at 

least 
1

2
opt PoIs, where N is the budgeted number of mobile sensors and opt is the 

optimal value of BSC. It should be noted that the above algorithms for PSC and 

BSC can be extended to their weighted versions WPSC and WBSC, maintaining 

the same bounds of approximation ratios. We believe that our framework may 

work for more sweep cover problems.

In previous studies on the sweep cover problems, grouping sensors is done by 

approximating a corresponding forest problem. For example, for the MinSSC prob-

lem, the number of groups q is guessed, and to group sensors into q groups, a mini-

mum weight forest on the PoIs consisting of exactly q components is constructed. 

Those PoIs in a same component are assigned to a same group of sensors.

However, such a strategy does not work for the sweep cover problems studied 

in this paper. For example, for the PSC problem, a natural idea to divide sensors 

into q groups is to find a minimum forest on the PoIs with q components spanning 

at least k PoIs (k-MSF
q
 ). However, there is no known algorithm for k-MSF

q
 , even 

in terms of approximation. Note that when q = 1 , k-MSF
1
 is the classic minimum 

tree spanning k vertices (k-MST) problem which has a 2-approximation. Inspired by 

the observation that a minimum spanning forest consisting of q components can be 

obtained from a minimum spanning tree by deleting the most costly q − 1 edges, a 

natural idea is to construct a k-MSF
q
 solution by a similar strategy from an approx-

imate solution of the k-MST problem. The example in Fig.  1 shows that such an 

idea does not work. In this example, suppose k = 4 and q = 2 . An optimal 4-MST 

is the path consisting of the rightmost 4 vertices, and deleting the rightmost edge 

results in a 4-MSF
2
 solution with weight n + 1 (see the middle figure). An optimal 

4-MSF
2
 solution is marked by the thick edges in the third figure, whose weight is 

2. So, the approximation ratio is at least (n + 1)∕2 . Besides, the work in [27] shows 

that it is a challenging task to design an efficient algorithm to find a performance-

guaranteed prize-collecting forest with q components without specifying roots. Simi-

lar challenge also exists for the budgeted forest problem with a specified number of 

components.

In this paper, we use a different idea to group sensors: construct a truncation 

graph, find a tree corresponding to the problem under consideration in the truncation 

Fig. 1  An example showing that 

the naive idea of constructing a 

k-MSF
q
 solution from a k-MST 

solution does not work
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graph, and then delete those “long” edges to split the tree into a forest. By working 

on the truncation graph instead of the original graph, we successfully obtained the 

above declared results.

The rest of this paper is organized as follows. We formally define the three sweep 

cover problems in Sect. 2 and introduce some preliminary concepts. Section 3 intro-

duces the framework of the unified approach, presents algorithms for PSC (WPSC), 

PCSC and BSC (WBSC), and gives theoretical analysis of their approximation 

ratios. Section 4 concludes the paper.

2  Problem formulation and preliminaries

In this section, we give formal definitions of those sweep cover problems studied in 

this paper and introduce some preliminary results.

Definition 2.1 (sweep cover) Given a graph G = (V , E) , a real number t called 

sweep-period, for a set of mobile sensors moving along the edges of G at speed a, a 

vertex v is said to be sweep-covered if in every time period t, it is visited by at least 

one mobile sensor.

In the following problems, the goals are alway designing trajectories for a set of 

mobile sensors S to meet some constraints and achieve some objectives.

Definition 2.2 (partial sweep cover (PSC)) Given a graph G = (V , E) with metric 

edge length l ∶ E ↦ ℚ+ , an integer k ≤ |V| and sweep-period t, the goal of PSC is to 

minimize the number of mobile sensors to sweep-cover at least k vertices.

Definition 2.3 (weighted partial sweep cover (WPSC)) Given G,  l,  t as the above, 

together with a vertex weight function w ∶ V ↦ ℚ+ and a number K ∈ ℚ+ , the goal 

of WPSC is to minimize the number of mobile sensors such that the total weight of 

those vertices that are sweep-covered is at least K, where the weight of a vertex set 

V
′ is w(V �) =

∑

v∈V � w(v).

Definition 2.4 (prize-collecting sweep cover (PCSC)) Given G,  l,  t as the above, 

each vertex v ∈ V  is associated with a penalty �
v
 , PCSC aims to design trajecto-

ries for a set S of mobile sensors to minimize the cost-plus-penalty value, that is, 

min{c ⋅ |S| + �(V⧵C(S))} , where C(S) is the set of vertices sweep-covered by the 

mobile sensors in S , �(V⧵C(S)) =
∑

v∉C(S) �v
 is the penalty on the uncovered verti-

ces and c is the cost of a mobile sensor.

Definition 2.5 (budgeted sweep cover (BSC)) Given G, l, t as the above and a posi-

tive integer N, the goal of BSC is to use N mobile sensors to sweep-cover the maxi-

mum number of vertices.
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Definition 2.6 (weighted budgeted sweep cover (WBSC)) Given G, l, t as the above, 

together with a vertex weight function w ∶ V ↦ ℚ+ and a positive integer N, the 

goal of WBSC is to use at most N mobile sensors to sweep-cover a subset of vertices 

such that the total weight of those sweep-covered vertices is maximized.

For a positive real number r ≥ 1 (resp. r ≤ 1 ), a polynomial time algorithm 

for a minimization (resp. maximization) problem is said to be an r-approxima-

tion algorithm if for any instance I of the problem, the output of the algorithm 

has value at most (resp. at least) r times that of an optimal solution. If r can 

be achieved by some instance, then it is called the approximation ratio of the 

algorithm.

An r-Lagrangian Multiplier Perserving (r-LMP) algorithm is stronger than 

an r-approximation algorithm. For a real number r ≥ 1 , an algorithm for PCSC is 

said to be an r-LMP if for any PCSC instance I, it can always compute in polyno-

mial time a solution S (and determine the routes for those mobiles sensors in S ) 

satisfying

where opt(I) is the optimal value of instance I.

A bicriteria approximation algorithm allows the constraint to be violated, but “no 

too much”, while the approximation ratio can be guaranteed. For real numbers � ≥ 1 

and 0 < � ≤ 1 , an algorithm for BSC is said to be a (�, �)-bicriteria approximation if 

for any BSC instance I, it can always compute in polynomial time a solution S (and 

determine the routes for those mobiles sensors in S ) satisfying

where opt(I) is the optimal value of instance I.

To solve the above problems, our algorithms make use of approximation algo-

rithms for corresponding tree problems, the goals of which are to find trees with 

similar constraints and similar objectives as the sweep cover problems.

The PSC problem corresponds to the k-MST problem.

Definition 2.7 (minimum tree spanning k vertices (k-MST)) Given a graph 

G = (V , E) with edge length l ∶ E ↦ ℚ+ and an integer k ≤ |V| , the goal of k-MST 

is to find a minimum length tree that spans at least k vertices, where the length of a 

tree T is l(T) =
∑

e∈E(T) l(e).

The WPSC problem corresponds to the QMST problem.

Definition 2.8 (quota minimum spanning tree (QMST)) Given G,  l as the above, 

vertex weight w ∶ V ↦ ℚ+ and a quota K ∈ ℚ+ , the goal of the QMST problem is to 

find a minimum length tree T satisfying w(T) =
∑

v∈V(T) w(v) ≥ K.

The PCSC problem corresponds to the PCST problem.

c ⋅ |S| + r ⋅ �(V ⧵ C(S)) ≤ r ⋅ opt(I),

|S| ≤ � ⋅ N and |C(S)| ≥ � ⋅ opt(I),
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Definition 2.9 (prize-collecting Steiner tree (PCST)) Given G, l as the above, each 

vertex v ∈ V  is associated with a penalty �
v
 , the goal of PCST is to find a tree T such 

that the length-plus-penalty value is minimized, that is, min{l(T) + �(V⧵V(T)} , 

where �(V⧵V(T)) =
∑

v∉V(T) �v
.

The BSC problem corresponds to the BST problem.

Definition 2.10 (budgeted spanning tree (BST)) Given G,  l as the above and a 

budget B ∈ ℚ+ , the goal of BST is to find a tree T containing the maximum number 

vertices subjected to the constraint l(T) ≤ B.

The WBSC problem corresponds to the WBST problem.

Definition 2.11 (weighted budgeted spanning tree (WBST)) Given G,  l,  t as the 

above, a vertex weight function w ∶ V ↦ ℚ+ and a budget B ∈ ℚ+ , the goal of 

WBST is to find a tree T with l(T) ≤ B such that w(T) =
∑

v∈V(T) w(v) is maximized.

3  Algorithms and their theoretical analysis

In this section, we first introduce the framework of the unified approach. Then, we 

apply it to PSC (WPSC), PCSC and BSC (WBSC), respectively, and theoretically 

analyze their approximation ratios.

3.1  Framework of the unified approach

The framework for a sweep cover problem consists of two steps: vertex grouping 

step and sensor allocation step. A forest is obtained in the first step. The vertices in 

one component of the forest are said to be in a common group and will be sweep-

covered by a same set of mobile sensors. In the sensor allocation step, each com-

ponent T
i
 of the forest is transformed into a cycle C

i
 using a method similar to that 

of constructing a 2-approximate solution to the TSP problem [34]. By the metric 

assumption on l, we have

Then mobile sensors are deployed uniformly along the cycles, as shown in line 6 to 

line 10 of Algorithm 1. Such a scheduling forms a sweep cover for V(C
i
)’s.

The crucial step is how to construct a forest to group vertices. Our method is to 

construct a truncation graph Gt with the same topology as G and a truncated edge 

length function lt defined as follows:

(1)l(C
i
) ≤ 2l(T

i
) for each i.

(2)l
t(e) =

{

l(e)∕at, if l(e) ≤ at,

1, if l(e) > at.



583

1 3

A unified approach to approximate partial, prize-collecting…

Find a tree T t in Gt (using different algorithm A
tree

 according to different sweep 

cover problem under consideration), which corresponds to a tree T in the original 

graph G. Delete those edges from T whose lengths are larger than at, resulting in a 

forest. The details of the unified framework is presented in Algorithm 1.

3.2  Partial sweep cover

For the PSC problem, algorithm A
tree

 is taken to be an approximation algorithm for 

the k-MST problem on the truncated instance (Gt
, lt).

Theorem  3.1 If Algorithm  1 employs an �-approximation algorithm for the trun-

cated k-MST instance, then it computes a 4�-approximation for PSC.

Proof Let optPSC be the optimal value of a PSC instance. We first trim the trajecto-

ries of the optPSC mobile sensors into a feasible solution to the k-MST instance on 

the truncation graph Gt . The trajectory of each mobile sensor in time span [0, t] is a 

walk in G with length at. Let H be the union of these walks, and let Ht be the sub-

graph of Gt corresponding to H. Note that H contains at least k vertices, and so does 

H
t ,. Furthermore, l(H) ≤ optPSC ⋅ at . Then by the definition of lt in (2), we have

Note that Ht contains at most optPSC connected components. Hence adding at most 

optPSC − 1 edges to Ht can transform it into a connected subgraph Ht

c
 . Let T t

c
 be a 

spanning tree of Ht

c
 . Then, T t

c
 is a feasible solution to the k-MST instance. Further-

more, by (3) and the observation that edges in Gt have lengths at most 1, we have

(3)lt(Ht) ≤ l(H)∕at ≤ optPSC.

(4)lt(T t
c
) ≤ lt(Ht

c
) ≤ lt(Ht) + optPSC − 1 ≤ 2optPSC − 1.
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Let S
p
 be the set of mobile sensors computed by Algorithm 1. Next, we estimate 

|S
p
| . Note that each group C

i
 is deployed at most l(C

i
)∕at + 1 mobile sensors.

First consider the case that q = 1 . In this case, all the edges of T in line 2 of the 

algorithm have lengths at most at, and thus by the definition of lt,

where the second inequality comes from (1), the third inequality holds because T t 

is an �-approximate solution to the k-MST instance on Gt and T t

c
 is a feasible solu-

tion to the k-MST instance on Gt , and the last inequality comes from (4) and the fact 

� ≥ 1.

Next consider the case that q ≥ 2 . Note that {Ti}i=1,…,q are obtained from T by 

deleting those edges with lengths larger than at, there are exactly q − 1 edges that are 

deleted, and the deleted edges have lengths 1 in Gt . Hence

Combining this with a similar argument for (5), and using the assumption q ≥ 2 , we 

have

The desired approximation ratio 4� is proved.   ◻

If A
tree

 is taken to be Garg’s 2-approximation algorithm for the k-MST problem 

[18], then we have the following approximation ratio.

Corollary 3.2 PSC admits an 8-approximation.

For the weighted version of the PSC problem, namely WPSC, the algorithm A
tree

 is 

taken to be an approximation algorithm for the QMST problem. In Awerbuch et al. 

[4] proved that a polynomial time approximation algorithm for the k-MST problem 

can be used to get a pseudopolynomial time approximation algorithm for the QMST 

problem with the same approximation guarantee. Johnson et al. [23] found that the 

pseudopolynomial time algorithm can be converted into a truly polynomial time 

one. Therefore, for QMST, there exists a polynomial time 2-approximation algo-

rithm. Using a similar argument as that for Theorem 3.1, by noting that the trajecto-

ries of the set of mobile sensors in an optimal solution can be trimmed into a tree T t

c
 

in Gt with

we have the following theorem.

(5)|Sp| ≤
l(C1)

at
+ 1 ≤

2l(T1)

at
+ 1 = 2lt(T t) + 1 ≤ 2� ⋅ lt(T t

c
) + 1 < 4� ⋅ optPSC,

lt(T t) =

q
∑

i=1

l(Ti)

at
+ (q − 1).

(6)

|Sp| ≤
q∑

i=1

(
l(Ci)

at
+ 1

)
=

q∑

i=1

l(Ci)

at
+ q ≤

q∑

i=1

2l(Ti)

at
+ 2(q − 1)

= 2lt(T t) ≤ 2� ⋅ lt(T t
c
) < 4� ⋅ optPSC.

w(T t

c
) ≥ K,



585

1 3

A unified approach to approximate partial, prize-collecting…

Theorem 3.3 There exists an 8-approximation algorithm for WPSC.

3.3  Prize-collecting sweep cover

For a PCSC instance (G, l,�) , let (Gt
, lt,�t) be a PCST instance on the truncation 

graph Gt with truncated edge length function lt and truncated vertex penalty function 

�
t:

The algorithm A
tree

 is taken to be an r-LMP algorithm for the prize-collecting 

Steiner tree (PCST) problem. A scaling technique similar to that in [27] is employed 

here: assume

This can be assumed without loss of generality, because we can scale � and c simul-

taneously without changing the solution and also keeps the approximation ratio.

Theorem 3.4 If Algorithm 1 employs an r-LMP algorithm for the truncated PCST 

instance, then it computes a 4r-LMP solution to the PCSC problem.

Proof Suppose an optimal solution to a PCSC instance uses optPC mobile sensors 

and denote by Z∗ the set of vertices that are not sweep-covered. Then the optimal 

value is c ⋅ optPC + �(Z∗) . Similar to the argument for the PSC problem, the trajecto-

ries of these optPC mobile sensors in time span [0, t] can be trimmed into a tree T t

c
 in 

G
t , which spans vertex set V⧵Z

∗ and has

Let S
PC

 be the set of mobile sensors computed by Algorithm 1, and let Z be the set 

of un-covered vertices. If q ≥ 2 , then similar to the derivation of (6), we have

It follows that

where the first inequality is by (10) and (7), the first equality uses (8), the second 

inequality holds because T t is an r-LMP solution to the PCST problem, the last ine-

quality comes from (9) and the definition of �t , and the last equality also makes use 

of (8).

If q = 1 , then

(7)�
t(v) = �(v)∕at for any v ∈ V .

(8)
at

c

=

1

2
.

(9)lt(T t
c
) ≤ 2optPC − 1.

(10)|S
PC
| ≤ 2l

t(T t).

c ⋅ |SPC| + 4r ⋅ �(Z) ≤ c ⋅ 2lt(T t) + 4rat ⋅ �t(Z)

= 2c ⋅ (lt(T t) + r ⋅ �t(Z)) ≤ 2rc ⋅ (lt(T t
c
) + �

t(Z∗))

< 2rc ⋅ (2optPC + �(Z∗)∕at) = 4r(c ⋅ optPC + �(Z∗)),
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Using a similar argument, we have

where the last inequality holds because r ≥ 1 . The theorem is proved.   ◻

If A
tree

 is taken to be the Goemans and Williamson’s 2-LMP algorithm for the 

PCST problem, then we have the following performance.

Corollary 3.5 PCSC admits an 8-LMP.

3.4  Budgeted sweep cover

In this section, we obtain a (4,
1

2
)-bicriteria approximation algorithm for the BSC 

problem. That is, there exists a sweep cover scheduling that can sweep-cover at least 
1

2
optB vertices using at most 4N mobile sensors, where optB is the maximum number 

of vertices that can be sweep-covered by N mobile sensors. Given a BSC instance 

(G, N), let (Gt, 2N − 1) be an instance of the budgeted spanning tree (BST) problem 

on truncation graph Gt asking for a tree of length at most 2N − 1 to span the maxi-

mum number of vertices.

Theorem  3.6 If Algorithm  1 employs an �-approximation algorithm for the trun-

cated BST instance, then it computes a (4, �)-bicriteria solution to the BSC problem.

Proof Let S
B
 be the set of mobile sensors computed by Algorithm 1. Similar to the 

derivation of (5) and (6), we have |S
B
| ≤ 2l

t(T t) for q ≥ 2 and |S
B
| ≤ 2l

t(T t) + 1 for 

q = 1 . Because the budget for the truncated BST instance is 2N − 1 , we have

That is, the budge for the BSC instance is violated by at most 4 times.

Next we estimate the number of sweep-covered vertices. Let optB be the number 

of vertices sweep-covered by an optimal scheduling. Similar to the construction of 

T
t

c
 in the proof of Theorem 3.1, the trajectories of those mobile sensors in an optimal 

solution can be trimmed into a tree T t

c
 of Gt with

|S
PC
| ≤ 2l

t(T t

1
) + 1.

c ⋅ |SPC| + 4r ⋅ �(Z)

≤ c ⋅ (2lt(T t
1
) + 1) + 4rat ⋅ �t(Z) = 2c ⋅

(
lt(T t

1
) +

1

2
+ r ⋅ �t(Z)

)

≤ 2rc ⋅ (lt(T t
c
) + �

t(Z∗) +
1

2r
) ≤ 2rc ⋅

(
2optPC − 1 +

1

2r
+ �(Z∗)∕at

)

< 2rc ⋅ (2optPC + �(Z∗)∕at) = 4r
(
c ⋅ optPC + �(Z∗)

)
,

|S
B
| ≤ 2l

t(T t) + 1 < 4N.

|V(T t
c
)| g optB and l(T t

c
) f 2N − 1.
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Hence T t

c
 is a feasible solution to the truncated BST instance spanning optB vertices. 

Because T t is an �-approximate solution to the truncated BST instance, we have

The approximation ratio � follows.   ◻

If A
tree

 is taken to be the Paul’s 
1

2
-approximation algorithm for the BST problem 

[32], then we have the following result.

Corollary 3.7 BSC admits a (4,
1

2
)-bicriteria approximation.

Paul et  al. had extended their 
1

2
-approximation algorithm for the BST problem 

to its weighted version WBST, achieving the same lower bound of the approxima-

tion ratio. Making using of this algorithm, the weighted BSC problem, namely the 

WBSC problem, also admits a bicriteria approximation algorithm with the same 

performance.

Theorem 3.8 There exists a (4,
1

2
)-bicriteria approximation algorithm for WBSC.

4  Conclusion and future work

Three types of sweep cover problems are considered in this paper: the partial sweep 

cover problem PSC, the prize-collecting sweep cover problem PCSC, and the budg-

eted sweep cover problem BSC. A unified algorithm works for all of them, achiev-

ing 8-approximation for PSC, 8-LMP for PCSC, and bicriteria (4,
1

2
)-approximation 

for BSC. The PSC problem is initiated in this paper. The second result answers a 

question proposed in [27]. And the third result gives the first theoretically guaran-

teed performance for the BSC problem in a general setting.

In a sweep cover problem, how to group sensors is a crucial step. In many pre-

vious works, this was done by fining a forest with q components, where q is the 

guessed number of groups. As implied by the work in [27], this is a challenging task 

if what we need is not a “spanning” forest. In this paper, we circumvent this diffi-

culty by first finding a tree (instead of a forest) in a truncation graph, and then trans-

forming it into a forest by deleting “long” edges. We believe this framework might 

be useful for some other sweep cover problems.

As for the BSC problem, what is obtained in this paper is only a bicriteria result. 

How to obtain an approximation algorithm without violation is worth further 

studying.
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c
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