

1 **Antigenic escape selects for the evolution of higher pathogen transmission and**
2 **virulence**

3 Akira Sasaki^{1,2}, Sébastien Lion³ and Mike Boots^{4,5*}

4 ¹ Department of Evolutionary Studies of Biosystems, The Graduate University of
5 Advanced Studies, SOKENDAI, Hayama, Kanagawa 2400139, Japan.

6

7 ² Evolution and Ecology Program, International Institute for Applied Systems Analysis,
8 Schlossplatz 1, A-2361, Laxenburg, Austria

9 ³CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France.

10

11 ⁴ Integrative Biology, University of California, Berkeley, USA. CA 94720. Email:
12 mboots@berkeley.edu

13 ⁵ Biosciences, University of Exeter, Penryn Campus, UK. TR10 9FE.

14 *corresponding author

15

16 **Abstract**

17 Despite the propensity for complex and non-equilibrium dynamics in nature, eco-
18 evolutionary analytical theory typically assumes that populations are at equilibria. In
19 particular pathogens often show antigenic escape from host immune defense, leading to
20 repeated epidemics, fluctuating selection and diversification, but we do not understand how
21 this impacts the evolution of virulence. We model the impact of antigenic drift and escape
22 on the evolution of virulence in a generalized pathogen and apply a recently introduced
23 oligomorphic methodology that captures the dynamics of the mean and variance of traits,
24 to show analytically that these non-equilibrium dynamics select for the long-term
25 persistence of more acute pathogens with higher virulence. Our analysis predicts both the
26 timings and outcomes of antigenic shifts leading to repeated epidemics and predicts the
27 increase in variation in both antigenicity and virulence before antigenic escape. There is
28 considerable variation in the degree of antigenic escape that occurs across pathogens and
29 our results may help to explain the difference in virulence between related pathogens
30 including, potentially, human influenzas. Furthermore, it follows that these pathogens will
31 have a lower R_0 with clear implications for epidemic, endemic behavior and control. More
32 generally our results show the importance of examining the evolutionary consequences of
33 non-equilibrium dynamics.

34

35 **Key Words:** Cross immunity, disease emergence, virulence, immunity, antigenic escape,
36 transient evolution, adaptive dynamics, quantitative genetics, population genetics.

37

38 **Introduction**

39 Infectious disease remains a major problem for human health and agriculture ¹⁻⁴ and are
40 increasingly recognized as important in ecosystems and conservation ^{5,6}. This has led to
41 the development of extensive theoretical literature on the epidemiology, ecology and
42 evolution of host-pathogen interactions ⁷⁻¹⁰. Understanding the drivers of the evolution of
43 virulence, typically defined in the evolutionary literature as the increased death rate of
44 individuals due to infection, is a key motivator of this theoretical work ^{8,10-14}. Generally,
45 models assume that a higher transmission rate trade-offs against the intrinsic cost of
46 reducing the infectious period due to higher death rates (virulence), and classically predict
47 the evolution of a virulence that maximizes the parasite epidemiological R_0 ^{8,10-14}. In fact,
48 this result only holds in models where ecological feedbacks take a constrained form, such
49 that even relatively simple processes such as density-dependent mortality, multiple
50 infections and spatial structure may lead to diversification or different optima ^{10,12,13,15}.
51 Moreover, this classic evolutionary theory examines the long-term equilibrium
52 evolutionary outcome in the context of stable endemic diseases, but in nature, infectious
53 diseases often exhibit complex dynamics, with potentially important impacts on pathogen
54 fitness ¹⁶⁻¹⁹.

55 Antibody-mediated immunity is a critical factor driving the dynamics of important
56 infectious diseases such as seasonal influenza, leading to selection for novel variants that
57 can escape immunity to the current predominant variant ²⁰⁻²². Such antigenic escape
58 typically causes the optimal variant of the parasite to change through time as it moves
59 through antigenic space. Moreover, partial cross-immunity between the different parasite
60 variants may lead to recurrent epidemics, fluctuations in parasite variants and potentially

61 variant coexistence ^{23–26}. Previous theory has shown that the evolution of immune escape
62 can lead to dramatic disease outbreaks ^{24–26}, but the implications of these epidemiological
63 dynamics for the evolution of disease virulence are unknown. This question is challenging
64 in part because much of the theoretical framework used to study virulence evolution
65 typically considers diseases that are at an endemic equilibrium ^{8,10–14}. As such we currently
66 lack a broad theoretical understanding of the evolution of virulence in the presence of
67 antigenic escape, despite its importance as an epidemic process and the likely implications
68 of its inherently dynamical epidemic nature.

69 Here, we examine the impact of antigenic escape on the evolution of infectious disease in
70 the context of the well-studied transmission/virulence trade-off ^{10,27}. We first examine
71 analytically the case without cross-immunity and then apply a recently introduced
72 ‘oligomorphic’ analysis that combines quantitative genetic and game theoretical
73 approaches ²⁸ to examine the impact of antigenic jumps and epidemic outbreaks due to
74 cross immunity. Specifically, the oligomorphic analysis explicitly models not only changes
75 in the mean trait but also changes in the variance of the trait. This variance is critical to the
76 evolutionary outcome under non-equilibrium dynamics and the approach allows us to
77 model the evolutionary dynamics of populations with multiple peaks in the character
78 distribution. This analysis can be applied across a range of ecological and evolutionary
79 time scales and allows us to examine evolutionary outcomes under non-equilibrium
80 conditions. Our key result is that antigenic escape selects for higher transmission and
81 virulence due to the repeated epidemics caused by immune escape, leading to the long-
82 term persistence of acute pathogens. Indeed, antigenic escape has the potential to select for

83 infectious diseases with substantially higher virulence than that predicted by the
84 maximization of R_0 in classic disease models.

85 **Results**

86 In order to tractably model antigenic escape with multiple variants and cross-immunity we
87 follow the simplifying approaches of Gog and Grenfell ²⁶. Effectively the role of cross-
88 immunity is to generate protection against becoming infectious with variants not yet
89 encountered. In particular we assume that cross-immunity reduces the transmissibility of,
90 rather than the susceptibility to, future variants. Furthermore, we assume that there is
91 polarizing immunity, such that cross-immunity results in a proportion of individuals being
92 completely immune. These assumptions allow tractability and have been shown not to
93 impact the predictions of the model ²⁶. Specifically, we consider a population of pathogens
94 structured by a one-dimensional antigenic trait x , so that $I(t, x)$ is the density of hosts
95 infected with antigenicity variant x at time t . Following Gog and Grenfell ²⁶, we assume
96 that an individual is either perfectly susceptible or perfectly immune to a variant. A variant
97 of pathogen can infect any host, but will be infectious only when the host is susceptible to
98 that variant. When a variant y of pathogen infects a host that is susceptible to a variant x ,
99 the host may become (perfectly) immune to the variant x with probability $\sigma(x - y)$. This
100 is the partial cross immunity function between variants x and y , that takes a value between
101 0 and 1 and is a decreasing function of antigenic distance $|x - y|$ between variants x and
102 y . The density of hosts susceptible to antigenicity variant x at time t is noted $S(t, x)$.

103 Assuming that all pathogen variants have the same transmission rate β and virulence α , we
 104 can describe the dynamics with the following structured Susceptible-Infected-Recovered
 105 model:

$$\frac{\partial S(t, x)}{\partial t} = -\beta S(t, x) \int_{-\infty}^{\infty} \sigma(x - y) I(t, y) dy, \quad (1a)$$

$$\frac{\partial I(t, x)}{\partial t} = [\beta S(t, x) - (\gamma + \alpha)] I(t, x) + D \frac{\partial^2 I(t, x)}{\partial x^2}. \quad (1b)$$

107 where γ is the recovery rate, and $D = \mu\sigma_m^2/2$ is the diffusion constant due to random
 108 mutation in the continuous antigenic space, which is defined by one half of the mutation
 109 variance $\mu\sigma_m^2$, where μ is the mutation rate and σ_m^2 is the variance in the difference between
 110 parental and mutant traits ^{29,30}. The dynamics for the density of recovered hosts is omitted
 111 from (1) as it does not affect the dynamics (1) of the densities of susceptible and infected
 112 hosts.

113 **Invasion of a single pathogen:** in our first scenario, we start with a population where all
 114 hosts are susceptible to any variant ($S(\mathbf{0}, x) = 1$) and a small number of hosts infected by
 115 pathogen variant with antigenicity trait $x = \mathbf{0}$ is initially introduced. The system then
 116 exhibits travelling wave dynamics in antigenicity space. At the front of the travelling wave,
 117 $I(t, x)$ is sufficiently small and $S(t, x)$ is sufficiently close to 1. Eq. (1a) can then be
 118 linearized as

$$\frac{\partial I(t, x)}{\partial t} = rI(t, x) + D \frac{\partial^2 I(t, x)}{\partial x^2} \quad (2)$$

120 where $r = \beta - (\gamma + \alpha)$ is the rate of increase of an antigenicity variant before it spreads
 121 in the population and causes the build-up of herd immunity. The system (1) asymptotically
 122 approaches travelling waves of both pathogen antigenicity distributions $I(t, x)$, which have

123 an isolated peak around the current antigenicity, and host susceptibility profile $S(t, x)$, that
 124 smoothly steps down towards a low level after the pathogen antigenicity distribution passes
 125 through, with a common constant wave speed ³² (Fig. 1a)

126
$$v = 2\sqrt{rD} = 2\sqrt{(\beta - (\gamma + \alpha))D}. \quad (3)$$

127 As the width of the partial cross-immunity function $\sigma(x - y)$ increases, the travelling wave
 128 with static shapes described above is destabilized (Extended Data Fig. 1), and the system
 129 shows intermittent outbreaks that occur periodically both in time and in antigenicity space
 130 ^{26,32} (Fig. 1b). However, the wave speed is unchanged from (3), as the linearized system (2)
 131 towards the frontal end remains the same irrespective of the stability of wave profile that
 132 lags behind (Extended Data Fig. 1).

133 **Evolution of antigenic escape with cross-immunity:** To predict how cross-immunity
 134 affects the evolution of antigenic escape, we use an oligomorphic dynamics analysis ²⁸. In
 135 this analysis we consider a population composed of different antigenicity ‘morphs’ that
 136 can be seen as quasispecies. Specifically, we use the term ‘morph’ to describe the
 137 phenotypic trait mean and the continuous variance around this mean. The analysis in the
 138 methods allows us to track the dynamics of morph frequencies, p_i , and mean trait values,
 139 \bar{x}_i , as:

140
$$\frac{dp_i}{dt} = \beta(\bar{s}_i - \bar{s})p_i, \quad (4a)$$

$$\frac{d\bar{x}_i}{dt} = V_i \beta s'(\bar{x}_i). \quad (4b)$$

141 where $s(x)$ is the susceptibility profile of the population, which depends on the cross-
 142 immunity function σ , \bar{s}_i is the mean susceptibility perceived by viral morph i , and \bar{s} the

143 mean susceptibility averaged over the different viral morphs. Note that, in general, $s(x)$,
144 \bar{s}_i and \bar{s} will be functions of time, as the susceptibility profile is molded by the
145 epidemiological dynamics of $S(t, x)$ and $I(t, x)$.

146 Equation (4a) reveals that, as intuitively expected, morph i will increase in frequency if the
147 susceptibility of the host population to this variant is higher on average. Equation (4b)
148 shows that the increase in the mean antigenicity trait of morph i depends on (i) the variance
149 of the morph distribution, V_i , (ii) the transmission rate, and (iii) the slope of the
150 susceptibility profile close to the morph mean \bar{x}_i . Together with an equation for the
151 dynamics of variance under mutation and selection (see Methods), equations (4a) and (4b)
152 allow us to quantitatively predict the change in antigenicity after a primary outbreak, as
153 shown in Fig. 2.

154 For instance, after a primary outbreak caused by a variant with antigenicity $\bar{x}_0 = 0$ at $t =$
155 0, the susceptibility profile is approximately constant and given by $s(x) = (1 - \psi_0)^{\sigma(x)}$,
156 where ψ_0 is the final size of the epidemic of the primary outbreak at antigenicity $x = 0$
157 (see Methods). Thus, for a decreasing cross-immunity function, $\sigma(x)$, the slope of the
158 susceptibility profile is positive, which selects for increased values of the mean antigenicity
159 trait \bar{x}_1 of a second emerging morph (see Methods). As the process repeats itself, this leads
160 to successive jumps in antigenic space. In addition, a more peaked cross-immunity
161 function, σ , yields larger slopes to the susceptibility profile and thus selects for higher
162 values of the antigenicity trait.

163 **Long-term joint evolution of antigenicity, transmission and virulence:** We now extend
 164 our analysis to account for mutations affecting pathogen life-history traits such as
 165 transmission and virulence. To simplify, we use the classical assumption of a transmission-
 166 virulence trade-off^{8,10-14} and consider that a pathogen morph, \mathbf{i} , has frequency, \mathbf{p}_i , mean
 167 antigenicity trait, \bar{x}_i , and mean virulence $\bar{\alpha}_i$. In the methods, we show that the morph's
 168 mean traits change as

$$169 \quad \frac{d}{dt} \begin{pmatrix} \bar{x}_i \\ \bar{\alpha}_i \end{pmatrix} = \mathbf{G}_i \begin{pmatrix} \beta(\bar{\alpha}_i)s'(\bar{x}_i) \\ \beta'(\bar{\alpha}_i)s(\bar{x}_i) - 1 \end{pmatrix}$$

170 where \mathbf{G}_i is the genetic (co)variance matrix, and the vector on the right-hand side is the
 171 selection gradient. Note that, while the selection gradient on antigenicity depends on the
 172 slope of the antigenicity profile at the morph mean, the selection gradient on virulence
 173 depends on the slope of the transmission-virulence trade-off at the morph mean, weighted
 174 by the susceptibility profile at the morph mean.

175 Assuming we can neglect the build-up of correlations between antigenicity and virulence
 176 due to mutation and selection, the genetic (co)variance matrix is diagonal with elements
 177 V_i^x and V_i^α . Then, as shown previously, antigenicity increases if the slope of the
 178 susceptibility profile is locally positive, while mean virulence increases as long as $\beta'(\bar{\alpha}_i) >$
 179 $1/s(\bar{x}_i)$. For a fixed antigenicity trait, $x = x^*$, the susceptibility profile converges towards
 180 $s(x^*) = (\gamma + \alpha)/\beta$ and the evolutionary endpoint satisfies

$$181 \quad \beta'(\alpha) = \frac{\beta(\alpha)}{\gamma + \alpha}$$

182 which corresponds to the classical result of R_0 maximisation for the unstructured SI model
 183^{15,27}. However, when antigenicity can evolve, selection will also lead to the build-up of a

184 positive covariance C between antigenicity and virulence, resulting in a synergistic effect
185 (Methods). As the antigenicity trait increases, the evolutionary trajectory of virulence
186 converges to the solution of

187
$$\beta'(\alpha) = 1$$

188 which corresponds to maximizing the rate of increase of pathogen $r(\alpha) = \beta(\alpha) - (\gamma + \alpha)$
189 in a fully susceptible population. This is equivalent to maximizing the wave speed $v(\alpha) =$
190 $2\sqrt{r(\alpha)D}$, as shown in the methods. Fig. 3a shows that, in the absence of cross-immunity,
191 the ES virulence is well predicted by r maximization. With cross-immunity (Fig. 3b),
192 virulence evolution is characterized by jumps that reflect the sudden shifts in antigenicity
193 due to cross-immunity.

194 As such antigenic escape selects for higher transmission and virulence and more acute
195 infectious diseases. This has parallels with the results that show that there is a transient
196 increase in virulence at the start of an epidemic with r rather than R_0 being maximized
197 ^{16,17,19,33}, but here we predict the long-term persistence of highly transmissible and virulent
198 disease variants due to antigenic escape.

199 Although we have so far assumed a never-ending antigenic escape process, it is easy to
200 extend our analysis to consider that antigenic escape is constrained by pleiotropic effects.
201 Then, once the antigenicity trait has stabilized, the ES virulence would satisfy

202
$$\beta'(\alpha) = \frac{1 - \rho \beta(\alpha)s'(x)}{s(x)}$$

203 where $\rho = C/V_\alpha$ measures the correlation between antigenicity and virulence. Thus, the
204 slope to the transmission-virulence trade-off at the ESS now takes an intermediate value
205 between $\beta/(\gamma + \alpha)$ and 1, as shown in Fig. 4.

206 **Short-term joint evolution of antigenicity and virulence:** Although our analysis allows
207 us to understand the long-term evolution of pathogen traits, it can also be used to accurately
208 predict the short-term dynamics of antigenicity and virulence. We now consider that a
209 primary outbreak has molded a susceptibility profile $s(x)$ that we assume constant.
210 Although this assumption will cause deviations from the true susceptibility profile, it
211 allows us to decouple our evolutionary oligomorphic dynamics from the epidemiological
212 dynamics. Fig. 5 shows that the approximation accurately predicts the jump in antigenic
213 space and joint increase in virulence during the secondary outbreak. The accuracy of the
214 prediction depends on the time at which we seed the oligomorphic dynamical system, as
215 detailed in the methods, but remains high for a broad range of values of this initial time.
216 Hence, our analysis can be used to successfully predict the trait dynamics after the
217 emergence of a new antigenic variant. Simulations show that this result is not dependent
218 on the assumption of one dimensional antigenic space (Supplementary Information).

219

219 **Discussion**

220 We have shown how antigenic escape selects for more acute infectious diseases with higher
221 transmission rates that cause increased mortality (virulence) in infected hosts. This result
222 is important given the number of major infectious diseases such as seasonal influenza that
223 have epidemiology driven by antigenic escape. Until recently the evolution of virulence
224 literature has mostly focused on equilibrium solutions that in simple models lead to the
225 classic idea that pathogens evolve to maximize their basic reproductive number R_0 ^{8,10-14}.
226 Our results show that the process of antigenic escape leading to the continual replacement
227 of variants²³⁻²⁶, creates a dynamical invasion process that in and of itself selects for more
228 acute, fast transmitting, highly virulent variants that do not maximize R_0 . This has parallels
229 with the finding that more acute variants are selected transiently at the start of epidemics
230²⁴⁻²⁶, but critically, in our case the result is not a short-term transient outcome. Rather, the
231 eco-evolutionary process leads to the long-term persistence of more acute variants. As
232 such, antigenic escape may be an important driver of high virulence in infectious disease.
233 In the simpler case where there is no cross immunity, there is a travelling wave of new
234 variants invading due to antigenic escape. In this case we can use established methods to
235 gain analytical results that not only predict the speed of change of the variants, but also the
236 evolutionarily stable virulence. With our model's assumptions, without antigenic escape
237 we would get the classic result of the maximization of the reproductive number R_0 ^{8,10-14},
238 but once there is antigenic escape we show analytically that the intrinsic growth rate of the
239 infectious disease r is maximized. Maximizing the intrinsic growth rate leads to selection
240 for higher transmission and in turn higher virulence. Effectively this is the equivalent of an
241 infectious disease “live fast, die young” strategy. The outcome is due to the dynamical

242 replacement of variants, with new variants invading the population continually leading to
243 a continual selection for the variants that invade better²⁴⁻²⁶. As such we predict that any
244 degree of antigenic escape will in general select for more acute faster transmitting variants
245 with higher virulence in the presence of a transmission-virulence trade-off. Although such
246 a trade-off is a classical assumption in evolutionary epidemiology, it would be interesting
247 to examine the impact of antigenic escape under different assumptions.

248 Partial cross-immunity leads to a series of jumps in antigenic space that are characteristic
249 of the epidemiology of a number of diseases and in particular of the well-known dynamics
250 of influenza A in humans²³⁻²⁶. Here a cloud of variants remains in antigenic space until
251 there is a jump that, on average, overcomes the cross immunity and leads to the invasion
252 of a new set of variants that are distant enough to escape the immunity of the resident
253 variants²³⁻²⁶. In order to examine the evolutionary outcome in this scenario we applied a
254 novel oligomorphic analysis²⁸ and again we find that antigenic escape selects for higher
255 virulence toward the maximization of the intrinsic growth rate r . Both our analysis and
256 simulations show that in the long term the virulence increases until it reaches a new
257 optimum potentially of an order of magnitude higher than would be expected by the classic
258 prediction of maximizing R_0 . Therefore, antigenic escape whether it is through a
259 continuous wave of antigenic drift or through large jumps, selects for higher virulence. We
260 therefore expect this result to apply across the wide range of ‘jumpiness’ that we see across
261 different viruses between these two extremes of continuous drift and punctuated jumps.
262 We show that virulence increases after each antigenic jump, falling slightly at the next
263 jump before increasing again until it reaches this new equilibrium. It is also important to
264 note that the diversity within the morph increases in both antigenicity and virulence as we

265 move towards the next epidemic, reaching a maximum just at the point when the jump
266 occurs. This increase in diversity could in principle be used as a predictor of the next jump
267 in antigenic space.

268 Clearly the virulence of any particular infectious disease depends on multiple factors,
269 including both host and parasite traits, and critically the relationship between transmission
270 and virulence. This makes comparisons of the virulence across different infectious diseases
271 problematic since the specific trade-off relationship between transmission and virulence is
272 often unknown. However, our model shows that antigenic escape will, all things being
273 equal, be a driver of higher virulence favoring more acute variants. It is also important to
274 note that since antigenic escape is a very general mechanism that selects for higher
275 virulence it follows that we may see high virulence in parasites even when the costs in
276 terms of reduced infectious period are substantial. Amongst the influenzas, although there
277 is a paucity of data, influenza C does not show obvious antigenic escape and is typically
278 much less virulent than the other influenzas ³⁴. Furthermore, influenza A/H3 tends to show
279 much more antigenic escape than influenza B and influenza A/H1 and again in line with
280 our predictions typically influenza A/H3N2 is the more virulent ^{35,36}. It is important to note
281 that these differences can be ascribed to multiple factors including circumvention of
282 vaccination and that cross-immunity may itself directly impact disease severity.
283 Furthermore the higher virulence of influenza A is often posited to be due to a more recent
284 zoonotic emergence ³⁷. Moreover, direct comparisons between the rates of antigenic escape
285 between influenza A/H1 and influenza B are difficult and clearly there are also highly
286 virulent pathogens that do not show antigenic escape such as measles. Therefore, a formal
287 comparative analysis is confounded by multiple factors. Nevertheless, our model suggests

288 that differences in the rates of antigenic escape of the different influenzas may impact their
289 virulence and the evidence from influenza is at least consistent with the predictions of the
290 model.

291 An important implication of our work is that antigenic escape selects for variants with a
292 higher virulence than the value that maximizes R_0 and therefore leads to the evolution of
293 infectious diseases with lower R_0 . From this point of view, it may be naively concluded
294 that diseases with antigenic escape may be easier to eliminate and control with vaccination.

295 Of course, in practice the opposite is often true since producing an effective vaccine is
296 much more problematic when there is antigenic escape^{38,39}. On the other hand with lower
297 R_0 epidemics will tend to be less explosive than they otherwise would have been, having a
298 lower peak but lasting longer, with evolution here effectively ‘flattening the curve’.

299 Infectious diseases that show punctuated antigenic escape are characterized by repeated
300 epidemics, but our work suggests that due to the selection for a lower R_0 the eco-
301 evolutionary feedback will have significantly impacted the pattern of these epidemics.

302 More generally our results highlight how ecological/epidemiological dynamics can impact
303 evolutionary outcomes that in turn feedback into the epidemiology characteristics of the
304 disease.

305 We have used oligomorphic dynamics²⁸ to make predictions on the waiting times and
306 outcomes of the antigenic jumps in our model with cross immunity. This approach tracks
307 changes in both mean trait values and trait variances in models with explicit ecological
308 dynamics. As such it combines aspects of eco-evolutionary theory^{40,41} and quantitative
309 genetics approaches^{42,43} to provide a more complete understanding of the evolution of
310 quantitative traits. Our approach can take into account a wide range of different ecological

311 and evolutionary time scales and therefore allows us to address fundamental questions on
312 eco-evolutionary feedbacks and on the separation between ecological and evolutionary
313 time scales. This is important since it allows us to test the implications of the different
314 assumptions of classical evolutionary theory and to better understand the role of eco-
315 evolutionary feedbacks on evolutionary outcomes. Furthermore, the approach can be
316 applied widely to model transient dynamics, and to predict the waiting times and extent of
317 diversification that occurs in a range of contexts ^{28,44}. Moreover, antigenic evolution is
318 known to also lead to diversification and variant coexistence ⁴⁵⁻⁴⁸, and it would be
319 interesting to extend our analysis to these other evolutionary outcomes.

320 Our results emphasize that epidemiological dynamics may have important implications for
321 the evolution of infectious disease. To facilitate its broader application, the oligomorphic
322 methodology should be extended to structured populations and combined with stochastic
323 evolutionary theory in order to fully address the evolutionary dynamics of emerging
324 disease. Human coronaviruses can evolve antigenically to escape antibody immunity ⁴⁹
325 and it would be useful to apply our approaches to a more specific model of the SARS-CoV-
326 2 epidemic. In particular, our ability to predict the waiting time until the emergence of the
327 next antigenic cluster has the potential to be important in such applied contexts.

328 In principle epidemics of new variants that adapts to a novel host would display equivalent
329 dynamics to those described here for antigenic escape. It also follows that interventions
330 that impact epidemiological dynamics may also have impacts on the evolution of pathogen
331 traits such as virulence or transmission. Our results suggest that immune escape driven by
332 transmission blocking imperfect vaccination might also select for higher virulence in the
333 longer term ^{50,51}, although these effects are likely overwhelmed by selection on transmission

334 in an emerging pandemic such as SARS-CoV-2 ^{52,53}. Furthermore, dynamical feedbacks
335 are important in a range of contexts beyond infectious disease and our approach may help
336 us examine the importance of interactions between frequency dependent ‘stabilizing’ and
337 equalizing evolutionary drivers ⁵⁴. The oligomorphic analytical approaches we use here
338 are therefore likely to be useful in understanding a wide range of dynamical evolutionary
339 outcomes.

340 **Methods**

341 **Oligomorphic dynamics of antigenic escape**

342 We consider a model of the antigenic escape of a pathogen from host herd immunity on a
343 one-dimensional antigenicity space (x). We track the changes in the density $S(t, x)$ of hosts
344 that are susceptible to antigenicity variant x of pathogen at time t , and the density $I(t, x)$
345 of hosts that are currently infected and infectious with antigenicity variant x of pathogen
346 at time t :

$$\frac{\partial S(t, x)}{\partial t} = -S(t, x) \int_{-\infty}^{\infty} \beta \sigma(x - y) I(t, y) dy, \quad (5)$$

$$\frac{\partial I(t, x)}{\partial t} = \beta S(t, x) I(t, x) - (\gamma + \alpha) I(t, x) + D \frac{\partial^2 I(t, x)}{\partial x^2}. \quad (6)$$

347 where β , α , and γ are the transmission rate, virulence (additional mortality due to
348 infection), and recovery rate of pathogens which are independent of antigenicity. The
349 function $\sigma(x - y)$ denotes the degree of cross immunity: a host infected by pathogen
350 variant y acquires perfect cross immunity with probability $\sigma(x - y)$ but fails to acquire
351 any cross immunity with probability $1 - \sigma(x - y)$ (this is called polarized cross immunity
352 by Gog and Grenfell ²⁶). The degree $\sigma(x - y)$ of cross-immunity is assumed to be a

354 decreasing function of the distance $|x - y|$ between variants x and y . When a new variant
 355 with antigenicity $x = 0$ is introduced at time $t = 0$, the initial host population is assumed
 356 to be susceptible to any antigenicity variant of pathogen: $S(0, x) = 1$. In (6), $D = \mu\sigma_m^2/2$
 357 is one half of the mutation variance for the change in antigenicity, representing random
 358 mutation in the continuous antigenic space.

359 **Susceptibility profile molded by the primary outbreak.** We first analyze the dynamics
 360 of the primary outbreak of a pathogen and derive the resulting susceptibility profile, which
 361 can be viewed as the fitness landscape subsequently experienced by the pathogen. For
 362 simplicity we assume that mutation can be ignored during the first epidemic initiated with
 363 antigenicity stain $\mathbf{x} = \mathbf{0}$. The density $\mathbf{S}_0(\mathbf{t}) = \mathbf{S}(\mathbf{t}, \mathbf{0})$ of hosts that are susceptible to the
 364 currently prevailing antigenicity variant $\mathbf{x} = \mathbf{0}$, as well as the density $\mathbf{I}_0(\mathbf{t}) = \mathbf{I}(\mathbf{t}, \mathbf{0})$ of
 365 hosts that are currently infected by the focal variant change with time as

$$\frac{dS_0}{dt} = -S_0\beta I_0, \quad (7)$$

$$\frac{dI_0}{dt} = S_0\beta I_0 - (\gamma + \alpha)I_0, \quad (8)$$

$$\frac{dR_0}{dt} = \gamma I_0. \quad (9)$$

367 with $S_0(0) = 1$, $I_0(0) \approx 0$, and $R_0(0) = 0$. The final size of the primary outbreak,

$$368 \quad \psi_0 = R_0(\infty) = 1 - S_0(\infty) = \exp \left[-\beta \int_0^\infty I_0(t) dt \right],$$

369 is determined as the unique positive root of

$$370 \quad \psi_0 = 1 - e^{-\rho_0 \psi_0}, \quad (10)$$

371 where $\rho_0 = \beta/(\gamma + \alpha) > 1$ is the basic reproductive number ⁷. Associated with this
 372 epidemiological change, the susceptibility profile $S_x(t) = S(t, x)$ against antigenicity x
 373 ($x \neq 0$) other than the currently circulating variant ($x = 0$) changes by cross immunity as

374
$$\frac{dS_x}{dt} = -S_x \beta \sigma(x) I_0, \quad (x \neq 0). \quad (11)$$

375 Integrating both sides of (11) from $t = 0$ to $t = \infty$, we see that the susceptibility profile
 376 $s(x) = S_x(\infty)$ after the primary outbreak at $x = 0$ is

377
$$s(x) = \exp \left[-\beta \sigma(x) \int_0^\infty I_0(t) dt \right] = (1 - \psi_0)^{\sigma(x)} = e^{-\rho_0 \sigma(x) \psi_0}, \quad (12)$$

378 where the last equality follows from (10). The susceptibility can be effectively reduced by
 379 cross-immunity when the primary variant has a large impact (i.e. when the fraction of hosts
 380 remaining uninfected, $1 - \psi_0$, is small) and when the degree of cross immunity is strong
 381 (i.e. when $\sigma(x)$ is close to 1). With a variant antigenically very close to the primary variant
 382 ($x \approx 0$), the cross immunity is very strong ($\sigma(x) \approx 1$) so that the susceptibility against
 383 variant x is nearly maximally reduced: $s(x) \approx 1 - \psi_0$. With a variant antigenically distant
 384 from the primary variant, $\sigma(x)$ becomes substantially smaller than 1, making the host more
 385 susceptible to the variant. For example, if the cross immunity is halved ($\sigma(x) = 0.5$) from
 386 its maximum value 1, then the susceptibility to that variant is as large as $(1 - \psi_0)^{0.5}$. If a
 387 variant is antigenically very distant from the primary variant, then $\sigma(x) \approx 0$, and the host
 388 is nearly fully susceptibility to the variant ($s(x) \approx 1$).

389 **Threshold antigenic distance for escaping immunity raised by primary outbreak.** Of
 390 particular interest is the threshold antigenicity distance x_c that allows for antigenic escape,
 391 i.e. any antigenicity variant more distant than this threshold from the primary variant ($x >$
 392 x_c) can increase when introduced after the primary outbreak. Such a threshold is
 393 determined from

394
$$\frac{\beta s(x_c)}{\gamma + \alpha} = \rho_0 s(x_c) = 1$$

395 or

396
$$s(x_c) = (1 - \psi_0)^{\sigma(x_c)} = e^{-\rho_0 \sigma(x_c) \psi_0} = \frac{1}{\rho_0}, \quad (13)$$

397 where we used (12). With a specific choice of cross-immunity profile,

398
$$\sigma(x) = \exp\left[-\frac{x^2}{2\omega^2}\right], \quad (14)$$

399 the threshold antigenicity beyond which the virus can increase in the susceptibility profile
 400 $s(x)$ after the primary outbreak is obtained, by substituting (14) into (13)

401
$$\exp\left[-\rho_0 \psi_0 \exp\left[-\frac{x_c^2}{2\omega^2}\right]\right] = \frac{1}{\rho_0},$$

402 and taking logarithm of both sides twice:

403
$$x_c = \omega \sqrt{2 \log \frac{\rho_0 \psi_0}{\log \rho_0}}. \quad (15)$$

404 **Oligomorphic dynamics.** Integrating both sides of (6) over the whole space, we obtain the
 405 dynamics for the total density of infected hosts, $\bar{I}(t) = \int_{-\infty}^{\infty} I(t, x) dx$:

406
$$\frac{d\bar{I}}{dt} = \left[\beta \int_{-\infty}^{\infty} S(t, x) \phi(t, x) dx - (\gamma + \alpha) \right] \bar{I}(t) = [\beta \bar{S}(t) - (\gamma + \alpha)] \bar{I}(t). \quad (16)$$

407 where

408
$$\phi(t, x) = I(t, x) / \bar{I}(t),$$

409 is the relative frequency of antigenicity variant x in the pathogen population circulating at
 410 time t , and

411
$$\bar{S}(t) = \int_{-\infty}^{\infty} S(t, x) \phi(t, x) dx \quad (17)$$

412 is the mean susceptibility experienced by currently circulating pathogens. The dynamics
 413 for the relative frequency $\phi(t, x)$ of pathogen antigenicity is

414
$$\frac{\partial \phi}{\partial t} = \beta \{S(t, x) - \bar{S}(t)\} \phi(t, x) + D \frac{\partial^2 \phi}{\partial x^2}. \quad (18)$$

415 As in Sasaki and Dieckmann ²⁸, we decompose the frequency distribution to the sum of
 416 several morph distributions (oligomorphic decomposition) as

417
$$\phi(t, x) = \sum_i p_i \phi_i(t, x) \quad (19)$$

418 where $p_i(t)$ is the frequency of morph i and $\phi_i(t, x)$ is within-morph distribution of
 419 antigenicity. By definition, $\sum_i p_i = 1$ and $\int_{-\infty}^{\infty} \phi_i(t, x) dx = 1$. Let

420
$$\bar{x}_i = \int_{-\infty}^{\infty} x \phi_i(t, x) dx \quad (20)$$

421 be the mean antigenicity of a morph and

422

$$V_i = \int_{-\infty}^{\infty} (x - \bar{x}_i)^2 \phi_i(t, x) dx = O(\epsilon^2). \quad (21)$$

423 be the within-morph variance of each morph, which is assumed to be small, of the order of
 424 ϵ^2 . Let us denote the mean susceptibility of host population for viral morph i by $\bar{S}_i =$
 425 $\int_{-\infty}^{\infty} S(t, x) \phi_i(t, x) dx$. As shown in Sasaki and Dieckmann ²⁸, the dynamics for viral
 426 morph frequency is expressed as

427

$$\frac{dp_i}{dt} = \beta(\bar{S}_i - \bar{S})p_i + O(\epsilon), \quad (22)$$

428 while the dynamics for the within-morph distribution of antigenicity is

429

$$\frac{\partial \phi_i}{\partial t} = \beta\{S(t, x) - \bar{S}_i\} \phi_i(t, x) + D \frac{\partial^2 \phi_i}{\partial x^2}. \quad (23)$$

430 From this, the dynamics for the mean antigenicity of a morph,

431

$$\frac{d\bar{x}_i}{dt} = V_i \beta \frac{\partial S}{\partial x} \Big|_{x=\bar{x}_i} + O(\epsilon^3). \quad (24)$$

432 and the dynamics for the within-morph variance of a morph

433

$$\frac{dV_i}{dt} = \frac{1}{2} \beta \frac{\partial^2 S}{\partial x^2} \Big|_{x=\bar{x}_i} \{E[\xi_i^4] - V_i^2\} + 2D + O(\epsilon^5). \quad (25)$$

434 are derived, where $\xi_i = x - \bar{x}_i$ and $E[\xi_i^4] = \int_{-\infty}^{\infty} (x - \bar{x}_i)^4 \phi_i(t, x) dx$ is the fourth central
 435 moment of antigenicity around the morph mean. Assuming that the within-morph
 436 distribution is normal (Gaussian closure), $E[\xi_i^4] = 3V_i^2$ and hence Eq. (25) becomes

437

$$\frac{dV_i}{dt} = \beta \frac{\partial^2 S}{\partial x^2} \Big|_{x=\bar{x}_i} V_i^2 + 2D + O(\epsilon^5). \quad (26)$$

438 **Second outbreak predicted by OMD.** Equations (22), (24) and (26) are general, but they
 439 rely on a full knowledge of the dynamics of the susceptibility profile $\mathbf{S}(\mathbf{t}, \mathbf{x})$. In order to
 440 make further progress, we use an additional approximation by substituting Eq. (13), the
 441 susceptibility profile over viral antigenicity space after the primary outbreak at $\mathbf{x} = \mathbf{0}$ and
 442 before the onset of the second outbreak at a distant position. We keep track of two morphs
 443 at positions $\mathbf{x}_0(\mathbf{t})$ and $\mathbf{x}_1(\mathbf{t})$, where the first morph is that caused the primary outbreak at
 444 $\mathbf{x} = \mathbf{0}$, and the second morph is that emerged in the range $\mathbf{x} > \mathbf{x}_c$ beyond the threshold
 445 antigenicity \mathbf{x}_c defined in Eq. (13) (and (15) for a specific form of $\sigma(\mathbf{x})$) as the source of
 446 the next outbreak.

447 As $s(x) = (1 - \psi_0)^{\sigma(x)} = \exp[\sigma(x) \log(1 - \psi_0)]$, we have

$$448 \quad \frac{ds}{dx}(\bar{x}_i) = \left[\frac{d\sigma}{dx}(\bar{x}_i) \log(1 - \psi_0) \right] s(\bar{x}_i),$$

449 and

$$450 \quad \frac{d^2s}{dx^2}(\bar{x}_i) = \left[\frac{d^2\sigma}{dx^2}(\bar{x}_i) \log(1 - \psi_0) + \left\{ \frac{d\sigma}{dx}(\bar{x}_i) \log(1 - \psi_0) \right\}^2 \right] s(\bar{x}_i).$$

451 Therefore, the frequency, mean antigenicity, and variance of antigenicity of an emerging
 452 morph ($i = 1$) change respectively as

$$453 \quad \begin{aligned} \frac{dp_1}{dt} &= \beta[s(\bar{x}_1) - s(\bar{x}_0)]p_1(1 - p_1), \\ \frac{d\bar{x}_1}{dt} &= V_1 \beta \frac{ds}{dx}(\bar{x}_1), \\ \frac{dV_1}{dt} &= \beta \frac{d^2s}{dx^2}(\bar{x}_1) V_1^2 + 2D, \end{aligned} \quad (27)$$

454 The predicted change in the mean antigenicity is plotted by integrating Eq. (27). As initial
455 condition, we choose the time when a seed of second peak in the range $x > x_c$ first appears,
456 and then compute the mean trait as

457
$$\bar{x}(t) = x_0(1 - p_1(t)) + \bar{x}_1 p_1(t). \quad (28)$$

458 In the case of Fig. 2, where $\beta = 2$, $\gamma + \alpha = 0.6$, $D = 0.001$, and $\omega = 2$, the final size of
459 epidemic for the primary outbreak, defined as (7) was $\psi = 0.959$, and the critical antigenic
460 distance for the increase of pathogen variant obtained from (26) was $x_c = 2.795$. The
461 initial condition for the oligomorphic dynamics (27) for the second morph was then
462 $p_1(t_0) = 1.6 \times 10^{-8}$, $\bar{x}_1(t_0) = 3.239$, $V_1(t_0) = 0.2675$ at $t_0 = 41$. In Fig. 2, the
463 predicted trajectory for the mean antigenicity (28) is plotted as a red curve, together with
464 the mean antigenicity change observed in simulation (blue curve).

465 **The accuracy of predicting with OMD the antigenicity and the timing of the second**
466 **outbreak.** Here we describe how we define the initial conditions for oligomorphic
467 dynamics, i.e., the frequency, the mean antigenicity and the variance in antigenicity of the
468 morph that caused the primary outbreak and the morph which may cause the second
469 outbreak. We then show how the accuracy in prediction of the second outbreak depends on
470 the timing of the prediction.

471 We divide the antigenicity space into two at $x = x_c$ above which the pathogen can increase
472 under the given susceptibility profile after the primary outbreak, but below which the
473 pathogen cannot increase. We then take relative frequencies of pathogens above x_c and
474 below x_c , and the conditional mean and variance in these separated regions to set the initial

475 frequencies, means, and variances of the morphs at the time t_0 when we start integrating
 476 the oligomorphic dynamics to predict the second outbreak:

$$\begin{aligned}
 p_0(t_0) &= \frac{\int_0^{x_c} I(t_0, x) dx}{\int_0^{\infty} I(t_0, x) dx}, & p_1(t_0) &= \frac{\int_{x_c}^{\infty} I(t_0, x) dx}{\int_0^{\infty} I(t_0, x) dx}, \\
 477 \bar{x}_0(t_0) &= \frac{\int_0^{x_c} xI(t_0, x) dx}{\int_0^{x_c} I(t_0, x) dx}, & \bar{x}_1(t_0) &= \frac{\int_{x_c}^{\infty} xI(t_0, x) dx}{\int_{x_c}^{\infty} I(t_0, x) dx}, \\
 V_0(t_0) &= \frac{\int_0^{x_c} (x - \bar{x}_0(t_0))^2 I(t_0, x) dx}{\int_0^{x_c} I(t_0, x) dx}, & V_1(t_0) &= \frac{\int_{x_c}^{\infty} (x - \bar{x}_1(t_0))^2 I(t_0, x) dx}{\int_{x_c}^{\infty} I(t_0, x) dx}.
 \end{aligned} \tag{29}$$

478 We then compare the trajectory for mean antigenicity change observed in simulation (blue
 479 curve in Fig. 2) and the predicted trajectory (red curve in Fig. 2) for mean antigenicity (28)
 480 by integrating oligomorphic dynamics (27) with initial condition (29) at time $t = t_0$.
 481 Extended Fig. 2 shows how the accuracy of prediction, measured by the Kullback-Leibler
 482 divergence between these two trajectories depends on the timing t_0 chosen for the
 483 prediction. The second outbreak occurs around $t = 54.6$ where mean antigenicity jumps
 484 from around 0 to around 5. The prediction with OMD is accurate if it is made for $t_0 > 40$.
 485 Fig. 2 is drawn for $t_0 = 41$ where the second peak is about to emerge (see Extended Data
 486 Fig. 2). Even for the latest prediction for $t_0 = 51$ in Extended Fig. 2, the morph frequency
 487 of the emerging second morph was only 0.3% off, so the prediction is still worthwhile to
 488 make.

489 Extended Data Fig. 2 shows that the prediction power is roughly constant (albeit with a
 490 wiggle) for $5 < t_0 < 30$ (the predicted timings are 10-15% longer than actual timing for
 491 $5 < t_0 < 30$), and steadily improved for $t_0 > 30$. When the prediction is made very early
 492 ($t_0 < 5$) the deviations are larger.

493 **Oligomorphic dynamics for the joint evolution of antigenicity and virulence**

494 Let $s(x)$ be the susceptibility of the host population against antigenicity x . A specific
 495 susceptibility profile is given by (12) with cross-immunity function $\sigma(x)$ and the final size
 496 ψ_0 of epidemic of the primary outbreak. Note that, as above, the susceptibility profile is in
 497 general a function of time. The density $I(x, \alpha)$ of hosts infected by a pathogen of
 498 antigenicity x and virulence α changes with time, when rare, as

499
$$\frac{\partial I(x, \alpha)}{\partial t} = \beta s(x)I(x, \alpha) - (\gamma + \alpha)I(x, \alpha) + D_x \frac{\partial^2 I}{\partial x^2} + D_\alpha \frac{\partial^2 I}{\partial \alpha^2}. \quad (30)$$

500 The change in the frequency $\phi(x, \alpha) = I(x, \alpha) / \int \int I(x, \alpha) dx d\alpha$ of a pathogen with
 501 antigenicity x and virulence α follows

502
$$\frac{\partial \phi}{\partial t} = \{w(x, \alpha) - \bar{w}\}\phi + D_x \frac{\partial^2 \phi}{\partial x^2} + D_\alpha \frac{\partial^2 \phi}{\partial \alpha^2}, \quad (31)$$

503 where

504
$$w(x, \alpha) = \beta(\alpha)s(x) - \alpha, \quad (32)$$

505 is the fitness of a pathogen with antigenicity x and virulence α and $\bar{w} = \int \int w(x, \alpha) dx d\alpha$
 506 is the mean fitness.

507 Let us decompose the joint frequency distribution $\phi(x, \alpha)$ of the viral quasispecies as
 508 (oligomorphic decomposition):

509
$$\phi(x, \alpha) = \sum_i \phi_i(x, \alpha)p_i, \quad (33)$$

510 where $\phi_i(x, \alpha)$ is the joint frequency distribution of antigenicity x and virulence α in
 511 morph i ($\int \int \phi_i dx d\alpha = 1$) and p_i is the relative frequency of morph i ($\sum_i p_i = 1$). The
 512 frequency of morph i then changes as

$$513 \quad \frac{dp_i}{dt} = \left(\bar{w}_i - \sum_j \bar{w}_j p_j \right) p_i, \quad (34)$$

$$\frac{\partial \phi_i}{\partial t} = (w(x, \alpha) - \bar{w}_i) \phi_i(x, \alpha) + D_x \frac{\partial^2 \phi_i}{\partial x^2} + D_\alpha \frac{\partial^2 \phi_i}{\partial \alpha^2},$$

514 where $\bar{w}_i = \int \int w(x, \alpha) \phi_i(x, \alpha) dx d\alpha$ is the mean fitness of morph i .

515 Assuming that the traits are distributed narrowly around the morph means $\bar{x}_i =$
 516 $\int \int x \phi_i(x, \alpha) dx d\alpha$ and $\bar{\alpha}_i = \int \int \alpha \phi_i(x, \alpha) dx d\alpha$, so that $\xi_i = x - \bar{x}_i = O(\epsilon)$ and $\zeta_i =$
 517 $\alpha - \bar{\alpha}_i = O(\epsilon)$ where ϵ is a small constant, we expand the fitness $w(x, \alpha)$ around the
 518 means \bar{x}_i and $\bar{\alpha}_i$ of morph i ,

$$519 \quad w(x, \alpha) = w(\bar{x}_i, \bar{\alpha}_i) + \left(\frac{\partial w}{\partial x} \right)_i \xi_i + \left(\frac{\partial w}{\partial \alpha} \right)_i \zeta_i + \frac{1}{2} \left(\frac{\partial^2 w}{\partial x^2} \right)_i \xi_i^2 + \left(\frac{\partial^2 w}{\partial x \partial \alpha} \right)_i \xi_i \zeta_i + \frac{1}{2} \left(\frac{\partial^2 w}{\partial \alpha^2} \right)_i \zeta_i^2 + O(\epsilon^3).$$

520 Substituting this and

$$521 \quad \bar{w}_i = w(\bar{x}_i, \bar{\alpha}_i) + \frac{1}{2} \left(\frac{\partial^2 w}{\partial x^2} \right)_i V_i^{xx} + \left(\frac{\partial^2 w}{\partial x \partial \alpha} \right)_i V_i^{x\alpha} + \frac{1}{2} \left(\frac{\partial^2 w}{\partial \alpha^2} \right)_i V_i^{\alpha\alpha} + O(\epsilon^3)$$

522 into (34), we have

$$\frac{dp_i}{dt} = \left[w_i - \sum_j w_j p_j \right] p_i + O(\epsilon), \quad (35)$$

$$\begin{aligned} 523 \quad \frac{\partial \phi_i}{\partial t} = & \left[\left(\frac{\partial w}{\partial x} \right)_i \xi_i + \left(\frac{\partial w}{\partial \alpha} \right)_i \zeta_i + \frac{1}{2} \left(\frac{\partial^2 w}{\partial x^2} \right)_i (\xi_i^2 - V_i^x) + \left(\frac{\partial^2 w}{\partial x \partial \alpha} \right)_i (\xi_i \zeta_i - C_i) \right. \\ & \left. + \frac{1}{2} \left(\frac{\partial^2 w}{\partial \alpha^2} \right)_i (\zeta_i^2 - V_i^\alpha) \right] \phi_i + D_x \frac{\partial^2 \phi_i}{\partial x^2} + D_\alpha \frac{\partial^2 \phi_i}{\partial \alpha^2} + O(\epsilon^3). \end{aligned} \quad (36)$$

524 where $w_i = w(\bar{x}_i, \bar{\alpha}_i)$, $\left(\frac{\partial w}{\partial x} \right)_i = \frac{\partial w}{\partial x}(\bar{x}_i, \bar{\alpha}_i)$, $\left(\frac{\partial w}{\partial \alpha} \right)_i = \frac{\partial w}{\partial \alpha}(\bar{x}_i, \bar{\alpha}_i)$, $\left(\frac{\partial^2 w}{\partial x^2} \right)_i = \frac{\partial^2 w}{\partial x^2}(\bar{x}_i, \bar{\alpha}_i)$,

525 $\left(\frac{\partial^2 w}{\partial x \partial \alpha} \right)_i = \frac{\partial^2 w}{\partial x \partial \alpha}(\bar{x}_i, \bar{\alpha}_i)$, and $\left(\frac{\partial^2 w}{\partial \alpha^2} \right)_i = \frac{\partial^2 w}{\partial \alpha^2}(\bar{x}_i, \bar{\alpha}_i)$ are fitness and its first and second

526 derivatives evaluated at the mean traits of morph i , and

$$\begin{aligned} 527 \quad V_i^x &= E_i[(x - \bar{x}_i)^2], \\ C_i &= E_i[(x - \bar{x}_i)(\alpha - \bar{\alpha}_i)], \\ V_i^\alpha &= E_i[(\alpha - \bar{\alpha}_i)^2], \end{aligned} \quad (37)$$

528 are within-morph variances and covariance of the traits of morph i . Here, $E_i[f(x, \alpha)] =$

529 $\int \int f(x, \alpha) \phi_i(x, \alpha) dx d\alpha$ denotes taking expectation of a function f with respect to the

530 joint trait distribution $\phi_i(x, \alpha)$ of morph i .

531 Substituting (36) into the change in the mean antigenicity of morph i

$$532 \quad \frac{d\bar{x}_i}{dt} = \frac{d}{dt} \int \int x \phi_i(x, \alpha) dx d\alpha = \int \int x \frac{\partial \phi_i}{\partial t} dx d\alpha = \int \int (\bar{x}_i + \xi_i) \frac{\partial \phi_i}{\partial t} d\xi_i d\zeta_i,$$

533 we have

$$534 \quad \frac{d\bar{x}_i}{dt} = \left(\frac{\partial w}{\partial x} \right)_i V_i^x + \left(\frac{\partial w}{\partial \alpha} \right)_i C_i + O(\epsilon^3). \quad (38)$$

535 Similarly, the change in the mean virulence of morph i is expressed as

$$536 \quad \frac{d\bar{\alpha}_i}{dt} = \left(\frac{\partial w}{\partial x} \right)_i C_i + \left(\frac{\partial w}{\partial \alpha} \right)_i V_i^\alpha + O(\epsilon^3). \quad (39)$$

537 Equations (38)-(39) from the mean trait change is summarized in a matrix form as

$$538 \quad \frac{d}{dt} \begin{pmatrix} \bar{x}_i \\ \bar{\alpha}_i \end{pmatrix} = \mathbf{G}_i \begin{pmatrix} \left(\frac{\partial w}{\partial x} \right)_i \\ \left(\frac{\partial w}{\partial \alpha} \right)_i \end{pmatrix} + O(\epsilon^3), \quad (40)$$

539 where

$$540 \quad \mathbf{G}_i = \begin{pmatrix} V_i^x & C_i \\ C_i & V_i^\alpha \end{pmatrix} \quad (41)$$

541 is the variance-covariance matrix of the morph i .

542 Substituting (36) into the right-hand side of the change in variance of antigenicity of morph

543 i ,

$$544 \quad \frac{dV_i^x}{dt} = \frac{d}{dt} \int \int \xi_i^2 \phi_i d\xi_i d\zeta_i = \int \int \xi_i^2 \frac{\partial \phi_i}{\partial t} d\xi_i d\zeta_i$$

545 and those in the change in the other variance and covariance, we have

$$546 \quad \begin{aligned} \frac{dV_i^x}{dt} &= \frac{1}{2} \left(\frac{\partial^2 w}{\partial x^2} \right)_i [E_i(\xi_i^4) - (V_i^x)^2] + \left(\frac{\partial^2 w}{\partial x \partial \alpha} \right)_i [E_i(\xi_i^3 \zeta_i) - V_i^x C_i] \\ &\quad + \frac{1}{2} \left(\frac{\partial^2 w}{\partial \alpha^2} \right)_i [E_i(\xi_i^2 \zeta_i^2) - V_i^x V_i^\alpha] + 2D_x + O(\epsilon^5), \\ \frac{dC_i}{dt} &= \frac{1}{2} \left(\frac{\partial^2 w}{\partial x^2} \right)_i [E_i(\xi_i^3 \zeta_i) - V_i^x C_i] + \left(\frac{\partial^2 w}{\partial x \partial \alpha} \right)_i [E_i(\xi_i^2 \zeta_i^2) - C_i^2] \\ &\quad + \frac{1}{2} \left(\frac{\partial^2 w}{\partial \alpha^2} \right)_i [E_i(\xi_i \zeta_i^3) - C_i V_i^\alpha] + O(\epsilon^5), \\ \frac{dV_i^\alpha}{dt} &= \frac{1}{2} \left(\frac{\partial^2 w}{\partial x^2} \right)_i [E_i(\xi_i^2 \zeta_i^2) - V_i^x V_i^\alpha] + \left(\frac{\partial^2 w}{\partial x \partial \alpha} \right)_i [E_i(\xi_i \zeta_i^3) - C_i V_i^\alpha] \\ &\quad + \frac{1}{2} \left(\frac{\partial^2 w}{\partial \alpha^2} \right)_i [E_i(\zeta_i^4) - (V_i^\alpha)^2] + 2D_\alpha + O(\epsilon^5). \end{aligned} \quad (42)$$

547 If we assume that antigenicity and virulence within a morph follow two-dimensional
 548 Gaussian distribution for given means, variances and covariance, we should have $E_i(\xi_i^4) =$
 549 $3(V_i^x)^2$, $E_i(\xi_i^3 \zeta_i) = 3V_i^x C_i$, $E_i(\xi_i^2 \zeta_i^2) = V_i^x V_i^\alpha + 2C_i^2$, $E_i(\xi_i \zeta_i^3) = 3V_i^\alpha C_i$, and $E_i(\zeta_i^4) =$
 550 $3(V_i^\alpha)^2$, and hence

$$\frac{dV_i^x}{dt} = \left(\frac{\partial^2 w}{\partial x^2} \right)_i (V_i^x)^2 + 2 \left(\frac{\partial^2 w}{\partial x \partial \alpha} \right)_i V_i^x C_i + \left(\frac{\partial^2 w}{\partial \alpha^2} \right)_i C_i^2 + 2D_x + O(\epsilon^5), \quad (43)$$

$$551 \frac{dC_i}{dt} = \left(\frac{\partial^2 w}{\partial x^2} \right)_i V_i^x C_i + \left(\frac{\partial^2 w}{\partial x \partial \alpha} \right)_i \{ V_i^x V_i^\alpha - C_i^2 \} + \left(\frac{\partial^2 w}{\partial \alpha^2} \right)_i C_i V_i^\alpha + O(\epsilon^5), \quad (44)$$

$$\frac{dV_i^\alpha}{dt} = \left(\frac{\partial^2 w}{\partial x^2} \right)_i C_i^2 + 2 \left(\frac{\partial^2 w}{\partial x \partial \alpha} \right)_i V_i^\alpha C_i + \left(\frac{\partial^2 w}{\partial \alpha^2} \right)_i (V_i^\alpha)^2 + 2D_\alpha + O(\epsilon^5), \quad (45)$$

552 Eqs. (43)-(44) are rewritten in a matrix form as

$$553 \frac{d\mathbf{G}_i}{dt} = \mathbf{G}_i \mathbf{H}_i \mathbf{G}_i + \begin{pmatrix} 2D_x V_i^x & 0 \\ 0 & 2D_\alpha V_i^\alpha \end{pmatrix} + O(\epsilon^5), \quad (46)$$

554 where

$$555 \mathbf{H}_i = \begin{pmatrix} \left(\frac{\partial^2 w}{\partial x^2} \right)_i & \left(\frac{\partial^2 w}{\partial x \partial \alpha} \right)_i \\ \left(\frac{\partial^2 w}{\partial x \partial \alpha} \right)_i & \left(\frac{\partial^2 w}{\partial \alpha^2} \right)_i \end{pmatrix}, \quad (47)$$

556 is the Hessian of the fitness function of the morph i .

557 In our case (30) of the joint evolution of antigenicity and virulence of a pathogen after its
 558 primary outbreak, the fitness function is given by $w(x, \alpha) = \beta(\alpha)s(x) - \alpha$, and hence
 559 $w_i = \beta(\bar{\alpha}_i)s(\bar{x}_i) - \bar{\alpha}_i$, $\left(\frac{\partial w}{\partial x} \right)_i = \beta(\bar{\alpha}_i)s'(\bar{x}_i)$, $\left(\frac{\partial w}{\partial \alpha} \right)_i = \beta'(\bar{\alpha}_i)s(\bar{x}_i) - 1$, $\left(\frac{\partial^2 w}{\partial x^2} \right)_i =$
 560 $\beta(\bar{\alpha}_i)s''(\bar{x}_i)$, $\left(\frac{\partial^2 w}{\partial x \partial \alpha} \right)_i = \beta'(\bar{\alpha}_i)s'(\bar{x}_i)$, $\left(\frac{\partial^2 w}{\partial \alpha^2} \right)_i = \beta'(\bar{\alpha}_i)s'(\bar{x}_i)$, and $\left(\frac{\partial^2 w}{\partial \alpha^2} \right)_i =$
 561 $\beta''(\bar{\alpha}_i)s(\bar{x}_i)$, where a prime on $\beta(\alpha)$ and $s(x)$ denotes differentiation by α and x ,

562 respectively. Substituting these into the dynamics for morph frequencies (35), for morph
 563 means (38)-(39), and for within-morph variance and covariance (43)-(45), we have

$$\frac{dp_i}{dt} = \left[\beta(\bar{\alpha}_i)s(\bar{x}_i) - \bar{\alpha}_i - \sum_j (\beta(\bar{\alpha}_j)s(\bar{x}_j) - \bar{\alpha}_j)p_j \right] p_i, \quad (48)$$

$$\frac{d\bar{x}_i}{dt} = \beta(\bar{\alpha}_i)s'(\bar{x}_i)V_i^x + \{\beta'(\bar{\alpha}_i)s(\bar{x}_i) - 1\}C_i, \quad (49)$$

$$\frac{d\bar{\alpha}_i}{dt} = \beta(\bar{\alpha}_i)s'(\bar{x}_i)C_i + \{\beta'(\bar{\alpha}_i)s(\bar{x}_i) - 1\}V_i^\alpha, \quad (50)$$

$$\frac{dV_i^x}{dt} = \beta(\bar{\alpha}_i)s''(\bar{x}_i)(V_i^x)^2 + 2\beta'(\bar{\alpha}_i)s'(\bar{x}_i)V_i^x C_i + \beta''(\bar{\alpha}_i)s(\bar{x}_i)C_i^2 + 2D_x, \quad (51)$$

$$\frac{dC_i}{dt} = \beta(\bar{\alpha}_i)s''(\bar{x}_i)V_i^x C_i + \beta'(\bar{\alpha}_i)s'(\bar{x}_i)\{V_i^x V_i^\alpha - C_i^2\} + \beta''(\bar{\alpha}_i)s(\bar{x}_i)C_i V_i^\alpha, \quad (52)$$

$$\frac{dV_i^\alpha}{dt} = \beta(\bar{\alpha}_i)s''(\bar{x}_i)C_i^2 + 2\beta'(\bar{\alpha}_i)s'(\bar{x}_i)V_i^\alpha C_i + \beta''(\bar{\alpha}_i)s(\bar{x}_i)(V_i^\alpha)^2 + 2D_\alpha. \quad (53)$$

565 Equations (48)-(53) describe the oligomorphic dynamics of the joint evolution of
 566 antigenicity and virulence of a pathogen for a given host susceptibility profile $s(x)$ over
 567 pathogen antigenicity.

568 Of particular interest is whether antigenicity or virulence evolve faster when they jointly
 569 evolve than when they evolve alone. After the primary outbreak at a given antigenicity, say
 570 $x = 0$, the susceptibility $s(x)$ of host population increases due to cross-immunity as the
 571 distance $x > 0$ from the antigenicity at the primary outbreak increases. Hence, $s'(\bar{x}_i) >$
 572 0. Combining this with the positive tradeoff between transmission rate and virulence, we
 573 see that $(\partial^2 w / \partial x \partial \alpha)_i = \beta'(\bar{\alpha}_i)s'(\bar{x}_i) > 0$, and then from (52) we see that the within-
 574 morph covariance between antigenicity and virulence becomes positive starting from a zero
 575 initial value:

576
$$\frac{dC_i}{dt} \Big|_{C_i=0} = \left(\frac{\partial^2 w}{\partial x \partial \alpha} \right)_i V_i^x V_i^\alpha > 0. \quad (54)$$

577 If all second moments are sufficiently small initially for an emerging morph, a quick look
 578 at the linearization of (51)-(53) around $(V_i^x, C_i, V_i^\alpha) = (0,0,0)$ indicates that both V_i^x and
 579 V_i^α become positive due to the random generation of variance by mutation, $D_x > 0$ and
 580 $D_\alpha > 0$, while the covariance stays close to zero. Then (54) guarantees that first move of
 581 covariance is from zero to positive, which then guarantees that $C_i > 0$ for all t . Therefore,
 582 the second term in (38) is positive until the mean virulence reaches its optimum
 583 ($\beta'(\alpha)s(x) = 1$). This means that joint evolution with virulence accelerates the evolution
 584 of antigenicity. The same is true for virulence evolution: the first term in (39) (which
 585 denotes the associated change in virulence due to the selection in antigenicity through
 586 genetic covariance between them) is positive, indicating that joint evolution with
 587 antigenicity accelerates the virulence evolution.

588 **Numerical example.** Fig. 5 shows the oligomorphic dynamics prediction of the emergence
 589 of next variant in antigenicity-virulence coevolution. In order to make progress numerically
 590 we assume $\mathbf{s}(\mathbf{x})$ to be constant in the following analysis because we are interested in the
 591 process between the end of the primary outbreak and the emergence of the next antigenicity
 592 virulence morph. The partial differential equations for the density of host $\mathbf{s}(\mathbf{t}, \mathbf{x})$
 593 susceptible to the antigenicity variant \mathbf{x} at time \mathbf{t} , and the density of hosts infected by
 594 pathogen variant with antigenicity \mathbf{x} and virulence α are

595
$$\begin{aligned} \frac{\partial S(t, x)}{\partial t} &= -S(t, x) \int_{\alpha_{\min}}^{\alpha_{\max}} \int_0^{x_{\max}} \beta(\alpha) \sigma(x - y) I(t, y, \alpha) dy d\alpha, \\ \frac{\partial I(t, x, \alpha)}{\partial t} &= [\beta(\alpha) S(t, x) - (\gamma + \alpha)] I(t, x, \alpha) + \left(D_x \frac{\partial^2}{\partial x^2} + D_\alpha \frac{\partial^2}{\partial \alpha^2} \right) I(t, x, \alpha), \end{aligned} \quad (55)$$

596 with the boundary conditions $(\partial S/\partial x)(t, 0) = (\partial S/\partial x)(t, x_{\max}) = 0$, $(\partial I/\partial x)(t, 0, \alpha) =$
 597 $(\partial I/\partial x)(t, x_{\max}, 0) = 0$, $(\partial I/\partial x)(t, x, \alpha_{\min}) = (\partial I/\partial x)(t, x, \alpha_{\max}) = 0$, and the initial
 598 conditions $S(0, x) = 1$, and $I(0, x, \alpha) = \epsilon\delta(x)\delta(\alpha)$ where $\delta(\cdot)$ is delta function and $\epsilon =$
 599 0.01. The trait space is restricted in a rectangular region: $0 < x < x_{\max} = 300$ and $\alpha_{\min} =$
 600 $0.025 < \alpha < 10 = \alpha_{\max}$. Oligomorphic dynamics prediction for the joint evolution of
 601 antigenicity and virulence is applied for the next outbreak after the outbreak with the mean
 602 antigenicity around $x = 108$ at time $t = 102$. The susceptibility of host to antigenicity
 603 variant x at $t_0 = 104.8$ after the previous outbreak peaked around time $t = 102$ came to
 604 an end is

605
$$s(x) = S(t_0, x).$$

606 This susceptibility profile remains unchanged until the next outbreak starts, and hence the
 607 fitness of a pathogen variant with antigenicity x and virulence α is given by

608
$$w(x, \alpha) = \beta(\alpha)s(x) - (\gamma + \alpha)$$

609 We bundle the pathogen variants into two morphs at time t_0 at the threshold antigenicity
 610 x_c above which the net growth rate of pathogen variant under the given susceptibility
 611 profile $s(x)$ and the mean antigenicity becomes positive:

612
$$w(x_c, \bar{\alpha}(t_0)) = \beta(\bar{\alpha}(t_0))s(x_c) - (\gamma + \bar{\alpha}(t_0)) = 0.$$

613 The initial frequency and the moments of two morphs, the variant 0 with $x < x_c$ and the
 614 variant 1 with $x > x_c$ are then calculated respectively from the joint distribution $I(t_0, x, \alpha)$
 615 in the restricted region $\{(x, \alpha); 0 < x < x_c, \alpha_{\min} < \alpha < \alpha_{\max}\}$ and that in the restricted
 616 region $\{(x, \alpha); x_c < x < x_{\max}, \alpha_{\min} < \alpha < \alpha_{\max}\}$. The frequency p_1 of the morph 1 (the
 617 frequency of the morph 0 is given by $p_0 = 1 - p_1$), the mean antigenicity \bar{x}_i and mean

618 virulence $\bar{\alpha}_i$ of the morph i , and variances and covariance, V_i^x, C_i, V_i^α of the morph i ($i =$
 619 0,1) follow (48)-(53), where the dynamics for the morph frequency (48) is simplified in
 620 this two morph situation as

621
$$\frac{dp_1}{dt} = [\beta(\bar{\alpha}_1)s(\bar{x}_1) - \beta(\bar{\alpha}_0)s(\bar{x}_0) - (\bar{\alpha}_1 - \bar{\alpha}_0)]p_1(1 - p_1),$$

622 with $p_0(t) = 1 - p_1(t)$. This is iterated from $t = t_0 = 104.8$ to $t_e = 107$. The frequency
 623 p_1 of the new morph, the population mean antigenicity $\bar{x} = p_0\bar{x}_0 + p_1\bar{x}_1$, virulence $\bar{\alpha} =$
 624 $p_0\bar{\alpha}_0 + p_1\bar{\alpha}_1$, variance in antigenicity $V_x = p_0V_0^x + p_1V_1^x$, covariance between antigenicity
 625 and virulence $C = p_0C_0 + p_1C_1$, and variance in virulence $V_\alpha = p_0V_0^\alpha + p_1V_1^\alpha$ are
 626 overlayed by red thick curves on the trajectories of moments observed in full dynamics
 627 (55).

628 In the panel (a) of Fig. 5, the dashed vertical line represents the threshold antigenicity x_c
 629 above which $R_0 = \beta s(x)/(y + \bar{\alpha}) > 1$ at $t = t_s = 104.8$ where oligomorphic dynamics
 630 (OMD) prediction is attempted. Two morphs are then defined according to whether or not
 631 the antigenicity exceeds a threshold $x = x_c$: the resident morph (morph 1) is represented
 632 as the dense cloud to the left of $x = x_c$ and the second morph (morph 2) consisting of all
 633 the genotypes to the right of $x = x_c$ with their R_0 greater than one. The within-morph
 634 means and variances are then calculated in each region. The relative total densities of
 635 infected hosts in the left and right regions defines the initial frequency of two morphs in
 636 OMD. A 2D Gaussian distribution is assumed for within-morph trait distributions to have
 637 the closed moment equations as explained before. Using these as the initial means,
 638 variances, covariances of the two morphs at $t = t_s$, the oligomorphic dynamics for 11
 639 variables (relative frequency of morph 1, mean antigenicity, mean virulence, variances in

640 antigenicity and virulence and their covariance in morph 0 and 1) is integrated up to $t =$
641 t_e . The results are shown in red curves in the panels of second and third rows, which are
642 compared with the simulation results (blue curves).

643 The panels (c)-(e) in Fig. 5 show the change in total infected density (c), mean antigenicity
644 (d), and mean virulence (e). Red curves show the prediction by oligomorphic dynamics
645 from the initial moments of each morph at $t = t_s$ to the susceptibility distribution $s(x) =$
646 $S(t_s, x)$. Red curves in the (e) and (e) show the OMD prediction, which is compared with
647 the simulation results (blue curves). The OMD predicted mean antigenicity, for example,
648 is defined as

$$649 \quad \bar{x}(t) = (1 - p_1(t))\bar{x}_0(t) + p_1(t)\bar{x}_1(t),$$

650 where $p_1(t)$ is the frequency of morph 1, \bar{x}_0 and \bar{x}_1 are the mean antigenicity of morph 0
651 and 1.

652 The red curves in the third row (f)-(h) of Fig. 5 show the OMD-predicted changes in the
653 variance in antigenicity, variance in virulence, and covariance between antigenicity and
654 virulence, which are compared with the simulation results (blue curves). The OMD
655 predicted covariance, for example, is defined as

$$656 \quad C(t) = (1 - p_1(t))C_0(t) + p_1(t)C_1(t) \\ 657 \quad + p_1(t)(1 - p_1(t))(\bar{x}_0(t) - \bar{x}_1(t))(\bar{\alpha}_0(t) - \bar{\alpha}_1(t))$$

658 where $C_0(t)$ and $C_1(t)$ are antigenicity-virulence covariance in morph 0 and 1, and $\bar{\alpha}_0(t)$
659 and $\bar{\alpha}_1(t)$ are mean virulence of morph 0 and 1.

660 **Selection for maximum growth rate**

661 We next show that a pathogen that has the strategy maximizing the growth rate in a fully
 662 susceptible population is evolutionarily stable in the presence of antigenic escape.

663

664 At stationarity, the travelling wave profiles of $\hat{I}(z)$ and $\hat{S}(z)$ along the moving coordinate,
 665 $z = x - vt$, that drifts constantly to right with the speed v are defined as

$$666 \quad \begin{aligned} 0 &= D \frac{d^2 \hat{I}(z)}{dz^2} + v \frac{d\hat{I}(z)}{dz} + \beta \hat{S}(z) \hat{I}(z) - (\gamma + \alpha) \hat{I}(z), \\ 0 &= v \frac{d\hat{S}(z)}{dz} - \beta \hat{S}(z) \int_{-\infty}^{\infty} \sigma(z - \xi) \hat{I}(\xi) d\xi. \end{aligned} \quad (56)$$

667 with $\hat{I}(-\infty) = \hat{I}(\infty) = 0, \hat{S}(\infty) = 1$.

668 Let $j(t, x)$ be the density of a mutant pathogen variant with virulence α' and
 669 transmission rate β' that is introduced in the host population where the resident variant is
 670 already established (50). For the initial transient phase in which the density of mutant is
 671 sufficiently small, we have an equation for the change in $J(t, z) = j(t, x)$:

$$672 \quad \frac{\partial}{\partial t} J(t, z) = \left\{ D \frac{\partial^2}{\partial z^2} + v \frac{\partial}{\partial z} + \beta' \hat{S}(z) - (\gamma + \alpha') \right\} J(t, z), \quad (57)$$

673 with the initial condition $J(0, z) = \epsilon \delta(z)$, where ϵ is a small constant and $\delta(\cdot)$ is Dirac
 674 function.

675 Consider a system

$$676 \quad \frac{\partial w}{\partial t} = \left\{ D \frac{\partial^2}{\partial z^2} + v \frac{\partial}{\partial z} + \beta' - (\gamma + \alpha') \right\} w, \quad (58)$$

677 with $w(0, z) = J(0, z) = \epsilon\delta(z)$. Noting that $\hat{S}(z) < 1$, we have $J(t, z) \leq w(t, z)$ for any
678 $t > 0$ and $z \in \mathbb{R}$ from the comparison theorem. The solution to (52) is

679
$$w(t, z) = \frac{\epsilon}{\sqrt{4\pi Dt}} \exp \left[r't - \frac{(z + vt)^2}{4Dt} \right] \quad (59)$$

680 where $r' = \beta' - (\gamma + \alpha')$. This follows by noting that $w(t, x)e^{-r't}$ follows a simple
681 diffusion equation $\partial w / \partial t = D \partial^2 w / \partial x^2$. By rearranging the exponents of (53),

682
$$\begin{aligned} w(t, z) &= \exp[at - kz] \frac{\epsilon}{\sqrt{4\pi Dt}} e^{-z^2/4Dt} \\ &< \frac{\epsilon}{\sqrt{4\pi Dt}} \exp[at - kz] \end{aligned} \quad (60)$$

683 where

684
$$a = \frac{v'^2 - v^2}{4D}, \quad (61)$$

$$k = \frac{v}{2D}. \quad (62)$$

685 Here $v' = 2\sqrt{r'D}$ is the asymptotic wave speed if the mutant variant monopolizes the host
686 population. Therefore, if $v' < v$, then $a < 0$, and hence $w(t, z)$ for a fixed z converges to
687 zero as t goes to infinity; which in turn implies that $J(t, z)$ converges to zero because
688 $J(t, z) \leq w(t, z)$ for all t and z . Therefore, we conclude that any mutant that has a slower
689 wave speed than the resident can never invade the population, implying that a variant that
690 has the maximum wave speed $v = 2\sqrt{rD}$ is locally evolutionarily stable.

691 **Figure Legends**692 **Fig. 1: Continuous antigenic drift (a) and periodical antigenic shifts (b) of the model.**

693 The grey colored surface denotes the infected density $I(t, x)$ varying in time t and
694 antigenicity x , and the yellow colored surface denotes the density of hosts $S(t, x)$ that are
695 susceptible to antigenicity variant x of pathogen at time t . The cross immunity $\sigma(x) =$
696 $\exp(-x^2/2\omega^2)$ has a width of $\omega = 0.2$ in (a) and $\omega = 0.6$ in (b). Other parameters are
697 $\beta = 2$, $\alpha = 0.1$, $\gamma = 0.5$, and $D = 0.001$.

698

699 **Fig. 2: Oligomorphic dynamics prediction of the emergence of antigenicity shift.** (a)

700 Oligomorphic prediction for the change in the mean antigenicity after the primary outbreak
701 at $x = 0$ and that after the second outbreak starting around $x = 5.5$ (red curves), compared
702 with that obtained by numerical simulations (blue dots). (b) Heat map representation of
703 the time change of the antigenic drift model (1). Parameters: $\beta = 2$, $\gamma + \alpha = 0.6$, $\sigma(x) =$
704 $\exp(-x^2/2\omega^2)$ with $\omega = 2$, $D = 0.001$. Initially, all hosts are equally susceptible with
705 $S(0, x) = 1$. The primary pathogen variant is introduced at $x = 0$ with infected density
706 0.001.

707

708 **Fig. 3: Marginal distribution of antigenicity (left) and virulence (right) in the absence**

709 **(a) or presence (b) of cross-immunity.** (a) No cross immunity is assumed so that each
710 antigenicity genotype causes specific herd immunity: $\sigma(x - y) = \delta(x - y)$, where $\delta(\cdot)$ is
711 Dirac's delta function. There are 1600 antigenic variations having equally divided
712 antigenicity between 0 and 80. (b) We assume a Gaussian cross-immunity kernel,

713 $\sigma(x - y) = \exp(-(x - y)^2/2\omega^2)$, with width $\omega = 5$. There are 300 antigenic variations
714 having equally divided antigenicity between 0 and 300. In both panels, there are 100 viral
715 virulence traits each having virulence equally divided between 0 and 20, and Diffusion
716 constants due to mutations are $D_x = 0.01$ (for antigenicity) and $D_\alpha = 0.01$ (for virulence).
717 The blue dashed lines show the ES virulence predicted from maximizing R_0 , as expected
718 in the absence of antigenic escape, while the red dashed lines show the predicted ES
719 virulence that maximizes $r(\alpha) = \beta(\alpha) - (\gamma + \alpha)$ as predicted from our analysis. Other
720 parameters: $\gamma = 0.5$, and $\beta(\alpha) = 5\sqrt{\alpha}$.

721

722 **Fig. 4: Graphical representation of the predicted ES virulence with or without**
723 **antigenic escape under the assumption of a transmission-virulence trade-off.** In the
724 absence of antigenic escape, the ES virulence, α_R^* , can be predicted from the maximization
725 of the pathogen's epidemiological basic reproduction ratio, $R_0 = \beta/(\gamma + \alpha)$, or
726 equivalently by the minimization of the total density of susceptible hosts since, at
727 equilibrium, $s^* = 1/R_0$. The slope of the transmission-virulence trade-off at the ESS is
728 then $1/s^* = R_0$. With antigenic escape, the ES virulence, α_r^* , can be predicted from the
729 maximization of the pathogen's growth rate in a fully susceptible population, $r_0 = \beta(\alpha) -$
730 $(\gamma + \alpha)$. The slope of the transmission-virulence trade-off at the ESS is then 1. This holds
731 true in the limit of a large antigenicity trait, but intermediate values of ES virulence,
732 corresponding to intermediate slopes, can also be selected for if other processes constrain
733 the evolution of the antigenicity trait, as explained in the main text.

734

735 **Fig. 5: Oligomorphic dynamics predictions compared to the simulation results of the**
736 **emergence of the next variant during antigenicity-virulence coevolution.** Panels (a)
737 and (b) are simulation results showing snapshots of contour plots for the joint trait
738 distribution observed near (a) the starting and (b) finishing time of emergence. The overlaid
739 curves are the trajectory of mean traits $(\bar{x}, \bar{\alpha})$ up $t = 104.8$ and $t = 109$ observed in the
740 simulation. Panels (c)-(h) show the dynamics of the total density of infected hosts, mean
741 antigenicity, mean virulence, the variance in antigenicity, the variance in virulence, and the
742 covariance between antigenicity and virulence, respectively predicted by the oligomorphic
743 analysis compared to the simulation results. Parameters: $\gamma = 0.5$, $\beta(\alpha) = 5\sqrt{\alpha}$, $D_x =$
744 0.005 , $D_\alpha = 0.0002$. As in Fig. 2 we assume a Gaussian cross-immunity kernel,
745 $\sigma(x - y) = \exp(-(x - y)^2/2\omega^2)$, with width $\omega = 5$. The oligomorphic dynamics
746 describing the changes in the frequency $p_0(t) = 1 - p_1(t)$ of the currently prevailing
747 morph at time $t_s = 104.8$ and the frequency $p_1(t)$ of upcoming morph, the mean
748 antigenicity $\bar{x}_i(t)$ and mean virulence $\bar{\alpha}_i(t)$ of the two morphs ($i = 0, 1$), and the within-
749 morph variances V_i^x and V_i^α in antigenicity and virulence, as well as the within-morph
750 covariance $C_i(t)$ between antigenicity and virulence in each morph ($i = 0, 1$) are defined as
751 (48)-(53) in the methods.

752

753 **Acknowledgements:** This study was supported by grants from the NIH R01 GM122061-
754 03 and the NSF DEB- 2011109 to MB, ANR JCJC grant ANR-16-CE35-0012-01 to SL
755 and the ESB Cooperation Program, The Graduate University for Advanced Studies,
756 SOKENDAI to AS.

757

758 **Author contributions:** MB, AS and SL contributed to the conception of the project, the
759 writing of the original draft, editing and revision of the paper. AS and SL carried out the
760 analysis of the model.

761

762 **Code Availability:**

763 All code is available at <https://github.com/MikeBoots/AntigenicEscape>

764

765 **Competing interests:**

766 The authors declare no competing interests

767

768 **References**

- 769 1. Fauci, A. S. & Morens, D. M. Zika virus in the Americas—yet another arbovirus threat.
770 *New England Journal of Medicine* **374**, 601–604 (2016).
- 771 2. Organization, W. H. Coronavirus disease 2019 (COVID-19): situation report, 72.
772 (2020).
- 773 3. Remuzzi, A. & Remuzzi, G. COVID-19 and Italy: what next? *The Lancet* (2020).
- 774 4. Keeling, M. J. *et al.* Dynamics of the 2001 UK foot and mouth epidemic: Stochastic
775 dispersal in a heterogeneous landscape. *Science* **294**, 813–817 (2001).
- 776 5. Hudson, P., Dobson, A. & Newborn, D. Prevention of population cycles by parasite
777 removal. *Science* **282**, 2256 (1998).
- 778 6. Dobson, A. P. & May, R. M. DISEASE AND CONSERVATION. in *Soule, M. E.* 345–
779 366 (1986).

780 7. Anderson, R. M. & May, R. M. *Infectious Diseases of Humans*. (Oxford University
781 Press, 1991).

782 8. May, R. M. & Anderson, R. M. Parasite Host Coevolution. *Parasitology* **100**, S89–S101
783 (1990).

784 9. Bremermann, H. J. & Pickering, J. A Game-Theoretical Model of Parasite Virulence. *J.
785 Theor. Biol.* **100**, 411–426 (1983).

786 10. Alizon, S., Hurford, A., Mideo, N. & Van Baalen, M. Virulence evolution and the
787 trade-off hypothesis: history, current state of affairs and the future. *Journal of
788 Evolutionary Biology* **22**, 245–259 (2009).

789 11. Bremermann, H. J. & Thieme, H. R. A Competitive-Exclusion Principle for Pathogen
790 Virulence. *J. Math. Biol.* **27**, 179–190 (1989).

791 12. Alizon, S., de Roode, J. C. & Michalakis, Y. Multiple infections and the evolution of
792 virulence. *Ecology Letters* **16**, 556–567 (2013).

793 13. Lion, S. & Boots, M. Are parasites “prudent” in space? *Ecology letters* **13**, 1245–1255
794 (2010).

795 14. van Baalen, M. Coevolution of recovery ability and virulence. *Proceedings of the
796 Royal Society of London Series B-Biological Sciences* **265**, 317–325 (1998).

797 15. Lion, S. & Metz, J. A. Beyond R₀ maximisation: on pathogen evolution and
798 environmental dimensions. *Trends in ecology & evolution* **33**, 458–473 (2018).

799 16. Day, T. & Gandon, S. Applying population-genetic models in theoretical evolutionary
800 epidemiology. *Ecology Letters* **10**, 876–888 (2007).

801 17. Day, T. & Proulx, S. R. A general theory for the evolutionary dynamics of virulence.
802 *Am. Nat.* **163**, E40–E63 (2004).

803 18. Frank, S. A. Ecological and Genetic Models of Host Pathogen Coevolution. *Heredity*
804 **67**, 73–83 (1991).

805 19. Lenski, R. E. & May, R. M. The Evolution of Virulence in Parasites and Pathogens -
806 Reconciliation between 2 Competing Hypotheses. *J. Theor. Biol.* **169**, 253–265 (1994).

807 20. Archetti, I. & Horsfall Jr, F. L. Persistent antigenic variation of influenza A viruses
808 after incomplete neutralization in ovo with heterologous immune serum. *The Journal*
809 *of experimental medicine* **92**, 441–462 (1950).

810 21. Smith, D. J. *et al.* Mapping the antigenic and genetic evolution of influenza virus.
811 *science* **305**, 371–376 (2004).

812 22. Hensley, S. E. *et al.* Hemagglutinin receptor binding avidity drives influenza A virus
813 antigenic drift. *Science* **326**, 734–736 (2009).

814 23. Gupta, S. *et al.* The maintenance of strain structure in populations of recombining
815 infectious agents. *Nat. Med.* **2**, 437–442 (1996).

816 24. Haraguchi, Y. & Sasaki, A. Evolutionary pattern of intra-host pathogen antigenic drift:
817 Effect of cross-reactivity in immune response. *Philos. Trans. R. Soc. Lond. Ser. B-Biol.*
818 *Sci.* **352**, 11–20 (1997).

819 25. Sasaki, A. & Haraguchi, Y. Antigenic drift of viruses within a host: A finite site model
820 with demographic stochasticity. *J. Mol. Evol.* **51**, 245–255 (2000).

821 26. Gog, J. R. & Grenfell, B. T. Dynamics and selection of many-strain pathogens. *Proc.*
822 *Natl. Acad. Sci. U. S. A.* **99**, 17209–17214 (2002).

823 27. Anderson, R. M. & May, R. M. Coevolution of Hosts and Parasites. *Parasitology* **85**,
824 411–426 (1982).

825 28. Sasaki, A. & Dieckmann, U. Oligomorphic dynamics for analyzing the quantitative
826 genetics of adaptive speciation. *Journal of Mathematical Biology* **63**, 601–635 (2011).

827 29. Kimura, M. A stochastic model concerning the maintenance of genetic variability in
828 quantitative characters.

829 30. LANDE, R. MAINTENANCE OF GENETIC-VARIABILITY BY MUTATION IN A
830 POLYGENIC CHARACTER WITH LINKED LOCI. *GENETICAL RESEARCH* **26**,
831 221–235 (1975).

832 31. Sasaki, A. Evolution of antigen drift/switching - continuously evading pathogens.
833 *Journal of Theoretical Biology* **168**, 291–308 (1994).

834 32. Haraguchi, Y. & Sasaki, A. Evolutionary pattern of intra–host pathogen antigenic drift:
835 effect of cross–reactivity in immune response. *Philosophical Transactions of the Royal
836 Society of London. Series B: Biological Sciences* **352**, 11–20 (1997).

837 33. Bull, J. J. & Ebert, D. Invasion thresholds and the evolution of nonequilibrium
838 virulence. *Evolutionary Applications* **1**, 172–182 (2008).

839 34. Matsuzaki, Y. *et al.* Neutralizing epitopes and residues mediating the potential
840 antigenic drift of the hemagglutinin-esterase protein of influenza C virus. *Viruses* **10**,
841 417 (2018).

842 35. Zambon, M. C. Epidemiology and pathogenesis of influenza. *Journal of Antimicrobial
843 Chemotherapy* **44**, 3–9 (1999).

844 36. Yamashita, M., Krystal, M., Fitch, W. M. & Palese, P. Influenza B virus evolution: co-
845 circulating lineages and comparison of evolutionary pattern with those of influenza A
846 and C viruses. *Virology* **163**, 112–122 (1988).

847 37. Medina, R. A. & García-Sastre, A. Influenza A viruses: new research developments.

848 *Nature Reviews Microbiology* **9**, 590–603 (2011).

849 38. Fedson, D. S. Pandemic influenza and the global vaccine supply. *Clinical infectious*
850 *diseases* **36**, 1552–1561 (2003).

851 39. Subramanian, R., Graham, A. L., Grenfell, B. T. & Arinaminpathy, N. Universal or
852 specific? A modeling-based comparison of broad-spectrum influenza vaccines against
853 conventional, strain-matched vaccines. *PLoS computational biology* **12**, e1005204
854 (2016).

855 40. Christiansen, F. B. ON CONDITIONS FOR EVOLUTIONARY STABILITY FOR A
856 CONTINUOUSLY VARYING CHARACTER. *American Naturalist* **138**, 37–50
857 (1991).

858 41. Geritz, S. A. H., van der Meijden, E. & Metz, J. A. J. Evolutionary dynamics of seed
859 size and seedling competitive ability. *Theor. Popul. Biol.* **55**, 324–343 (1999).

860 42. LANDE, R. QUANTITATIVE GENETIC-ANALYSIS OF MULTIVARIATE
861 EVOLUTION, APPLIED TO BRAIN - BODY SIZE ALLOMETRY. *EVOLUTION*
862 **33**, 402–416 (1979).

863 43. LANDE, R. MODELS OF SPECIATION BY SEXUAL SELECTION ON
864 POLYGENIC TRAITS. *PROCEEDINGS OF THE NATIONAL ACADEMY OF*
865 *SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES* **78**,
866 3721–3725 (1981).

867 44. Boots, M., White, A., Best, A. & Bowers, R. HOW SPECIFICITY AND
868 EPIDEMIOLOGY DRIVE THE COEVOLUTION OF STATIC TRAIT DIVERSITY
869 IN HOSTS AND PARASITES. *Evolution* **68**, 1594–1606 (2014).

870 45. Koelle, K., Cobey, S., Grenfell, B. & Pascual, M. Epochal Evolution Shapes the
871 Phylodynamics of Interpandemic Influenza A (H3N2) in Humans. *Science* **314**, 1898
872 (2006).

873 46. Bedford, T. *et al.* Global circulation patterns of seasonal influenza viruses vary with
874 antigenic drift. *Nature* **523**, 217 (2015).

875 47. Bedford, T., Rambaut, A. & Pascual, M. Canalization of the evolutionary trajectory of
876 the human influenza virus. *BMC biology* **10**, 1–12 (2012).

877 48. Zinder, D., Bedford, T., Gupta, S. & Pascual, M. The roles of competition and mutation
878 in shaping antigenic and genetic diversity in influenza. *PLoS Pathog* **9**, e1003104
879 (2013).

880 49. Eguia, R. *et al.* A human coronavirus evolves antigenically to escape antibody
881 immunity. *bioRxiv* 2020.12.17.423313 (2020) doi:10.1101/2020.12.17.423313.

882 50. Gandon, S., Mackinnon, M. J., Nee, S. & Read, A. F. Imperfect vaccines and the
883 evolution of pathogen virulence. *Nature* **414**, 751–756 (2001).

884 51. Read, A.F. *et al.* Imperfect vaccination can enhance the transmission of highly virulent
885 pathogens. *PloS Biol* **13**, e1002198.

886 52. Day, T., Gandon, S., Lion, S. & Otto, S. P. On the evolutionary epidemiology of SARS-
887 CoV-2. *Current Biology* **30**, R849–R857 (2020).

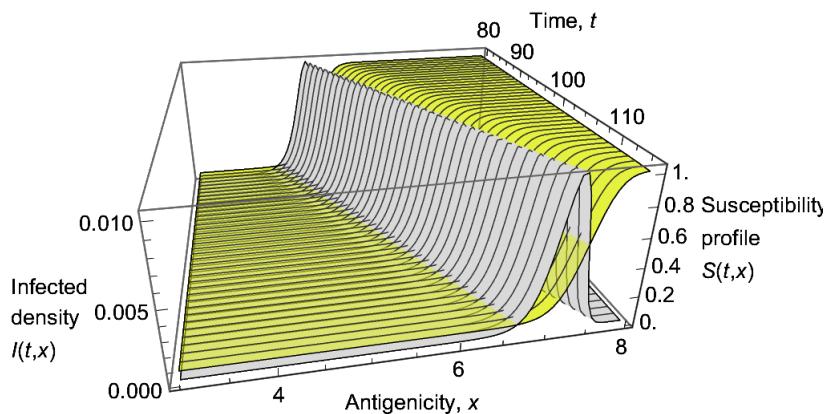
888 53. Visher, E. *et al.* *The Three Ts of Pathogen Evolution During Zoonotic Emergence.*
889 <https://osf.io/tueyb> (2021) doi:10.32942/osf.io/tueyb.

890 54. Chesson, P. Mechanisms of maintenance of species diversity. *Annual review of*
891 *Ecology and Systematics* **31**, 343–366 (2000).

892

Fig. 1: Sasaki, Lion, Boots

(a)



(b)

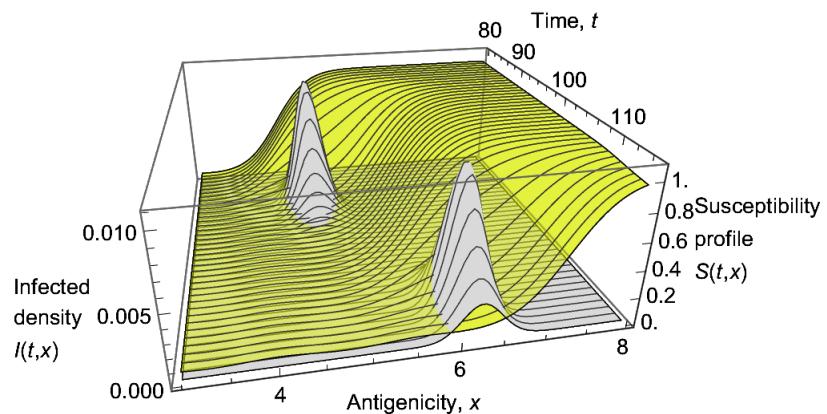


Fig. 2: Sasaki, Lion, Boots

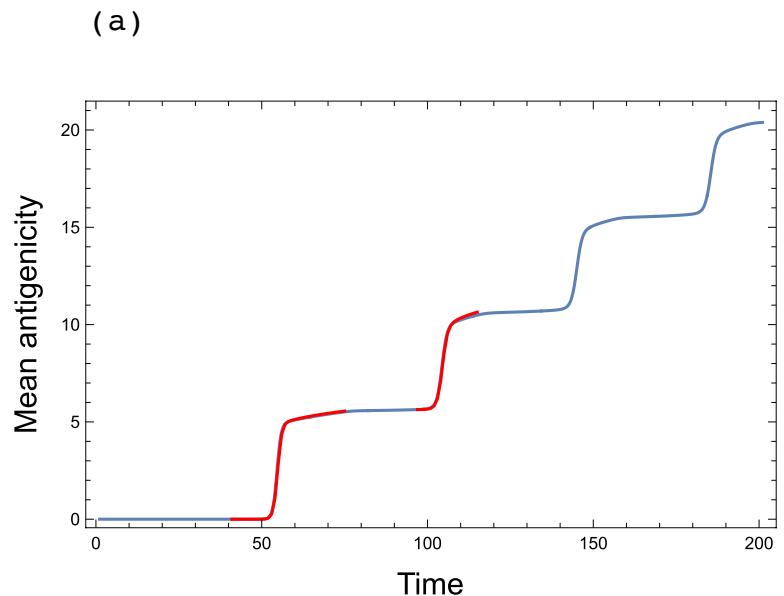
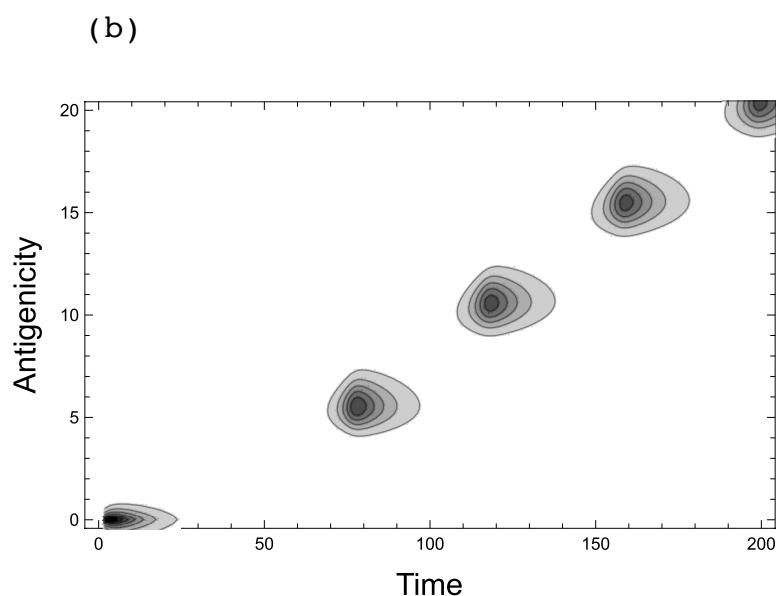
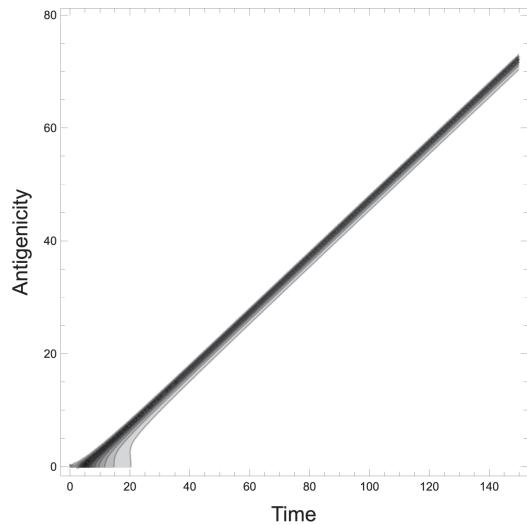
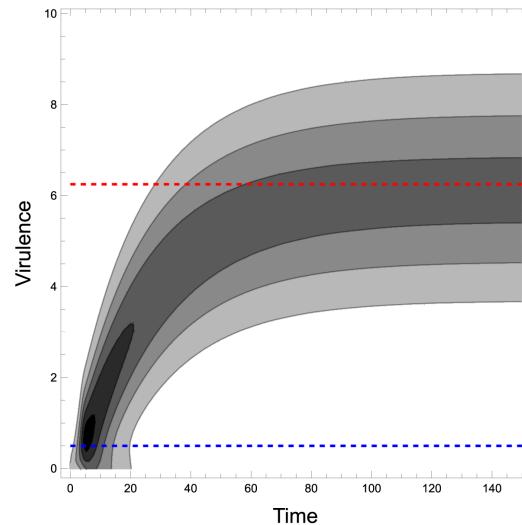


Fig3: Sasaki, Lion, Boots

(a) Without cross-immunity



(b) With cross-immunity

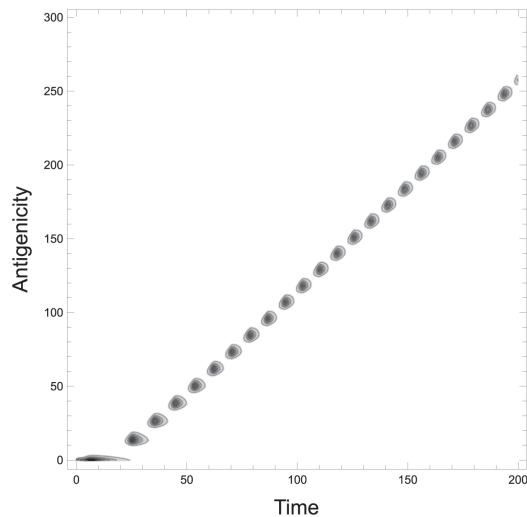
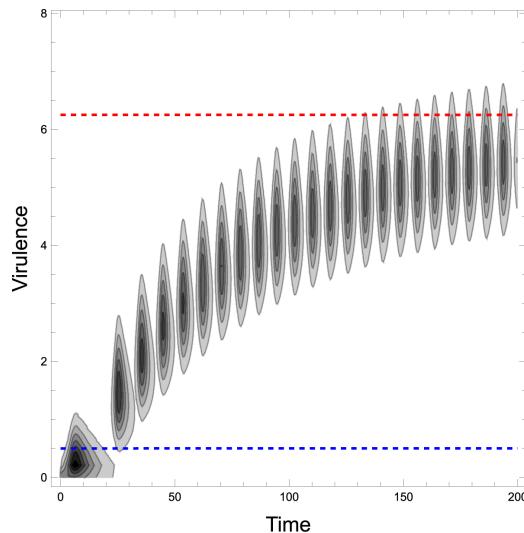


Fig. 4. Sasaki, Lion, Boots

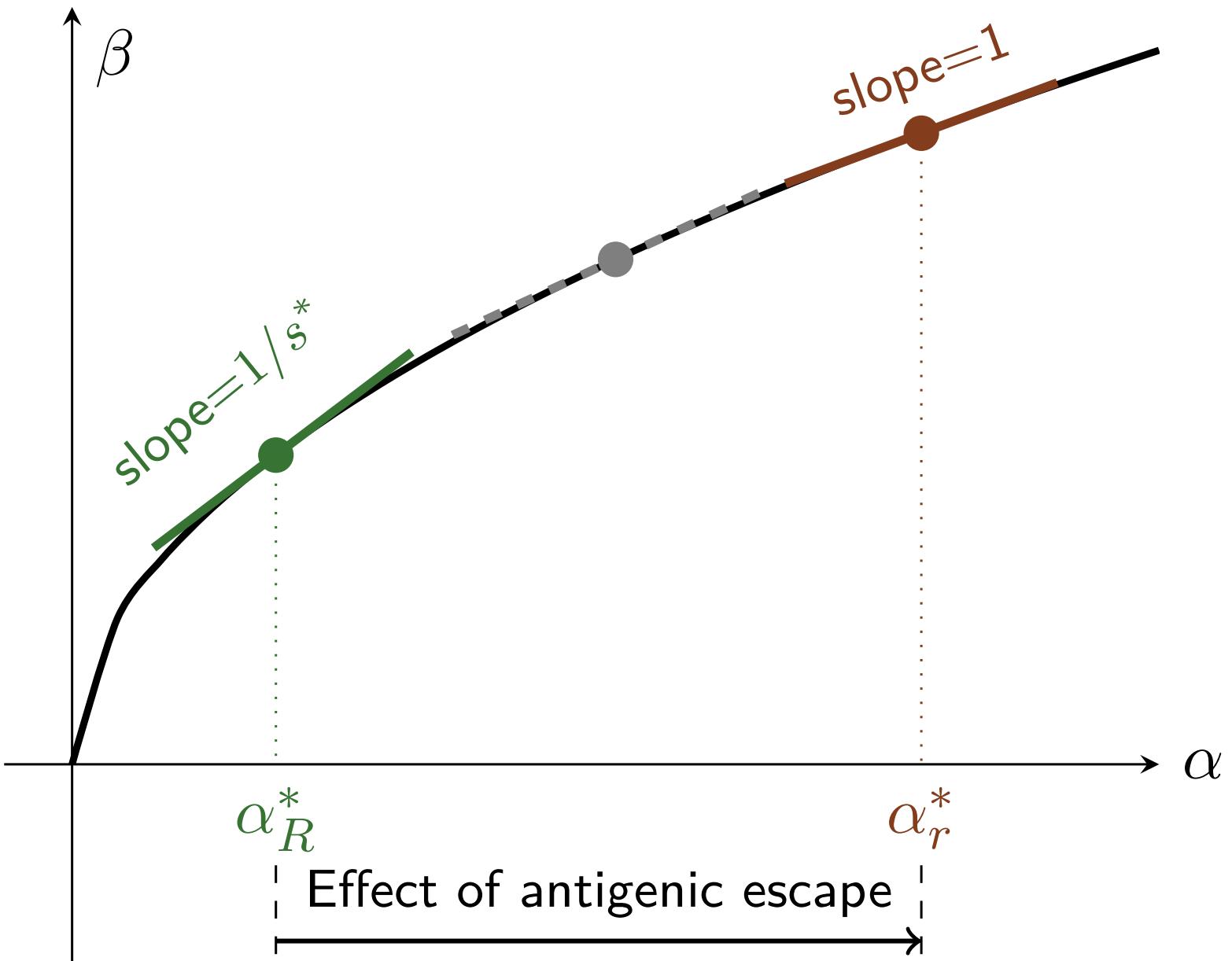
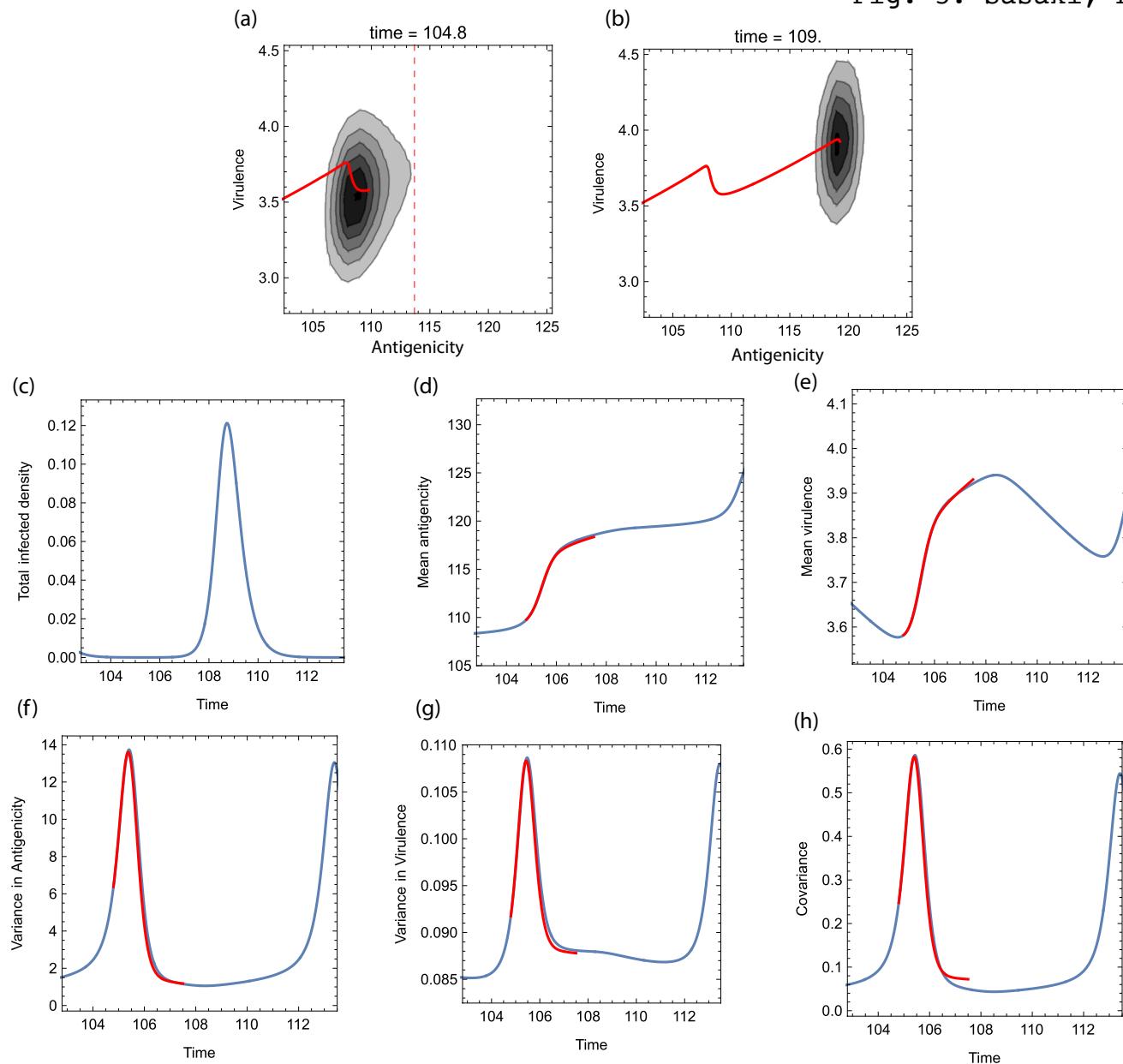
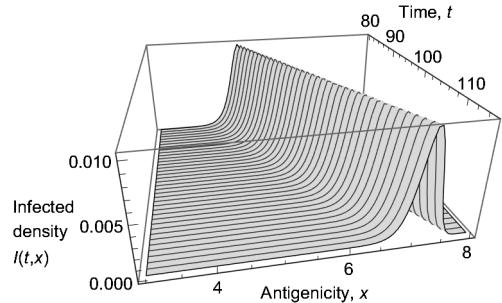


Fig. 5: Sasaki, Lion, Boots

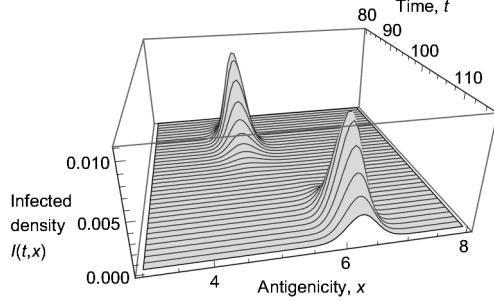
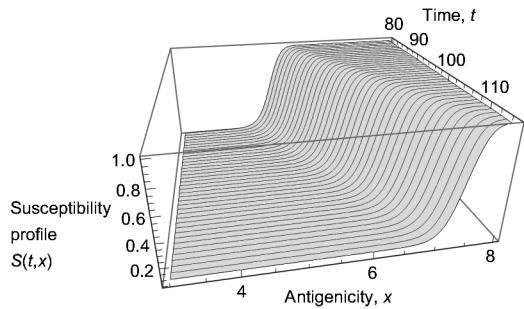
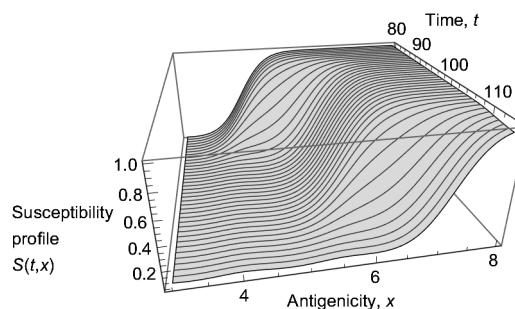


Ext Fig. 1: Sasaki, Lion, Boots

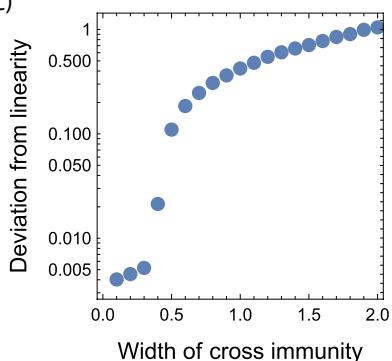
(a) Low Cross Immunity



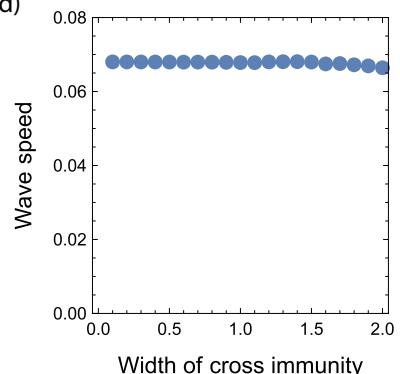
(b) High Cross Immunity



(c)

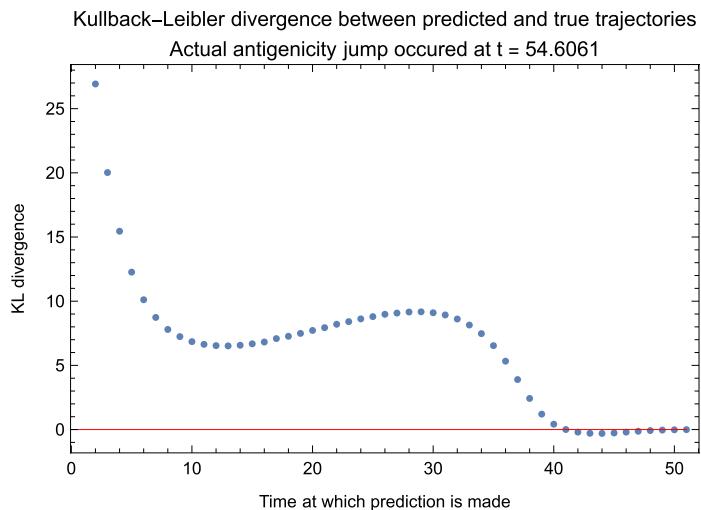


(d)

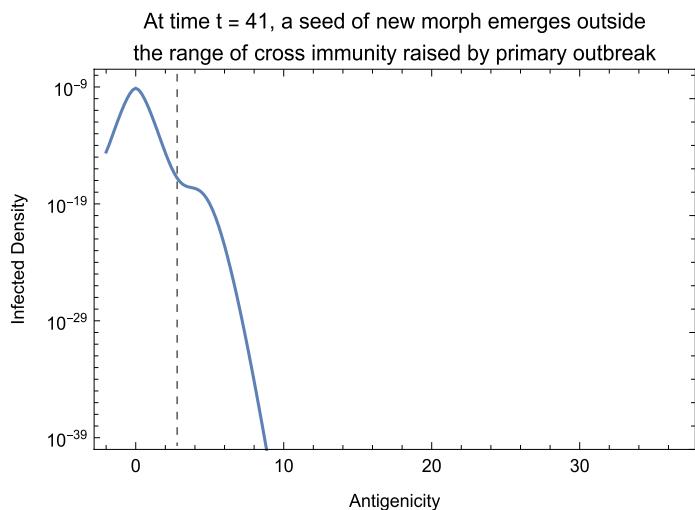


Ext Fig. 2: Sasaki, Lion, Boots

(a)



(b)



Supplementary Information: Sasaki, Lion and Boots – “Antigenic escape selects for the evolution of higher virulence”

3 Multidimensional antigenic space

4 Here we show that our key results obtained with using 1-dimensional antigenic space
 5 remain the same when we extend the antigenicity space into two dimensions. We first
 6 describe our antigenic drift model in 2-dimensional space. Let $S(t, x)$ be the density of
 7 hosts that are susceptible to pathogens of antigenicity $x = (x_1, x_2)$ at time t . Let also
 8 $I(t, x, \alpha)$ be the density of hosts that are currently infected and infectious with the pathogen
 9 of antigenicity x and virulence α at time t . These distributions change with time as

$$\begin{aligned} 10 \quad \frac{\partial S(t, x)}{\partial t} &= -S(t, x) \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_0^{\infty} \beta(\alpha) \sigma(x-y) I(t, y, \alpha) d\alpha dy_1 dy_2, \\ \frac{\partial I(t, x, \alpha)}{\partial t} &= [\beta(\alpha) S(t, x) - (\gamma + \alpha)] I(t, x, \alpha) + D \nabla_x^2 I + D_\alpha \frac{\partial^2 I}{\partial \alpha^2}, \end{aligned}$$

11 where γ is recovery rate, α is virulence, $\beta(\alpha)$ is transmission rate as a function of
12 virulence,

$$\sigma(|x - y|) = \exp\left[-\frac{|x - y|^2}{2\omega^2}\right]$$

14 denotes the degree of cross-immunity between viruses of antigenicity x and y , where

15 $|x - y| = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$ is antigenic distance between them, $\nabla_x^2 = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2}$,

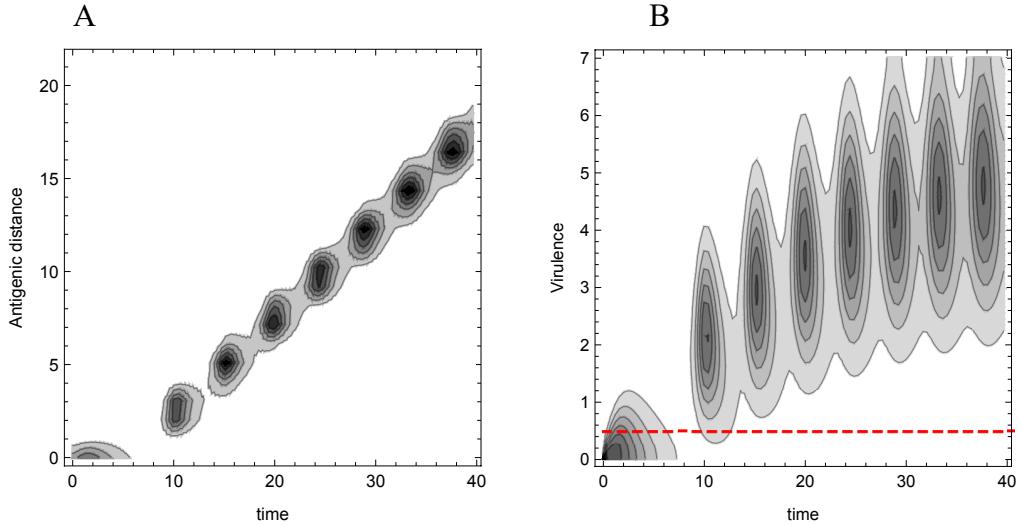
16 $D = \frac{1}{2}\mu m^2$ is the half of mutation variance for the changes in antigenicity (the mutation is

17 assumed to be isotropic in either direction in 2-dimensional antigenic space), $D_\alpha = \mu_\alpha m_\alpha^2$

18 is the half of mutation variance for the change in virulence. The initial host population is

19 assumed to be susceptible to any antigenicity variant of pathogen: $S(0, x) = 1$, for all x .

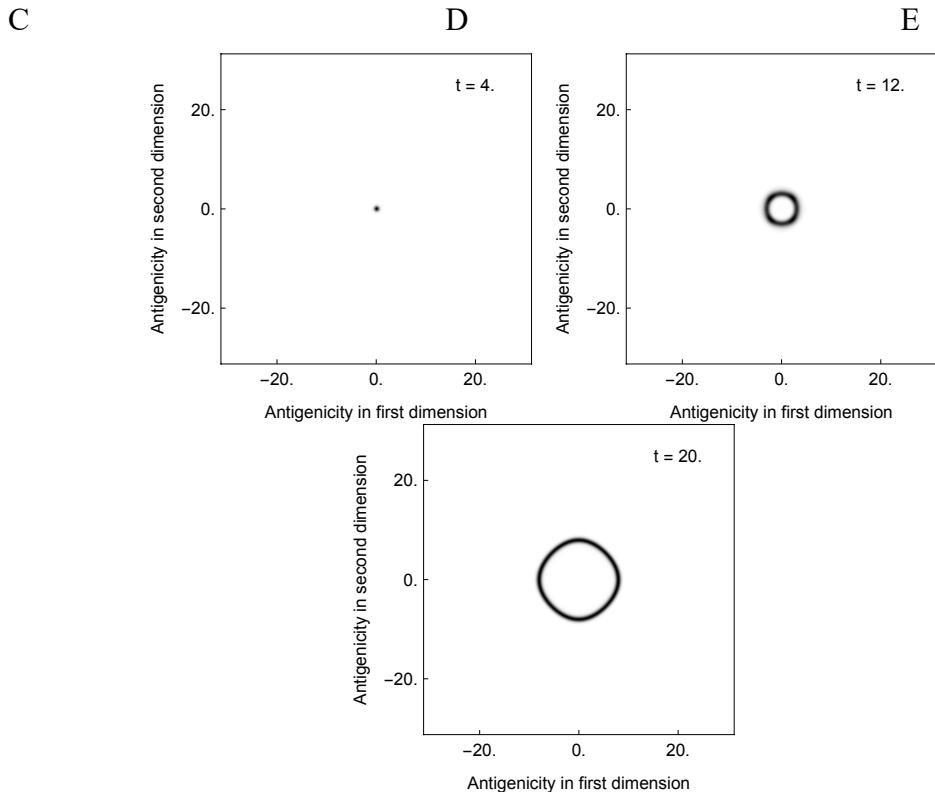
20



21

22

23



24

25

26

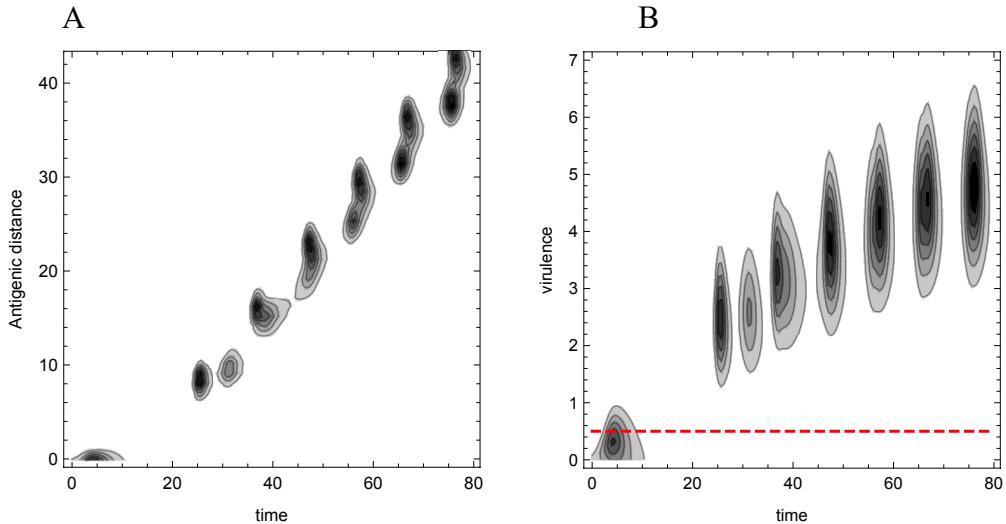
27

Supplementary Figure 1, Joint evolution of virulence and antigenicity in 2-dimensional antigenic space. A) The time change in the distribution of antigenic distance, $r = \sqrt{x_1^2 + x_2^2}$, of viruses from their founder variant at antigenicity $(x_1, x_2) = (0,0)$ and time $t = 0$. B) The time change in the virulence from its initial value $\alpha = 0.025$ at time $t = 0$. The dashed line at $\alpha = 0.5$ indicates the ESS virulence in the endemic population which

33 should have been attained if there were no antigenic escape. C-E) The snapshots of the 2-
34 dimensional antigenicity distribution at time $t = 4, 12$ and 20 . See Equation (S.1) for the
35 model. The transmission rate β and virulence α has a tradeoff $\beta = 5\sqrt{\alpha}$. The recovery rate
36 is $\gamma = 0.5$. The partial cross-immunity between two virus variants with antigenic distance
37 r is $\sigma(r) = \exp(-r^2 / 2\omega^2)$, where the width ω of cross-immunity 1 here. The mutation
38 variance-covariance matrix for the change in antigenicity is isotropic in the two directions
39 of the 2-dimensional antigenic space with the half of mutation variance (mutation rate times
40 the squared width of mutation distance) $D = \mu m^2 / 2 = 0.01$. The half of mutation variance
41 for the change in virulence is $D_\alpha = \mu_\alpha m_\alpha^2 / 2 = 0.04$.

42

43

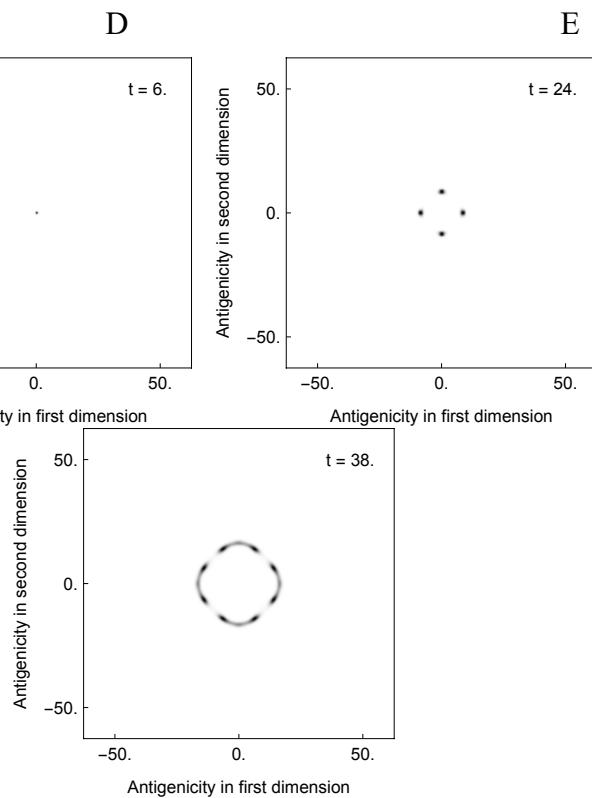


44

45

46

47



48

49

50 Supplementary Figure 2 The same as in Supplementary Figure 1 but with a wider width of
 51 cross-immunity, $\omega = 3$ (where $\omega = 1$). The snapshots are taken at time $t = 6, 24$, and 38
 52 in C, D, and E.

53