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Abstract

Pioneers of autonomous vehicles (AVs) promised to revolutionize

the driving experience and driving safety. However, milestones in

AVs have materialized slower than forecast. Culprits include (1) the

lack of verifiability of proposed state-of-the-art AV components, and

(2) stagnation of pursuing next-level evaluations, e.g., vehicle-to-

infrastructure (V2I) and multi-agent collaboration. In part, progress

has been hampered by: the large volume of software in AVs, the mul-

tiple disparate conventions, the difficulty of testing across datasets

and simulators, and the inflexibility of state-of-the-art AV com-

ponents. To address these challenges, we present AVstack1,2, an
open-source, reconfigurable software platform for AV design, imple-

mentation, test, and analysis. AVstack solves the validation problem
by enabling first-of-a-kind trade studies on datasets and physics-

based simulators. AVstack addresses the stagnation problem as a

reconfigurable AV platform built on dozens of open-source AV com-

ponents in a high-level programming language. We demonstrate

the power of AVstack through longitudinal testing across multiple

benchmark datasets and V2I-collaboration case studies that explore

trade-offs of designing multi-sensor, multi-agent algorithms.

CCS Concepts

• Computer systems organization → Robotic autonomy; •

Software and its engineering → Software libraries and repos.
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1 Introduction

The AV industry has proliferated over the past two decades.

Experts point to the DARPA Grand Challenge as the coming of

age of AVs [30]. Soon after, expectations ballooned that we would

see fully automated vehicles on the road within a decade [9]. In

response, the autonomy community has exploded into industry

and academic players both large and small. However, milestones

in AV development have slowed in recent years. In fact, Tesla has

promised to deliver fully self-driving cars “next year” for the last 8

years [34] and is as of yet still deploying Level-2 solutions.

A major challenge to AV development is that most AV solutions

are proprietary and closed-source. This is a result of the immense

cost of development that safety-critical AVs require. However, the

rush to deploy autonomous vehicles and the proprietary nature of

industry solutions are conflicting. In particular, industry progress

is outpacing research and development. This disparity is negatively

impacting progress and trust in AVs. While industry rushes to cap-

ture a new market, access to representative platforms is hampering

fundamental safety and performance research [13].

We find two culprits for such a slowdown in AV research. First,

proposed state-of-the-art AV algorithms and components perform

insufficient transfer testing and longitudinal analysis. This leads

to a lack of accountability and verifiability. Second, much AV re-

search pursues (marginal) improvements on single-component

benchmarks (e.g., LiDAR-based detection challenges [10, 15, 33]).

Similarly, pursuing critical next-level evaluations such as multi-

agent (e.g., vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I))

collaborative sensing or safety & security analysis has stagnated.

At the root of these problems are several barriers: (1) Design-

ing and implementing an AV require large amounts of complex

software. The jumps from testing components on static datasets

to longitudinal datasets to full-stack simulations are large, and no

existing platform can handle all scenarios. (2) Data sources use dif-

ferent conventions for coordinates, reference frames, metrics, cali-

brations, and more, which makes case-by-case conversions prone to

error. (3) Mature AV platforms are designed with custom messaging

protocols in low-level languages, which creates rigid AV architec-

tures and implementations. Rigidity inhibits modular testing and

puts a high-barrier on design changes. (4) Implementations of state

of the art AV algorithms are highly tailored towards benchmark

challenges. Adapting them to new contexts is time-consuming.

Several platforms have emerged to support open-source AV de-

velopment. Baidu’s Apollo [3] and Autoware [1] are established

as preeminent platforms for deployable, real-time AVs. Recently,

Pylot [16] has also allowed for more trade studies in AVs (i.e., eval-

uating the impact of parameter/configuration changes on output

metrics). Each of these platforms is useful and needed. However,
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each has serious shortcomings when it comes to the design of novel

AV architectures for next-level challenges and transfer testing of

AV components between datasets/simulators.

To fill this void, we present AVstack, a new research platform

for the design, implementation, test, and analysis (DITA) of AVs.

AVstack has the following four key innovations designed to pro-

mote modular AV design, simple implementation, wide-reaching

testing, and insightful analysis. The key innovations are:

(1) Wide compatibility: To our knowledge, AVstack is the first plat-

form compatible with both benchmark AV datasets and physics-based

AV simulators. It maintains compatibility with dozens of open-source

AV algorithms across AV components and established metrics.

(2) Unified conventions: AVstack implements a flexible set of co-

ordinate conventions attached to all vector-type objects to unify

coordinates. It also unites component-wise metrics from multiple

providers. This helps maintain forward and backward compatibility,

reduces the user burden to keep track of case-by-case uniqueness,

and enables complex, multi-sensor, multi-agent configurations.

(3) Modular testing: AVstack streamlines DITA in AVs. Reconfig-

urability breaks rigid constraints of prior platforms allowing for

novel designs and reusable implementations. With AVstack, test-
ing is performed seamlessly on static/longitudinal datasets and

physics-based simulators with metrics at every AV component.

(4) Low barrier adoption: AVstack is written in a high-level pro-

gramming language to allow for rapid prototyping and reusable

implementations. A suite of AVs can be designed, implemented,

tested, and analyzed with little effort in unique configurations such

as multi-sensor, multi-agent settings.

AVstack is a framework for AV development. It provides a unique

combination of performance and modularity – high-performing

algorithms with a flexible and reconfigurable architecture to enable

diverse and rapid prototyping. AVstack is not the “best” framework

for all AV applications. However, its innovations fill important

voids in validating state of the art results, transfer testing between

datasets/simulators, standardizing AV evaluations, and pursuing

next-level questions in multi-sensor, multi-agent configurations.

AVstack is available open-source3.

In summary, AVstack contributes the following innovations:

• Unifies testing and analysis within and between benchmark

static/longitudinal datasets and physics-based simulators.

• Enables reconfigurable and reusable AV design through stan-

dardized interfaces and open-source support.

• Unifies disparate coordinate conventions to achieve forward

and backward compatibility to data sources.

• Streamlines component-wise metrics in all cases ranging

from single-component analysis on static datasets to full-

stack AVs on longitudinal situations.

• Promotes easy transfer testing between datasets and simula-

tors with low-barrier trade study configuration tables.

• Provides a standardized interface for training supervised

learning models on datasets and the CARLA simulator [14].

• Facilitates testing multi-sensor, multi-agent scenarios.

Terminology. In this work, we use the following terminology:

3https://github.com/avstack-lab.

• Algorithm: A specific implementation of an AV component;

e.g., PointPillars [22] is an algorithm.

• Component: A generalization and grouping over algorithms;

e.g., PointPillars [22] and 3DSSD [24] fall under the “3D

object detection” component.

• Module: A grouping of similar components under a goal;

e.g., 2D & 3D object detection→ “perception” module.

• Architecture: A designed connection of components that will

process sensor data and output control signals or state.

• Implementation: A connection of specific algorithms that

defines one particular realization of an AV architecture.

Organization. Section 2 summarizes related efforts and their

shortcomings for AV DITA. Section 3 expands on challenges to AV

research and how key design decisions allow AVstack to overcome

these obstacles. Section 4 provides use-cases in longitudinal and

multi-agent sensing demonstrating that AVstack enables new AV

DITA capability. We finish with concluding remarks in Section 5.

2 Related Work

Deployable AV Systems. Baidu Apollo [3] and Autoware [1] are

highly adopted and stable AV repositories. Each have an architec-

ture philosophy and have provided specific implementations. Both

are designed for self-driving and have established relationships with

industry to deploy in physical systems. Apollo is built on the Cy-

berRT message passing framework while Autoware uses ROS [28].

While both achieve high levels of performance, both struggle to

maintain accessible APIs for research-level development. Both have

high learning curves, are difficult to modify, and require powerful

computers. Thus, both are ill-suited to perform longitudinal testing

and reconfigurable prototyping on important benchmarks.

AV Research Platforms. Pylot [16] is an AV architecture in the

Python language. Sensor data is passed using the low-latency, low-

copy ERDOS [16] framework. Pylot provides an accessible inter-

face where developers can compare algorithms within established

components on the CARLA simulator [14]. Pylot demonstrated

near-real-time capability on a real system at low speeds. While

Pylot maintains an accessible API, it is limited to the CARLA simu-

lator and real-world self-driving; it cannot be tested on benchmark

datasets. While it supports different algorithms within each com-

ponent, the component architecture is fixed. It is not suitable for

next-level questions such as multi-agent, collaborative sensing nor

does it support end-to-end learning-based implementations.

OpenAI maintains its gym for evaluating reinforcement learning

in episodic tasks. Researchers have used gym to develop control algo-
rithms in self-driving using AirSim [31] and TORCS [37]. gym is not
well-suited for component-wise evaluations in AVs and is designed

only as a tool for training reinforcement learning algorithms.

General Frameworks. ROS [28] provides a communication infras-

tructure above operating systems for multi-component robotics

applications. ROS handles message passing between peer nodes

in full-stack robotics case studies. In this way, ROS has greatly

streamlined the development process for deployable robotics and

has been recognized as a major research platform.

ROS and AVstack serve different purposes and can be used in a

complementary way. AVstack handles development environments
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for DITA in both single-component and multi-component settings.

AVstack is more suitable for rapid prototyping of AV algorithms

and components while ROS is designed to handle communication

between components for cyber physical systems (CPS) over po-

tentially heterogeneous networks. For a full stack-simulation or

a physical implementation, the two can be complementary: ROS

can managed message passing and computation resources while

AVstack can provide components and analysis.

3 AVstack Key Design Decisions

A recent slowdown in AV development is a consequence of at

least two factors. First, proposed state-of-the-art AV algorithms

and components perform insufficient trade studies, transfer testing,

and longitudinal analysis. Second, a platform is needed that allows

multi-component evaluations and lowers the barrier of pursuing

next-level evaluations such as V2V and V2I collaboration.

AVstack was designed to address the above shortcomings and

more. In this section, we present the high-level innovations of

AVstack that have allowed it to uniquely fill this large void in AV

DITA. As illustrated in Fig. 1, AVstack’s key innovations have

allowed for great strides in design modularity and robust test-

ing & analysis. The critical design decisions of AVstack fall under:

• Wide Compatibility: AVstack is widely compatible with

benchmark AV datasets and physics-based AV simulators.

AVstack leverages many open-source AV components.

• Unified Conventions: AVstack standardizes coordinate

conventions and maintains backward compatibility with

legacy conventions. AVstack metrics and evaluations are

expanded over many preceding benchmarks.

• Modular Testing: AVs can be designed quickly and flexibly

in AVstack drawing from a bank of reconfigurable compo-

nents. AVstack tests implementations seamlessly on static

datasets, longitudinal datasets, and AV simulators with min-

imal software changes.

• Low Barrier: AVstack is written in a high-level program-

ming language. A user can design Level 2-5 AVs and test in

just dozens of lines of code. Trade studies can be initiated

with simple configuration tables.

In the following, we present the motivations and high-level de-

sign details for AVstack. Each section begins by identifying specific

barriers in AV development and how AVstackwas designed as a so-
lution to those challenges. We identify some intentional omissions

from the design in Appendix A.

3.1 Design Goal 1: Wide Compatibility

A community-supported foundation is of the utmost concern

in AVstack. To ensure utility and staying power, AVstack was

designed to be widely compatible with gold-standard benchmark

datasets and simulators. To support representative AV design and

implementation, AVstack maintains compatibility with many open

source components. Below, we provide details on this compatibility.

3.1.1 Design Goal 1.1: Inferfaces & APIs

Motivation. The challenge to designing a widely-compatible

platform is in supporting backward-compatibility and preparing

for forward-compatibility without requiring constant overhauls

that precipitate uncontrolled software bloat. This task is difficult

enough that, until now, we had yet to see a platform bridge the

dataset-simulator gap and deliver inter-source compatibility. In the

following, we investigate several challenges.

Datasets. TheKITTI dataset [15] changed theworld of autonomous

driving. Many foundational works in computer vision benchmarked

on KITTI. However, despite KITTI’s success, it has fundamental

limitations; namely, its small size and lack of full 360◦ camera cov-

erage. Further, algorithms trained on KITTI have shown lower

performance when transferred to other datasets [5], suggesting

that training on KITTI may suffer from overfitting.

In recent years, major players including Waymo and Motional

have released datasets more extensive than KITTI with multiple

sensing modalities [10, 33]. Despite this, many works still bench-

mark primarily on KITTI with only marginal improvements over

prior results. To investigate, we scraped the KITTI leaderboard and

selected all works from the top 50 places with a validated journal or

conference publication. Of the 18 validated entries, many are recent:

13 were published in 2022; all have been released since 2020. They

are all within 3% on the leaderboard. Disappointingly, only a single

entry ran experiments on KITTI, nuScenes [10], and Waymo [33]

datasets, while one entry ran on KITTI and nuScenes, and eleven

entries ran on KITTI and Waymo; see Appendix B for the full table.

Simulators. Simulators such as CARLA [14] allow for important

AV testing in a dynamic environment, provide closed-loop feed-

back (i.e., planning, control), and enable rare-event simulations that

are difficult or dangerous to capture in the real world. However,

CARLA comes with minimal resources to bootstrap AV DITA. In

fact, CARLA provides no algorithms that do not use ground truth

data nor do they provide an architecture for standing up one’s own

AV. As a result, there are few relevant AVs designs out of CARLA

and few benchmark submissions to the CARLA challenge [4].

Recent works using CARLA have established success using end-

to-end, vision-based reinforcement and imitation learning (RL, IL) in

AVs (e.g., [11, 14, 27, 35]). The lean towards RL/IL is in part because

CARLA has no built-in support for training or testing supervised

learning algorithms. There is no “CARLA dataset” and no clear way

to generate one. There are several barriers to this, including that,

to our knowledge, there is no way to obtain the list of objects in

the field of view (even as a ground-truth oracle) without using a

depth-sensor to determine if e.g., a building is blocking the view

to the object. On the other hand, continuously running simulator

trials with a reward function for RL/IL is easy.

Design Goal.We designed AVstack to both bridge the dataset-

simulator gap and to expand upon critically-absent features in exist-

ing APIs. We identified the core features essential for wide dataset

and simulator compatibility. The overarching theme of these inno-

vations is simple: attach details to objects, not just documentation.

In particular, some features that enable AVstack’s wide compat-

ibility include: assigning attributes directly to sensor measurements

so that each natively possesses all identifying information; expand-

ing all object labels with 3D bounding box, object type, object ID, ve-

locity, acceleration, orientation, and angular velocity fields; defining

flexible data structures to route sensor data to multiple end-points;

standardizing reading, writing, and transforming sensor data and

ground truth labels, and much more. Each feature is made possible
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Figure 1: (left) AVstack’s core library provides source-agnostic modular components within a reconfigurable architecture.

AVstack unifies diverse conventions from open-source providers to deliver community-vetted AV design. (center) With the

core library, developer can specify many AV architectures, including “active" (with control) and “passive" (without control).

Shown are a sample of architectures used in this work. (right) AVstack’s API library provides data source interfaces to the most

popular of AV benchmarks and simulators. API also provides low-barrier trade-study capability with configuration tables.

by many precise decisions. For example, 3D bounding boxes need

clear reference frames (e.g., camera-frame, lidar-frame, ego-frame),

orientation angle definitions (e.g., yaw=0 aligned with 𝑥-axis in
camera frame, yaw-pitch-roll vs. roll-pitch-yaw ordering), bound-

ing box height-offset (i.e., 0 � bottom of box, 0 � center of box).

Until now, each user would write software tailored towards the

minimum required information for a single dataset – the hetero-

geneity of options was too high a barrier to support multiple data

sources. With AVstack, users can make software that is reusable

and transferable between sources. Unlike Apollo, Autoware, and

Pylot, AVstack is not designed towards a low-level, low-latency

message-passing scheme. Rather, it exists in a high-level program-

ming language quickly adaptable to new simulators and complex

configurations. The reusability and adaptability lower the amount

of effort required to test algorithms on different platforms. Now,

we can start to expect more validation and verification of AV com-

ponents on representative testing scenarios.

3.1.2 Design Goal 1.2: Component Compatibility

Motivation. A frustrating challenge to researchers is that ground-

breaking AV components are difficult to use beyond their original

benchmarks. To enable insightful evaluation of new components

within a longitudinal environment, the developer must be able to

quickly stand up and rearrange an AV using off-the-shelf compo-

nents. While an individual benchmark may have many perception

algorithms that can all be tested uniformly, minimal support ex-

ists to stitch that perception algorithm together in a longitudinal

evaluation with tracking, motion prediction, and path planning.

Platforms that provide some degree of component compatibility,

such as Pylot, do not support both datasets and simulators. Pylot

Figure 2: AVstack supports a broad set of open-source algo-

rithms. Both custom implementations and open-source li-

braries bootstrap the diverse set of integrated capabilities.

The set of compatible software is continuously growing.

also uses a custom message passing framework designed to mini-

mize latency which is not useful for algorithm trade studies. Rather,

it is suited for applications with real-time consideration.

Design Goal. AVstack supports many prominent open-source

components for both module-based design of AVs and end-to-end

learning-based approaches. AVstack leans on existing open-source

libraries to complement custom components. Fig. 2 provides a

sample of the capabilities at the time of publication. In particu-

lar, AVstack currently supports 4 modes of perception with over 50

different perception algorithms. This wide compatibility is obtained

under a common interface that allows for AV reconfiguration and

reuse of algorithms and components.
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Figure 3: Sensors, datasets, and simulators often use different

coordinate systems which may require up to a 4x4 transfor-

mation matrix to convert vectors between frames: (a) Stan-

dard frame employed by nuScenes [10],Waymo [33]; (b) Cam-

era frame employed by KITTI [15]; (c) Left-handed frame

employed by CARLA [14].

3.2 Design Goal 2: Unified Conventions

There is no “official” set of conventions for AV datasets and

simulators. This is for good reason: each dataset satisfies different

needs of the end user. Datasets without positioning datamay specify

all objects in ego-relative coordinates (e.g., [15]). Some datasets may

introduce sensors not present in other datasets (e.g., radar in [10])

while others defer all sensor specification to the user (e.g., [14]).

Further, end users may have different state-vector requirements

with degrees of freedom ranging from three (x, y, yaw; e.g., [37]) to

nine (x, y, z, height, width, length, roll, pitch, yaw; e.g., [10, 14]).

In a review of state-of-the-art AV datasets and simulators, we

find that no two sources share the same coordinate axes, frame

origin, and orientation angle conventions. In fact, we find that even

within single providers (e.g., [15]) there can be discrepancies in the

conventions. Similarities and differences are highlighted in Table 1.

3.2.1 Design Goal 2.1: Reference Frames

Motivation. The level of complexity and lack of standard of ref-

erence frames hinders dataset-agnostic component design and intro-

duces error into complex multi-sensor, multi-agent configurations.

To mitigate this, we standardize reference frame definitions with a

wrapper around each dataset and simulator. We also introduce the

reference frame chain of command (RefChoC) that represents the

dependency on secondary reference frames (see Fig. 4).

Coordinate Axes. Coordinate frames cause headaches in even

the most proficient of developers. This is particularly important

when data sources use different conventions. One small difference

is illustrated in Fig. 3. While KITTI always labels objects in a right-

down-forward (“camera”) coordinate frame, nuScenes and Waymo

use frames dependent on the sensor which includes many possible

orientations (see Appendix C). CARLA uses a non-traditional left-

handed forward, right, up frame.

Rotation Conventions.Many datasets represent orientation with

Euler or Tait-Bryan (grouped under the name “Euler” in this work)

angles (see Table 1). This allows for a compact representation of

the orientation that is (sometimes) human-interpretable. However,

Euler angles are problematic for several reasons. The most obvious

drawback is the lack of specificity: there are at least 12 accepted

methods of specifying orientation using Euler conventions [20].

This introduces error into the development process. Second, Euler

angles suffer from gimbal lock and discontinuities in certain special

cases. While this is seldom a problem in real-world driving, it is very

relevant for AV simulators due to local nature of map coordinates.

Figure 4: Reference frame defined by (𝑇𝑟, 𝑅, 𝑅𝑒 𝑓 -𝑃, 𝐻 ), with

𝑇𝑟 a translation, 𝑅 a rotation, 𝑅𝑒 𝑓 -𝑃 a parent reference, and

𝐻 the axes handedness. Reference frame chain of command

(RefChoc) followed to a common ancestor when comparing

objects or fusing data from complementary sensors/agents.

Sensor Calibrations. Each sensor should be accompanied by a cal-

ibration that describes both where the sensor is positioned relative

to the ego (often called: “extrinsics”) and sensor-specific properties

(often called: “intrinsics”). Unfortunately, many datasets have am-

biguous calibrations. KITTI provides calibration data but minimal

instructions on how to use it or which data requires transforma-

tion. KITTI also only allows for ego-relative coordinates, which

can impair target tracking models. Meanwhile, CARLA describes

the unique conventions of its coordinate system but no supporting

functions in the software.

There is additional complexity beneath the surface across the

board: calibrations must define whether the translation is in the

pre-rotated or post-rotated reference frame. 4 x 4 transformation

matrices use post-rotation while it is most interpretable to use pre-

rotation. Different providers take different approaches, and details

are seldom documented. Furthermore, specifying a calibration is

ambiguous, even under a clear reference frame and pre/post order

if it does not specify which direction the transformation should be

applied (i.e., does it represent “𝐴 → 𝐵” or “𝐵 → 𝐴”?).

Design Goal.We performed many iterations designing refer-

ence frames for the unified API of AVstack. To achieve standardized
reference frames for the first time and provide a clear and elegant

reference management solution, each physical object, bounding-

box, sensor, and sensor measurement in AVstack is accompanied

by a calibration and/or origin field. These are handled automati-

cally by AVstack for the supported datasets (KITTI, nuScenes, CARLA).
Translations, vectors, rotations, and transformations are always

relative to a reference coordinate frame. AVstack innovatively de-

fines the reference frame as the tuple 𝑅𝑒 𝑓 � (𝑇𝑟, 𝑅, 𝑅𝑒 𝑓 -𝑃, 𝐻 ),

with 𝑇𝑟 a translation, 𝑅 a rotation, 𝑅𝑒 𝑓 -𝑃 a parent reference frame

(for chained reference-frames, e.g., detection-to-sensor-to-ego-to-

world), and 𝐻 the handedness of the axes. (𝑇𝑟, 𝑅) form the origin
field.We illustrate AVstack’s approach for chained reference frames

using a pass-by-reference approach in Fig. 4. We call this approach

the Reference Frame Chain of Command (RefChoc). The RefChoc is

the most reliable way to-date to support both simple cases of chain-

ing (e.g., detection-to-sensor-to-ego-to-world) and complex cases
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Source Vehicle Frame Ego Origin Object Origin Rotation Sensors (#, Rate) KeyFrame Rate

KITTI Object RDF N/A Box Bottom Euler (1D) Camera (4, 10Hz), LiDAR (1, 10Hz) 10Hz

KITTI Raw FLU N/A Box Bottom Euler (1D) Camera (4, 10Hz), LiDAR (1, 10Hz) 10Hz

KITTI Odometry FLU Camera 0 N/A DCM Camera (4, 10Hz), LiDAR (1, 10Hz) 10Hz

nuScenes FLU GP Rear Axle Box Center Quaternion
Camera (6, 12Hz), LiDAR (1, 20Hz),

Radar (5, 13Hz), GPS/IMU (1, 1000Hz)
2Hz

Waymo FLU Ego Center Box Center Euler
Camera (5, 10Hz), Main LiDAR (1, 10Hz),

Peripheral LiDAR (4, 10Hz)
10Hz

CARLA FRU GP Ego Center Box Center Euler (3D) Many (user-specific) N/A

TORCS FL(U) BEV Ego Center BEV Center Euler (1D) Many (user-specific) N/A

AVstack Any Any Any Any Any Any

Table 1: Minor differences in data design become major headaches for the developer. The ego reference and other objects can be

specified with different coordinates, sensor origin, and rotation conventions. Each data source uses different sensors of varying

rates and different attachments. AVstack handles transformations automatically. GP - ground projected; RDF - right, down,

forward; FLU - forward, left, up; FRU - forward, right, up; DCM - direction cosine matrix; BEV - bird’s eye view.

(e.g. multi-sensor, multi-agent) equally while implicitly handling

coordinate transformations for the user to mitigate error-prone

manual calculations.

3.2.2 Design Goal 2.2: Relevant Metrics & Evaluations

Motivation.Metrics facilitate quantitative assessment of an

autonomy stack’s performance. Many popular self-driving and

computer vision benchmarks (e.g., [10, 15]) provide metrics at

the component-level such as camera perception mean-average-

precision (mAP), LiDAR perception mAP, tracking performance,

prediction accuracy. These follow the hypothesis that improving

individual components will lead to improved AVs in the aggregate.

The sum-of-its-parts argument neglects cross-cutting interac-

tions and trade-offs that exist at the intersection between compo-

nents. For example, many perceptionmetrics neglect model runtime

and the impact of latency on path planning and control. Similarly,

improving individual components ignores inter-component error

propagation; e.g., mAP takes the mean AP over all classes while

not all classes impact motion prediction or path planning equally.

DesignGoal. In response to the shortcomings of single-component

metrics, we quantify performance at multiple components simul-

taneously, similar to [16]. AVstack provides a large selection of

metrics at each level of the pipeline including the Responsibility

Sensitive Safety (RSS) metric [32]. A select list of the supported

metrics can be found in Table 2. Maintaining a broad set of metrics

for longitudinal scenarios helps pursue:

1. Cross-Cutting Interactions: AV designers cannot ignore

the interactions between components and the error propa-

gation that exist when designing a longitudinal agent.

2. LongitudinalAnalysis: Single-frame examples from datasets

are incapable of validating the full performance of AVs due

to their complex temporal behavior.

3. Safety Evaluation: Paradoxically, safety is both a primary

method of regulating autonomy [13] and woefully under-

utilized in quantitatively evaluating AVs.

3.3 Design Goal 3: Modular Testing

AVstack enables expanded AV lifecycle analysis. We describe

how AVstack’s design enables for the first time reconfigurable

architectures, expanded evaluations, streamlined model training,

and multi-sensor, multi-agent configurations.

Module Metric

Perception
False Positive Rate (FPR), Precision, mAP

False Negative Rate (FNR), Recall, IoU

Tracking

IoU, False Track Rate (FTR)

Missed Track Rate (MTR) [7]

Higher Order Tracking Accuracy (HOTA) [23]

CLEAR [8], VACE [25], IDEucl [23]

Prediction
Average Displacement Error (ADE) [26]

Final Displacement Error (FDE) [6]

Planning
Responsibility Sensitive Safety (RSS) [32]

Path KL Divergence [10]

Control
Responsibility Sensitive Safety (RSS) [32]

CARLA Leaderboard Benchmark [14]

Table 2: AVstack unifiesmetrics for longitudinal testingwhile

previous works only tested isolated components. AVstack
uniquely incorporates the RSS safety metric.

3.3.1 Design Goal 3.1: Reconfigurable Architectures

Motivation.Many open platforms constrain users to purely

module-based [16] or purely end-to-end [27], which limits software

reusability and next-level evaluations. Pylot, Apollo, and Autoware

have rigid architectures (green lines in Fig. 5) due to their low-level

message passing. Changing architecture is difficult in all cases, and

changing implementation in Apollo and Autoware is very challeng-

ing. It is more difficult to perform trade studies comparing sensors,

to incorporate new sensors, and to consider novel AV architectures.

These factors contribute to stagnation in AV development.

Design Goal. Components are the backbone of computation

in AVs. In contrast to other platforms, AVstack enables any con-

nection between components with its reconfigurable design. The

reconfigurable architecture cuts software complexity at the expense

of real-time guarantees. Fig. 5 illustrates that AVstack opens up

“non-traditional” connections between modules.

Imperatively, AVstack’s design philosophy disassociates imple-

mentation from platform. Thus, components are reusable between

and among datasets and simulators. We illustrate in Fig. 6 the flow

of data. Simulator and dataset interfaces are standardized around

base classes with common methods to get sensor data and object

labels. The API is flexible enough to serve as the interface for all
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Figure 5: AVstack configuration is modular: any connection

betweenmodules is feasible. Breaking traditional constraints,

any connection between components is also feasible. Module

names illustrate classic module-based AV design. Traditional

connections in bold green; new connections in dashed blue.

Figure 6: AVstack partitioned into API, intermediary, and

algorithm modules to support reusability and portability

of components. APIs built on common framework to allow

first-of-a-kind dataset↔simulator transfer testing.

data sources. This supports early-stage development on captured

datasets with longitudinal testing on end-to-end simulators.

3.3.2 Design Goal 3.2: Expanded Evaluations

Motivation. Our meta-analysis from Table 7 (Appendix B) sug-

gests that transfer testing of algorithms is too difficult with existing

tools. Too few works perform testing on multiple large, complex

datasets. Moreover, an even smaller set of works perform longitu-

dinal analysis of inter-component error propagation. At the same

time, simulators including CARLA do not provide sufficient re-

sources to bootstrap AV implementations for longitudinal testing.

Design Goal. AVstack greatly expands evaluations for AVs. It

enables dataset-to-dataset, dataset-to-simulator, and simulator-to-

simulator transfer testing. AVs can be designed for static dataset,

passive longitudinal, or active longitudinal (i.e., with control) self-

driving scenarios. To show the deep level of insight made possible

by AVstack, we present metrics from a large trade study across 5

AV configurations in Section 4.1.

3.3.3 Design Goal 3.3: Streamlined Learning

Motivation. Supervised learning is a critical piece of AVs. Many

modules including perception and path planning rely on learned

components to perform fast and accurate inference on sensor data.

A major challenge of learning-based techniques is that retraining is

fraught with errors when trying to adapt datasets. Moreover, even

mature simulations have limited ways to generate labeled training

data from the simulator, even as a ground-truth oracle. There is

no way to natively capture ground truth object labels in view of a

sensor and unoccluded by buildings.

Design Goal. To aid the supervised learning process for AVs,

we leverage mature modular infrastructures for supervised and

reinforcement learning. AVstack uses MMLab’s [5] open-source

training infrastructure and provides a custom AVstack dataset inter-
face to train and test dozens of perception models. We also provide

a methodology for generating training data from the CARLA simu-

lator. AVstack implements much-needed automated methods for

cleaning CARLA data such as field-of-view estimation, occlusion

categorization, and bounding box projection to address critical barri-

ers in the adoption of CARLA for realistic self-driving. In Section 4.2,

we illustrate how this data generation process can be configured to

generate complex multi-agent scenarios and collaborative V2V, V2I

sensing data for model training and testing. This allows for creation

of large volumes of collaborative perception data with consistent

ground truth labels between multiple viewpoints.

3.3.4 Design Goal 3.4: Multi-Sensor, Multi-Agent Systems

Motivation.Multi-sensor and multi-agent testing are part of a

critical wave of next-level challenges for AVs [13]. As investments

in smart infrastructure are considered, it is critical to evaluate the

trade-offs in collaborative configurations. However, there are sev-

eral barriers to testing both cases. Multi-sensor testing is difficult

because sensor data always requires transformations between ref-

erence frames and may be configured with partially overlapping

fields of view. Unfortunately, it is error-prone to leave multi-sensor

configuration up to the developer; yet few public platforms provide

effective multi-sensor support. Multi-agent testing has also yet to

be sufficiently realized. The majority of evaluations in self-driving

have focused on static datasets that lack multi-agent information.

Similarly, even in simulator environments, mature AV research

platforms have constrained architectures and components. This

limited modularity means that adding new sensor data, integrating

new components, and designing new algorithms is burdensome.

Design Goal. To solve the sensor data and reference-frame chal-

lenges inmulti-sensor/multi-agent configurations, AVstack has sev-
eral important innovations. First, reference frame transformations

can be performed automatically by specifying a start and end-point

reference. This removes error-prone coordinate transformations

(e.g., object-to-sensor1-to-ego-to-sensor2 for multi-sensor; sensor1-

to-agent1-to-world-to-agent2-to-sensor2 for multi-agent). Second,

AVstack has a growing list of sensors to which it offers compati-

bility. In the simulator context, AVstack bootstraps ego and sen-

sor classes with clearer and developer-friendly configurations to

support existing simulator features. Third, architecture design is
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Figure 7: AVstack bootstraps CARLA for multi-sensor, multi-

agent configurations, opening possibility for next-generation

AV DITA. Here, camera sensors are placed at infrastructure

locations to provide collaborative view. (top right) Ego vehi-

cle with local camera and LiDAR: object detections in white

boxes. (top left) Infrastructure sensor detects objects in cam-

era corresponding to objects fromego: cyan, red, purple ovals.

modular in AVstack. Components from a single-agent AV can be

reused in multi-agent contexts. Single-agent AVs can be evaluated

against multi-agent AVs in a unified simulation framework (Fig. 7).

3.4 Design Goal 4: Low Barrier

Motivation. Apollo, Autoware, and Pylot are mature AV plat-

forms but all have a high barrier to entry. All rely on high-performance

message passing frameworks to deliver low-latency sensor data

at the cost of architecture flexibility. Source code for Apollo and

Autoware is complex and rigid. They are targeted to full-stack AVs

that ingest sensor data and output control decisions. This makes de-

bugging individual algorithms and components incredibly difficult;

changing AV architecture is exceptionally challenging.

Design Goal. AVstack provides a low-barrier and flexible AV

testing framework. For the first time, there is compatibility between

datasets and simulators. At the intermediary between data and al-

gorithms are thread-safe data structures that handle flexible routing

of data from source to destination in a high-level programming

language. Our no-copy philosophy allows data to be transferred

efficiently to support near-real-time execution; however, data are

handled with the utmost flexibility for the user. An object-oriented

approach allows sensor data to be efficiently routed with multiple

end-points. In Section 4, we provide case studies using just dozens

of lines of code on top of AVstack to create unique AVs and diverse
testing environments.

4 Use Case Experiments

In this section, we show how AVstack enables important explo-

ration, trade studies, and analysis at low development cost.

4.1 Portability and Transfer Testing

Two major causes of a slowdown in AV development are poor

infrastructures for transfer testing between datasets & simulators,

Figure 8: LiDAR-only, camera-LiDAR, and collaborative Li-

DAR agents require only 15, 20, and 30 lines of code at the

top level to instantiate. Implementations can run on datasets

& simulators allowing for insightful and rapid trade studies.

and limited longitudinal evaluations. The ability to perform algo-

rithm testing across data sources is vital for validation of complex

components. Running longitudinal evaluations helps understand

cross-component error propagation, which is lacking in single-

component analysis.

To demonstrate that AVstack enables transferability between

data sources, we design passive agents using LiDAR-based and

camera-LiDAR fusion component architectures (e.g., as in [17, 18])

shown in Fig. 8.We can use AVstack to create these dataset-agnostic
agents using just 15 and 20 line of code. We call these “passive”

because we leave out planning and control – a capability made

possible by AVstack’s reconfigurable design. Within the two archi-

tectures, we test different combinations of algorithms to form five

different implementations. The complete case study specification is

represented with a “configuration table” in AVstack, as illustrated
in Table 3. With this configuration table, AVstack evaluates the

different AV implementations over KITTI, nuScenes, and CARLA

on 10 randomly sampled longitudinal sequences. During each run,

AVstack captures per-frame and per-sequence metrics that were

summarized in Table 2.

AVstack’s output of the trade study is a set of detailed per-frame

and per-case results (not shown) and an aggregated benchmark

table; see Table 4. Videos of select sequences can be found online [2].

AVstack’s breadth and depth of measurements make it useful for

component-wise analysis of AVs. In this case study, we find 3D ob-

ject precision is high across all algorithms and all datasets; however,

recall on nuScenes is low. Similarly, nuScenes tracking performance

(HOTA) is lower compared to KITTI and CARLA.
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ID LiDAR Percep Cam Percep Tracking Prediction

0 PointPillars [22] N/A AB3DMOT [36] Kinematic

1 3DSSD [24] N/A AB3DMOT [36] Kinematic

2 PointPillars [22] FasterRCNN [29] EagerMOT [21] Kinematic

3 3DSSD [24] FasterRCNN [29] EagerMOT [21] Kinematic

4 PointPillars [22]
Cascade

MaskRCNN [19]
EagerMOT [21] Kinematic

Table 3: AVstack enables transferability between data sources.

uses configuration tables to run trade studies. Modules are

widely compatible with community implementations. Com-

ponents are dataset-agnostic. The 5 case studies here are used

for the transfer test in Section 4.1.

4.2 Multi-Sensor, Multi-Agent Collaboration

While multi-sensor, multi-agent configurations are imperative

for next-generation AV evaluations, they are difficult to design and

test using today’s available platforms. Some recent works have

begun to analyze cooperative settings using ad-hoc development

environments [12, 38]. Previous evaluation platforms have lever-

aged existing datasets to run experiments. Usefully, AVstack is

not tied to an individual dataset. Rather, the AVstack API provides

a flexible and easy to use approach to leverage existing datasets

and to generate any scenario, including multi-sensor, multi-agent

configurations, in the CARLA simulator.

We use AVstack to design a collaborative agent with an architec-

ture similar to Fig. 8(c). The agent possesses a LiDAR sensor with a

limited range of 25𝑚. To obtain sufficient situational awareness,

the agent must use information from nearby infrastructure sensors

to complement its own limited sensing information. We do not con-

sider planning or control components and instead investigate the

agent just using perception, tracking, and prediction performance.

We use the AVstack API to test our multi-agent design. We place

40 64-line LiDARs with a field-of-view of 180◦ at random locations

in CARLA’s Town-10. These serve as the infrastructure sensors.

Each collaborative sensor is placed at a 30◦ pitch angle and a height

of 15 m to obtain an appropriate viewing angle. We chose to use

LiDAR sensors to simplify 3D positioning, but any and all sensors

in CARLA can be used, including cameras and radars.

With this configuration, we design two trade study experiments

to evaluate the trade-offs between (1) sensor communication range

and detection accuracy, and (2) sensor rate and detection accuracy.

Table 5 highlights the different configurations in this experiment.

Using the trade study capability of AVstack, we run the ego

agent over the 9 collaborative cases from Table 5 on 5 randomly-

generated CARLA scenes with 150 “other” vehicles. Collaborative

detections are transmitted from sensor to agent at the specified

data rate. Upon receiving messages, the agent first performs pre-

processing to ignore any detections outside of a 100 m radius, for

computational efficiency. The agent then integrates detections with

data association, assigns measurements to existing tracked objects,

and spawns new tracks with unassigned detections. Additional

configuration details can be found at [2] as well as in Appendix D.

At the culmination of the study, AVstack generates aggregated

results tables, shown in Table 6. Videos of select sequences can

be found online [2]. We find that collaborative sensing can aid an

agent, particularly in this case where the ego’s sensor range was

limited. In Table 6-A, we find the HOTA metric is highest (best) for

C1-Ideal and C1-1. Also, prediction error, ADE and FDE, are lower

with collaboration compared to C1-base. In Table 6-B, we find that

tracking performance does not deteriorate when trading sensor

rate from 10 𝐻𝑧 to 5 𝐻𝑧 for a decrease in detection noise - HOTA

remains constant among all cases. While differences in prediction

errors, ADE and FDE, are not significantly different between cases

C2-1 and C2-2, it is worth investigating in more detail the impact

of sensor rate on prediction performance.

5 Conclusion
We have introduced AVstack as an open-source, reconfigurable

software platform for AV design, implementation, test, and anal-

ysis. We have illustrated in several case studies that AVstack sup-
ports rapid prototyping of reusable AV components, longitudi-

nal evaluations with component-wise metrics, and diverse multi-

sensor, multi-agent configurations. AVstack delivers solutions to
the most common challenges faced by AV users with its bank of

community-support components, by bridging convention conflicts

among datasets and simulators, by supporting algorithm reuse with

dataset-agnostic and flexible components, and by delivering much-

needed support for next-level analysis. Its key design principles

will help accelerate the push toward important AV milestones. In

several case studies focusing on portability and transfer testing, as

well as testing of multi-sensor, multi-agent collaboration, we have

illustrated these benefits of the use of AVStack.

Acknowledgments

This work is sponsored in part by the ONR under the agreements

N00014-20-1-2745 and N00014-23-1-2206, AFOSR award number

FA9550-19-1-0169, NSF CNS-1652544 award as well as the National

AI Institute for Edge Computing Leveraging Next Generation Wire-

less Networks, Grant CNS-2112562.

References

[1] [n. d.]. Autoware. https://www.autoware.org/.
[2] [n. d.]. AVstack. https://www.avstack.org/research.
[3] [n. d.]. Baidu Apollo. apollo.auto.
[4] [n. d.]. CARLA Leaderboard. https://app.alphadrive.ai/benchmarks/3/overview.
[5] 2020. MMDetection3D: OpenMMLab next-generation platform for general 3D

object detection. https://github.com/open-mmlab/mmdetection3d.
[6] Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre Robicquet, Li

Fei-Fei, and Silvio Savarese. 2016. Social lstm: Human trajectory prediction in
crowded spaces. In IEEE CVPR. 961–971.

[7] Keni Bernardin and Rainer Stiefelhagen. 2008. Evaluating multiple object track-
ing performance: the clear mot metrics. EURASIP Journal on Image and Video
Processing 2008 (2008), 1–10.

[8] Keni Bernardin and Rainer Stiefelhagen. 2008. Evaluating multiple object track-
ing performance: the clear mot metrics. EURASIP Journal on Image and Video
Processing 2008 (2008), 1–10.

[9] Barry Brown. 2017. The social life of AV cars. Computer 50, 2 (2017), 92–96.
[10] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, et al. 2020. nuscenes:

A multimodal dataset for autonomous driving. In IEEE/CVF CVPR. 11621–11631.
[11] Dian Chen, Brady Zhou, Vladlen Koltun, and Philipp Krähenbühl. 2020. Learning

by cheating. In CoRL. PMLR, 66–75.
[12] Hanlin Chen, Brian Liu, Xumiao Zhang, Feng Qian, Z Morley Mao, and Yiheng

Feng. 2022. A Cooperative Perception Environment for Traffic Operations and
Control. arXiv preprint arXiv:2208.02792 (2022).

[13] Missy Cummings. 2017. The Brave new world of Driverless cars. TR News 308
(2017), 34–7.

[14] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen
Koltun. 2017. CARLA: An open urban driving simulator. In CoRL. PMLR, 1–16.

[15] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. 2013. Vision
meets robotics: The kitti dataset. The Int. Journal of Robotics Research 32, 11
(2013), 1231–1237.



ICCPS ’23, May 9–12, 2023, San Antonio, TX, USA R. Spencer Hallyburton, Shucheng Zhang, and Miroslav Pajic

Case Data Per: 3D Prec. Per: 3D Rec. Per: 2D Prec. Per: 2D Rec. Trk: HOTA Trk: MOTA Trk: MOTP Pred: ADE Pred: FDE

0

K

N

C

0.37 +/- 0.24

0.99 +/- 0.01

0.99 +/- 0.00

0.90 +/- 0.21

0.25 +/- 0.07

0.77 +/- 0.02

N/A

N/A

N/A

N/A

N/A

N/A

0.52 +/- 0.19

0.11 +/- 0.04

0.51 +/- 0.07

-0.03 +/- 2.48

0.20 +/- 0.07

0.48 +/- 0.05

3.62 +/- 0.10

2.68 +/- 0.16

2.85 +/- 0.14

1.33 +/- 0.94

0.26 +/- 0.08

4.99 +/- 3.65

3.87 +/- 1.41

0.26 +/- 0.08

11.55 +/- 5.37

1

K

N

C

0.25 +/- 0.19

1.00 +/- 0.02

0.99 +/- 0.00

0.39 +/- 0.17

0.19 +/- 0.06

0.68 +/- 0.05

N/A

N/A

N/A

N/A

N/A

N/A

0.40 +/- 0.16

0.09 +/- 0.04

0.46 +/- 0.07

-0.15 +/- 0.32

0.12 +/- 0.05

0.43 +/- 0.04

3.07 +/- 0.73

2.75 +/- 0.13

2.82 +/- 0.13

1.20 +/- 0.78

0.31 +/- 0.06

5.20 +/- 3.33

1.86 +/- 1.77

0.31 +/- 0.06

12.11 +/- 4.91

2

K

N

C

0.37 +/- 0.24

0.69 +/- 0.18

0.62 +/- 0.13

0.90 +/- 0.21

0.32 +/- 0.02

0.88 +/- 0.06

0.31 +/- 0.18

0.90 +/- 0.04

0.40 +/- 0.25

0.73 +/- 0.20

0.52 +/- 0.11

0.13 +/- 0.09

0.71 +/- 0.13

0.11 +/- 0.04

0.12 +/- 0.05

0.60 +/- 0.22

0.11 +/- 0.07

0.08 +/- 0.05

3.77 +/- 0.17

2.89 +/- 0.30

3.00 +/- 0.30

0.77 +/- 0.58

1.05 +/- 0.43

1.26 +/- 0.54

1.78 +/- 1.67

1.05 +/- 0.43

3.56 +/- 0.70

3

K

N

C

0.25 +/- 0.19

0.67 +/- 0.19

0.54 +/- 0.13

0.39 +/- 0.17

0.24 +/- 0.03

0.69 +/- 0.09

0.31 +/- 0.18

0.90 +/- 0.04

0.40 +/- 0.25

0.73 +/- 0.20

0.52 +/- 0.11

0.13 +/- 0.09

0.46 +/- 0.18

0.09 +/- 0.03

0.10 +/- 0.05

0.34 +/- 0.14

0.07 +/- 0.03

0.06 +/- 0.05

2.98 +/- 0.55

2.93 +/- 0.29

2.99 +/- 0.28

0.61 +/- 0.69

0.63 +/- 0.59

1.44 +/- 0.41

1.21 +/- 1.95

0.63 +/- 0.59

3.38 +/- 0.54

4

K

N

C

0.37 +/- 0.24

0.69 +/- 0.18

0.62 +/- 0.13

0.90 +/- 0.21

0.32 +/- 0.02

0.88 +/- 0.06

0.29 +/- 0.18

0.78 +/- 0.05

0.93 +/- 0.02

0.95 +/- 0.23

0.72 +/- 0.08

0.60 +/- 0.07

0.70 +/- 0.08

0.12 +/- 0.03

0.36 +/- 0.09

0.59 +/- 0.08

0.10 +/- 0.08

0.30 +/- 0.07

3.77 +/- 0.12

2.89 +/- 0.10

3.01 +/- 0.07

0.86 +/- 0.23

1.06 +/- 0.33

2.68 +/- 1.32

1.51 +/- 1.12

1.06 +/- 0.33

5.17 +/- 3.80

Table 4: AVstack enables first-of-a-kind trade studies simply by specifying a configuration table such as Table 3. Results are

averaged over 10 longitudinal trials using the centrall mounted LiDAR and forward-facing camera. Each trial is over a 20

second scene for each dataset (K: KITTI, N: nuScenes, C: CARLA). Each AV configuration “Case" is described in Table 3. For

the first time, metrics can be computed at each level of the pipeline (Per. 2D/3D: 2D or 3D Perception, Trk.: Tracking, Pred.:

Prediction) at the same time to illuminate error propagation between modules. Best performance is highlighted per-cell.

Table 5: Collaborative Experiment Design

Case LiDAR Percep Cam Percep Tracking Prediction

All PointPillars [22] N/A AB3DMOT [36] Kinematic

Panel A: AV configuration constant for all collaborative studies.

Case Density Det. Type Comm Range Det. Rate Det. Noise

C1-Ideal 40/map 3D Box 100 m 10 Hz None

C1-1 40/map 3D Box 100 m 10 Hz High

C1-2 40/map 3D Box 70 m 10 Hz Med

C1-3 40/map 3D Box 50 m 10 Hz Low

C1-Base 40/map N/A N/A N/A N/A

Panel B: Experiment (C1) trading comm range for noise.

Case Density Sensor Comm Range Det. Rate Det. Noise

C2-Ideal 40/map 3D Box 80 m 10 Hz None

C2-1 40/map 3D Box 80 m 10 Hz High

C2-2 40/map 3D Box 80 m 5 Hz Low

C2-Base 40/map N/A N/A N/A N/A

Panel C: Experiment (C2) tests communication rate vs. noise.
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Table 6: Collaborative Vehicle-to-Infrastructure Case Study Results.

Case Data Collab: Sensors-in-range/frame Collab: Dets/frame Trk: HOTA Trk: MOTA Trk: MOTP Pred: ADE Pred: FDE

C1-Ideal C 13.00 +/- 3.30 122.00 +/- 63.69 0.55 +/- 0.16 -0.40 +/- 0.61 3.10 +/- 0.08 1.19 +/- 0.53 3.23 +/- 1.86

C1-1 C 13.00 +/- 3.30 122.00 +/- 63.69 0.52 +/- 0.14 -0.46 +/- 0.64 2.94 +/- 0.06 0.86 +/- 0.29 2.65 +/- 1.23

C1-2 C 5.00 +/- 2.45 55.00 +/- 35.72 0.32 +/- 0.14 -0.90 +/- 1.55 2.92 +/- 0.09 1.41 +/- 0.14 3.64 +/- 0.46

C1-3 C 2.00 +/- 1.89 20.00 +/- 41.96 0.54 +/- 0.12 -0.24 +/- 0.47 2.99 +/- 0.05 1.07 +/- 0.24 2.65 +/- 0.75

C1-Base C N/A N/A 0.47 +/- 0.09 0.35 +/- 0.07 3.10 +/- 0.10 2.42 +/- 1.99 6.40 +/- 3.26

Panel A: Trading communication range for detection accuracy over 10 trials of 500 frames in CARLA.

Case Data Collab: #S-in-range/frame Collab: Dets/frame Trk: HOTA Trk: MOTA Trk: MOTP Pred: ADE Pred: FDE

C2-Ideal C 3.50 +/- 1.50 40.25 +/- 13.75 0.63 +/- 0.17 -0.06 +/- 0.68 3.04 +/- 0.07 1.36 +/- 0.45 3.36 +/- 1.31

C2-1 C 3.50 +/- 1.50 40.25 +/- 13.75 0.61 +/- 0.18 -0.08 +/- 0.69 2.90 +/- 0.07 0.98 +/- 0.14 2.23 +/- 0.60

C2-2 C 3.50 +/- 1.50 18.50 +/- 6.00 0.60 +/- 0.18 -0.09 +/- 0.67 2.88 +/- 0.06 0.94 +/- 0.01 2.05 +/- 0.13

C2-Base C N/A N/A 0.66 +/- 0.08 0.54 +/- 0.07 3.02 +/- 0.10 1.60 +/- 0.56 5.74 +/- 0.74

Panel B: Trading communication rate for detection accuracy over 10 trials of 500 frames in CARLA.

A Intentional Design Omissions

No platform can satisfy the requirements of all AV use-cases

because some are in conflict. For example, introducing architecture

modularity can sacrifice real-time performance. To address some of

the critical barriers to AV development, a modular research platform

is essential and lacking.

We are faced with fundamental architecture questions for multi-

sensor, multi-agent AVs where industry is dramatically outpacing

research. For the next generation of smart vehicles, insightful DITA

must be prioritized. To do so in an expeditious manner, there must

be a low barrier to entry, even if this means sacrificing other quali-

ties. In particular, AVstack intentionally places less emphasis on

the following areas:

• Real Time: AVstack is not proposed as a real-time solution.

We have not performed experiments evaluating latency. At-

tempting to package AVstack as a real-time AV may require

a real-time operating system and low-latency data passing

which would negatively affect modularity.

• Low-Level Programming: AVstack is based on Python to

allow for rapid prototyping and easy interfacing to third-

party simulation engines. It was not written with speed or

memory as a primary goal, in contrast to higher-barrier

autonomy stacks Apollo and Autoware.

B State of the Art Perception

The KITTI dataset [15] was instrumental in the progress of AV

perception development. Since, KITTI’s original release, major play-

ers including Waymo and Motional have released datasets more

extensive than KITTI with multiple sensing modalities [10, 33].

Unfortunately, we find that even recent state-of-the-art perception

algorithms neglect to provide sufficient evaluation on these more

challenging datasets. To investigate, we scraped perception bench-

mark leaderboards, as described in Section 3.1.1. The findings of

this meta-analysis are in Table 7. Of 18 validated entries in the top

50 on KITTI, many are recent, and progress between them has been

Friendly Name Year KITTI nuScenes Waymo

Sparse Fuse Dense 2022 Y (84.8) N N

CasA 2022 Y (84.0) N Y (78.3/69.6)

GLENet 2022 Y (83.2) N Y (77.3/69.7)

VPFNet 2022 Y (83.2) N N

Graph R-CNN 2022 Y (83.2) N Y (72.6/72.1)

BtcDet 2022 Y (82.9) N Y (78.6/70.1)

SPG 2021 Y (82.7) N Y

SE-SSD 2021 Y (82.5) N N

DVF 2022 Y (82.5) N Y (67.6/62.7)

RDIoU 2022 Y (82.3) N Y (78.4/69.5)

FocalsConv 2022 Y (82.3) Y (70.1) Y (72.2/64.1)

CLOCs 2020 Y (82.3) N N

SASA 2022 Y (82.2) Y (45) N

VoTr 2021 Y (82.1) N Y (69.0/60.2)

Pyramid R-CNN 2021 Y (82.1) N (76.3/67.0)

VoxSet 2022 Y (82.1) N Y (77.9/70.2)

SRIF-RCNN 2022 Y (82.0) N N

Q-Net 2022 Y (82.0) N N

Table 7: Recent publications atop the KITTI leaderboard are

not always cross-validated against other, larger datasets. The

nuScenes dataset has limited adoption. Continued testing on

KITTI has only achieved marginal improvements on already

high performing marks.

marginal at only 3% gained. Unfortunately, even these recent works

neglect cross-dataset evaluations, leading to challenges with repro-

ducibility and translational success in contexts such as simulators

and real AVs.

C KITTI, nuScenes, Waymo Configurations

The release of high-fidelity benchmark datasets from major re-

search institutions and prominent industry players has significantly

contributed to a boom in AV algorithm development. Large datasets
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(a) KITTI [15]

(b) nuScenes [10]

(c) Waymo [33]

Figure 9: Configurations from different AV data source

providers are all unique; each dataset has its own sensor

types, sensor orientations, reference frames, and data rates.

Evaluating components across all sources leads to insight-

ful results.

like nuScenes [10] and Waymo’s Open Dataset [33] have garnered

attention recently for their challenging mix of weather conditions

and multiple complementary sensing modalities.

Despite their contributions to the field, no platform has managed

to unify the datasets under an tractable umbrella. This is in part

due to the intricacy and uniqueness of each platform itself. To help

illuminate why unifying these datasets under a common interface

is challenging, we provide the sensor configurations for KITTI [15],

nuScenes, and Waymo’s open dataset in Figure 9.

D Configuration of Collaborative Case Study

The vehicle-to-infrastructure (V2I) collaborative case study of

Section 4.2 provides a framework for future efforts to develop multi-

agent components and design smart cities. In this section, we pro-

vide additional details on the specific parameters used. These de-

tails can also be found in the source code online at [2]. We used

LiDAR sensors as our infrastructure sensors. In pre-processing,

we determined if objects were in the field of view of a sensor for

ground-truth evaluation by using ray-tracing to filter out objects

that were completely occluded (i.e., no LiDAR points in bounding

box). We did so because CARLA has no alternative method, to our

knowledge, of validating if an object is in view of a sensor. After

pre-processing, we simulated detections from the LiDAR sensor

rather than run a perception algorithm. This was solely so that we

could apply our own noise model to the infrastructure detections as

a trade study. Then, to simulate V2I communication, we performed

range-based filtering to identify which infrastructure sensors were

in-range of the ego vehicle. Detections were passed with no latency

to the ego agent. The agent then fused the infrastructure detections

with existing tracks in a Kalman filter with a standard assignment

algorithm. We evaluated performance of the ego agent against ob-

jects in the field of view of the ego within a range of 100 m and a

maximum occlusion score of “partial”.


