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Abstract 16 

Despite the propensity for complex and non-equilibrium dynamics in nature, eco-17 

evolutionary analytical theory typically assumes that populations are at equilibria.  In 18 

particular pathogens often show antigenic escape from host immune defense, leading to 19 

repeated epidemics, fluctuating selection and diversification, but we do not understand how 20 

this impacts the evolution of virulence.  We model the impact of antigenic drift and escape 21 

on the evolution of virulence in a generalized pathogen and apply a recently introduced 22 

oligomorphic methodology that captures the dynamics of the mean and variance of traits, 23 

to show analytically that these non-equilibrium dynamics select for the long-term 24 

persistence of more acute pathogens with higher virulence. Our analysis predicts both the 25 

timings and outcomes of antigenic shifts leading to repeated epidemics and predicts the 26 

increase in variation in both antigenicity and virulence before antigenic escape.  There is 27 

considerable variation in the degree of antigenic escape that occurs across pathogens and 28 

our results may help to explain the difference in virulence between related pathogens 29 

including, potentially, human influenzas. Furthermore, it follows that these pathogens will 30 

have a lower R0 with clear implications for epidemic, endemic behavior and control. More 31 

generally our results show the importance of examining the evolutionary consequences of 32 

non-equilibrium dynamics. 33 

 34 
Key Words: Cross immunity, disease emergence, virulence, immunity, antigenic escape, 35 

transient evolution, adaptive dynamics, quantitative genetics, population genetics.  36 
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Introduction 38 

Infectious disease remains a major problem for human health and agriculture 1–4 and are 39 

increasingly recognized as important in ecosystems and conservation 5,6.  This has led to 40 

the development of extensive theoretical literature on the epidemiology, ecology and 41 

evolution of host-pathogen interactions 7–10.  Understanding the drivers of the evolution of 42 

virulence, typically defined in the evolutionary literature as the increased death rate of 43 

individuals due to infection, is a key motivator of this theoretical work 8,10–14. Generally, 44 

models assume that a higher transmission rate trade-offs against the intrinsic cost of 45 

reducing the infectious period due to higher death rates (virulence), and classically predict 46 

the evolution of a virulence that maximizes the parasite epidemiological R0 8,10–14.  In fact, 47 

this result only holds in models where ecological feedbacks take a constrained form, such 48 

that even relatively simple processes such as density-dependent mortality, multiple 49 

infections and spatial structure may lead to diversification or different optima 10,12,13,15.  50 

Moreover, this classic evolutionary theory examines the long-term equilibrium 51 

evolutionary outcome in the context of stable endemic diseases, but in nature, infectious 52 

diseases often exhibit complex dynamics, with potentially important impacts on pathogen 53 

fitness 16–19. 54 

Antibody-mediated immunity is a critical factor driving the dynamics of important 55 

infectious diseases such as seasonal influenza, leading to selection for novel variants that 56 

can escape immunity to the current predominant variant 20–22. Such antigenic escape 57 

typically causes the optimal variant of the parasite to change through time as it moves 58 

through antigenic space. Moreover, partial cross-immunity between the different parasite 59 

variants may lead to recurrent epidemics,  fluctuations in parasite variants and potentially 60 
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variant coexistence 23–26. Previous theory has shown that the evolution of immune escape 61 

can lead to dramatic disease outbreaks 24–26, but the implications of these epidemiological 62 

dynamics for the evolution of disease virulence are unknown. This question is challenging 63 

in part because much of the theoretical framework used to study virulence evolution 64 

typically considers diseases that are at an endemic equilibrium 8,10–14.  As such we currently 65 

lack a broad theoretical understanding of the evolution of virulence in the presence of 66 

antigenic escape, despite its importance as an epidemic process and the likely implications 67 

of its inherently dynamical epidemic nature. 68 

Here, we examine the impact of antigenic escape on the evolution of infectious disease in 69 

the context of the well-studied transmission/virulence trade-off 10,27. We first examine 70 

analytically the case without cross-immunity and then apply a recently introduced 71 

‘oligomorphic’ analysis that combines quantitative genetic and game theoretical 72 

approaches 28 to examine the impact of antigenic jumps and epidemic outbreaks due to 73 

cross immunity. Specifically, the oligomorphic analysis explicitly models not only changes 74 

in the mean trait but also changes in the variance of the trait. This variance is critical to the 75 

evolutionary outcome under non-equilibrium dynamics and the approach allows us to 76 

model the evolutionary dynamics of populations with multiple peaks in the character 77 

distribution. This analysis can be applied across a range of ecological and evolutionary 78 

time scales and allows us to examine evolutionary outcomes under non-equilibrium 79 

conditions. Our key result is that antigenic escape selects for higher transmission and 80 

virulence due to the repeated epidemics caused by immune escape, leading to the long-81 

term persistence of acute pathogens. Indeed, antigenic escape has the potential to select for 82 
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infectious diseases with substantially higher virulence than that predicted by the 83 

maximization of R0 in classic disease models.  84 

Results 85 

In order to tractably model antigenic escape with multiple variants and cross-immunity we 86 

follow the simplifying approaches of Gog and Grenfell 26. Effectively the role of cross-87 

immunity is to generate protection against becoming infectious with variants not yet 88 

encountered.  In particular we assume that cross-immunity reduces the transmissibility of, 89 

rather than the susceptibility to, future variants. Furthermore, we assume that there is 90 

polarizing immunity, such that cross-immunity results in a proportion of individuals being 91 

completely immune. These assumptions allow tractability and have been shown not to 92 

impact the predictions of the model 26. Specifically, we consider a population of pathogens 93 

structured by a one-dimensional antigenic trait !, so that "($, !) is the density of hosts 94 

infected with antigenicity variant ! at time $. Following Gog and Grenfell 26, we assume 95 

that an individual is either perfectly susceptible or perfectly immune to a variant. A variant 96 

of pathogen can infect any host, but will be infectious only when the host is susceptible to 97 

that variant. When a variant ' of pathogen infects a host that is susceptible to a variant x, 98 

the host may become (perfectly) immune to the variant ! with probability )(! − '). This 99 

is the partial cross immunity function between variants ! and ', that takes a value between 100 

0 and 1 and is a decreasing function of antigenic distance |! − '| between variants ! and 101 

'. The density of hosts susceptible to antigenicity variant ! at time $ is noted ,($, !).  102 
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Assuming that all pathogen variants have the same transmission rate - and virulence ., we 103 

can describe the dynamics with the following structured Susceptible-Infected-Recovered 104 

model:  105 

/,($, !)

/$
= −-,($, !)1 )(! − ')"($, ')

!

"!
2', (14)

/"($, !)

/$
= [-,($, !) − (6 + .)]"($, !) + 9

/#"($, !)

/!#
. (1;)

 106 

where 6 is the recovery rate, and 9 = <)$# /2 is the diffusion constant due to random 107 

mutation in the continuous antigenic space, which is defined by one half of the mutation 108 

variance <)$# , where < is the mutation rate and )$#  is the variance in the difference between 109 

parental and mutant traits 29,30. The dynamics for the density of recovered hosts is omitted 110 

from (1) as it does not affect the dynamics (1) of the densities of susceptible and infected 111 

hosts.  112 

Invasion of a single pathogen: in our first scenario, we start with a population where all 113 

hosts are susceptible to any variant (?(@, A) = B) and a small number of hosts infected by 114 

pathogen variant with antigenicity trait A = @ is initially introduced. The system then 115 

exhibits travelling wave dynamics in antigenicity space. At the front of the travelling wave, 116 

C(D, A) is sufficiently small and ?(D, A) is sufficiently close to 1. Eq. (1a) can then be 117 

linearized as 118 

/"($, !)

/$
= E"($, !) + 9

/#"($, !)

/!#
(2) 119 

where E = - − (6 + .) is the rate of increase of an antigenicity variant before it spreads 120 

in the population and causes the build-up of herd immunity. The system (1) asymptotically 121 

approaches travelling waves of both pathogen antigenicity distributions "($, !), which have 122 
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an isolated peak around the current antigenicity, and host susceptibility profile ,($, !), that 123 

smoothly steps down towards a low level after the pathogen antigenicity distribution passes 124 

through, with a common constant wave speed 32 (Fig. 1a) 125 

F = 2√E9 = 2HI- − (6 + .)J9. (3) 126 

As the width of the partial cross-immunity function )(! − ') increases, the travelling wave 127 

with static shapes described above is destabilized (Extended Data Fig. 1), and the system 128 

shows intermittent outbreaks that occur periodically both in time and in antigenicity space 129 

26,32 (Fig. 1b). However, the wave speed is unchanged from (3), as the linearized system (2) 130 

towards the frontal end remains the same irrespective of the stability of wave profile that 131 

lags behind (Extended Data Fig. 1). 132 

Evolution of antigenic escape with cross-immunity: To predict how cross-immunity 133 

affects the evolution of antigenic escape, we use an oligomorphic dynamics analysis 28. In 134 

this analysis we consider a population composed of different antigenicity ‘morphs’ that 135 

can be seen as quasispecies. Specifically, we use the term ‘morph’ to describe the 136 

phenotypic trait mean and the continuous variance around this mean. The analysis in the 137 

methods allows us to track the dynamics of morph frequencies, L%, and mean trait values, 138 

!̅%, as: 139 

2L%
2$

= -(N̅% − N̅)L% , (44)

2!̅%
2$

= P%-N&(!̅%). (4;)
 140 

where N(!) is the susceptibility profile of the population, which depends on the cross-141 

immunity function ), N%̅ is the mean susceptibility perceived by viral morph	R, and  N̅ the 142 



 8 

mean susceptibility averaged over the different viral morphs. Note that, in general, N(!), 143 

N̅% and N̅ will be functions of time, as the susceptibility profile is molded by the 144 

epidemiological dynamics of ,($, !) and "($, !). 145 

Equation (4a) reveals that, as intuitively expected, morph R will increase in frequency if the 146 

susceptibility of the host population to this variant is higher on average. Equation (4b) 147 

shows that the increase in the mean antigenicity trait of morph R depends on (i) the variance 148 

of the morph distribution, P%, (ii) the transmission rate, and (iii) the slope of the 149 

susceptibility profile close to the morph mean !̅%. Together with an equation for the 150 

dynamics of variance under mutation and selection (see Methods), equations (4a) and (4b) 151 

allow us to quantitatively predict the change in antigenicity after a primary outbreak, as 152 

shown in Fig. 2. 153 

For instance, after a primary outbreak caused by a variant with antigenicity	!̅' = 0 at $ =154 

0, the susceptibility profile is approximately constant and given by N(!) = (1 − T')(
(*), 155 

where T'	is the final size of the epidemic of the primary outbreak at antigenicity ! = 0 156 

(see Methods). Thus, for a decreasing cross-immunity function,	)(!), the slope of the 157 

susceptibility profile is positive, which selects for increased values of the mean antigenicity 158 

trait	!̅,of a second emerging morph (see Methods). As the process repeats itself, this leads 159 

to successive jumps in antigenic space. In addition, a more peaked cross-immunity 160 

function,	), yields larger slopes to the susceptibility profile and thus selects for higher 161 

values of the antigenicity trait. 162 
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Long-term joint evolution of antigenicity, transmission and virulence: We now extend 163 

our analysis to account for mutations affecting pathogen life-history traits such as 164 

transmission and virulence. To simplify, we use the classical assumption of a transmission-165 

virulence trade-off 8,10–14 and consider that a pathogen morph,	U, has frequency, 	V-, mean 166 

antigenicity trait, AW-, and mean virulence XW-. In the methods, we show that the morph’s 167 

mean traits change as 168 

2
2$
Y
!̅%

.Z%
[ = G% Y

-(.Z%)N&(!̅%)

-′(.Z%)N(!̅%) − 1
[ 169 

where G- is the genetic (co)variance matrix, and the vector on the right-hand side is the 170 

selection gradient. Note that, while the selection gradient on antigenicity depends on the 171 

slope of the antigenicity profile at the morph mean, the selection gradient on virulence 172 

depends on the slope of the transmission-virulence trade-off at the morph mean, weighted 173 

by the susceptibility profile at the morph mean.  174 

Assuming we can neglect the build-up of correlations between antigenicity and virulence 175 

due to mutation and selection, the genetic (co)variance matrix is diagonal with elements 176 

P%
* and P%.. Then, as shown previously, antigenicity increases if the slope of the 177 

susceptibility profile is locally positive, while mean virulence increases as long as -′(.Z%) >178 

1/N(!̅%). For a fixed antigenicity trait, ! = !∗, the susceptibility profile converges towards 179 

N(!∗) = (6 + .)/- and the evolutionary endpoint satisfies 180 

-&(.) =
-(.)
6 + .

 181 

which corresponds to the classical result of R0 maximisation for the unstructured SI model 182 

15,27. However, when antigenicity can evolve, selection will also lead to the build-up of a 183 



 10 

positive covariance ^ between antigenicity and virulence, resulting in a synergistic effect 184 

(Methods). As the antigenicity trait increases, the evolutionary trajectory of virulence 185 

converges to the solution of 186 

-&(.) = 1 187 

which corresponds to maximizing the rate of increase of pathogen E(.) = -(.) − (6 + .) 188 

in a fully susceptible population. This is equivalent to maximizing the wave speed F(.) =189 

2_E(.)9, as shown in the methods. Fig. 3a shows that, in the absence of cross-immunity, 190 

the ES virulence is well predicted by r maximization. With cross-immunity (Fig. 3b), 191 

virulence evolution is characterized by jumps that reflect the sudden shifts in antigenicity 192 

due to cross-immunity.  193 

As such antigenic escape selects for higher transmission and virulence and more acute 194 

infectious diseases. This has parallels with the results that show that there is a transient 195 

increase in virulence at the start of an epidemic with r rather than R0 being maximized 196 

16,17,19,33, but here we predict the long-term persistence of highly transmissible and virulent 197 

disease variants due to antigenic escape.  198 

Although we have so far assumed a never-ending antigenic escape process, it is easy to 199 

extend our analysis to consider that antigenic escape is constrained by pleiotropic effects. 200 

Then, once the antigenicity trait has stabilized, the ES virulence would satisfy 201 

-&(.) =
1 − `	-(.)N′(!)

N(!)
 202 
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where ` = ^/P. measures the correlation between antigenicity and virulence. Thus, the 203 

slope to the transmission-virulence trade-off at the ESS now takes an intermediate value 204 

between -/(6 + .)	and 1, as shown in Fig. 4. 205 

Short-term joint evolution of antigenicity and virulence: Although our analysis allows 206 

us to understand the long-term evolution of pathogen traits, it can also be used to accurately 207 

predict the short-term dynamics of antigenicity and virulence. We now consider that a 208 

primary outbreak has molded a susceptibility profile N(!) that we assume constant. 209 

Although this assumption will cause deviations from the true susceptibility profile, it 210 

allows us to decouple our evolutionary oligomorphic dynamics from the epidemiological 211 

dynamics. Fig. 5 shows that the approximation accurately predicts the jump in antigenic 212 

space and joint increase in virulence during the secondary outbreak. The accuracy of the 213 

prediction depends on the time at which we seed the oligomorphic dynamical system, as 214 

detailed in the methods, but remains high for a broad range of values of this initial time. 215 

Hence, our analysis can be used to successfully predict the trait dynamics after the 216 

emergence of a new antigenic variant. Simulations show that this result is not dependent 217 

on the assumption of one dimensional antigenic space (Supplementary Information). 218 

 219 
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Discussion 219 

We have shown how antigenic escape selects for more acute infectious diseases with higher 220 

transmission rates that cause increased mortality (virulence) in infected hosts.  This result 221 

is important given the number of major infectious diseases such as seasonal influenza that 222 

have epidemiology driven by antigenic escape. Until recently the evolution of virulence 223 

literature has mostly focused on equilibrium solutions that in simple models lead to the 224 

classic idea that pathogens evolve to maximize their basic reproductive number R0 8,10–14. 225 

Our results show that the process of antigenic escape leading to the continual replacement 226 

of variants 23–26, creates a dynamical invasion process that in and of itself selects for more 227 

acute, fast transmitting, highly virulent variants that do not maximize R0. This has parallels 228 

with the finding that more acute variants are selected transiently at the start of epidemics 229 

24-26, but critically, in our case the result is not a short-term transient outcome. Rather, the 230 

eco-evolutionary process leads to the long-term persistence of more acute variants. As 231 

such, antigenic escape may be an important driver of high virulence in infectious disease. 232 

In the simpler case where there is no cross immunity, there is a travelling wave of new 233 

variants invading due to antigenic escape.  In this case we can use established methods to 234 

gain analytical results that not only predict the speed of change of the variants, but also the 235 

evolutionarily stable virulence. With our model’s assumptions, without antigenic escape 236 

we would get the classic result of the maximization of the reproductive number R0 8,10–14, 237 

but once there is antigenic escape we show analytically that the intrinsic growth rate of the 238 

infectious disease r is maximized. Maximizing the intrinsic growth rate leads to selection 239 

for higher transmission and in turn higher virulence. Effectively this is the equivalent of an 240 

infectious disease “live fast, die young” strategy. The outcome is due to the dynamical 241 
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replacement of variants, with new variants invading the population continually leading to 242 

a continual selection for the variants that invade better 24-26.  As such we predict that any 243 

degree of antigenic escape will in general select for more acute faster transmitting variants 244 

with higher virulence in the presence of a transmission-virulence trade-off. Although such 245 

a trade-off is a classical assumption in evolutionary epidemiology, it would be interesting 246 

to examine the impact of antigenic escape under different assumptions.  247 

Partial cross-immunity leads to a series of jumps in antigenic space that are characteristic 248 

of the epidemiology of a number of diseases and in particular of the well-known dynamics 249 

of influenza A in humans 23–26.  Here a cloud of variants remains in antigenic space until 250 

there is a jump that, on average, overcomes the cross immunity and leads to the invasion 251 

of a new set of variants that are distant enough to escape the immunity of the resident 252 

variants 23–26. In order to examine the evolutionary outcome in this scenario we applied a 253 

novel oligomorphic analysis 28 and again we find that antigenic escape selects for higher 254 

virulence toward the maximization of the intrinsic growth rate r.  Both our analysis and 255 

simulations show that in the long term the virulence increases until it reaches a new 256 

optimum potentially of an order of magnitude higher than would be expected by the classic 257 

prediction of maximizing R0.  Therefore, antigenic escape whether it is through a 258 

continuous wave of antigenic drift or through large jumps, selects for higher virulence.  We 259 

therefore expect this result to apply across the wide range of ‘jumpiness’ that we see across 260 

different viruses between these two extremes of continuous drift and punctuated jumps.  261 

We show that virulence increases after each antigenic jump, falling slightly at the next 262 

jump before increasing again until it reaches this new equilibrium. It is also important to 263 

note that the diversity within the morph increases in both antigenicity and virulence as we 264 
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move towards the next epidemic, reaching a maximum just at the point when the jump 265 

occurs. This increase in diversity could in principle be used as a predictor of the next jump 266 

in antigenic space. 267 

Clearly the virulence of any particular infectious disease depends on multiple factors, 268 

including both host and parasite traits, and critically the relationship between transmission 269 

and virulence. This makes comparisons of the virulence across different infectious diseases 270 

problematic since the specific trade-off relationship between transmission and virulence is 271 

often unknown. However, our model shows that antigenic escape will, all things being 272 

equal, be a driver of higher virulence favoring more acute variants. It is also important to 273 

note that since antigenic escape is a very general mechanism that selects for higher 274 

virulence it follows that we may see high virulence in parasites even when the costs in 275 

terms of reduced infectious period are substantial. Amongst the influenzas, although there 276 

is a paucity of data, influenza C does not show obvious antigenic escape and is typically 277 

much less virulent than the other influenzas 34. Furthermore, influenza A/H3 tends to show 278 

much more antigenic escape than influenza B and influenza A/H1 and again in line with 279 

our predictions typically influenza A/H3N2 is the more virulent 35,36. It is important to note 280 

that these differences can be ascribed to multiple factors including circumvention of 281 

vaccination and that cross-immunity may itself directly impact disease severity. 282 

Furthermore the higher virulence of influenza A is often posited to be due to a more recent 283 

zoonotic emergence 37.  Moreover, direct comparisons between the rates of antigenic escape 284 

between influenza A/H1 and influenza B are difficult and clearly there are also highly 285 

virulent pathogens that do not show antigenic escape such as measles. Therefore, a formal 286 

comparative analysis is confounded by multiple factors. Nevertheless, our model suggests 287 
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that differences in the rates of antigenic escape of the different influenzas may impact their 288 

virulence and the evidence from influenza is at least consistent with the predictions of the 289 

model.  290 

An important implication of our work is that antigenic escape selects for variants with a 291 

higher virulence than the value that maximizes R0 and therefore leads to the evolution of 292 

infectious diseases with lower R0.  From this point of view, it may be naively concluded 293 

that diseases with antigenic escape may be easier to eliminate and control with vaccination.  294 

Of course, in practice the opposite is often true since producing an effective vaccine is 295 

much more problematic when there is antigenic escape 38,39. On the other hand with lower 296 

R0 epidemics will tend to be less explosive than they otherwise would have been, having a 297 

lower peak but lasting longer, with evolution here effectively ‘flattening the curve’. 298 

Infectious diseases that show punctuated antigenic escape are characterized by repeated 299 

epidemics, but our work suggests that due to the selection for a lower R0 the eco-300 

evolutionary feedback will have significantly impacted the pattern of these epidemics.  301 

More generally our results highlight how ecological/epidemiological dynamics can impact 302 

evolutionary outcomes that in turn feedback into the epidemiology characteristics of the 303 

disease.  304 

We have used oligomorphic dynamics 28 to make predictions on the waiting times and 305 

outcomes of the antigenic jumps in our model with cross immunity.  This approach tracks 306 

changes in both mean trait values and trait variances in models with explicit ecological 307 

dynamics. As such it combines aspects of eco-evolutionary theory 40,41 and quantitative 308 

genetics approaches 42,43 to provide a more complete understanding of the evolution of 309 

quantitative traits. Our approach can take into account a wide range of different ecological 310 
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and evolutionary time scales and therefore allows us to address fundamental questions on 311 

eco-evolutionary feedbacks and on the separation between ecological and evolutionary 312 

time scales. This is important since it allows us to test the implications of the different 313 

assumptions of classical evolutionary theory and to better understand the role of eco-314 

evolutionary feedbacks on evolutionary outcomes. Furthermore, the approach can be 315 

applied widely to model transient dynamics, and to predict the waiting times and extent of 316 

diversification that occurs in a range of contexts 28,44. Moreover, antigenic evolution is 317 

known to also lead to diversification and variant coexistence 45–48, and it would be 318 

interesting to extend our analysis to these other evolutionary outcomes. 319 

Our results emphasize that epidemiological dynamics may have important implications for 320 

the evolution of infectious disease.  To facilitate its broader application, the oligomorphic 321 

methodology should be extended to structured populations and combined with stochastic 322 

evolutionary theory in order to fully address the evolutionary dynamics of emerging 323 

disease.  Human coronaviruses can evolve antigenically to escape antibody immunity 49 324 

and it would be useful to apply our approaches to a more specific model of the SARS-Cov-325 

2 epidemic. In particular, our ability to predict the waiting time until the emergence of the 326 

next antigenic cluster has the potential to be important in such applied contexts. 327 

In principle epidemics of new variants that adapts to a novel host would display equivalent 328 

dynamics to those described here for antigenic escape. It also follows that interventions 329 

that impact epidemiological dynamics may also have impacts on the evolution of pathogen 330 

traits such as virulence or transmission.  Our results suggest that immune escape driven by 331 

transmission blocking imperfect vaccination might also select for higher virulence in the 332 

longer term 50,51, although these effects are likely overwhelmed by selection on transmission 333 
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in an emerging pandemic such as SARS-Cov-2 52,53.  Furthermore, dynamical feedbacks 334 

are important in a range of contexts beyond infectious disease and our approach may help 335 

us examine the importance of interactions between frequency dependent ‘stabilizing’ and 336 

equalizing evolutionary drivers 54.  The oligomorphic analytical approaches we use here 337 

are therefore likely to be useful in understanding a wide range of dynamical evolutionary 338 

outcomes.  339 

Methods 340 

Oligomorphic dynamics of antigenic escape 341 

We consider a model of the antigenic escape of a pathogen from host herd immunity on a 342 

one-dimensional antigenicity space (!). We track the changes in the density ,($, !) of hosts 343 

that are susceptible to antigenicity variant ! of pathogen at time $, and the density "($, !) 344 

of hosts that are currently infected and infectious with antigenicity variant ! of pathogen 345 

at time $: 346 

/,($, !)

/$
= −,($, !)1 -)(! − ')"($, ')

!

"!
2', (5)

/"($, !)

/$
= -,($, !)"($, !) − (6 + .)"($, !) + 9

/#"($, !)

/!#
. (6)

	 347 

where -, ., and 6 are the transmission rate, virulence (additional mortality due to 348 

infection), and recovery rate of pathogens which are independent of antigenicity. The 349 

function )(! − ') denotes the degree of cross immunity: a host infected by pathogen 350 

variant ' acquires perfect cross immunity with probability )(! − ') but fails to acquire 351 

any cross immunity with probability 1 − )(! − ') (this is called polarized cross immunity 352 

by Gog and Grenfell 26). The degree )(! − ') of cross-immunity is assumed to be a 353 
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decreasing function of the distance |! − '| between variants ! and '. When a new variant 354 

with antigenicity ! = 0 is introduced at time $ = 0, the initial host population is assumed 355 

to be susceptible to any antigenicity variant of pathogen: ,(0, !) = 1. In (6), 9 = <)$# /2 356 

is one half of the mutation variance for the change in antigenicity, representing random 357 

mutation in the continuous antigenic space. 358 

Susceptibility profile molded by the primary outbreak. We first analyze the dynamics 359 

of the primary outbreak of a pathogen and derive the resulting susceptibility profile, which 360 

can be viewed as the fitness landscape subsequently experienced by the pathogen. For 361 

simplicity we assume that mutation can be ignored during the first epidemic initiated with 362 

antigenicity stain A = @. The density ?0(D) = ?(D, @) of hosts that are susceptible to the 363 

currently prevailing antigenicity variant A = @, as well as the density C0(D) = C(D, @) of 364 

hosts that are currently infected by the focal variant change with time as 365 

2,'
2$

= −,'-"', (7)

2"'	
2$

= ,'-"' − (6 + .)"', (8)

2b'
2$

= 6"'. (9)	

 366 

with ,'(0) = 1, "'(0) ≈ 0, and b'(0) = 0. The final size of the primary outbreak, 367 

T' = b'(∞) = 1 − ,'(∞) = exp g−-1 "'($)
!

'
2$h, 368 

is determined as the unique positive root of  369 

T' = 1 − i"1!2! , (10) 370 
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where `' = -/(6 + .) > 1 is the basic reproductive number 7. Associated with this 371 

epidemiological change, the susceptibility profile ,*($) = ,($, !) against antigenicity ! 372 

(! ≠ 0) other than the currently circulating variant (! = 0) changes by cross immunity as 373 

2,*
2$

= −,*-)(!)"', (! ≠ 0). (11) 374 

Integrating both sides of (11) from $ = 0 to $ = ∞, we see that the susceptibility profile 375 

N(!) = ,*(∞) after the primary outbreak at ! = 0 is 376 

N(!) = exp g−-)(!)1 "'($)
!

'
2$h = (1 − T')(

(*) = i"1!((*)2! , (12) 377 

where the last equality follows from (10). The susceptibility can be effectively reduced by 378 

cross-immunity when the primary variant has a large impact (i.e. when the fraction of hosts 379 

remaining uninfected, 1 − T', is small) and when the degree of cross immunity is strong 380 

(i.e. when )(!) is close to 1). With a variant antigenically very close to the primary variant 381 

(! ≈ 0), the cross immunity is very strong ()(!) ≈ 1) so that the susceptibility against 382 

variant ! is nearly maximally reduced: N(!) ≈ 1 − T'.  With a variant antigenically distant 383 

from the primary variant, )(!) becomes substantially smaller than 1, making the host more 384 

susceptible to the variant. For example, if the cross immunity is halved ()(!) = 0.5) from 385 

its maximum value 1, then the susceptibility to that variant is as large as (1 − T')'.4. If a 386 

variant is antigenically very distant from the primary variant, then )(!) ≈ 0, and the host 387 

is nearly fully susceptibility to the variant (N(!) ≈ 1). 388 
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Threshold antigenic distance for escaping immunity raised by primary outbreak. Of 389 

particular interest is the threshold antigenicity distance A5 that allows for antigenic escape, 390 

i.e. any antigenicity variant more distant than this threshold from the primary variant (A >391 

A5) can increase when introduced after the primary outbreak. Such a threshold is 392 

determined from 393 

-N(!6)
6 + .

= `'N(!6) = 1 394 

or 395 

N(!6) = (1 − T')(
(*") = i"1!((*")2! =

1
`'
, (13) 396 

where we used (12). With a specific choice of cross-immunity profile, 397 

)(!) = exp g−
!#

2l#h , (14) 398 

the threshold antigenicity beyond which the virus can increase in the susceptibility profile 399 

N(!) after the primary outbreak is obtained, by substituting (14) into (13) 400 

exp g−`'T' exp g−
!6#

2l#hh =
1
`'
, 401 

and taking logarithm of both sides twice: 402 

!6 = lm2 log
`'T'
log `'

. (15) 403 
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Oligomorphic dynamics. Integrating both sides of (6) over the whole space, we obtain the 404 

dynamics for the total density of infected hosts,  CZ(D) = ∫ C(D, A)rA
!
"! : 405 

2" ̅

2$
= g-1 ,($, !)s($, !)

!

"!
2! − (6 + .)h "(̅$) = [-,̅($) − (6 + .)]"(̅$). (16) 406 

where 407 

s($, !) = "($, !)/"(̅$), 408 

is the relative frequency of antigenicity variant ! in the pathogen population circulating at 409 

time $, and 410 

,̅($) = 1 ,($, !)s($, !)
!

"!
2! (17) 411 

is the mean susceptibility experienced by currently circulating pathogens. The dynamics 412 

for the relative frequency s($, !) of pathogen antigenicity is 413 

/s
/$

= -{,($, !) − ,̅($)}s($, !) + 9
/#s
/!#

. (18) 414 

As in Sasaki and Dieckmann 28, we decompose the frequency distribution to the sum of 415 

several morph distributions (oligomorphic decomposition) as  416 

s($, !) =xL%s%($, !)
%

(19) 417 

where L%($) is the frequency of morph R and s%($, !) is within-morph distribution of 418 

antigenicity. By definition,  ∑ L%% = 1 and ∫ s%($, !)
!
"! 2! = 1. Let  419 

!̅% = 1 !s%($, !)
!

"!
2! (20) 420 
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be the mean antigenicity of a morph and  421 

P% = 1 (! − !̅%)#s%($, !)
!

"!
2! = {(|#). (21) 422 

be the within-morph variance of each morph, which is assumed to be small, of the order of 423 

|#. Let us denote the mean susceptibility of host population for viral morph R by ,%̅ =424 

∫ ,($, !)s%($, !)
!
"! 2!. As shown in Sasaki and Dieckmann 28, the dynamics for viral 425 

morph frequency is expressed as 426 

2L%
2$

= -(,%̅ − ,̅)L% + {(|), (22) 427 

while the dynamics for the within-morph distribution of antigenicity is 428 

/s%
/$

= -{,($, !) − ,%̅}s%($, !) + 9
/#s%
/!#

. (23) 429 

From this, the dynamics for the mean antigenicity of a morph, 430 

2!̅%
2$

= P%-
/,
/!
}
*7*̅#

+ {(|9). (24) 431 

and the dynamics for the within-morph variance of a morph 432 

2P%
2$

=
1
2
-
/#,
/!#

~
*7*̅#

{�[Ä%
:] − P%

#} + 29 + {(|4). (25) 433 

are derived, where Ä% = ! − !̅% and �[Ä%:] = ∫ (! − !̅%):s%($, !)2!
!
"!  is the fourth central 434 

moment of antigenicity around the morph mean. Assuming that the within-morph 435 

distribution is normal (Gaussian closure), �[Ä%:] = 3P%
# and hence Eq. (25) becomes 436 

2P%
2$

= -
/#,
/!#

~
*7*̅#

P%
# + 29 + {(|4). (26) 437 
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Second outbreak predicted by OMD. Equations (22), (24) and (26) are general, but they 438 

rely on a full knowledge of the dynamics of the susceptibility profile Å(Ç, É). In order to 439 

make further progress, we use an additional approximation by substituting Eq. (13), the 440 

susceptibility profile over viral antigenicity space after the primary outbreak at É = @ and 441 

before the onset of the second outbreak at a distant position. We keep track of two morphs 442 

at positions É0(Ç) and É;(Ç), where the first morph is that caused the primary outbreak at 443 

É = @, and the second morph is that emerged in the range É > É< beyond the threshold 444 

antigenicity É< defined in Eq. (13) (and (15) for a specific form of Ñ(É)) as the source of 445 

the next outbreak.  446 

As N(!) = (1 − T')((*) = exp[)(!) log(1 − T')], we have 447 

dN
d!
(!̅%) = Ü

d)
d!
(!̅%) log(1 − T')á N(!̅%), 448 

and 449 

d#N
d!#

(!̅%) = g
d#)
d!#

(!̅%) log(1 − T') + à
d)
d!

(!̅%) log(1 − T')â
#

h N(!̅%). 450 

Therefore, the frequency, mean antigenicity, and variance of antigenicity of an emerging 451 

morph (R = 1) change respectively as 452 

2L,
2$

= -[N(!̅,) − N(!̅')]L,(1 − L,),

2!̅,
2$

= P,-
dN
d!
(!̅,),

2P,
2$

= -
d#N
d!#

(!̅,)P,# + 29,

(27) 453 
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The predicted change in the mean antigenicity is plotted by integrating Eq. (27). As initial 454 

condition, we choose the time when a seed of second peak in the range ! > !6 first appears, 455 

and then compute the mean trait as 456 

!̅($) = !'I1 − L,($)J + !̅,L,($). (28) 457 

In the case of Fig. 2, where - = 2, 6 + . = 0.6, 9 = 0.001, and l = 2, the final size of 458 

epidemic for the primary outbreak, defined as (7) was T = 0.959, and the critical antigenic 459 

distance for the increase of pathogen variant obtained from (26) was !6 = 2.795. The 460 

initial condition for the oligomorphic dynamics (27) for the second morph was then 461 

L,($') = 1.6 × 10"=, !̅,($') = 3.239, P,($') = 0.2675 at $' = 41. In Fig. 2, the 462 

predicted trajectory for the mean antigenicity (28) is plotted as a red curve, together with 463 

the mean antigenicity change observed in simulation (blue curve). 464 

The accuracy of predicting with OMD the antigenicity and the timing of the second 465 

outbreak. Here we describe how we define the initial conditions for oligomorphic 466 

dynamics, i.e., the frequency, the mean antigenicity and the variance in antigenicity of the 467 

morph that caused the primary outbreak and the morph which may cause the second 468 

outbreak. We then show how the accuracy in prediction of the second outbreak depends on 469 

the timing of the prediction. 470 

We divide the antigenicity space into two at ! = !6 above which the pathogen can increase 471 

under the given susceptibility profile after the primary outbreak, but below which the 472 

pathogen cannot increase. We then take relative frequencies of pathogens above !6 and 473 

below !6, and the conditional mean and variance in these separated regions to set the initial 474 
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frequencies, means, and variances of the morphs at the time $' when we start integrating 475 

the oligomorphic dynamics to predict the second outbreak:  476 

L'($') =
∫ "($', !)
*"
' 2!

∫ "($', !)
!
' 2!

, 	L,($') =
∫ "($', !)
!
*"

2!

∫ "($', !)
!
' 2!

,

!̅'($') =
∫ !"($', !)	2!
*"
'

∫ "($', !)
*"
' 2!

, !̅,	($') =
∫ !"($', !)
!
*"

2!

∫ "($', !)
!
*"

2!
,

P'($') =
∫ I! − !̅'($')J

#
"($', !)

*"
' 2!

∫ "($', !)
*"
' 2!

, P,($') =
∫ I! − !̅,($')J

#
"($', !)

!
*"

2!

∫ "($', !)
!
*"

2!
.

(29) 477 

We then compare the trajectory for mean antigenicity change observed in simulation (blue 478 

curve in Fig. 2) and the predicted trajectory (red curve in Fig. 2) for mean antigenicity (28) 479 

by integrating oligomorphic dynamics (27) with initial condition (29) at time $ = $'.  480 

Extended Fig. 2 shows how the accuracy of prediction, measured by the Kullback-Leibler 481 

divergence between these two trajectories depends on the timing $'chosen for the 482 

prediction. The second outbreak occurs around t = 54.6 where mean antigenicity jumps 483 

from around 0 to around 5.  The prediction with OMD is accurate if it is made for $' > 40. 484 

Fig. 2 is drawn for $' = 41 where the second peak is about to emerge (see Extended Data 485 

Fig. 2). Even for the latest prediction for $' = 51 in Extended Fig. 2, the morph frequency 486 

of the emerging second morph was only 0.3% off, so the prediction is still worthwhile to 487 

make. 488 

Extended Data Fig. 2 shows that the prediction power is roughly constant (albeit with a 489 

wiggle) for 5 < $' < 30 (the predicted timings are 10-15% longer than actual timing for 490 

5 < $' < 30), and steadily improved for $' > 30. When the prediction is made very early 491 

($' < 5) the deviations are larger. 492 
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Oligomorphic dynamics for the joint evolution of antigenicity and virulence 493 

Let N(!) be the susceptibility of the host population against antigenicity !. A specific 494 

susceptibility profile is given by (12) with cross-immunity function )(!) and the final size 495 

T' of epidemic of the primary outbreak. Note that, as above, the susceptibility profile is in 496 

general a function of time. The density "(!, .) of hosts infected by a pathogen of 497 

antigenicity ! and virulence . changes with time, when rare, as 498 

/"(!, .)

/$
= -N(!)"(!, .) − (6 + .)"(!, .) +	9*

/#"
/!#

+ 9.
/#"
/.#

. (30) 499 

The change in the frequency s(!, .) = "(!, .)/∫ ∫ "(!, .)2!2. of a pathogen with 500 

antigenicity ! and virulence . follows 501 

/s
/$

= {å(!, .) − åW}s + 9*
/#s
/!#

+ 9.
/#s
/.#

, (31) 502 

where503 

å(!, .) = -(.)N(!) − ., (32) 504 

is the fitness of a pathogen with antigenicity ! and virulence . and åW = ∫ ∫ å(!, .)2!2. 505 

is the mean fitness.  506 

Let us decompose the joint frequency distribution s(!, .) of the viral quasispecies as 507 

(oligomorphic decomposition): 508 

s(!, .) =x	s%(!, .)L%
%

, (33) 509 
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where s%(!, .) is the joint frequency distribution of antigenicity ! and virulence . in 510 

morph R (∫ ∫ s%2!2. = 1) and L% is the relative frequency of morph R (∑ L%% = 1). The 511 

frequency of morph R then changes as 512 

2L%
2$

= çåW% −xåW>L>
>

éL% ,

/s%
/$

= (å(!, .) − åW%)s%(!, .) + 9*
/#s%
/!#

+ 9.
/#s%
/.#

,

(34) 513 

where åW% = ∫∫å(!, .)s%(!, .) 2!2. is the mean fitness of morph R.  514 

Assuming that the traits are distributed narrowly around the morph means !̅% =515 

∫ ∫ !s%(!, .)2!2. and .Z% = ∫∫.s%(!, .) 2!2., so that Ä% = ! − !̅% = {(|) and è% =516 

. − .Z% = {(|) where | is a small constant, we expand the fitness å(!, .) around the 517 

means !̅% and .Z% of morph R,  518 

å(!, .) = å(!̅% , .Z%) + ê
/å
/!
ë
%
Ä% + ê

/å
/.
ë
%
è%

				+
1
2
Y
/#å
/!#

[
%

Ä%
# + Y

/#å
/!/.

[
%

Ä%è% +
1
2
Y
/#å
/.#

[
%

è%
# + {(|9).

 519 

Substituting this and  520 

åW% = å(!̅% , .Z%) +
1
2
Y
/#å
/!#

[
%

P%
** + Y

/#å
/!/.

[
%

P%
*. +

1
2
Y
/#å
/.#

[
%

P%
.. + {(|9) 521 

into (34), we have 522 
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2L%
2$

= íå% −xå>L>
>

ì L% + {(|), (35)

/s%
/$

= gê
/å
/!
ë
%
Ä% + ê

/å
/.
ë
%
è% +

1
2
Y
/#å
/!#

[
%

(Ä%
# − P%

*) + Y
/#å
/!/.

[
%

(Ä%è% − %̂)

				+
1
2
Y
/#å
/.#

[
%

(è%
# − P%

.)h s% + 9*
/#s%
/!#

+ 9.
/#s%
/.#

+ {(|9). (36)

 523 

where å% = å(!̅% , .Z%), î
?@
?*
ï
%
= ?@

?*
(!̅% , .Z%), î

?@
?.
ï
%
= ?@

?.
(!̅% , .Z%), î

?$@
?*$

ï
%
= ?$@

?*$
(!̅% , .Z%), 524 

î ?
$@

?*?.
ï
%
= ?$@

?*?.
(!̅% , .Z%), and î?

$@
?.$

ï
%
= ?$@

?.$
(!̅% , .Z%) are fitness and its first and second 525 

derivatives evaluated at the mean traits of morph R, and  526 

P%
* = �%[(! − !̅%)#],

%̂ = �%[(! − !̅%)(. − .Z%)],
P%
. = �%[(. − .Z%)#],

(37) 527 

are within-morph variances and covariance of the traits of morph R. Here, �%[ñ(!, .)] =528 

∫∫ñ(!, .)s%(!, .) 2! 2. denotes taking expectation of a function ñ with respect to the 529 

joint trait distribution s%(!, .) of morph R.  530 

Substituting (36) into the change in the mean antigenicity of morph R 531 

2!̅%
2$

=
2
2$
11!s%(!, .) 2! 2. = 11!

/s%
/$

2! 2. = 11(!̅% + Ä%)
/s%
/$

2Ä% 2è% , 532 

we have 533 

2!̅%
2$

= ê
/å
/!
ë
%
	P%

* + ê
/å
/.
ë
%

%̂ + {(|9). (38) 534 

Similarly, the change in the mean virulence of morph R is expressed as 535 

2.Z%
2$

= ê
/å
/!
ë
%
	 %̂ + ê

/å
/.
ë
%
P%
. + {(|9). (39) 536 
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Equations (38)-(39) from the mean trait change is summarized in a matrix form as 537 

2
2$
ê
!̅%
.Z%
ë = ó-

⎝

⎜
⎛ê
/å
/!
ë
%

ê
/å
/.
ë
%⎠

⎟
⎞
+ {(|9), (40) 538 

where 539 

ó- = ê
P%
*

%̂

%̂ P%
.ë (41) 540 

is the variance-covariance matrix of the morph R. 541 

Substituting (36) into the right-hand side of the change in variance of antigenicity of morph 542 

R, 543 

2P%
*

2$
=
2
2$
11Ä%

# s% 2Ä%2è% = 11Ä%
# /s%
/$

2Ä%2è% 544 

and those in the change in the other variance and covariance, we have 545 

2P%
*

2$
=
1
2
Y
/#å
/!#

[
%

[�%(Ä%
:) − (P%

*)#] + Y
/#å
/!/.

[
%

	 [�%(Ä%
9è%) − P%

*
%̂]

+
1
2
Y
/#å
/.#

[
%

	 [�%(Ä%
#è%

#) − P%
*P%

.] + 29* + {(|4),

2 %̂

2$
=
1
2
Y
/#å
/!#

[
%

	[�%(Ä%
9è%) − P%

*
%̂] + Y

/#å
/!/.

[
%

[�%(Ä%
#è%

#) − %̂
#]

	+
1
2
Y
/#å
/.#

[
%

	 [�%(Ä%è%
9) − %̂P%

.] + {(|4),

2P%
.

2$
=
1
2
Y
/#å
/!#

[
%

	[�%(Ä%
#è%

#) − P%
*P%

.] + Y
/#å
/!/.

[
%

	 [�%(Ä%è%
9) − %̂P%

.]

+
1
2
Y
/#å
/.#

[
%

	 [�%(è%
:) − (P%

.)#] + 29. + {(|4).

(42) 546 
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If we assume that antigenicity and virulence within a morph follow two-dimensional 547 

Gaussian distribution for given means, variances and covariance, we should have �%(Ä%:) =548 

3(P%
*)#, �%(Ä%

9è%) = 3P%
*

%̂, �%(Ä%#è%#) = P%
*P%

. + 2 %̂
#, �%(Ä%è%9) = 3P%

.
%̂, and �%(è%:) =549 

3(P%
.)#, and hence 550 

2P%
*

2$
= Y

/#å
/!#

[
%

(P%
*)# + 2Y

/#å
/!/.

[
%

P%
*

%̂ + Y
/#å
/.#

[
%

%̂
# + 29* + {(|4), (43)

2 %̂

2$
= Y

/#å
/!#

[
%

P%
*

%̂ + Y
/#å
/!/.

[
%

{P%
*P%

. − %̂
#} + Y

/#å
/.#

[
%

%̂P%
. + {(|4), (44)

2P%
.

2$
= Y

/#å
/!#

[
%

%̂
# + 2Y

/#å
/!/.

[
%

P%
.

%̂ + Y
/#å
/.#

[
%

(P%
.)# + 29. + {(|4), (45)

	 551 

Eqs. (43)-(44) are rewritten in a matrix form as 552 

2G%

2$
= G%H%G% + ê

29*P%
* 0

0 29.P%
.ë + {(|

4), (46) 553 

where 554 

H% =

⎝

⎜
⎛
Y
/#å
/!#

[
%

Y
/#å
/!/.

[
%

Y
/#å
/!/.

[
%

Y
/#å
/.#

[
% ⎠

⎟
⎞
, (47) 555 

is the Hessian of the fitness function of the morph R. 556 

In our case (30) of the joint evolution of antigenicity and virulence of a pathogen after its 557 

primary outbreak, the fitness function is given by å(!, .) = -(.)N(!) − ., and hence 558 

å% = -(.Z%)N(!̅%) − .Z%, î?@
?*
ï
%
= -(.Z%)N&(!̅%), î?@

?.
ï
%
= -&(.Z%)N(!̅%) − 1, î?

$@
?*$

ï
%
=559 

-(.Z%)N&&(!̅%), î ?
$@

?*?.
ï
%
= -&(.Z%)N&(!̅%), î ?

$@
?*?.

ï
%
= -&(.Z%)N&(!̅%), and î?

$@
?.$

ï
%
=560 

-&&(.Z%)N(!̅%), where a prime on -(.) and N(!) denotes differentiation by . and !, 561 
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respectively. Substituting these into the dynamics for morph frequencies (35), for morph 562 

means (38)-(39), and for within-morph variance and covariance (43)-(45), we have 563 

2L%
2$

= í-(.Z%)N(!̅%) − .Z% −xI-I.Z>JNI!̅>J − .Z>JL>
>

ì L% , (48)

2!̅%
2$

= -(.Z%)N&(!̅%)P%
* + {-&(.Z%)N(!̅%) − 1} %̂ , (49)

2.Z%
2$

= -(.Z%)N&(!̅%) %̂ + {-&(.Z%)N(!̅%) − 1}P%
. , (50)

2P%
*

2$
= -(.Z%)N&&(!̅%)(P%

*)# + 2-&(.Z%)N&(!̅%)P%
*

%̂ + -&&(.Z%)N(!̅%) %̂
# + 29* , (51)

2 %̂

2$
= -(.Z%)N&&(!̅%)P%

*
%̂ + -&(.Z%)N&(!̅%){P%

*P%
. − %̂

#} + -&&(.Z%)N(!̅%) %̂P%
. , (52)

2P%
.

2$
= -(.Z%)N&&(!̅%) %̂

# + 2-&(.Z%)N&(!̅%)P%
.

%̂ + -&&(.Z%)N(!̅%)(P%
.)# + 29. . (53)

 564 

Equations (48)-(53) describe the oligomorphic dynamics of the joint evolution of 565 

antigenicity and virulence of a pathogen for a given host susceptibility profile N(!) over 566 

pathogen antigenicity. 567 

Of particular interest is whether antigenicity or virulence evolve faster when they jointly 568 

evolve than when they evolve alone. After the primary outbreak at a given antigenicity, say 569 

! = 0, the susceptibility N(!) of host population increases due to cross-immunity as the 570 

distance ! > 0 from the antigenicity at the primary outbreak increases. Hence,  N&(!̅%) >571 

0. Combining this with the positive tradeoff between transmission rate and virulence, we 572 

see that (/#å//!/.)% = -′(.Z%)N′(!̅%) > 0, and then from (52) we see that the within-573 

morph covariance between antigenicity and virulence becomes positive starting from a zero 574 

initial value: 575 
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2 %̂

2$
}
A#7'

= Y
/#å
/!/.

[
%

P%
*P%

. > 0. (54) 576 

If all second moments are sufficiently small initially for an emerging morph, a quick look 577 

at the linearization of (51)-(53) around (P%* , %̂ , P%
.) = (0,0,0) indicates that both P%* and 578 

P%
. become positive due to the random generation of variance by mutation, 9* > 0 and 579 

9. > 0, while the covariance stays close to zero. Then (54) guarantees that first move of 580 

covariance is from zero to positive, which then guarantees that %̂ > 0 for all $. Therefore, 581 

the second term in (38) is positive until the mean virulence reaches its optimum 582 

(-′(.)N(!) = 1). This means that joint evolution with virulence accelerates the evolution 583 

of antigenicity. The same is true for virulence evolution: the first term in (39) (which 584 

denotes the associated change in virulence due to the selection in antigenicity through 585 

genetic covariance between them) is positive, indicating that joint evolution with 586 

antigenicity accelerates the virulence evolution. 587 

Numerical example. Fig. 5 shows the oligomorphic dynamics prediction of the emergence 588 

of next variant in antigenicity-virulence coevolution. In order to make progress numerically 589 

we assume û(É) to be constant in the following analysis because we are interested in the 590 

process between the end of the primary outbreak and the emergence of the next antigenicity 591 

virulence morph. The partial differential equations for the density of host Å(Ç, É) 592 

susceptible to the antigenicity variant É at time Ç, and the density of hosts infected by 593 

pathogen variant with antigenicity É and virulence ü are 594 

/,($, !)

/$
= −,($, !)1 1 -(.))(! − ')"($, ', .)

*max

'
2'

.max

.min

2.,

/"($, !, .)

/$
= 	 [-(.),($, !) − (6 + .)]"($, !, .) + Y9*

/#

/!#
+ 9.

/#

/.#
[ "($, !, .),

(55) 595 
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with the boundary conditions (/,//!)($, 0) = (/,//!)($, !max) = 0, (/"//!)($, 0, .) =596 

(/"//!)($, !max, 0) = 0, (/"//!)($, !, .min) = (/"//!)($, !, .max) = 0, and the initial 597 

conditions ,(0, !) = 1, and "(0, !, .) = |†(!)†(.) where †(⋅) is delta function and | =598 

0.01. The trait space is restricted in a rectangular region: 0 < ! < !max = 300 and  .min =599 

0.025 < . < 10 = .max. Oligomorphic dynamics prediction for the joint evolution of 600 

antigenicity and virulence is applied for the next outbreak after the outbreak with the mean 601 

antigenicity around ! = 108 at time  $ = 102. The susceptibility of host to antigenicity 602 

variant ! at $' = 104.8 after the previous outbreak peaked around time $ = 102 came to 603 

an end is 604 

N(!) = ,($', !). 605 

This susceptibility profile remains unchanged until the next outbreak starts, and hence the 606 

fitness of a pathogen variant with antigenicity !  and virulence . is given by 607 

å(!, .) = -(.)N(!) − (6 + .) 608 

We bundle the pathogen variants into two morphs at time $' at the threshold antigenicity 609 

!6 above which the net growth rate of pathogen variant under the given susceptibility 610 

profile N(!) and the mean antigenicity becomes positive: 611 

åI!6 , .Z($')J = -(.Z($'))N(!6) − I6 + .Z($')J = 0. 612 

The initial frequency and the moments of two morphs, the variant 0 with ! < !6 and the 613 

variant 1 with ! > !6 are then calculated respectively from the joint distribution "($', !, .) 614 

in the restricted region {(!, .); 0 < ! < !6 , .min < . < .max} and that in the restricted 615 

region {(!, .);	!6 < ! < !max, .min < . < .max}. The frequency L, of the morph 1 (the 616 

frequency of the morph 0 is given by L' = 1 − L,), the mean antigenicity !̅% and mean 617 
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virulence .Z% of the morph R, and variances and covariance, P%*, %̂, P%. of the morph R (R =618 

0,1) follow (48)-(53), where the dynamics for the morph frequency (48) is simplified in 619 

this two morph situation as  620 

2L,
2$

= [-(.Z,)N(!̅,) − -(.Z')N(!̅') − (.Z, − .Z')]L,(1 − L,), 621 

with L'($) = 1 − L,($). This is iterated from $ = $' = 104.8 to $B = 107. The frequency 622 

L,of the new morph, the population mean antigenicity !̅ = L'!̅' + L,!̅,, virulence .Z =623 

L'.Z' + L,.Z,, variance in antigenicity P* = L'P'
* + L,P,

*, covariance between antigenicity 624 

and virulence ^ = L'^' + L, ,̂, and variance in virulence P. = L'P'
. + L,P,

. are 625 

overlayed by red thick curves on the trajectories of moments observed in full dynamics 626 

(55).  627 

In the panel (a) of Fig. 5, the dashed vertical line represents the threshold antigenicity !6 628 

above which b' = -N(!)/(6 + .Z) > 1 at $ = $C = 104.8 where oligomorphic dynamics 629 

(OMD) prediction is attempted. Two morphs are then defined according to whether or not 630 

the antigenicity exceeds a threshold ! = !6: the resident morph (morph 1) is represented 631 

as the dense cloud to the left of ! = !6 and the second morph (morph 2) consisting of all 632 

the genotypes to the right of ! = !6 with their b' greater than one. The within-morph 633 

means and variances are then calculated in each region. The relative total densities of 634 

infected hosts in the left and right regions defines the initial frequency of two morphs in 635 

OMD. A 2D Gaussian distribution is assumed for within-morph trait distributions to have 636 

the closed moment equations as explained before. Using these as the initial means, 637 

variances, covariances of the two morphs at $ = $C, the oligomorphic dynamics for 11 638 

variables (relative frequency of morph 1, mean antigenicity, mean virulence, variances in 639 
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antigenicity and virulence and their covariance in morph 0 and 1) is integrated up to $ =640 

$B. The results are shown in red curves in the panels of second and third rows, which are 641 

compared with the simulation results (blue curves). 642 

The panels (c)-(e) in Fig. 5 show the change in total infected density (c), mean antigenicity 643 

(d), and mean virulence (e). Red curves show the prediction by oligomorphic dynamics 644 

from the initial moments of each morph at $ = $C to the susceptibility distribution N(!) =645 

,($C, !). Red curves in the (e) and (e) show the OMD prediction, which is compared with 646 

the simulation results (blue curves). The OMD predicted mean antigenicity, for example, 647 

is defined as 648 

!̅($) = I1 − L,($)J!̅'($) + L,($)!̅,($), 649 

where L,($) is the frequency of morph 1, !̅' and !̅, are the  mean antigenicity of morph 0 650 

and 1.  651 

The red curves in the third row (f)-(h) of Fig. 5 show the OMD-predicted changes in the 652 

variance in antigenicity, variance in virulence, and covariance between antigenicity and 653 

virulence, which are compared with the simulation results (blue curves).  The OMD 654 

predicted covariance, for example, is defined as 655 

^($) = (1 − L,($))^'($) + L,($) ,̂($)656 

+ L,($)I1 − L,($)JI!̅'($) − !̅,($)JI.Z'($) − .Z,($)J 657 

where ^'($) and  ,̂($) are antigenicity-virulence covariance in morph 0 and 1, and .Z'($) 658 

and .Z,($) are mean virulence of morph 0 and 1. 659 
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Selection for maximum growth rate 660 

We next show that a pathogen that has the strategy maximizing the growth rate in a fully 661 

susceptible population is evolutionarily stable in the presence of antigenic escape. 662 

  663 

At stationarity, the travelling wave profiles of "£(§) and ,£(§) along the moving coordinate, 664 

§ = ! − F$, that drifts constantly to right with the speed F are defined as 665 

0 = 9
2#"£(§)
2§#

+ F
2"£(§)
2§

+ -,£(§)"£(§) − (6 + .)"£(§),

0 = F
2,£(§)

2§
− -,£(§)1 )(§ − Ä)"£(Ä)

!

"!
2Ä. (56)

 666 

with "£(−∞) = "£(∞) = 0, ,£(∞) = 1.   667 

 Let •($, !) be the density of a mutant pathogen variant with virulence .′ and 668 

transmission rate -′ that is introduced in the host population where the resident variant is 669 

already established (50). For the initial transient phase in which the density of mutant is 670 

sufficiently small, we have an equation for the change in ¶($, §) = •($, !): 671 

/
/$
¶($, §) = ß9

/#

/§#
+ F

/
/§
+ -&,£(§) − (6 + .&)® ¶($, §), (57) 672 

with the initial condition ¶(0, §) = |†(§), where | is a small constant and †(⋅) is Dirac 673 

function. 674 

 Consider a system 675 

/å
/$

= ß9
/#

/§#
+ F

/
/§
+ -& − (6 + .&)®å, (58) 676 
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with å(0, §) = ¶(0, §) = |†(§). Noting that ,£(§) < 1, we have ¶($, §) ≤ å($, §) for any 677 

$ > 0 and § ∈ ℝ from the comparison theorem. The solution to (52) is 678 

å($, §) =
|

√4¨9$
exp gE&$ −

(§ + F$)#

49$
h (59) 679 

where E& = -& − (6 + .&). This follows by noting that å($, !)i"D%E follows a simple 680 

diffusion equation /å//$ = 9/#å//!#. By rearranging the exponents of (53), 681 

å($, §) = exp[4$ − ≠§]
|

√4¨9$
i"F

$/:HE

<
|

√4¨9$
exp[4$ − ≠§]

(60) 682 

where 683 

4 =
F&# − F#

49
, (61)

≠ =
F
29

. (62)
 684 

Here F& = 2√E&9 is the asymptotic wave speed if the mutant variant monopolizes the host 685 

population. Therefore, if F& < F, then 4 < 0, and hence å($, §) for a fixed § converges to 686 

zero as $ goes to infinity; which in turn implies that ¶($, §) converges to zero because 687 

¶($, §) ≤ å($, §) for all $ and §. Therefore, we conclude that any mutant that has a slower 688 

wave speed than the resident can never invade the population, implying that a variant that 689 

has the maximum wave speed F = 2√E9 is locally evolutionarily stable.  690 
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Figure Legends 691 

Fig. 1: Continuous antigenic drift (a) and periodical antigenic shifts (b) of the model. 692 

The grey colored surface denotes the infected density "($, !) varying in time $ and 693 

antigenicty !, and the yellow colored surface denotes the density of hosts ,($, !) that are 694 

susceptible to antigenicity variant ! of pathogen at time $. The cross immunity	)(!) =695 

exp(−!#/2l#) has a width of l = 0.2 in (a) and l = 0.6 in (b). Other parameters are 696 

- = 2, 	. = 0.1, 6 = 0.5, and	9 = 0.001. 697 

 698 

Fig. 2: Oligomorphic dynamics prediction of the emergence of antigenicity shift. (a) 699 

Oligomorphic prediction for the change in the mean antigenicity after the primary outbreak 700 

at ! = 0 and that after the second outbreak starting around ! = 5.5 (red curves), compared 701 

with that obtained by numerical simulations (blue dots).  (b) Heat map representation of 702 

the time change of the antigenic drift model (1). Parameters: - = 2, 6 + . = 0.6, )(!) =703 

exp(−!#/2l#) with l = 2, 9 = 0.001. Initially, all hosts are equally susceptible with 704 

,(0, !) = 1. The primary pathogen variant is introduced at ! = 0 with infected density 705 

0.001. 706 

 707 

Fig. 3: Marginal distribution of antigenicity (left) and virulence (right) in the absence 708 

(a) or presence (b) of cross-immunity. (a) No cross immunity is assumed so that each 709 

antigenicity genotype causes specific herd immunity: )(! − ') = †(! − '), where †(⋅) is 710 

Dirac’s delta function.  There are 1600 antigenic variations having equally divided 711 

antigenicity between 0 and 80. (b) We assume a Gaussian cross-immunity kernel, 712 
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)(! − ') = exp(−(! − ')#/2l#), with width l = 5.  There are 300 antigenic variations 713 

having equally divided antigenicity between 0 and 300. In both panels, there are 100 viral 714 

virulence traits each having virulence equally divided between 0 and 20, and Diffusion 715 

constants due to mutations are 9* = 0.01 (for antigenicity) and 9. = 0.01(for virulence). 716 

The blue dashed lines show the ES virulence predicted from maximizing R0, as expected 717 

in the absence of antigenic escape, while the red dashed lines show the predicted ES 718 

virulence that maximizes E(.) = -(.) − (6 + .) as predicted from our analysis. Other 719 

parameters: γ = 0.5, and -(.) = 5√. . 720 

 721 

Fig. 4: Graphical representation of the predicted ES virulence with or without 722 

antigenic escape under the assumption of a transmission-virulence trade-off. In the 723 

absence of antigenic escape, the ES virulence, .I∗ , can be predicted from the maximization 724 

of the pathogen’s epidemiological basic reproduction ratio, b' = -/(6 + .), or 725 

equivalently by the minimization of the total density of susceptible hosts since, at 726 

equilibrium, N∗ = 1/b'. The slope of the transmission-virulence trade-off at the ESS is 727 

then 1/N∗ = b'. With antigenic escape, the ES virulence, .D∗, can be predicted from the 728 

maximization of the pathogen’s growth rate in a fully susceptible population, E' = -(.) −729 

(6 + .). The slope of the transmission-virulence trade-off at the ESS is then 1. This holds 730 

true in the limit of a large antigenicity trait, but intermediate values of ES virulence, 731 

corresponding to intermediate slopes, can also be selected for if other processes constrain 732 

the evolution of the antigenicity trait, as explained in the main text. 733 

 734 
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Fig. 5: Oligomorphic dynamics predictions compared to the simulation results of the 735 

emergence of the next variant during antigenicity-virulence coevolution.  Panels (a) 736 

and (b) are simulation results showing snapshots of contour plots for the joint trait 737 

distribution observed near (a) the starting and (b) finishing time of emergence. The overlaid 738 

curves are the trajectory of mean traits	(xZ, αW)  up t = 104.8  and $ = 109 observed in the 739 

simulation. Panels (c)-(h) show the dynamics of the total density of infected hosts, mean 740 

antigenicity, mean virulence, the variance in antigenicity, the variance in virulence, and the 741 

covariance between antigenicity and virulence, respectively predicted by the oligomorphic 742 

analysis compared to the simulation results. Parameters:	γ = 0.5, β(α) = 5√α ,	DJ =743 

0.005, DK = 0.0002. As in Fig. 2 we assume a Gaussian cross-immunity kernel, 744 

σ(x − y) = exp(−(x − y)#/2ω#), with width ω = 5. The oligomorphic dynamics 745 

describing the changes in the frequency p'(t) = 1 − p,(t) of the currently prevailing 746 

morph at time tL = 104.8 and the frequency p,(t) of upcoming morph, the mean 747 

antigenicity xZM(t) and mean virulence αWM(t) of the two morphs (i = 0,1), and the within-748 

morph variances VMJ and VMK in antigenicity and virulence, as well as the within-morph 749 

covariance CM(t) between antigenicity and virulence in each morph (i = 0,1) are defined as 750 

(48)-(53) in the methods. 751 
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 1 

Supplementary Information: Sasaki, Lion and Boots – “Antigenic escape selects for 1 

the evolution of higher virulence” 2 

Multidimensional antigenic space 3 

Here we show that our key results obtained with using 1-dimensional antigenic space 4 

remain the same when we extend the antigenicity space into two dimensions. We first 5 

describe our antigenic drift model in 2-dimensional space. Let !(#, x) be the density of 6 

hosts that are susceptible to pathogens of antigenicity x = ('!, '")= at time #. Let also 7 

)(#, x, *) be the density of hosts that are currently infected and infectious with the pathogen 8 

of antigenicity x and virulence * at time #. These distributions change with time as 9 

+!(#, x)
+# = −!(#, x)- - - .(*)/(x − y))(#, y, *)

#

$
1*

#

%#

#

%#
12!12",

+)(#, x, *)
+# = [.(*)!(#, x) − (4 + *)])(#, x, *) + 7∇&") + 7'

+")
+*" ,

 10 

where 4  is recovery rate, *  is virulence, .(*)  is transmission rate as a function of 11 

virulence, 12 

/(|x − y|) = exp <−
|x − y|"

2>" ? 13 

denotes the degree of cross-immunity between viruses of antigenicity x  and y , where 14 

|x − y| = @('! − 2!)" + ('" − 2")" is antigenic distance between them, ∇&"=
(!
()"!

+ (!
()!!

, 15 

7 = !
" AB

" is the half of mutation variance for the changes in antigenicity (the mutation is 16 

assumed to be isotropic in either direction in 2-dimensional antigenic space), 7' = A'B'"  17 

is the half of mutation variance for the change in virulence. The initial host population is 18 

assumed to be susceptible to any antigenicity variant of pathogen: !(0, x) = 1, for all x. 19 
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 26 

 27 
Supplementary Figure 1, Joint evolution of virulence and antigenicity in 2-dimensional 28 
antigenic space. A) The time change in the distribution of antigenic distance, E =29 
@'!" + '""	, of viruses from their founder variant at antigenicity ('!, '") = (0,0)  and time 30 
# = 0. B) The time change in the virulencefrom its initial value * = 0.025 at time # = 0. 31 
The dashed line at * = 0.5 indicates the ESS virulence in the endemic population which 32 
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 3 

should have been attained if there were no antigenic escape. C-E) The snapshots of the 2-33 
dimensional antigenicity distribution at time # = 4, 12 and 20. See Equation (S.1) for the 34 
model. The transmission rate . and virulence * has a tradeoff . = 5√*. The recovery rate 35 
is 4 = 0.5. The partial cross-immunity between two virus variants with antigenic distance 36 
E  is /(E) = exp(−E" /2>"), where the width > of cross-immunity 1 here. The mutation 37 
variance-covariance matrix for the change in antigenicity is isotropic in the two directions 38 
of the 2-dimensional antigenic space with the half of mutation variance (mutation rate times 39 
the squared width of mutation distance) 7 = AB"/2 = 0.01. The half of mutation variance 40 
for the change in virulence is 7' = A'B'"/2 = 0.04.  41 

 42 
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 48 
 49 
Supplementary Figure 2 The same as in Supplementary Figure 1 but with a wider width of 50 
cross-immunity, > = 3 (where > = 1). The snapshots are taken at time # = 6, 24, and 38 51 
in C, D, and E. 52 
 53 
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