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Abstract

In the study of information technology, one of important efforts is made
on dealing with nonsubmodular optimizations since there are many
such problems raised in various areas of computer and information
science. Usually, nonsubmodular optimization problems are NP-hard.
Therefore, design and analysis of approximation algorithms are impor-
tant tasks in the study of nonsubmodular optimizations. However,
the traditional methods do not work well. Therefore, a new method,
the global approximation of local optimality, is proposed recently. In
this paper, we give an extensive study for this new methodology.

Keywords: Global Approximation, Local Optimality, Nonsubmodular
Optimization

1 Introduction

An important class of graph data is the social data, generated from the online
social network (OSN). The social data have been growing rapidly over the
internet through various OSNs, including online websites, such as Facebook,
LinkedIn, ResearchGate, and messengers, such as Skype. The widespread
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use of them leads to an increasing interest in efficiently and correctly dis-
covering important, useful, and implicit information. Efficient techniques for
data harnessing about social data are crucial to applications across many
domains, including public safety, environment management, election, and viral
marketing.

In study of techniques for graph data harnessing, one of important efforts
is made on dealing with nonsubmodular optimizations since there are many
such problems raised in various research subjects on information discovery and
data management. Let us mention a few examples.

Sharing and spreading various contents is growing importance of informa-
tion diffusion in OSNs. To develop effective and efficient techniques for content
processing, a content spread maximization problem is studied in [1], which is
a nonsubmodular optimization. The target activation probability maximiza-
tion [2] is another nonsubmodular optimization problem regarding information
diffusion, which aims at influence towards certain target user.

There are two popular approaches to deal with the misinformation block-
ing. The first one is to cut connections at nodes or links (e.g., see [3, 4]). In
[5], link deletion is considered and a rumor spread minimization problem is
proposed, which is a nonsubmodular minimization problem. In [6], node-cuts
are considered and a maximum protection problem is proposed, which is a
nonsubmodular maximization problem. The second approach is to spread the
truth to clarify misinformation [7, 8]. More optimization research problems are
formulated along this line [9-13], which are also nonsubmodular optimizations.

The sentiment analysis has been widely used in mining information from
OSNs for election prediction and decision making in business management [14—
16]. The language corpora plays an important role in the sentiment analysis
[17]. Previously, many larger corpora are created. The size of corpora effects the
power and accuracy of analysis, however, it also brings redundancy. Consider
such a tradeoff. A language corpora extraction problem is formulated in
[18], which is nonsubmodular.

A very important application of social influence is the viral market-
ing where there exist various problem formulations based on various types
of products. When influence tends to be of certain composed type, such
as complementary relationship between products [19], multiple features of a
product, the activity profit of multiple players [20], group influence [21], or
hypergraph structure [22] is considered, corresponding optimization problem
is nonsubmodular.

Actually, the submodular property is very important in optimization
theory.

Definition 1 (Submodular and Monotone Properties). A function f over all
subsets of a finite set V is said to be submodular if for any two subsets A
and B, f(A) + f(B) > f(AU B) + f(AN B). Moreover, f is monotone
nondecreasing if for A C B, f(A) < f(B).
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The submodular function is usually considered as a sort of discrete convex
function since its unconstrained minimization can be solved in polynomial-
time [23-25]. In the set function optimization, the analysis on submodular
functions, especially on monotone nondecreasing submodular functions has
been very well studied [26], so that although maximization and constrained
minimization of submodular functions are often NP-hard, there exist many
theoretical guaranteed approximation solutions for them [27-32].

However, for nonsubmodular optimizations, although many applications
have appeared, no satisfied solution has been found. Based on the study of
existing algorithms for nonsubmodular optimization, such as parameterized
algorithms, sandwich methods, and submodular-supermodular algorithms, a
new type of approximation algorithms, the global approximation of local opti-
mality is proposed recently. In this paper, we give an extensive study on this
new type of approximations.

2 What is Global Approximation of Local
Optimality?

Before explain what is the global approximation of local optimality, let us
first review previous methods for nonsubmodular optimization. They can be
classified into three classes.

Parameterized Method: To deal with nonsubmodular optimization, one
intends to measure how far the function differs from the submodularity. Moti-
vated from this intension, several parameters are introduced and theoretical
results for submodular optimization are extended to nonsubmodular optimiza-
tion with those parameters. For example, the supermodular degree D} for set
function f is introduced in [33] and with this parameter, a greedy algorithm for
monotone nondecreasing nonsubmodular maximization with & matroid con-
straints is proved to have performance ratio 34]. Moreover, for

Rr |
monotone nondecreasing nonsubmodular maximization with size-constraint, a
similar greedy algorithm is proved to have performance ratio %(1 — e~ ) [35]
where « is the curvature of objective set function f defined in [36] and ~ is
the submodularity ratio defined in [37]. These two results have been utilized in
[11, 20], respectively. However, it is hard to find other significant application in
the literature. In fact, in each specific nonsubmodular optimization problem in
the real world problem, the parameter value often tends to give a performance
ratio 0 for maximization and oo for minimization.

Sandwich Method: The sandwich method was initiated in [38] and later
appeared in many publications [2, 5, 6, 9, 10, 13, 19, 21, 22, 39, 40]. To explain
this method, suppose we face a problem maxacq f(A4) where  is a collection
of subsets of 2% and X is a finite set. Then the sandwich method works in the
following way.

e Input a set function f: 2% — R.
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e Initially, find two submodular functions u and [ such that u(A) > f(A) >
[(A) for A € Q. Then carry out following

— Compute an a-approximation solution S, for maxscou(A) and a S-
approximation solution S; for maxacq [(A).
— Compute a feasible solution S, for maxacq f(A).

* Output § = argmax(f(Su), f(So), f(51))-
The solution S produced by the sandwich method satisfies the following;:

f(Su) Optl
U(Su) 'O[,% /8} 'Optfa

f(8) = maX{

where opty (opt;) is the objective function value of the minimum solution for
maxacq f(A) (maxacql(A)).

Clearly, this performance ratio is really ugly, which cannot give a clean
indication for the quality of approximation.

Seek Local Optimal Solution: Analysis in above two classes of algo-
rithms indicates that the traditional approximation performance ratio cannot
work well for nonsubmodular optimizations. Therefore, one’s attention is
moved to local optimal solutions and a class of algorithms are designed to
stop at local optimal solutions. Submodular-supermodular algorithm [41],
modular-modular algorithm [42], and iterated sandwich algorithm [43, 44] are
examples in this class. To give further discussion, let us consider submodular-
supermodular algorithm [41] as an example. This algorithm is designed based
on following properties of set functions.

Theorem 1 (DS Decomposition [41, 42]). Every set function f can be decom-
posed into the difference of two monotone nondecreasing submodular functions
g and h, i.e., f=g—h.

Theorem 2 (Sandwich Theorem [43]). Consider a set function f : 2X — R.
For any A C X, there exist two modular functions m, and m; such that
f(A) =my(A) =my(A) and m,(Y) > f(Y) >my(Y) for any Y € 2%, (A set
function m is modular if both m and —m are submodular.)

The submodular-supermodular algorithm for unconstrained minimization
min f(A) for A € 2% is as shown in Algorithm 1.

To understand why this algorithm can reach a local minimal solution, let
us first make clear what is a local minimal solution.

Definition 2 (Local Minimal Solution (Type 1)). Consider a set function
minimization problem minacq f(A) where ) is the feasible domain. A € Q is
called a local minimal solution if A € Q and for any A’ € Q, which is obtained
from A by deleting an element or adding an element, f(A") > f(A).



Springer Nature 2021 BTEX template

Global Approximation of Local Optimality 5

Algorithm 1 Submodular-Supermodular Algorithm for Minimization.

Input: a set function f : 2¥ — R and its DS decomposition f = g — h where
g and h are submodular functions.

Output: A subset A of X.

1: choose a set A C X

2. while AT # A do

3: A A+;
4 compute a lower bound modular function my,; for h such that mp;(A) =
h(A);

compute a minimum solution A1 for miny ¢cox [g(Y) — mp (V)]

6: end while
7: return A.

o

Following property of modular lower bound plays an important role in
establishment of local minimal solution.

Lemma 2.1. Let h: 2X — R be a submodular function. Let o is a permuta-
tion of all elements in X such that A = {o(1),...,0(A)}. Define the modular
function my, by

m,(Y) =h(0) + Y {h(S7) = h(S71)}

o(t)eY

where SY = {o(1),0(2),...,0(2)}. Then m{, is a lower bound of h such that
for any i, h(S7) =m7,(S7). and especially, h(A) = m7,(A).

Let ¥4 be a collection of at most max(| 4 |,| X \ A |) permutations o of
X such that A = {o(1),...,0(] A|)}, o(| A|) goes over all elements of A, and
o(| A|+1) goes over all elements of X \ A. In the submodular-supermodular
algorithm, let my; go over all m7, for 0 € ¥ 4. Then, the algorithm will stop
at a local minimal solution. Therefore, we can state as follows.

Theorem 3. The submodular-supermodular algorithm for unconstrained set
function minimization stops at a local minimal solution if run each iteration
in O(n) time.

There is an important question about the number of iterations. In [43,
44], it has been indicated that for some optimization problems, computing a
local optimal solution is PLS-complete [45], that is, it is unlikely to have a
polynomial-time algorithm to compute a local optimal solution. It follows that
for submodular-supermodular algorithm, the number of iterations is unlikely
to be bounded by a polynomial since they are working generally for a large
class containing those optimization problems. Motivated from this fact, the
global approximation of local optimality is proposed.
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Global Approximation of Local Optimality: An algorithm is called a
global approzimation of local optimality, or GL-approximation for a brief name,
if it can always produce an approximation solution within a guaranteed factor
from some local optimal solution. Algorithm 2 is a GL-approximation obtained
from modification of submodular-supermodular algorithm.

Algorithm 2 Modified Submodular-Supermodular Algorithm for Minimiza-
tion.
Input: a set function f: 2% — R and its DS decompositionf =g — h
where g and h are submodular functions.
Output: A subset A of X.
1: choose a set A C X; set ok <+ 1;
2: while ok =1 do
3: for 0 € ¥4 do
compute a lower bound modular function my,; for h;
compute a minimum solution A} for miny-¢ox [g(Y) — mg,(Y)];
end for
o — argmin, ey, f(A2):
AT+ AT
if f(AT)-(1+¢)> f(A) then
10: ok + 0;
11: end if
12: A+ AT,
13: end while
14: return A.

In the algorithm, 3 4 is a collection of at most max(| A |,| X \ 4 |) permu-
tations o of X such that A = {o(1),...,0(] A|)}, o(] A|) goes over all elements
of A, and o(| A | +1) goes over all elements of X \ A, and m{, is a modular
lower bound of h, constructed by using permutation o (see [42] for detail.)

For this algorithm, we can prove following result.

Theorem 4. Let f be a nonnegative function. Then above algorithm runs
within O(LIn() iterations and always ends at an approzimation solution with
objective function value within a factor of (14 ¢€) from a local optimal solution
where € is the ratio of the mazimum value and the minimum value of f.

The GL-approximation provides a new tool to study nonsubmodular opti-
mizations, which will introduce a lot of exploratory and innovative research
opportunities.

A Remark Why we call the new-type of approximation as global approxi-
mation of local optimality? Let us look at theoretical development of nonlinear
programming. For convex function minimization with or without constraints, a
satisfied algorithm is usually expected to generate a sequence of points which is
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convergent to an optimal solution. However, such an expectation cannot real-
ized for non-convex optimizations. Instead, one established another criterion,
global convergence, which means that every cluster point is locally optimal,
that is, every convergent subsequence converges to a local optimal point [46—
48]. The name of global approximation of local optimality is an analogy of the
global convergence.

3 Alternative Local Optimality

With DS decomposition, there exists another way to describe local optimal
solutions. First, let us define subgradient of a submodular function.

Definition 3 (Subgradient of Submodular Function). Let h be a submodular
function over Q C 2X. For any A € 2%, define its subgradient at set A as
follows:

Oh(A) = {ce R* | h(Y) > h(A) + (¢,Y — A) for Y € Q},

that is, Oh(A) consists of all linear functions ¢ : X — R satisfying h(Y) >
h(A) 4+ c(Y) — c(A) for Y € Q where ¢(Y) = ZUEY c(y).

Let f = g — h be a set function on Q C 2% and g and h submodular
functions on Q C 2X. If set A is a minimum solution for minycx f(Y), then
for any Y € Q,

Therefore, for any ¢ € Oh(A),
9(Y) = g(A) = h(Y) = h(4) = ¢(Y) = ¢(A),
for Y € Q, that is, ¢ € 0g. Hence,
Oh(A) C g(A).
This fact motivates the following definition.
Definition 4 (Local Minimal Solution (Type 2)). Consider a set function

minimization problem minacq f(A) where Q C 2% s the feasible domain.
A € Q is called a local minimal solution if Oh(A) C dg(A).

A continuous function is called a DC function if it can be represented as
the difference of two convex functions. A discrete DC function is a DC func-
tion restricted in a discrete set in its definition domain. Every set function is a
discrete DC function because every submodular set function can be extended
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to a convex function (Lovész extension) on domain [0, 1]™. Definition 4 is con-
sistent with the definition of local minimum solution of discrete DC functions
[49].

There exist several algorithms for minimization of discrete DC functions
[49-51], which terminate at local minimum solutions. Are they polynomial-
time algorithms? No answer exists in the literature. Following investigation
provides with an answer and a potential research topic.

Lemma 3.1. Let A be a local minimum solution defined in Definition 4. Then
foranyY €U, f(A) < f(Y) where

U={Y €Q|dnY)Ndg(A) #0}.

Proof Choose ¢ € Oh(Y) N dg(A). Then
h(A) 2 h(Y) + (c(A) — ¢(Y)) and g(Y) = g(A) + (c(Y) — ¢(A)).
Hence h(Y) — h(A) < c(Y) — c(A) < g(Y) — g(A). Therefore, f(Y) > f(A). O

Lemma 3.2 (Fujishige [52]). A point ¢ € RX is an extreme point of
Of(A) if and only if there is a permutation o for elements in X, i.e., X
{c(1),0(2),...,0(X)}, such that A = {o(1),0(2),...,0(A)} and c({c(i)})
F(Si) = f(Si=1) for 1 <i < X where So =0 and S; = {c(1),0(2),...,0(2)}.

Theorem 5. If A is a local minimum solution of type 2, then A is a local
minimum solution of type 1.

Proof For any « € A, consider permutation X = {o(1),0(2),...,0(X)} such that
A = {o(1),0(2),...,0(A)} and o(A) = z. Define linear function ¢ by c¢({o(i)}) =
h(S;) — h(S;—1) for 1 < i < X where Sp = 0 and S; = {o(1),0(2),...,0(?)}. Then
¢ € Oh(A\ {z}) N Oh. Since Oh(A) C dg(A), we have ¢ € Oh(A\ {z}) N Ig(A). By
Lemma 3.1, f(A4) < f(A\ {z}).

Similarly, we can show that for any « € X \ A4, f(A) < f(AU{z}). O

Corollary 3.3. For any algorithm terminating at a local minimum solution
of type 2, it is unlikely to run in polynomial-time.

A research subject suggested by this corollary is to modify those algorithm
into polynomial-time global approximations of local minimality.

4 Nonconvex Relaxation

Relaxation is a popular technique for design of approximation algorithms.
Many traditional approximation algorithms are designed with LP relaxation,
semi-definite relaxation, and convex relaxation. Now, nonconvex relaxation
may become a new development for global approximation of local optimality,
which will also introduce some interesting new research directions.
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Let us consider a specific problem to make explanation. Consider the
following problem [53]:

Problem 4.1 (Maximum Group Set Coverage with Composed Targets). Con-
sider m groups Gi, Ga, ..., Gm of subsets of a finite set X. All elements in X
are partitioned into subsets X1, Xo, ... X, each called a composed target. Sup-
pose that for every composed target X;, each subset in any group G; covers at
most one elements in X;. The problem is to select one subset from each group
to cover the mazximum total number of composed targets, where a composed
target is said to be covered if all elements in the composed target are covered.

This problem can be formulated as the following nonsubmodular maxi-
mization with linear constraints.

max i 11 v (INLP)

t=1 jeX,
m

s.t. Yj < Z Z ;s V.] = 1, w1,
i=1 S:jeSeg;

> wmis <1 Vi=1,..,m,
S:S€g;

y; €{0,1} Vji=1,..,n,
x5 €{0,1} VS eG;andi=12,..,m.

Its relaxation is a linear constrained nonlinear programming as follows.

max Z H Yj (NLP)

t=1jeX,
m
s.t. y; < Z Z zis Vi=1,..,n,
i=1 S:jeSeq;
Y wmis<1 Vi=1,..m,
S:Seg;

0<y,; <1 Vj=1,..n,
0<z;5<1 VSegG;andi=1,2,....m.

Let (y;,7}5) be a (1 — ¢)-approximate for a local optimal solution (KKT-
point) of (NLP). Let (x;s,y;) be a solution obtained from the following
randomized rounding.

Randomized Rounding: For each group G;, select one subset S (i.e., set
zis =1 and x;5 = 0 for S’ # S) with probability zf¢ and no subset of group
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G, is selected with probability 1 — > seg, Tis- Set y; = 1 if element j appears
in a selected subset, and y; = 0 otherwise.
Du et al. [53] showed the following.

Theorem 6. Let (y;,z:s) be an approzimate solution obtained by the above
randomized rounding. Then

E Z H yi| > (1—e H)*(1 —e)lopt

t=1 jEX;

where lopt is the objective value of a local optimal solution of (NLP) and
o = maxj<i<r X-t.

There are two research directions raised by this result.

First, what is complexity of computing approximation of KKT-points?
Vavasis [54] gave an algorithm for computing an e-KKT of a box-constrained
quadratic programming with O(n®(M/e)?) arithmetic operations. Ye [55]
presented an algorithm for computing an e-KKT of a linearly constrained
quadratic programming with O((n?/¢)log(1/e)+nlogn) iterations. Can those
works be extended to other objective functions, especially multilinear func-
tions? It is an interesting problem. In fact, this is a research direction with
a largely unexplored field. Research outcomes will become foundation for
noncovex relaxation.

Second, what is the relationship between local optimal solutions of (INLP)
and (NLP)? That is, what is the relationship between local optimal solutions
of an integer programming and local optimal solutions of its nonconvex relax-
ation? So far, there is no research outcome in this research direction although
it seems a fundamental problem related to nonconvex relaxation.

5 Conclusion

Design and analysis of GL-approximation is a new research direction in the
study of nonsubmodular optimizations, with a lot of interesting open prob-
lems. With the increasing interests on nonsubmodular optimizations and their
applications, one may pay more attention to theoretical foundation of this type
of approximation algorithms. Therefore, our research on GL-approximations
will not only contribute to the development of emerging components for build-
ing optimization theory, but also bring broader benefits in many technology
developments. The discoveries on studying GL-approximation also promote
the development of some fields in computer science and mathematics, such as
social networks and nonlinear combinatorial optimization.
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