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Abstract— Multi-sensor fusion is essential for an accurate
and reliable autonomous driving system. Recent approaches
are based on point-level fusion: augmenting the LiDAR point
cloud with camera features. However, the camera-to-LiDAR
projection throws away the semantic density of camera features,
hindering the effectiveness of such methods, especially for
semantic-oriented tasks (such as 3D scene segmentation). In
this paper, we propose BEVFusion, an efficient and generic
multi-task multi-sensor fusion framework. It unifies multi-modal
features in the shared bird’s-eye view (BEV) representation
space, which nicely preserves both geometric and semantic
information. To achieve this, we diagnose and lift the key
efficiency bottlenecks in the view transformation with optimized
BEV pooling, reducing latency by more than 40×. BEVFusion
is fundamentally task-agnostic and seamlessly supports different
3D perception tasks with almost no architectural changes. It
establishes the new state of the art on the nuScenes benchmark,
achieving 1.3% higher mAP and NDS on 3D object detection and
13.6% higher mIoU on BEV map segmentation, with 1.9× lower
computation cost. Code to reproduce our results is available at
https://github.com/mit-han-lab/bevfusion.

I. INTRODUCTION

Autonomous driving systems are equipped with diverse

sensors. For instance, Waymo’s self-driving vehicles have 29

cameras, 6 radars, and 5 LiDARs. Different sensors provide

complementary signals: e.g., cameras capture rich semantic

information, LiDARs provide accurate spatial information,

while radars offer instant velocity estimation. Thus, multi-

sensor fusion is essential for accurate and reliable perception.

Data from different sensors are expressed in fundamentally

different modalities: e.g., cameras capture data in perspective

view and LiDAR in 3D view. To resolve this view discrepancy,

we have to find a unified representation that is suitable for

multi-task multi-modal feature fusion. Due to the tremendous

success in 2D perception, the natural idea is to project

the LiDAR point cloud onto the camera and process the

RGB-D data with 2D CNNs. However, this LiDAR-to-

camera projection introduces severe geometric distortion

(see Figure 1a), which makes it less effective for geometric-

oriented tasks, such as 3D object recognition.

Recent sensor fusion methods follow the other direction.

They augment the LiDAR point cloud with semantic labels [1],

CNN features [2], [3] or virtual points from 2D images [4],

and then apply an existing LiDAR-based detector to predict
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(a) To Camera: geometric-lossy (b) To LiDAR: semantic-lossy
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(c) Shared spaceBEVFusion
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Fig. 1: BEVFusion unifies camera and LiDAR features in a

shared BEV space instead of mapping one modality to the

other. It preserves camera’s semantic density and LiDAR’s

geometric structure.

3D bounding boxes. Although they have demonstrated remark-

able performance on large-scale detection benchmarks, these

point-level fusion methods barely work on semantic-oriented

tasks, such as BEV map segmentation [5], [6], [7], [8]. This

is because the camera-to-LiDAR projection is semantically

lossy (see Figure 1b): for a typical 32-beam LiDAR scanner,

only 5% camera features will be matched to a LiDAR point

while all others will be dropped. Such density differences will

become even more drastic for sparser LiDARs (or radars).

In this paper, we propose BEVFusion to unify multi-modal

features in a shared bird’s-eye view (BEV) representation

space for task-agnostic learning. We maintain both geometric

structure and semantic density (see Figure 1c) and naturally

support most 3D perception tasks (since their output space can

be naturally captured in BEV). While converting all features

to BEV, we identify the major prohibitive efficiency bottleneck

in the view transformation: i.e., the BEV pooling operation

alone takes more than 80% of the model’s runtime. Then, we

propose a specialized kernel with precomputation and interval

reduction to eliminate this bottleneck, achieving more than

40× speedup. Finally, we apply the fully-convolutional BEV

encoder to fuse the unified BEV features and append a few

task-specific heads to support different target tasks.

BEVFusion sets the new state-of-the-art 3D object detection

performance on both nuScenes and Waymo benchmarks. It

outperforms all published methods with or without test-time

augmentation and model ensemble. BEVFusion demonstrates

even more significant improvements on BEV map segmenta-

tion. It achieves 6% higher mIoU than camera-only models

and 13.6% higher mIoU than LiDAR-only models, while

existing fusion methods hardly work. Moreover, BEVFusion
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Fig. 2: BEVFusion extracts features from multi-modal inputs and converts them into a shared bird’s-eye view (BEV) space

efficiently using view transformations. It fuses the unified BEV features with a fully-convolutional BEV encoder and supports

different tasks with task-specific heads.

is highly efficient, delivering all these results with 1.9× lower

computation cost.

While point-level fusion has been the go-to choice over the

past three years, BEVFusion provides a fresh perspective to

the field of multi-sensor fusion by rethinking “Is LiDAR space
the right place to perform sensor fusion?”. It showcases the

superior performance of an alternative paradigm that has been

previously overlooked. Simplicity is also its key strength. We

hope this work will serve as a simple yet strong baseline

for future sensor fusion research and inspire the researchers

to rethink the design and paradigm for generic multi-task

multi-sensor fusion.

II. RELATED WORK

LiDAR-Based 3D Perception. Researchers have designed

single-stage 3D object detectors [9], [10], [11], [12], [13], [14]

that extract flattened point cloud features using PointNets [15]

or SparseConvNet [16] and perform detection in the BEV

space. Later, [17], [18], [19], [20], [21], [22], [23] explore

anchor-free single-stage 3D object detection. Another stream

of research [24], [25], [26], [27], [28], [29] focuses on two-

stage object detector design, which adds an RCNN network

to existing one-stage object detectors.

Camera-Based 3D Perception. Due to the high cost of

LiDAR sensors, researchers spend significant efforts on

camera-only 3D perception. FCOS3D [30] extends an image

detector [31] with additional 3D regression branches, which

is later improved by [32], [33] in depth modeling. Instead

of performing object detection in the perspective view, [34],

[35] design a DETR [36], [37]-based detection head with

learnable object queries in the 3D space. Inspired by the

design of LiDAR-based detectors, another type of camera-

only 3D perception models explicitly converts the camera

features from perspective view to the bird’s-eye view using

a view transformer [5], [38], [39], [6]. BEVDet [40] and

M2BEV [41] extends LSS [6] and OFT [38] to 3D object

detection and CaDDN [42] adds explicit depth estimation

supervision to the view transformer. Recent research [43], [8]

also studies view transformation with multi-head attention.

Multi-Sensor Fusion. Recently, multi-sensor fusion arouses

significant interest among the 3D detection community.

Existing approaches can be classified into proposal-level
and point-level fusion methods. Early approach MV3D [44]

creates object proposals in 3D and projects the proposals to

images to extract RoI features. [45], [46], [47] all lift image

proposals into a 3D frustum. Recent work FUTR3D [48]

and TransFusion [49] define object queries in the 3D space

and fuses image features onto these proposals. All proposal-

level fusion methods are object-centric and cannot trivially

generalize to other tasks such as BEV map segmentation.

Point-level fusion methods, on the other hand, usually paint

image semantic features onto foreground LiDAR points

and perform LiDAR-based detection on the decorated point

cloud inputs. As such, they are both object-centric and

geometric-centric. Among these methods, [1], [2], [4], [50],

[51] are (LiDAR) input-level decoration, while DCF [52] and

DeepFusion [3] are feature-level decoration.
In contrast to all existing methods, BEVFusion performs

sensor fusion in a shared BEV space and treats foreground

and background, geometric and semantic information equally.

It is a generic multi-task multi-sensor perception framework.

III. METHOD

BEVFusion, as shown in Figure 2, focuses on multi-
sensor fusion (i.e., multi-view cameras and LiDAR) for multi-
task 3D perception (i.e., detection and segmentation). Given

different sensory inputs, we first apply modality-specific

encoders to extract their features. We transform multi-modal

features into a unified BEV representation that preserves

both geometric and semantic information. We identify the

efficiency bottleneck of the view transformation and accelerate

BEV pooling with precomputation and interval reduction. We

then apply the convolution-based BEV encoder to the unified

BEV features to alleviate the local misalignment between

different features. Finally, we append a few task-specific

heads to support different 3D tasks.

A. Unified Representation
Different features can exist in different views. For in-

stance, camera features are in the perspective view, while
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Fig. 3: Camera-to-BEV transformation (a) is the key step to perform sensor fusion in the unified BEV space. Existing

implementation is extremely slow and takes up to 2s for a single scene. We propose efficient BEV pooling (b) using interval

reduction and fast grid association with precomputation, bringing about 40× speedup to view transformation (c, d).

LiDAR/radar features are typically in the 3D/bird’s-eye

view. Even for camera features, each one of them has a

distinct viewing angle (i.e., front, back, left, right). This view
discrepancy makes the feature fusion difficult since the same

element in different feature tensors might correspond to very

different spatial locations (and the naı̈ve elementwise feature

fusion will not work in this case). Thus, it is crucial to find

a shared representation, such that (1) all sensor features can

be easily converted to it without information loss, and (2) it

is suitable for different types of tasks.

To Camera. Motivated by RGB-D data, one choice is to

project the LiDAR point cloud to the camera plane and

render the 2.5D sparse depth. However, this conversion is

geometrically lossy. Two neighbors on the depth map can

be far away from each other in the 3D space. This makes

the camera view less effective for tasks that focus on the

object/scene geometry, such as 3D object detection.

To LiDAR. Most state-of-the-art sensor fusion methods [1],

[4], [3] decorate LiDAR points with their corresponding

camera features (e.g., semantic labels, CNN features or

virtual points). However, this camera-to-LiDAR projection

is semantically lossy. Camera and LiDAR features have

drastically different densities, resulting in only less than 5%

of camera features being matched to a LiDAR point (for a

32-channel LiDAR scanner). Giving up the semantic density

of camera features severely hurts the model’s performance

on semantic-oriented tasks (such as BEV map segmentation).

Similar drawbacks also apply to more recent fusion methods

in the latent space (e.g., object query) [48], [49].

To Bird’s-Eye View. We adopt the bird’s-eye view (BEV)
as the unified representation for fusion. This view is friendly

to almost all perception tasks since the output space is also

in BEV. More importantly, the transformation to BEV keeps

both geometric structure (from LiDAR features) and semantic

density (from camera features). On the one hand, the LiDAR-

to-BEV projection flattens the sparse LiDAR features along

the height dimension, thus does not create geometric distortion

in Figure 1a. On the other hand, camera-to-BEV projection

casts each camera feature pixel back into a ray in the 3D

space (detailed in the next section), which can result in a

dense BEV feature map in Figure 1c that retains full semantic

information from the cameras.

B. Efficient Camera-to-BEV Transformation

Camera-to-BEV transformation is non-trivial because the

depth associated with each camera feature pixel is inherently

ambiguous. Following LSS [6], we explicitly predict the

discrete depth distribution of each pixel. We then scatter each

feature pixel into D discrete points along the camera ray and

rescale the associated features by their corresponding depth

probabilities (Figure 3a). This generates a camera feature

point cloud of size NHWD, where N is the number of

cameras and (H,W ) is the camera feature map size. Such

3D feature point cloud is quantized along the x, y axes with a

step size of r (e.g., 0.4m). We use the BEV pooling operation

to aggregate all features within each r × r BEV grid and

flatten the features along the z-axis.

Though simple, BEV pooling is surprisingly inefficient

and slow, taking more than 500ms on an RTX 3090 GPU

(while the rest of our model only takes around 100ms). This

is because the camera feature point cloud is very large: for

a typical workload*, there could be around 2 million points

generated for each frame, two orders of magnitudes denser

than a LiDAR feature point cloud. To lift this efficiency

bottleneck, we propose to optimize the BEV pooling with

precomputation and interval reduction.

Precomputation. The first step of BEV pooling is to

associate each point in the camera feature point cloud with a

BEV grid. Different from LiDAR point clouds, the coordinates

of the camera feature point cloud are fixed (as long as the

camera intrinsics and extrinsics stay the same, which is

usually the case after proper calibration). Motivated by this,

we precompute the 3D coordinate and the BEV grid index of

each point. We also sort all points according to grid indices

and record the rank of each point. During inference, we only

need to reorder all feature points based on the precomputed

ranks. This caching mechanism can reduce the latency of

grid association from 17ms to 4ms.

*N = 6, (H,W ) = (32, 88), and D = (60 − 1)/0.5 = 118. This
corresponds to six multi-view cameras, each associated with a 32×88 camera
feature map (which is downsampled from a 256×704 image by 8×). The
depth is discretized into [1, 60] meters with a step size of 0.5 meter.
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Tab. I: BEVFusion achieves state-of-the-art 3D object detection performance on nuScenes (val and test) without bells and

whistles. It breaks the convention of decorating camera features onto the LiDAR point cloud and delivers at least 1.3% higher

mAP and NDS with 1.5-2× lower computation cost. (∗: our re-implementation; †: with test-time augmentation)

Modality mAP (test) NDS (test) mAP (val) NDS (val) MACs (G) Latency (ms)

M2BEV [41] C 42.9 47.4 41.7 47.0 – –
BEVFormer [43] C 44.5 53.5 41.6 51.7 – –

PointPillars [10] L – – 52.3 61.3 65.5 34.4
SECOND [11] L 52.8 63.3 52.6 63.0 85.0 69.8
CenterPoint [17] L 60.3 67.3 59.6 66.8 153.5 80.7

PointPainting [1] C+L – – 65.8∗ 69.6∗ 370.0 185.8

PointAugmenting [2] C+L 66.8† 71.0† – – 408.5 234.4
MVP [4] C+L 66.4 70.5 66.1∗ 70.0∗ 371.7 187.1
FusionPainting [50] C+L 68.1 71.6 66.5 70.7 – –
AutoAlign [51] C+L – – 66.6 71.1 – –
FUTR3D [48] C+L – – 64.5 68.3 1069.0 321.4
TransFusion [49] C+L 68.9 71.6 67.5 71.3 485.8 156.6
BEVFusion (Ours) C+L 70.2 72.9 68.5 71.4 253.2 119.2

Interval Reduction. After grid association, all points

within the same BEV grid will be consecutive in the tensor

representation. The next step of BEV pooling is to aggregate
the features within each BEV grid by some symmetric

function (e.g., mean, max, and sum). As in Figure 3b, existing

implementation [6] first computes the prefix sum over all

points and then subtracts the values at the boundaries where

indices change. However, the prefix sum operation requires

tree reduction on the GPU and produces many unused partial

sums (since we only need those values on the boundaries),

both of which are inefficient. To accelerate feature aggregation,

we implement a specialized GPU kernel that parallelizes

directly over BEV grids: we assign a GPU thread to each

grid that calculates its interval sum and writes the result back.

This kernel removes the dependency between outputs (thus

does not require multi-level tree reduction) and avoids writing

the partial sums to the DRAM, reducing the latency of feature

aggregation from 500ms to 2ms (Figure 3c).

Takeaways. The camera-to-BEV transformation is 40×
faster with our optimized BEV pooling: the latency is

reduced from more than 500ms to 12ms (only 10% of our

model’s end-to-end runtime) and scales well across different

feature resolutions (Figure 3d). This is a key enabler for

unifying multi-modal sensory features in the shared BEV

representation. Two concurrent works of ours also identify

this efficiency bottleneck in the camera-only 3D detection.

They approximate the view transformer by assuming uniform

depth distribution [41] or truncating the points within each

BEV grid [40]. In contrast, our techniques are exact without

any approximation, while still being faster.

C. Fully-Convolutional Fusion

With all sensory features converted to the shared BEV

representation, we can easily fuse them together with an

elementwise operator (such as concatenation). Though in the

same space, LiDAR BEV features and camera BEV features

can still be spatially misaligned to some extent due to the

inaccurate depth in the view transformer. To this end, we

apply a convolution-based BEV encoder (with a few residual

Tab. II: BEVFusion achieves state-of-the-art 3D object

detection performance among all submissions on Waymo

open dataset (test). (†: with test-time augmentation, ‡: with

both test-time augmentation and model ensemble)

Frames mAP/L1 mAPH/L1 mAP/L2 mAPH/L2

AFDetV2-Ens [18]‡ 3 84.1 82.6 79.0 77.6
InceptionLiDAR 10 83.8 82.5 79.2 77.8
3DAL-Ens [20] 5 84.6 83.1 79.7 78.2
DeepFusion-Ens [3]‡ 5 84.4 83.2 79.5 78.4
MT-Net‡ [55] 3 84.7 83.2 79.9 78.5
MT3D 4 85.0 83.7 80.1 78.7
LIVOX-Detection 7 84.8 83.5 80.2 79.0
MPPNet-Ens‡ [56] 16 85.0 83.7 80.5 79.1
3DAM-Ens 5 85.3 83.8 80.7 79.2
BEVFusion (Ours)† 3 85.7 84.4 80.8 79.5

blocks) to compensate for such local misalignments. Our

method could potentially benefit from more accurate depth

estimation (e.g., supervising the view transformer with ground-

truth depth [42], [53]), which we leave for future work.

D. Multi-Task Heads

We apply multiple task-specific heads to the fused BEV

feature map. Our method is applicable to most 3D perception

tasks. For 3D object detection, we follow [17], [49] to use

a class-specific center heatmap head to predict the center

location of all objects and a few regression heads to estimate

the object size, rotation, and velocity. For map segmentation,

different map categories may overlap (e.g., crosswalk is

a subset of drivable space). Therefore, we formulate this

problem as multiple binary semantic segmentation, one for

each class. We follow CVT [8] to train the segmentation head

with the standard focal loss [54].

IV. EXPERIMENTS

We evaluate BEVFusion for camera-LiDAR fusion on 3D

object detection and BEV map segmentation, covering both

geometric- and semantic-oriented tasks. Our framework can

be easily extended to support other types of sensors (such

as radars and event-based cameras) and other 3D perception

tasks (such as 3D object tracking and motion forecasting).
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Tab. III: BEVFusion outperforms the state-of-the-art multi-sensor fusion methods by 13.6% on BEV map segmentation on

nuScenes (val) with consistent improvements across different categories.

Modality Drivable Ped. Cross. Walkway Stop Line Carpark Divider Mean

OFT [38] C 74.0 35.3 45.9 27.5 35.9 33.9 42.1
LSS [6] C 75.4 38.8 46.3 30.3 39.1 36.5 44.4
CVT [8] C 74.3 36.8 39.9 25.8 35.0 29.4 40.2

M2BEV [41] C 77.2 – – – – 40.5 –
BEVFusion (Ours) C 81.7 54.8 58.4 47.4 50.7 46.4 56.6

PointPillars [10] L 72.0 43.1 53.1 29.7 27.7 37.5 43.8
CenterPoint [17] L 75.6 48.4 57.5 36.5 31.7 41.9 48.6

PointPainting [1] C+L 75.9 48.5 57.1 36.9 34.5 41.9 49.1
MVP [4] C+L 76.1 48.7 57.0 36.9 33.0 42.2 49.0
BEVFusion (Ours) C+L 85.5 60.5 67.6 52.0 57.0 53.7 62.7

Tab. IV: BEVFusion is robust under different lighting and weather conditions, significantly boosting the performance

single-modality models under challenging rainy(+10.7) and nighttime(+12.8) scenes.

Sunny Rainy Day Night

Modality mAP mIoU mAP mIoU mAP mIoU mAP mIoU

CenterPoint [17] L 62.9 50.7 59.2 42.3 62.8 48.9 35.4 37.0
BEVFormer [43] C 41.0 – 44.0 – 41.9 – 21.2 –
BEVFusion C – 59.0 – 50.5 – 57.4 – 30.8

MVP C+L 65.9 (+3.0) 51.0 (+0.3) 66.3 (+7.1) 42.9 (+0.6) 66.3 (+3.5) 49.2 (+0.3) 38.4 (+3.0) 37.5 (+0.5)

BEVFusion C+L 68.2 (+5.3) 65.6 (+6.6) 69.9 (+10.7) 55.9 (+5.4) 68.5 (+5.7) 63.1 (+5.7) 42.8 (+7.4) 43.6 (+12.8)

Model. We use Swin-T [57] as our image backbone and

VoxelNet [11] as our LiDAR backbone. We apply FPN [58]

to fuse multi-scale camera features to produce a feature

map of 1/8 input size. We downsample camera images to

256×704 and voxelize the LiDAR point cloud with 0.075m

(for detection) and 0.1m (for segmentation). As detection and

segmentation tasks require BEV feature maps with different

spatial ranges and sizes, we apply grid sampling with bilinear

interpolation before each task-specific head to explicitly

transform between different BEV feature maps.

Dataset. We evaluate our method on nuScenes [59] and

Waymo [60], which are large-scale datasets for 3D perception

with >40k annotated scenes. Each sample in both datasets are

equipped with both LiDAR and surrounding camera inputs.

A. 3D Object Detection
We first experiment on the geometric-centric 3D object

detection benchmark, where BEVFusion achieves superior

performance with lower computation cost and measured

latency. We use the mean average precision (mAP) across 10

foreground classes and the nuScenes detection score (NDS) as

our detection metrics. We also measure the single-inference

#MACs and latency on an RTX3090 GPU for all open-

source methods. We use a single model without any test-time

augmentation for both val and test results.
As in Table I, BEVFusion achieves state-of-the-art results

on the nuScenes detection benchmark, with close-to-real-time

(8.4 FPS) inference speed on a desktop GPU. Compared

with TransFusion [49], BEVFusion offers 1.3% improvement

in test split mAP and NDS, while significantly reduces

the MACs by 1.9× and measured latency by 1.3×. It also

compares favorably against representative point-level fusion

methods PointPainting [1] and MVP [4] with 1.6× speedup,

1.5× MACs reduction and 3.8% higher mAP on the test
set. We argue that the efficiency gain of BEVFusion comes

from the fact that we choose the BEV space as the share

fusion space, which fully utilizes all camera features instead

of just a 5% sparse set. Consequently, BEVFusion can achieve

the same performance with much smaller resolution for the

camera inputs, resulting in significantly lower MACs. Com-

bined with the efficient BEV pooling operator in Section III-B,

BEVFusion transfers MACs reduction into measured speedup.

BEVFusion also achieves state-of-the-art performance

on the Waymo open dataset [60] (Table II). BEVFusion

outperforms the previous state-of-the-art multi-modal detector,

DeepFusion [3] with 60% of input frames. Furthermore,

DeepFusion ensembles 25 models evaluated with test-time

augmentation, while we deliver better performance by apply-

ing test-time augmentation to a single BEVFusion model.

B. BEV Map Segmentation

We further compare BEVFusion with state-of-the-art 3D

perception models on the semantic-centric BEV map seg-

mentation task, where BEVFusion achieves an even larger

performance boost. We report the Intersection-over-Union

(IoU) on 6 background classes and the class-averaged mean

IoU as our evaluation metric. As different classes may

have overlappings (e.g. car-parking area is also drivable),

we evaluate the binary segmentation performance for each

class separately and select the highest IoU across different

thresholds [8]. For each frame, we only perform the evaluation

in the [-50m, 50m]×[-50m, 50m] region around the ego car

following [6], [8], [41], [43].

We report the BEV map segmentation results in Table III. In

contrast to 3D object detection which is a geometric-oriented

task, map segmentation is semantic-oriented. As a result,
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Fig. 4: BEVFusion consistently outperforms state-of-the-art single- and multi-modality detectors under different LiDAR

sparsity, object sizes and object distances from the ego car, especially under the more challenging settings (i.e., sparser point
clouds, small/distant objects).

our camera-only BEVFusion model outperforms LiDAR-only

baselines by 8-13%. This observation is the exact opposite

of results in Table I, where state-of-the-art camera-only

3D detectors got outperformed by LiDAR-only detectors

by almost 20 mAP. Our camera-only model boosts the

performance of existing monocular BEV map segmentation

methods by at least 12%. In the multi-modality setting, we

further improve the performance of the monocular BEVFusion

by 6 mIoU and achieved >13% improvement over state-of-

the-art sensor fusion methods [1], [4]. This is because both

baseline methods are object-centric and geometric-oriented.

PointPainting [1] only decorates the foreground LiDAR

points and MVP only densifies foreground 3D objects. Both

approaches are not helpful for segmenting map components.

Worse still, both methods assume that LiDAR should be the

more effective modality in sensor fusion, which is not true

according to our observations in Table III.

V. ANALYSIS

We present in-depth analyses of BEVFusion over single-

modality models and state-of-the-art multi-modality models.

Weather and Lighting. We systematically analyze the per-

formance of BEVFusion under different weather and lighting

conditions in Table IV. Detecting objects in rainy weather

is challenging for LiDAR-only models due to significant

sensor noises. Thanks to the robustness of camera sensors

under different weathers, BEVFusion improves CenterPoint

by 10.7 mAP, closing the performance gap between sunny and

rainy scenarios. Poor lighting conditions are challenging for

both detection and segmentation models. For detection, MVP

achieves a much smaller improvement compared to BEVFu-

sion since it requires accurate 2D instance segmentations to

generate virtual point generation. This can be very challenging

in dark or overexposed scenes. For segmentation, even if the

camera-only BEVFusion greatly outperforms CenterPoint

on the entire dataset in Table III, its performance is much

worse at nighttime. Our BEVFusion significantly boosts its

performance by 12.8 mIoU, which is even larger than the

improvement in the daytime, demonstrating the significance

of geometric clues when camera sensors fail.

Sizes and Distances. We also analyze the performance

under different object sizes and distances. From Figure 4a,

BEVFusion achieves consistent improvements over its LiDAR-

only counterpart for both small and large objects, while

MVP has only negligible improvements for objects larger

than 4m. This is because larger objects are typically much

denser, benefiting less from those augmented multi-modal

virtual points (MVPs). Besides, BEVFusion brings larger

improvements to the LiDAR-only model for smaller objects

(Figure 4a) and more distant objects (Figure 4b), both of

which are poorly covered by LiDAR and can therefore benefit

more from the dense camera information.

Sparser LiDARs. We demonstrate the performance of

the LiDAR-only detector CenterPoint [17], multi-modality

detector MVP [4] and our BEVFusion under different LiDAR

sparsity in Figure 4c. BEVFusion consistently outperforms

MVP under all sparsity levels with 1.6× MACs reduction

and achieves a 12% improvement in the 1-beam LiDAR

scenario. MVP decorates the input point cloud and directly

applies CenterPoint on the painted and densified LiDAR

input. Thus, it naturally requires the LiDAR-only CenterPoint

detector to perform well, which is not valid under sparse

LiDAR settings (35.8 NDS with 1-beam input in Figure 4c).

BEVFusion, in contrast, fuses multi-sensory information in

a shared BEV space, and thus does not assume a strong

LiDAR-only detector.

VI. CONCLUSION

We present BEVFusion, an efficient and generic framework

for multi-task multi-sensor 3D perception. BEVFusion unifies

camera and LiDAR features in a shared BEV space that

fully preserves both geometric and semantic information.

To achieve this, we accelerate the slow camera-to-BEV

transformation by more than 40×. BEVFusion rethinks the

effectiveness of point-level fusion in multi-sensor perception

systems and achieves superior performance on both nuScenes

3D detection and BEV map segmentation tasks with 1.5-

1.9× less computation and 1.3-1.6× measured speedup over

existing solutions. BEVFusion also outperforms all existing

sensor fusion methods on Waymo open dataset. We hope that

BEVFusion can serve as a simple but powerful baseline to

inspire future research on multi-task multi-sensor fusion.
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