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Abstract

Pioneers of autonomous vehicles (AVs) promised to revolutionize
the driving experience and driving safety. However, milestones in
AVs have materialized slower than forecast. Culprits include (1) the
lack of verifiability of proposed state-of-the-art AV components, and
(2) stagnation of pursuing next-level evaluations, e.g., vehicle-to-
infrastructure (V2I) and multi-agent collaboration. In part, progress
has been hampered by: the large volume of software in AVs, the mul-
tiple disparate conventions, the difficulty of testing across datasets
and simulators, and the inflexibility of state-of-the-art AV com-
ponents. To address these challenges, we present AVstack!,2, an
open-source, reconfigurable software platform for AV design, imple-
mentation, test, and analysis. AVstack solves the validation problem
by enabling first-of-a-kind trade studies on datasets and physics-
based simulators. AVstack addresses the stagnation problem as a
reconfigurable AV platform built on dozens of open-source AV com-
ponents in a high-level programming language. We demonstrate
the power of AVstack through longitudinal testing across multiple
benchmark datasets and V2I-collaboration case studies that explore
trade-offs of designing multi-sensor, multi-agent algorithms.
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« Computer systems organization — Robotic autonomy; «
Software and its engineering — Software libraries and repos.
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1 Introduction

The AV industry has proliferated over the past two decades.
Experts point to the DARPA Grand Challenge as the coming of
age of AVs [30]. Soon after, expectations ballooned that we would
see fully automated vehicles on the road within a decade [9]. In
response, the autonomy community has exploded into industry
and academic players both large and small. However, milestones
in AV development have slowed in recent years. In fact, Tesla has
promised to deliver fully self-driving cars “next year” for the last 8
years [34] and is as of yet still deploying Level-2 solutions.

A major challenge to AV development is that most AV solutions
are proprietary and closed-source. This is a result of the immense
cost of development that safety-critical AVs require. However, the
rush to deploy autonomous vehicles and the proprietary nature of
industry solutions are conflicting. In particular, industry progress
is outpacing research and development. This disparity is negatively
impacting progress and trust in AVs. While industry rushes to cap-
ture a new market, access to representative platforms is hampering
fundamental safety and performance research [13].

We find two culprits for such a slowdown in AV research. First,
proposed state-of-the-art AV algorithms and components perform
insufficient transfer testing and longitudinal analysis. This leads
to a lack of accountability and verifiability. Second, much AV re-
search pursues (marginal) improvements on single-component
benchmarks (e.g., LIDAR-based detection challenges [10, 15, 33]).
Similarly, pursuing critical next-level evaluations such as multi-
agent (e.g., vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I))
collaborative sensing or safety & security analysis has stagnated.

At the root of these problems are several barriers: (1) Design-
ing and implementing an AV require large amounts of complex
software. The jumps from testing components on static datasets
to longitudinal datasets to full-stack simulations are large, and no
existing platform can handle all scenarios. (2) Data sources use dif-
ferent conventions for coordinates, reference frames, metrics, cali-
brations, and more, which makes case-by-case conversions prone to
error. (3) Mature AV platforms are designed with custom messaging
protocols in low-level languages, which creates rigid AV architec-
tures and implementations. Rigidity inhibits modular testing and
puts a high-barrier on design changes. (4) Implementations of state
of the art AV algorithms are highly tailored towards benchmark
challenges. Adapting them to new contexts is time-consuming.

Several platforms have emerged to support open-source AV de-
velopment. Baidu’s Apollo [3] and Autoware [1] are established
as preeminent platforms for deployable, real-time AVs. Recently,
Pylot [16] has also allowed for more trade studies in AVs (i.e., eval-
uating the impact of parameter/configuration changes on output
metrics). Each of these platforms is useful and needed. However,
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each has serious shortcomings when it comes to the design of novel
AV architectures for next-level challenges and transfer testing of
AV components between datasets/simulators.

To fill this void, we present AVstack, a new research platform
for the design, implementation, test, and analysis (DITA) of AVs.
AVstack has the following four key innovations designed to pro-
mote modular AV design, simple implementation, wide-reaching
testing, and insightful analysis. The key innovations are:

(1) Wide compatibility: To our knowledge, AVstack is the first plat-
form compatible with both benchmark AV datasets and physics-based
AV simulators. It maintains compatibility with dozens of open-source
AV algorithms across AV components and established metrics.

(2) Unified conventions: AVstack implements a flexible set of co-
ordinate conventions attached to all vector-type objects to unify
coordinates. It also unites component-wise metrics from multiple
providers. This helps maintain forward and backward compatibility,
reduces the user burden to keep track of case-by-case uniqueness,
and enables complex, multi-sensor, multi-agent configurations.

(3) Modular testing: AVstack streamlines DITA in AVs. Reconfig-
urability breaks rigid constraints of prior platforms allowing for
novel designs and reusable implementations. With AVstack, test-
ing is performed seamlessly on static/longitudinal datasets and
physics-based simulators with metrics at every AV component.

(4) Low barrier adoption: AVstack is written in a high-level pro-
gramming language to allow for rapid prototyping and reusable
implementations. A suite of AVs can be designed, implemented,
tested, and analyzed with little effort in unique configurations such
as multi-sensor, multi-agent settings.

AVstack is a framework for AV development. It provides a unique
combination of performance and modularity — high-performing
algorithms with a flexible and reconfigurable architecture to enable
diverse and rapid prototyping. AVstack is not the “best” framework
for all AV applications. However, its innovations fill important
voids in validating state of the art results, transfer testing between
datasets/simulators, standardizing AV evaluations, and pursuing
next-level questions in multi-sensor, multi-agent configurations.
AVstack is available open-source®.

In summary, AVstack contributes the following innovations:

e Unifies testing and analysis within and between benchmark
static/longitudinal datasets and physics-based simulators.

o Enables reconfigurable and reusable AV design through stan-
dardized interfaces and open-source support.

o Unifies disparate coordinate conventions to achieve forward
and backward compatibility to data sources.

e Streamlines component-wise metrics in all cases ranging
from single-component analysis on static datasets to full-
stack AVs on longitudinal situations.

e Promotes easy transfer testing between datasets and simula-
tors with low-barrier trade study configuration tables.

e Provides a standardized interface for training supervised
learning models on datasets and the CARLA simulator [14].

o Facilitates testing multi-sensor, multi-agent scenarios.

Terminology. In this work, we use the following terminology:

3https://github.com/avstack-lab.
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o Algorithm: A specific implementation of an AV component;
e.g., PointPillars [22] is an algorithm.

e Component: A generalization and grouping over algorithms;
e.g., PointPillars [22] and 3DSSD [24] fall under the “3D
object detection” component.

e Module: A grouping of similar components under a goal;
e.g., 2D & 3D object detection — “perception” module.

o Architecture: A designed connection of components that will
process sensor data and output control signals or state.

o Implementation: A connection of specific algorithms that
defines one particular realization of an AV architecture.

Organization. Section 2 summarizes related efforts and their
shortcomings for AV DITA. Section 3 expands on challenges to AV
research and how key design decisions allow AVstack to overcome
these obstacles. Section 4 provides use-cases in longitudinal and
multi-agent sensing demonstrating that AVstack enables new AV
DITA capability. We finish with concluding remarks in Section 5.

2 Related Work

Deployable AV Systems. Baidu Apollo [3] and Autoware [1] are
highly adopted and stable AV repositories. Each have an architec-
ture philosophy and have provided specific implementations. Both
are designed for self-driving and have established relationships with
industry to deploy in physical systems. Apollo is built on the Cy-
berRT message passing framework while Autoware uses ROS [28].
While both achieve high levels of performance, both struggle to
maintain accessible APIs for research-level development. Both have
high learning curves, are difficult to modify, and require powerful
computers. Thus, both are ill-suited to perform longitudinal testing
and reconfigurable prototyping on important benchmarks.

AV Research Platforms. Pylot [16] is an AV architecture in the
Python language. Sensor data is passed using the low-latency, low-
copy ERDOS [16] framework. Pylot provides an accessible inter-
face where developers can compare algorithms within established
components on the CARLA simulator [14]. Pylot demonstrated
near-real-time capability on a real system at low speeds. While
Pylot maintains an accessible API, it is limited to the CARLA simu-
lator and real-world self-driving; it cannot be tested on benchmark
datasets. While it supports different algorithms within each com-
ponent, the component architecture is fixed. It is not suitable for
next-level questions such as multi-agent, collaborative sensing nor
does it support end-to-end learning-based implementations.

OpenAl maintains its gym for evaluating reinforcement learning
in episodic tasks. Researchers have used gym to develop control algo-
rithms in self-driving using AirSim [31] and TORCS [37]. gym is not
well-suited for component-wise evaluations in AVs and is designed
only as a tool for training reinforcement learning algorithms.

General Frameworks. ROS [28] provides a communication infras-
tructure above operating systems for multi-component robotics
applications. ROS handles message passing between peer nodes
in full-stack robotics case studies. In this way, ROS has greatly
streamlined the development process for deployable robotics and
has been recognized as a major research platform.

ROS and AVstack serve different purposes and can be used in a
complementary way. AVstack handles development environments
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for DITA in both single-component and multi-component settings.
AVstack is more suitable for rapid prototyping of AV algorithms
and components while ROS is designed to handle communication
between components for cyber physical systems (CPS) over po-
tentially heterogeneous networks. For a full stack-simulation or
a physical implementation, the two can be complementary: ROS
can managed message passing and computation resources while
AVstack can provide components and analysis.

3 AVstack Key Design Decisions

A recent slowdown in AV development is a consequence of at
least two factors. First, proposed state-of-the-art AV algorithms
and components perform insufficient trade studies, transfer testing,
and longitudinal analysis. Second, a platform is needed that allows
multi-component evaluations and lowers the barrier of pursuing
next-level evaluations such as V2V and V2I collaboration.

AVstack was designed to address the above shortcomings and
more. In this section, we present the high-level innovations of
AVstack that have allowed it to uniquely fill this large void in AV
DITA. As illustrated in Fig. 1, AVstack’s key innovations have
allowed for great strides in design modularity and robust test-
ing & analysis. The critical design decisions of AVstack fall under:

e Wide Compatibility: AVstack is widely compatible with
benchmark AV datasets and physics-based AV simulators.
AVstack leverages many open-source AV components.

e Unified Conventions: AVstack standardizes coordinate
conventions and maintains backward compatibility with
legacy conventions. AVstack metrics and evaluations are
expanded over many preceding benchmarks.

e Modular Testing: AVs can be designed quickly and flexibly
in AVstack drawing from a bank of reconfigurable compo-
nents. AVstack tests implementations seamlessly on static
datasets, longitudinal datasets, and AV simulators with min-
imal software changes.

e Low Barrier: AVstack is written in a high-level program-
ming language. A user can design Level 2-5 AVs and test in
just dozens of lines of code. Trade studies can be initiated
with simple configuration tables.

In the following, we present the motivations and high-level de-
sign details for AVstack. Each section begins by identifying specific
barriers in AV development and how AVstack was designed as a so-
lution to those challenges. We identify some intentional omissions
from the design in Appendix A.

3.1 Design Goal 1: Wide Compatibility

A community-supported foundation is of the utmost concern
in AVstack. To ensure utility and staying power, AVstack was
designed to be widely compatible with gold-standard benchmark
datasets and simulators. To support representative AV design and
implementation, AVstack maintains compatibility with many open
source components. Below, we provide details on this compatibility.

3.1.1 Design Goal 1.1: Inferfaces & APIs

Motivation. The challenge to designing a widely-compatible
platform is in supporting backward-compatibility and preparing
for forward-compatibility without requiring constant overhauls
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that precipitate uncontrolled software bloat. This task is difficult
enough that, until now, we had yet to see a platform bridge the
dataset-simulator gap and deliver inter-source compatibility. In the
following, we investigate several challenges.

Datasets. The KITTI dataset [15] changed the world of autonomous
driving. Many foundational works in computer vision benchmarked
on KITTI. However, despite KITTI's success, it has fundamental
limitations; namely, its small size and lack of full 360° camera cov-
erage. Further, algorithms trained on KITTI have shown lower
performance when transferred to other datasets [5], suggesting
that training on KITTI may suffer from overfitting.

In recent years, major players including Waymo and Motional
have released datasets more extensive than KITTI with multiple
sensing modalities [10, 33]. Despite this, many works still bench-
mark primarily on KITTI with only marginal improvements over
prior results. To investigate, we scraped the KITTI leaderboard and
selected all works from the top 50 places with a validated journal or
conference publication. Of the 18 validated entries, many are recent:
13 were published in 2022; all have been released since 2020. They
are all within 3% on the leaderboard. Disappointingly, only a single
entry ran experiments on KITTIL, nuScenes [10], and Waymo [33]
datasets, while one entry ran on KITTI and nuScenes, and eleven
entries ran on KITTI and Waymo; see Appendix B for the full table.

Simulators. Simulators such as CARLA [14] allow for important
AV testing in a dynamic environment, provide closed-loop feed-
back (i.e., planning, control), and enable rare-event simulations that
are difficult or dangerous to capture in the real world. However,
CARLA comes with minimal resources to bootstrap AV DITA. In
fact, CARLA provides no algorithms that do not use ground truth
data nor do they provide an architecture for standing up one’s own
AV. As a result, there are few relevant AVs designs out of CARLA
and few benchmark submissions to the CARLA challenge [4].

Recent works using CARLA have established success using end-
to-end, vision-based reinforcement and imitation learning (RL, IL) in
AVs (e.g., [11, 14, 27, 35]). The lean towards RL/IL is in part because
CARLA has no built-in support for training or testing supervised
learning algorithms. There is no “CARLA dataset” and no clear way
to generate one. There are several barriers to this, including that,
to our knowledge, there is no way to obtain the list of objects in
the field of view (even as a ground-truth oracle) without using a
depth-sensor to determine if e.g., a building is blocking the view
to the object. On the other hand, continuously running simulator
trials with a reward function for RL/IL is easy.

Design Goal. We designed AVstack to both bridge the dataset-
simulator gap and to expand upon critically-absent features in exist-
ing APIs. We identified the core features essential for wide dataset
and simulator compatibility. The overarching theme of these inno-
vations is simple: attach details to objects, not just documentation.

In particular, some features that enable AVstack’s wide compat-
ibility include: assigning attributes directly to sensor measurements
so that each natively possesses all identifying information; expand-
ing all object labels with 3D bounding box, object type, object ID, ve-
locity, acceleration, orientation, and angular velocity fields; defining
flexible data structures to route sensor data to multiple end-points;
standardizing reading, writing, and transforming sensor data and
ground truth labels, and much more. Each feature is made possible
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Figure 1: (left) AVstack’s core library provides source-agnostic modular components within a reconfigurable architecture.
AVstack unifies diverse conventions from open-source providers to deliver community-vetted AV design. (center) With the
core library, developer can specify many AV architectures, including “active" (with control) and “passive" (without control).
Shown are a sample of architectures used in this work. (right) AVstack’s API library provides data source interfaces to the most
popular of AV benchmarks and simulators. API also provides low-barrier trade-study capability with configuration tables.

by many precise decisions. For example, 3D bounding boxes need
clear reference frames (e.g., camera-frame, lidar-frame, ego-frame),
orientation angle definitions (e.g., yaw=0 aligned with x-axis in
camera frame, yaw-pitch-roll vs. roll-pitch-yaw ordering), bound-
ing box height-offset (i.e., 0 := bottom of box, 0 := center of box).

Until now, each user would write software tailored towards the
minimum required information for a single dataset — the hetero-
geneity of options was too high a barrier to support multiple data
sources. With AVstack, users can make software that is reusable
and transferable between sources. Unlike Apollo, Autoware, and
Pylot, AVstack is not designed towards a low-level, low-latency
message-passing scheme. Rather, it exists in a high-level program-
ming language quickly adaptable to new simulators and complex
configurations. The reusability and adaptability lower the amount
of effort required to test algorithms on different platforms. Now,
we can start to expect more validation and verification of AV com-
ponents on representative testing scenarios.

3.1.2  Design Goal 1.2: Component Compatibility

Motivation. A frustrating challenge to researchers is that ground-
breaking AV components are difficult to use beyond their original
benchmarks. To enable insightful evaluation of new components
within a longitudinal environment, the developer must be able to
quickly stand up and rearrange an AV using off-the-shelf compo-
nents. While an individual benchmark may have many perception
algorithms that can all be tested uniformly, minimal support ex-
ists to stitch that perception algorithm together in a longitudinal
evaluation with tracking, motion prediction, and path planning.

Platforms that provide some degree of component compatibility,
such as Pylot, do not support both datasets and simulators. Pylot

Fully Integrated Integration In Progress

Perception Localization Control

8 LiDAR object 35 Monocular 2D o “
detection object detection Filtering (GPS/IMU)

PID Switching
5 Monocular 3D TR Multi-Sensor Kalman
_ - Instance A <
object detection " 2 Filtering (e.g., SLAM)
Segmentation
Tracking Prediction Planning

Kinematic State Custom planning
Modular multi-target Neural-Network
tracking Prediction Agents

Figure 2: AVstack supports a broad set of open-source algo-
rithms. Both custom implementations and open-source li-
braries bootstrap the diverse set of integrated capabilities.
The set of compatible software is continuously growing.

A*, D*, RRT*, planning’
integration

also uses a custom message passing framework designed to mini-
mize latency which is not useful for algorithm trade studies. Rather,
it is suited for applications with real-time consideration.

Design Goal. AVstack supports many prominent open-source
components for both module-based design of AVs and end-to-end
learning-based approaches. AVstack leans on existing open-source
libraries to complement custom components. Fig. 2 provides a
sample of the capabilities at the time of publication. In particu-
lar, AVstack currently supports 4 modes of perception with over 50
different perception algorithms. This wide compatibility is obtained
under a common interface that allows for AV reconfiguration and
reuse of algorithms and components.
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Figure 3: Sensors, datasets, and simulators often use different
coordinate systems which may require up to a 4x4 transfor-
mation matrix to convert vectors between frames: (a) Stan-
dard frame employed by nuScenes [ 10], Waymo [33]; (b) Cam-
era frame employed by KITTI [15]; (c) Left-handed frame
employed by CARLA [14].

3.2 Design Goal 2: Unified Conventions

There is no “official” set of conventions for AV datasets and
simulators. This is for good reason: each dataset satisfies different
needs of the end user. Datasets without positioning data may specify
all objects in ego-relative coordinates (e.g., [15]). Some datasets may
introduce sensors not present in other datasets (e.g., radar in [10])
while others defer all sensor specification to the user (e.g., [14]).
Further, end users may have different state-vector requirements
with degrees of freedom ranging from three (x, y, yaw; e.g., [37]) to
nine (x, y, z, height, width, length, roll, pitch, yaw; e.g., [10, 14]).

In a review of state-of-the-art AV datasets and simulators, we
find that no two sources share the same coordinate axes, frame
origin, and orientation angle conventions. In fact, we find that even
within single providers (e.g., [15]) there can be discrepancies in the
conventions. Similarities and differences are highlighted in Table 1.

3.2.1 Design Goal 2.1: Reference Frames

Motivation. The level of complexity and lack of standard of ref-
erence frames hinders dataset-agnostic component design and intro-
duces error into complex multi-sensor, multi-agent configurations.
To mitigate this, we standardize reference frame definitions with a
wrapper around each dataset and simulator. We also introduce the
reference frame chain of command (RefChoC) that represents the
dependency on secondary reference frames (see Fig. 4).

Coordinate Axes. Coordinate frames cause headaches in even
the most proficient of developers. This is particularly important
when data sources use different conventions. One small difference
is illustrated in Fig. 3. While KITTI always labels objects in a right-
down-forward (“camera”) coordinate frame, nuScenes and Waymo
use frames dependent on the sensor which includes many possible
orientations (see Appendix C). CARLA uses a non-traditional left-
handed forward, right, up frame.

Rotation Conventions. Many datasets represent orientation with
Euler or Tait-Bryan (grouped under the name “Euler” in this work)
angles (see Table 1). This allows for a compact representation of
the orientation that is (sometimes) human-interpretable. However,
Euler angles are problematic for several reasons. The most obvious
drawback is the lack of specificity: there are at least 12 accepted
methods of specifying orientation using Euler conventions [20].
This introduces error into the development process. Second, Euler
angles suffer from gimbal lock and discontinuities in certain special
cases. While this is seldom a problem in real-world driving, it is very
relevant for AV simulators due to local nature of map coordinates.
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Figure 4: Reference frame defined by (Tr, R, Ref-P, H), with
Tr a translation, R a rotation, Ref-P a parent reference, and
H the axes handedness. Reference frame chain of command
(RefChoc) followed to a common ancestor when comparing
objects or fusing data from complementary sensors/agents.

Sensor Calibrations. Each sensor should be accompanied by a cal-
ibration that describes both where the sensor is positioned relative
to the ego (often called: “extrinsics”) and sensor-specific properties
(often called: “intrinsics”). Unfortunately, many datasets have am-
biguous calibrations. KITTI provides calibration data but minimal
instructions on how to use it or which data requires transforma-
tion. KITTT also only allows for ego-relative coordinates, which
can impair target tracking models. Meanwhile, CARLA describes
the unique conventions of its coordinate system but no supporting
functions in the software.

There is additional complexity beneath the surface across the
board: calibrations must define whether the translation is in the
pre-rotated or post-rotated reference frame. 4 x 4 transformation
matrices use post-rotation while it is most interpretable to use pre-
rotation. Different providers take different approaches, and details
are seldom documented. Furthermore, specifying a calibration is
ambiguous, even under a clear reference frame and pre/post order
if it does not specify which direction the transformation should be
applied (i.e., does it represent “A — B” or “B — A™?).

Design Goal. We performed many iterations designing refer-
ence frames for the unified API of AVstack. To achieve standardized
reference frames for the first time and provide a clear and elegant
reference management solution, each physical object, bounding-
box, sensor, and sensor measurement in AVstack is accompanied
by acalibrationand/or origin field. These are handled automati-

cally by AVstack for the supported datasets (KITTI, nuScenes, CARLA).

Translations, vectors, rotations, and transformations are always
relative to a reference coordinate frame. AVstack innovatively de-
fines the reference frame as the tuple Ref = (Tr, R, Ref-P, H),
with Tr a translation, R a rotation, Ref-P a parent reference frame
(for chained reference-frames, e.g., detection-to-sensor-to-ego-to-
world), and H the handedness of the axes. (Tr, R) form the origin
field. We illustrate AVstack’s approach for chained reference frames
using a pass-by-reference approach in Fig. 4. We call this approach
the Reference Frame Chain of Command (RefChoc). The RefChoc is
the most reliable way to-date to support both simple cases of chain-
ing (e.g., detection-to-sensor-to-ego-to-world) and complex cases
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H Source Vehicle Frame Ego Origin Object Origin ~ Rotation Sensors (#, Rate) KeyFrame Rate H
KITTI Object RDF N/A Box Bottom  Euler (1D) Camera (4, 10Hz), LiDAR (1, 10Hz) 10Hz
KITTI Raw FLU N/A Box Bottom Euler (1D) Camera (4, 10Hz), LiDAR (1, 10Hz) 10Hz
KITTI Odometry FLU Camera 0 N/A DCM Camera (4, 10Hz), LiDAR (1, 10Hz) 10Hz

. Camera (6, 12Hz), LiDAR (1, 20Hz),
nuScenes FLU GP Rear Axle Box Center  Quaternion Radar (5, 13Hz), GPS/IMU (1, 1000Hz) 2Hz
Camera (5, 10Hz), Main LiDAR (1, 10Hz),

Waymo FLU Ego Center Box Center Euler Peripheral LIDAR (4, 10Hz) 10Hz
CARLA FRU GP Ego Center Box Center Euler (3D) Many (user-specific) N/A
TORCS FL(U) BEV Ego Center  BEV Center  Euler (1D) Many (user-specific) N/A

‘ ‘ AVstack Any Any Any Any Any Any ‘ ‘

Table 1: Minor differences in data design become major headaches for the developer. The ego reference and other objects can be
specified with different coordinates, sensor origin, and rotation conventions. Each data source uses different sensors of varying
rates and different attachments. AVstack handles transformations automatically. GP - ground projected; RDF - right, down,
forward; FLU - forward, left, up; FRU - forward, right, up; DCM - direction cosine matrix; BEV - bird’s eye view.

(e.g. multi-sensor, multi-agent) equally while implicitly handling
coordinate transformations for the user to mitigate error-prone
manual calculations.

3.2.2 Design Goal 2.2: Relevant Metrics & Evaluations

Motivation. Metrics facilitate quantitative assessment of an
autonomy stack’s performance. Many popular self-driving and
computer vision benchmarks (e.g., [10, 15]) provide metrics at
the component-level such as camera perception mean-average-
precision (mAP), LiDAR perception mAP, tracking performance,
prediction accuracy. These follow the hypothesis that improving
individual components will lead to improved AVs in the aggregate.

The sum-of-its-parts argument neglects cross-cutting interac-
tions and trade-offs that exist at the intersection between compo-
nents. For example, many perception metrics neglect model runtime
and the impact of latency on path planning and control. Similarly,
improving individual components ignores inter-component error
propagation; e.g., mAP takes the mean AP over all classes while
not all classes impact motion prediction or path planning equally.

Design Goal. Inresponse to the shortcomings of single-component
metrics, we quantify performance at multiple components simul-
taneously, similar to [16]. AVstack provides a large selection of
metrics at each level of the pipeline including the Responsibility
Sensitive Safety (RSS) metric [32]. A select list of the supported
metrics can be found in Table 2. Maintaining a broad set of metrics
for longitudinal scenarios helps pursue:

1. Cross-Cutting Interactions: AV designers cannot ignore
the interactions between components and the error propa-
gation that exist when designing a longitudinal agent.

2. Longitudinal Analysis: Single-frame examples from datasets
are incapable of validating the full performance of AVs due
to their complex temporal behavior.

3. Safety Evaluation: Paradoxically, safety is both a primary
method of regulating autonomy [13] and woefully under-
utilized in quantitatively evaluating AVs.

3.3

AVstack enables expanded AV lifecycle analysis. We describe
how AVstack’s design enables for the first time reconfigurable
architectures, expanded evaluations, streamlined model training,
and multi-sensor, multi-agent configurations.

Design Goal 3: Modular Testing

Module Metric

Perception False Positive Rate (FPR), Precision, mAP
False Negative Rate (FNR), Recall, IoU
ToU, False Track Rate (FTR)

Tracking Missed Track Rate (MTR) [7]
Higher Order Tracking Accuracy (HOTA) [23]
CLEAR [8], VACE [25], IDEucl [23]

. Average Displacement Error (ADE) [26

Prediction Final gispla?ement Error (FD(E) [6]) -

. Responsibility Sensitive Safety (RSS) [32
Planning PatlrI: KL Dive};gence [10] y e 1]
Control Responsibility Sensitive Safety (RSS) [32]

CARLA Leaderboard Benchmark [14]

Table 2: AVstack unifies metrics for longitudinal testing while
previous works only tested isolated components. AVstack
uniquely incorporates the RSS safety metric.

3.3.1 Design Goal 3.1: Reconfigurable Architectures

Motivation. Many open platforms constrain users to purely
module-based [16] or purely end-to-end [27], which limits software
reusability and next-level evaluations. Pylot, Apollo, and Autoware
have rigid architectures (green lines in Fig. 5) due to their low-level
message passing. Changing architecture is difficult in all cases, and
changing implementation in Apollo and Autoware is very challeng-
ing. It is more difficult to perform trade studies comparing sensors,
to incorporate new sensors, and to consider novel AV architectures.
These factors contribute to stagnation in AV development.

Design Goal. Components are the backbone of computation
in AVs. In contrast to other platforms, AVstack enables any con-
nection between components with its reconfigurable design. The
reconfigurable architecture cuts software complexity at the expense
of real-time guarantees. Fig. 5 illustrates that AVstack opens up
“non-traditional” connections between modules.

Imperatively, AVstack’s design philosophy disassociates imple-
mentation from platform. Thus, components are reusable between
and among datasets and simulators. We illustrate in Fig. 6 the flow
of data. Simulator and dataset interfaces are standardized around
base classes with common methods to get sensor data and object
labels. The API is flexible enough to serve as the interface for all
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General, Module-Based AV Stack
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Figure 5: AVstack configuration is modular: any connection
between modules is feasible. Breaking traditional constraints,
any connection between components is also feasible. Module
names illustrate classic module-based AV design. Traditional
connections in bold green; new connections in dashed blue.
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Figure 6: AVstack partitioned into API, intermediary, and
algorithm modules to support reusability and portability
of components. APIs built on common framework to allow
first-of-a-kind dataset<—simulator transfer testing.

data sources. This supports early-stage development on captured
datasets with longitudinal testing on end-to-end simulators.

3.3.2  Design Goal 3.2: Expanded Evaluations

Motivation. Our meta-analysis from Table 7 (Appendix B) sug-
gests that transfer testing of algorithms is too difficult with existing
tools. Too few works perform testing on multiple large, complex
datasets. Moreover, an even smaller set of works perform longitu-
dinal analysis of inter-component error propagation. At the same
time, simulators including CARLA do not provide sufficient re-
sources to bootstrap AV implementations for longitudinal testing.

Design Goal. AVstack greatly expands evaluations for AVs. It
enables dataset-to-dataset, dataset-to-simulator, and simulator-to-
simulator transfer testing. AVs can be designed for static dataset,
passive longitudinal, or active longitudinal (i.e., with control) self-
driving scenarios. To show the deep level of insight made possible
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by AVstack, we present metrics from a large trade study across 5
AV configurations in Section 4.1.

3.3.3  Design Goal 3.3: Streamlined Learning

Motivation. Supervised learning is a critical piece of AVs. Many
modules including perception and path planning rely on learned
components to perform fast and accurate inference on sensor data.
A major challenge of learning-based techniques is that retraining is
fraught with errors when trying to adapt datasets. Moreover, even
mature simulations have limited ways to generate labeled training
data from the simulator, even as a ground-truth oracle. There is
no way to natively capture ground truth object labels in view of a
sensor and unoccluded by buildings.

Design Goal. To aid the supervised learning process for AVs,
we leverage mature modular infrastructures for supervised and
reinforcement learning. AVstack uses MMLab’s [5] open-source
training infrastructure and provides a custom AVstack dataset inter-
face to train and test dozens of perception models. We also provide
a methodology for generating training data from the CARLA simu-
lator. AVstack implements much-needed automated methods for
cleaning CARLA data such as field-of-view estimation, occlusion
categorization, and bounding box projection to address critical barri-
ers in the adoption of CARLA for realistic self-driving. In Section 4.2,
we illustrate how this data generation process can be configured to
generate complex multi-agent scenarios and collaborative V2V, V2I
sensing data for model training and testing. This allows for creation
of large volumes of collaborative perception data with consistent
ground truth labels between multiple viewpoints.

3.3.4 Design Goal 3.4: Multi-Sensor, Multi-Agent Systems

Motivation. Multi-sensor and multi-agent testing are part of a
critical wave of next-level challenges for AVs [13]. As investments
in smart infrastructure are considered, it is critical to evaluate the
trade-offs in collaborative configurations. However, there are sev-
eral barriers to testing both cases. Multi-sensor testing is difficult
because sensor data always requires transformations between ref-
erence frames and may be configured with partially overlapping
fields of view. Unfortunately, it is error-prone to leave multi-sensor
configuration up to the developer; yet few public platforms provide
effective multi-sensor support. Multi-agent testing has also yet to
be sufficiently realized. The majority of evaluations in self-driving
have focused on static datasets that lack multi-agent information.
Similarly, even in simulator environments, mature AV research
platforms have constrained architectures and components. This
limited modularity means that adding new sensor data, integrating
new components, and designing new algorithms is burdensome.

Design Goal. To solve the sensor data and reference-frame chal-
lenges in multi-sensor/multi-agent configurations, AVstack has sev-
eral important innovations. First, reference frame transformations
can be performed automatically by specifying a start and end-point
reference. This removes error-prone coordinate transformations
(e.g., object-to-sensor1-to-ego-to-sensor2 for multi-sensor; sensori-
to-agentI-to-world-to-agent2-to-sensor2 for multi-agent). Second,
AVstack has a growing list of sensors to which it offers compati-
bility. In the simulator context, AVstack bootstraps ego and sen-
sor classes with clearer and developer-friendly configurations to
support existing simulator features. Third, architecture design is
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Figure 7: AVstack bootstraps CARLA for multi-sensor, multi-
agent configurations, opening possibility for next-generation
AV DITA. Here, camera sensors are placed at infrastructure
locations to provide collaborative view. (top right) Ego vehi-
cle with local camera and LiDAR: object detections in white
boxes. (top left) Infrastructure sensor detects objects in cam-
era corresponding to objects from ego: cyan, red, purple ovals.

modular in AVstack. Components from a single-agent AV can be
reused in multi-agent contexts. Single-agent AVs can be evaluated
against multi-agent AVs in a unified simulation framework (Fig. 7).

3.4 Design Goal 4: Low Barrier

Motivation. Apollo, Autoware, and Pylot are mature AV plat-
forms but all have a high barrier to entry. All rely on high-performance
message passing frameworks to deliver low-latency sensor data
at the cost of architecture flexibility. Source code for Apollo and
Autoware is complex and rigid. They are targeted to full-stack AVs
that ingest sensor data and output control decisions. This makes de-
bugging individual algorithms and components incredibly difficult;
changing AV architecture is exceptionally challenging.

Design Goal. AVstack provides a low-barrier and flexible AV
testing framework. For the first time, there is compatibility between
datasets and simulators. At the intermediary between data and al-
gorithms are thread-safe data structures that handle flexible routing
of data from source to destination in a high-level programming
language. Our no-copy philosophy allows data to be transferred
efficiently to support near-real-time execution; however, data are
handled with the utmost flexibility for the user. An object-oriented
approach allows sensor data to be efficiently routed with multiple
end-points. In Section 4, we provide case studies using just dozens
of lines of code on top of AVstack to create unique AVs and diverse
testing environments.

4 Use Case Experiments

In this section, we show how AVstack enables important explo-
ration, trade studies, and analysis at low development cost.
4.1 Portability and Transfer Testing

Two major causes of a slowdown in AV development are poor
infrastructures for transfer testing between datasets & simulators,
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Figure 8: LIDAR-only, camera-LiDAR, and collaborative Li-
DAR agents require only 15, 20, and 30 lines of code at the
top level to instantiate. Implementations can run on datasets
& simulators allowing for insightful and rapid trade studies.

and limited longitudinal evaluations. The ability to perform algo-
rithm testing across data sources is vital for validation of complex
components. Running longitudinal evaluations helps understand
cross-component error propagation, which is lacking in single-
component analysis.

To demonstrate that AVstack enables transferability between
data sources, we design passive agents using LiDAR-based and
camera-LiDAR fusion component architectures (e.g., as in [17, 18])
shown in Fig. 8. We can use AVstack to create these dataset-agnostic
agents using just 15 and 20 line of code. We call these “passive”
because we leave out planning and control — a capability made
possible by AVstack’s reconfigurable design. Within the two archi-
tectures, we test different combinations of algorithms to form five
different implementations. The complete case study specification is
represented with a “configuration table” in AVstack, as illustrated
in Table 3. With this configuration table, AVstack evaluates the
different AV implementations over KITTI, nuScenes, and CARLA
on 10 randomly sampled longitudinal sequences. During each run,
AVstack captures per-frame and per-sequence metrics that were
summarized in Table 2.

AVstack’s output of the trade study is a set of detailed per-frame
and per-case results (not shown) and an aggregated benchmark
table; see Table 4. Videos of select sequences can be found online [2].
AVstack’s breadth and depth of measurements make it useful for
component-wise analysis of AVs. In this case study, we find 3D ob-
ject precision is high across all algorithms and all datasets; however,
recall on nuScenes is low. Similarly, nuScenes tracking performance
(HOTA) is lower compared to KITTI and CARLA.
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ID | LiDAR Percep | Cam Percep Tracking Prediction
0 | PointPillars [22] | N/A AB3DMOT [36] | Kinematic
1 | 3DSSD [24] N/A AB3DMOT [36] | Kinematic
2 | PointPillars [22] | FasterRCNN [29] | EagerMOT [21] | Kinematic
3 | 3DSSD [24] FasterRCNN [29] | EagerMOT [21] | Kinematic
4 | PointPillars [22] If/lzsscljlgéNN [19] EagerMOT [21] | Kinematic

Table 3: AVstack enables transferability between data sources.
uses configuration tables to run trade studies. Modules are
widely compatible with community implementations. Com-
ponents are dataset-agnostic. The 5 case studies here are used
for the transfer test in Section 4.1.

4.2 Multi-Sensor, Multi-Agent Collaboration

While multi-sensor, multi-agent configurations are imperative
for next-generation AV evaluations, they are difficult to design and
test using today’s available platforms. Some recent works have
begun to analyze cooperative settings using ad-hoc development
environments [12, 38]. Previous evaluation platforms have lever-
aged existing datasets to run experiments. Usefully, AVstack is
not tied to an individual dataset. Rather, the AVstack API provides
a flexible and easy to use approach to leverage existing datasets
and to generate any scenario, including multi-sensor, multi-agent
configurations, in the CARLA simulator.

We use AVstack to design a collaborative agent with an architec-
ture similar to Fig. 8(c). The agent possesses a LIDAR sensor with a
limited range of 25 m. To obtain sufficient situational awareness,
the agent must use information from nearby infrastructure sensors
to complement its own limited sensing information. We do not con-
sider planning or control components and instead investigate the
agent just using perception, tracking, and prediction performance.

We use the AVstack API to test our multi-agent design. We place
40 64-line LiDARs with a field-of-view of 180° at random locations
in CARLA’s Town-10. These serve as the infrastructure sensors.
Each collaborative sensor is placed at a 30° pitch angle and a height
of 15 m to obtain an appropriate viewing angle. We chose to use
LiDAR sensors to simplify 3D positioning, but any and all sensors
in CARLA can be used, including cameras and radars.

With this configuration, we design two trade study experiments
to evaluate the trade-offs between (1) sensor communication range
and detection accuracy, and (2) sensor rate and detection accuracy.
Table 5 highlights the different configurations in this experiment.

Using the trade study capability of AVstack, we run the ego
agent over the 9 collaborative cases from Table 5 on 5 randomly-
generated CARLA scenes with 150 “other” vehicles. Collaborative
detections are transmitted from sensor to agent at the specified
data rate. Upon receiving messages, the agent first performs pre-
processing to ignore any detections outside of a 100 m radius, for
computational efficiency. The agent then integrates detections with
data association, assigns measurements to existing tracked objects,
and spawns new tracks with unassigned detections. Additional
configuration details can be found at [2] as well as in Appendix D.

At the culmination of the study, AVstack generates aggregated
results tables, shown in Table 6. Videos of select sequences can
be found online [2]. We find that collaborative sensing can aid an
agent, particularly in this case where the ego’s sensor range was
limited. In Table 6-A, we find the HOTA metric is highest (best) for

ICCPS °23, May 9-12, 2023, San Antonio, TX, USA

C1-Ideal and C1-1. Also, prediction error, ADE and FDE, are lower
with collaboration compared to C1-base. In Table 6-B, we find that
tracking performance does not deteriorate when trading sensor
rate from 10 Hz to 5 Hz for a decrease in detection noise - HOTA
remains constant among all cases. While differences in prediction
errors, ADE and FDE, are not significantly different between cases
C2-1 and C2-2, it is worth investigating in more detail the impact
of sensor rate on prediction performance.

5 Conclusion

We have introduced AVstack as an open-source, reconfigurable
software platform for AV design, implementation, test, and anal-
ysis. We have illustrated in several case studies that AVstack sup-
ports rapid prototyping of reusable AV components, longitudi-
nal evaluations with component-wise metrics, and diverse multi-
sensor, multi-agent configurations. AVstack delivers solutions to
the most common challenges faced by AV users with its bank of
community-support components, by bridging convention conflicts
among datasets and simulators, by supporting algorithm reuse with
dataset-agnostic and flexible components, and by delivering much-
needed support for next-level analysis. Its key design principles
will help accelerate the push toward important AV milestones. In
several case studies focusing on portability and transfer testing, as
well as testing of multi-sensor, multi-agent collaboration, we have
illustrated these benefits of the use of AVStack.
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Case Data Per:3D Prec. Per: 3D Rec. Per: 2D Prec. Per: 2D Rec. Trk: HOTA  Trk: MOTA  Trk: MOTP  Pred: ADE Pred: FDE
K 0.37 +/- 0.24 0.90 +/- 0.21 N/A N/A 0.52 +/-0.19 -0.03 +/- 2.48 3.62 +/-0.10 1.33 +/-0.94 3.87 +/- 1.41
0 N 0.99 +/- 0.01 0.25 +/-0.07 N/A N/A 0.11 +/-0.04 0.20 +/-0.07 2.68 +/-0.16 0.26 +/- 0.08  0.26 +/- 0.08
C 0.99 +/-0.00  0.77 +/- 0.02 N/A N/A 0.51+/-0.07 0.48 +/-0.05 2.85+/-0.14 4.99 +/-3.65 11.55 +/-5.37
K 0.25 +/-0.19  0.39 +/-0.17 N/A N/A 0.40 +/-0.16 -0.15+/-0.32 3.07 +/-0.73 1.20 +/-0.78  1.86 +/- 1.77
1 N 1.00 +/- 0.02 0.19 +/- 0.06 N/A N/A 0.09 +/-0.04 0.12 +/-0.05 2.75+/-0.13 0.31+/-0.06 0.31 +/- 0.06
C 0.99 +/-0.00  0.68 +/- 0.05 N/A N/A 0.46 +/- 0.07 0.43 +/-0.04 2.82 +/-0.13 5.20 +/-3.33 12.11 +/- 491
K 0.37 +/-0.24  0.90 +/-0.21 0.31 +/-0.18 0.73 +/-0.20 0.71 +/- 0.13  0.60 +/- 0.22 3.77 +/-0.17 0.77 +/- 0.58 1.78 +/- 1.67
2 N 0.69 +/-0.18  0.32 +/-0.02 0.90 +/-0.04  0.52 +/-0.11 0.11 +/- 0.04 0.11 +/- 0.07 2.89 +/-0.30 1.05+/-0.43 1.05+/-0.43
C 0.62 +/- 0.13 0.88 +/- 0.06  0.40 +/- 0.25 0.13 +/- 0.09  0.12 +/- 0.05 0.08 +/- 0.05 3.00 +/- 0.30 1.26 +/- 0.54 3.56 +/- 0.70
K 0.25 +/- 0.19 0.39 +/-0.17 0.31 +/- 0.18 0.73 +/- 0.20  0.46 +/- 0.18 0.34 +/- 0.14 2.98 +/-0.55 0.61 +/-0.69 1.21 +/- 1.95
3 N 0.67 +/-0.19  0.24 +/-0.03 0.90 +/-0.04  0.52 +/- 0.11 0.09 +/- 0.03  0.07 +/- 0.03 293 +/-0.29 0.63 +/-0.59 0.63 +/- 0.59
C 0.54 +/- 0.13 0.69 +/- 0.09 0.40 +/- 0.25 0.13 +/- 0.09 0.10 +/- 0.05 0.06 +/- 0.05 2.99 +/-0.28 1.44 +/-0.41 3.38 +/- 0.54
K 0.37 +/-0.24  0.90 +/- 0.21  0.29 +/-0.18  0.95 +/- 0.23  0.70 +/- 0.08 0.59 +/- 0.08 3.77 +/- 0.12  0.86 +/- 0.23  1.51 +/- 1.12
4 N 0.69 +/-0.18  0.32 +/- 0.02 0.78 +/- 0.05 0.72 +/- 0.08 0.12 +/- 0.03 0.10 +/- 0.08 2.89 +/-0.10 1.06 +/- 0.33  1.06 +/- 0.33
C 0.62 +/- 0.13 0.88 +/-0.06 0.93 +/- 0.02 0.60 +/- 0.07 0.36 +/-0.09 0.30 +/- 0.07  3.01 +/-0.07 2.68 +/-1.32 5.17 +/- 3.80

Table 4: AVstack enables first-of-a-kind trade studies simply by specifying a configuration table such as Table 3. Results are
averaged over 10 longitudinal trials using the centrall mounted LiDAR and forward-facing camera. Each trial is over a 20
second scene for each dataset (K: KITTIL N: nuScenes, C: CARLA). Each AV configuration “Case" is described in Table 3. For
the first time, metrics can be computed at each level of the pipeline (Per. 2D/3D: 2D or 3D Perception, Trk.: Tracking, Pred.:
Prediction) at the same time to illuminate error propagation between modules. Best performance is highlighted per-cell.

Table 5: Collaborative Experiment Design

‘ Case ‘ LiDAR Percep ‘ Cam Percep ‘ Tracking

‘ Prediction ‘

[ All [ PointPillars [22] [ N/A

| AB3DMOT [36] | Kinematic |

Panel A: AV configuration constant for all collaborative studies.

Case ‘ Density ‘ Det. Type ‘ Comm Range ‘ Det. Rate ‘ Det. Noise ‘

Cl-Ideal | 40/map | 3D Box 100 m 10 Hz None
Ci1-1 40/map | 3D Box 100 m 10 Hz High
C1-2 40/map | 3D Box 70 m 10 Hz Med
C1-3 40/map | 3D Box 50 m 10 Hz Low

C1-Base | 40/map | N/A N/A N/A N/A

Panel B: Experiment (C1) trading comm range for noise.

Case ‘ Density ‘ Sensor ‘ Comm Range ‘ Det. Rate ‘ Det. Noise ‘

C2-Ideal | 40/map | 3D Box | 80 m 10 Hz None
C2-1 40/map | 3D Box | 80 m 10 Hz High
C2-2 40/map | 3D Box | 80 m 5Hz Low

C2-Base | 40/map | N/A N/A N/A N/A

Panel C: Experiment (C2) tests communication rate vs. noise.
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Table 6: Collaborative Vehicle-to-Infrastructure Case Study Results.

Case Data Collab: Sensors-in-range/frame  Collab: Dets/frame Trk: HOTA  Trk: MOTA  Trk: MOTP  Pred: ADE  Pred: FDE
Ci-Ideal C 13.00 +/- 3.30 122.00 +/- 63.69 0.55 +/- 0.16 -0.40 +/- 0.61 3.10 +/- 0.08 1.19 +/- 0.53 3.23 +/- 1.86
Ci-1 C 13.00 +/- 3.30 122.00 +/- 63.69 0.52 +/- 0.14 -0.46 +/- 0.64 2.94 +/- 0.06 0.86 +/- 0.29  2.65 +/- 1.23
Ci1-2 C 5.00 +/- 2.45 55.00 +/- 35.72 0.32 +/- 0.14 -0.90 +/- 1.55 2.92 +/-0.09 1.41+/-0.14 3.64 +/- 0.46
C1-3 C 2.00 +/- 1.89 20.00 +/- 41.96 0.54 +/- 0.12  -0.24 +/-0.47 2.99 +/- 0.05 1.07 +/-0.24 2.65 +/- 0.75
Cl-Base C N/A N/A 0.47 +/-0.09 0.35+/-0.07 3.10 +/- 0.10 2.42 +/-1.99 6.40 +/- 3.26
Panel A: Trading communication range for detection accuracy over 10 trials of 500 frames in CARLA.
Case Data Collab: #5-in-range/frame Collab: Dets/frame Trk: HOTA  Trk: MOTA  Trk: MOTP  Pred: ADE  Pred: FDE
C2-Ideal C 3.50 +/- 1.50 40.25 +/- 13.75 0.63 +/-0.17 -0.06 +/- 0.68 3.04 +/-0.07 1.36 +/- 0.45 3.36 +/- 1.31
C2-1 C 3.50 +/- 1.50 40.25 +/- 13.75 0.61 +/-0.18 -0.08 +/-0.69 2.90 +/- 0.07 0.98 +/- 0.14 2.23 +/- 0.60
C2-2 C 3.50 +/- 1.50 18.50 +/- 6.00 0.60 +/- 0.18 -0.09 +/- 0.67 2.88 +/-0.06 0.94 +/-0.01 2.05 +/- 0.13
C2-Base C N/A N/A 0.66 +/-0.08 0.54 +/-0.07 3.02+/-0.10 1.60 +/-0.56 5.74 +/- 0.74
Panel B: Trading communication rate for detection accuracy over 10 trials of 500 frames in CARLA.
A Intentional Design Omissions Friendly Name  Year KITTI  nuScenes Waymo
No platform can satisfy the requirements of all AV use-cases Sparse Fuse Dense 2022 Y (848) N N
because some are in conflict. For example, introducing architecture CasA 2022 Y (84.0) N Y (78.3/69.6)
modularity can sacrifice real-time performance. To address some of GLENet 2022 Y(83.2) N Y (77.3/69.7)
the critical barriers to AV development, a modular research platform VPENet 2022 Y (832) N N
is essential and lacking. Graph R-CNN 2022 Y(832) N Y (72.6/72.1)
We are faced with fundamental architecture questions for multi- BtcDet 2022 Y (829) N Y (78.6/70.1)
sensor, multi-agent AVs where industry is dramatically outpacing SPG 2021 Y (82.7) N Y
research. For the next generation of smart vehicles, insightful DITA SE-SSD 2021 Y (825) N N
must be prioritized. To do so in an expeditious manner, there must DVF 2022 Y (825) N Y (67.6/62.7)
be a low barrier to entry, even if this means sacrificing other quali- RDIoU 2022 Y (82.3) N Y (78.4/69.5)
ties. In particular, AVstack intentionally places less emphasis on FocalsConv 2022 Y (82.3) Y (70.1) Y (72.2/64.1)
the following areas: CLOCs 2020 Y(823) N N
e Real Time: AVstack is not proposed as a real-time solution. SASA 2022 Y (82.2) Y (45) N
We have not performed experiments evaluating latency. At- VoTr 2021 Y (82.1) N Y (69.0/60.2)
tempting to package AVstack as a real-time AV may require Pyramid R-CNN 2021 Y (82.1) N (76.3/67.0)
a real-time operating system and low-latency data passing VoxSet 2022 Y(82.1) N Y (77.9/70.2)
which would negatively affect modularity. SRIF-RCNN 2022 Y (82.0) N N
e Low-Level Programming: AVstack is based on Python to Q-Net 2022 Y (82.0) N N

allow for rapid prototyping and easy interfacing to third-
party simulation engines. It was not written with speed or
memory as a primary goal, in contrast to higher-barrier
autonomy stacks Apollo and Autoware.

B State of the Art Perception

The KITTI dataset [15] was instrumental in the progress of AV
perception development. Since, KITTT’s original release, major play-
ers including Waymo and Motional have released datasets more
extensive than KITTI with multiple sensing modalities [10, 33].
Unfortunately, we find that even recent state-of-the-art perception
algorithms neglect to provide sufficient evaluation on these more
challenging datasets. To investigate, we scraped perception bench-
mark leaderboards, as described in Section 3.1.1. The findings of
this meta-analysis are in Table 7. Of 18 validated entries in the top
50 on KITTI, many are recent, and progress between them has been

Table 7: Recent publications atop the KITTI leaderboard are
not always cross-validated against other, larger datasets. The
nuScenes dataset has limited adoption. Continued testing on
KITTI has only achieved marginal improvements on already
high performing marks.

marginal at only 3% gained. Unfortunately, even these recent works
neglect cross-dataset evaluations, leading to challenges with repro-
ducibility and translational success in contexts such as simulators
and real AVs.

C KITTI, nuScenes, Waymo Configurations

The release of high-fidelity benchmark datasets from major re-
search institutions and prominent industry players has significantly
contributed to a boom in AV algorithm development. Large datasets
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Figure 9: Configurations from different AV data source
providers are all unique; each dataset has its own sensor
types, sensor orientations, reference frames, and data rates.
Evaluating components across all sources leads to insight-
ful results.

R. Spencer Hallyburton, Shucheng Zhang, and Miroslav Pajic

like nuScenes [10] and Waymo’s Open Dataset [33] have garnered
attention recently for their challenging mix of weather conditions
and multiple complementary sensing modalities.

Despite their contributions to the field, no platform has managed
to unify the datasets under an tractable umbrella. This is in part
due to the intricacy and uniqueness of each platform itself. To help
illuminate why unifying these datasets under a common interface
is challenging, we provide the sensor configurations for KITTI [15],
nuScenes, and Waymo’s open dataset in Figure 9.

D Configuration of Collaborative Case Study

The vehicle-to-infrastructure (V2I) collaborative case study of
Section 4.2 provides a framework for future efforts to develop multi-
agent components and design smart cities. In this section, we pro-
vide additional details on the specific parameters used. These de-
tails can also be found in the source code online at [2]. We used
LiDAR sensors as our infrastructure sensors. In pre-processing,
we determined if objects were in the field of view of a sensor for
ground-truth evaluation by using ray-tracing to filter out objects
that were completely occluded (i.e., no LiDAR points in bounding
box). We did so because CARLA has no alternative method, to our
knowledge, of validating if an object is in view of a sensor. After
pre-processing, we simulated detections from the LiDAR sensor
rather than run a perception algorithm. This was solely so that we
could apply our own noise model to the infrastructure detections as
a trade study. Then, to simulate V2I communication, we performed
range-based filtering to identify which infrastructure sensors were
in-range of the ego vehicle. Detections were passed with no latency
to the ego agent. The agent then fused the infrastructure detections
with existing tracks in a Kalman filter with a standard assignment
algorithm. We evaluated performance of the ego agent against ob-
jects in the field of view of the ego within a range of 100 m and a
maximum occlusion score of “partial”.



