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Abstract

Despite the propensity for complex and non-equilibrium dynamics in nature, eco-
evolutionary analytical theory typically assumes that populations are at equilibria. In
particular pathogens often show antigenic escape from host immune defense, leading to
repeated epidemics, fluctuating selection and diversification, but we do not understand how
this impacts the evolution of virulence. We model the impact of antigenic drift and escape
on the evolution of virulence in a generalized pathogen and apply a recently introduced
oligomorphic methodology that captures the dynamics of the mean and variance of traits,
to show analytically that these non-equilibrium dynamics select for the long-term
persistence of more acute pathogens with higher virulence. Our analysis predicts both the
timings and outcomes of antigenic shifts leading to repeated epidemics and predicts the
increase in variation in both antigenicity and virulence before antigenic escape. There is
considerable variation in the degree of antigenic escape that occurs across pathogens and
our results may help to explain the difference in virulence between related pathogens
including, potentially, human influenzas. Furthermore, it follows that these pathogens will
have a lower R, with clear implications for epidemic, endemic behavior and control. More
generally our results show the importance of examining the evolutionary consequences of

non-equilibrium dynamics.

Key Words: Cross immunity, disease emergence, virulence, immunity, antigenic escape,

transient evolution, adaptive dynamics, quantitative genetics, population genetics.
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Introduction

Infectious disease remains a major problem for human health and agriculture ' and are
increasingly recognized as important in ecosystems and conservation >¢. This has led to
the development of extensive theoretical literature on the epidemiology, ecology and
evolution of host-pathogen interactions -!°. Understanding the drivers of the evolution of
virulence, typically defined in the evolutionary literature as the increased death rate of
individuals due to infection, is a key motivator of this theoretical work #1914, Generally,
models assume that a higher transmission rate trade-offs against the intrinsic cost of
reducing the infectious period due to higher death rates (virulence), and classically predict
the evolution of a virulence that maximizes the parasite epidemiological R, 8114, In fact,
this result only holds in models where ecological feedbacks take a constrained form, such
that even relatively simple processes such as density-dependent mortality, multiple
infections and spatial structure may lead to diversification or different optima !0:12:13.15,
Moreover, this classic evolutionary theory examines the long-term equilibrium
evolutionary outcome in the context of stable endemic diseases, but in nature, infectious
diseases often exhibit complex dynamics, with potentially important impacts on pathogen
fitness 119,

Antibody-mediated immunity is a critical factor driving the dynamics of important
infectious diseases such as seasonal influenza, leading to selection for novel variants that
can escape immunity to the current predominant variant 2*-?2, Such antigenic escape
typically causes the optimal variant of the parasite to change through time as it moves
through antigenic space. Moreover, partial cross-immunity between the different parasite

variants may lead to recurrent epidemics, fluctuations in parasite variants and potentially
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variant coexistence 22, Previous theory has shown that the evolution of immune escape
can lead to dramatic disease outbreaks 2*-¢, but the implications of these epidemiological
dynamics for the evolution of disease virulence are unknown. This question is challenging
in part because much of the theoretical framework used to study virulence evolution
typically considers diseases that are at an endemic equilibrium 814 As such we currently
lack a broad theoretical understanding of the evolution of virulence in the presence of
antigenic escape, despite its importance as an epidemic process and the likely implications

of its inherently dynamical epidemic nature.

Here, we examine the impact of antigenic escape on the evolution of infectious disease in
the context of the well-studied transmission/virulence trade-off '°?’. We first examine
analytically the case without cross-immunity and then apply a recently introduced
‘oligomorphic’ analysis that combines quantitative genetic and game theoretical
approaches ?® to examine the impact of antigenic jumps and epidemic outbreaks due to
cross immunity. Specifically, the oligomorphic analysis explicitly models not only changes
in the mean trait but also changes in the variance of the trait. This variance is critical to the
evolutionary outcome under non-equilibrium dynamics and the approach allows us to
model the evolutionary dynamics of populations with multiple peaks in the character
distribution. This analysis can be applied across a range of ecological and evolutionary
time scales and allows us to examine evolutionary outcomes under non-equilibrium
conditions. Our key result is that antigenic escape selects for higher transmission and
virulence due to the repeated epidemics caused by immune escape, leading to the long-

term persistence of acute pathogens. Indeed, antigenic escape has the potential to select for
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infectious diseases with substantially higher virulence than that predicted by the

maximization of R, in classic disease models.

Results

In order to tractably model antigenic escape with multiple variants and cross-immunity we
follow the simplifying approaches of Gog and Grenfell 2°. Effectively the role of cross-
immunity is to generate protection against becoming infectious with variants not yet
encountered. In particular we assume that cross-immunity reduces the transmissibility of,
rather than the susceptibility to, future variants. Furthermore, we assume that there is
polarizing immunity, such that cross-immunity results in a proportion of individuals being
completely immune. These assumptions allow tractability and have been shown not to
impact the predictions of the model ?. Specifically, we consider a population of pathogens
structured by a one-dimensional antigenic trait x, so that I(t,x) is the density of hosts
infected with antigenicity variant x at time t. Following Gog and Grenfell *°, we assume
that an individual is either perfectly susceptible or perfectly immune to a variant. A variant
of pathogen can infect any host, but will be infectious only when the host is susceptible to
that variant. When a variant y of pathogen infects a host that is susceptible to a variant x,
the host may become (perfectly) immune to the variant x with probability o(x — y). This
is the partial cross immunity function between variants x and y, that takes a value between
0 and 1 and is a decreasing function of antigenic distance |x — y| between variants x and

y. The density of hosts susceptible to antigenicity variant x at time t is noted S(t, x).
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Assuming that all pathogen variants have the same transmission rate  and virulence a, we
can describe the dynamics with the following structured Susceptible-Infected-Recovered

model:

daS(t, ®
D - g5 [ ote-yieyay, (12)
oI(t,x) 021(t, x)
Framk [BS(t,x) — (v + @) ]I(t, x) + DT' (1b)

where y is the recovery rate, and D = ucg?2 /2 is the diffusion constant due to random
mutation in the continuous antigenic space, which is defined by one half of the mutation
variance po2, where u is the mutation rate and 62 is the variance in the difference between
parental and mutant traits °2°. The dynamics for the density of recovered hosts is omitted
from (1) as it does not affect the dynamics (1) of the densities of susceptible and infected

hosts.

Invasion of a single pathogen: in our first scenario, we start with a population where all
hosts are susceptible to any variant (§(0,x) = 1) and a small number of hosts infected by
pathogen variant with antigenicity trait x = 0 is initially introduced. The system then
exhibits travelling wave dynamics in antigenicity space. At the front of the travelling wave,
I(t, x) is sufficiently small and S(&, x) is sufficiently close to 1. Eq. (1a) can then be

linearized as

aI(t,x) B

021(t, x)
D—
dat

I
ri(t, x) + 9x

(2)

where r = [ — (y + «) is the rate of increase of an antigenicity variant before it spreads
in the population and causes the build-up of herd immunity. The system (1) asymptotically

approaches travelling waves of both pathogen antigenicity distributions I (¢, x), which have
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an isolated peak around the current antigenicity, and host susceptibility profile S(t, x), that
smoothly steps down towards a low level after the pathogen antigenicity distribution passes

through, with a common constant wave speed *? (Fig. 1a)

v=z\/r_D=z\[(ﬁ—(y+a))D. 3)

As the width of the partial cross-immunity function o (x — y) increases, the travelling wave
with static shapes described above is destabilized (Extended Data Fig. 1), and the system
shows intermittent outbreaks that occur periodically both in time and in antigenicity space
2632 (Fig. 1b). However, the wave speed is unchanged from (3), as the linearized system (2)
towards the frontal end remains the same irrespective of the stability of wave profile that

lags behind (Extended Data Fig. 1).

Evolution of antigenic escape with cross-immunity: To predict how cross-immunity
affects the evolution of antigenic escape, we use an oligomorphic dynamics analysis . In
this analysis we consider a population composed of different antigenicity ‘morphs’ that
can be seen as quasispecies. Specifically, we use the term ‘morph’ to describe the
phenotypic trait mean and the continuous variance around this mean. The analysis in the
methods allows us to track the dynamics of morph frequencies, p;, and mean trait values,
X, as:

dp;

— =BG~y (4a)
dx; o
T V:Bs'(x;). (4b)

where s(x) is the susceptibility profile of the population, which depends on the cross-

immunity function o, §; is the mean susceptibility perceived by viral morph i, and § the
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mean susceptibility averaged over the different viral morphs. Note that, in general, s(x),
S; and § will be functions of time, as the susceptibility profile is molded by the

epidemiological dynamics of S(t,x) and I(¢t, x).

Equation (4a) reveals that, as intuitively expected, morph i will increase in frequency if the
susceptibility of the host population to this variant is higher on average. Equation (4b)
shows that the increase in the mean antigenicity trait of morph i depends on (i) the variance
of the morph distribution, V;, (ii) the transmission rate, and (iii) the slope of the
susceptibility profile close to the morph mean X;. Together with an equation for the
dynamics of variance under mutation and selection (see Methods), equations (4a) and (4b)
allow us to quantitatively predict the change in antigenicity after a primary outbreak, as

shown in Fig. 2.

For instance, after a primary outbreak caused by a variant with antigenicity X, = 0 at t =
0, the susceptibility profile is approximately constant and given by s(x) = (1 — )°®,
where 1, is the final size of the epidemic of the primary outbreak at antigenicity x = 0
(see Methods). Thus, for a decreasing cross-immunity function, o(x), the slope of the
susceptibility profile is positive, which selects for increased values of the mean antigenicity
trait x; of a second emerging morph (see Methods). As the process repeats itself, this leads
to successive jumps in antigenic space. In addition, a more peaked cross-immunity
function, g, yields larger slopes to the susceptibility profile and thus selects for higher

values of the antigenicity trait.
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Long-term joint evolution of antigenicity, transmission and virulence: We now extend
our analysis to account for mutations affecting pathogen life-history traits such as
transmission and virulence. To simplify, we use the classical assumption of a transmission-
virulence trade-off #!°-!* and consider that a pathogen morph, i, has frequency, p;, mean
antigenicity trait, X;, and mean virulence @;. In the methods, we show that the morph’s

mean traits change as

d (fi> ( B(a;)s' (x;) )
- = G;
dt \a; B'(@)s(x;) —1

where G; is the genetic (co)variance matrix, and the vector on the right-hand side is the
selection gradient. Note that, while the selection gradient on antigenicity depends on the
slope of the antigenicity profile at the morph mean, the selection gradient on virulence
depends on the slope of the transmission-virulence trade-off at the morph mean, weighted

by the susceptibility profile at the morph mean.

Assuming we can neglect the build-up of correlations between antigenicity and virulence
due to mutation and selection, the genetic (co)variance matrix is diagonal with elements
V¥ and V;*. Then, as shown previously, antigenicity increases if the slope of the
susceptibility profile is locally positive, while mean virulence increases as long as B'(&@;) >
1/s(x;). For a fixed antigenicity trait, x = x*, the susceptibility profile converges towards

s(x*) = (y + @)/pB and the evolutionary endpoint satisfies

B(a)
y+a

B'(a) =

which corresponds to the classical result of Ry maximisation for the unstructured SI model

1527, However, when antigenicity can evolve, selection will also lead to the build-up of a
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positive covariance C between antigenicity and virulence, resulting in a synergistic effect
(Methods). As the antigenicity trait increases, the evolutionary trajectory of virulence

converges to the solution of
B'(a)=1

which corresponds to maximizing the rate of increase of pathogen r(a) = B(a) — (y + @)

in a fully susceptible population. This is equivalent to maximizing the wave speed v(a) =

24/r(a)D, as shown in the methods. Fig. 3a shows that, in the absence of cross-immunity,
the ES virulence is well predicted by r maximization. With cross-immunity (Fig. 3b),
virulence evolution is characterized by jumps that reflect the sudden shifts in antigenicity

due to cross-immunity.

As such antigenic escape selects for higher transmission and virulence and more acute
infectious diseases. This has parallels with the results that show that there is a transient
increase in virulence at the start of an epidemic with r rather than R, being maximized
16.17.1933 "but here we predict the long-term persistence of highly transmissible and virulent

disease variants due to antigenic escape.

Although we have so far assumed a never-ending antigenic escape process, it is easy to
extend our analysis to consider that antigenic escape is constrained by pleiotropic effects.

Then, once the antigenicity trait has stabilized, the ES virulence would satisfy

1—pp(a)s'(x)
s(x)

B'(a) =

10
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where p = C/V, measures the correlation between antigenicity and virulence. Thus, the
slope to the transmission-virulence trade-off at the ESS now takes an intermediate value

between /(y + @) and 1, as shown in Fig. 4.

Short-term joint evolution of antigenicity and virulence: Although our analysis allows
us to understand the long-term evolution of pathogen traits, it can also be used to accurately
predict the short-term dynamics of antigenicity and virulence. We now consider that a
primary outbreak has molded a susceptibility profile s(x) that we assume constant.
Although this assumption will cause deviations from the true susceptibility profile, it
allows us to decouple our evolutionary oligomorphic dynamics from the epidemiological
dynamics. Fig. 5 shows that the approximation accurately predicts the jump in antigenic
space and joint increase in virulence during the secondary outbreak. The accuracy of the
prediction depends on the time at which we seed the oligomorphic dynamical system, as
detailed in the methods, but remains high for a broad range of values of this initial time.
Hence, our analysis can be used to successfully predict the trait dynamics after the
emergence of a new antigenic variant. Simulations show that this result is not dependent

on the assumption of one dimensional antigenic space (Supplementary Information).
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Discussion

We have shown how antigenic escape selects for more acute infectious diseases with higher
transmission rates that cause increased mortality (virulence) in infected hosts. This result
is important given the number of major infectious diseases such as seasonal influenza that
have epidemiology driven by antigenic escape. Until recently the evolution of virulence
literature has mostly focused on equilibrium solutions that in simple models lead to the
classic idea that pathogens evolve to maximize their basic reproductive number R, 81014,
Our results show that the process of antigenic escape leading to the continual replacement
of variants -2, creates a dynamical invasion process that in and of itself selects for more
acute, fast transmitting, highly virulent variants that do not maximize R,. This has parallels
with the finding that more acute variants are selected transiently at the start of epidemics
2426 but critically, in our case the result is not a short-term transient outcome. Rather, the
eco-evolutionary process leads to the long-term persistence of more acute variants. As

such, antigenic escape may be an important driver of high virulence in infectious disease.

In the simpler case where there is no cross immunity, there is a travelling wave of new
variants invading due to antigenic escape. In this case we can use established methods to
gain analytical results that not only predict the speed of change of the variants, but also the
evolutionarily stable virulence. With our model’s assumptions, without antigenic escape
we would get the classic result of the maximization of the reproductive number R, 81914,
but once there is antigenic escape we show analytically that the intrinsic growth rate of the
infectious disease r is maximized. Maximizing the intrinsic growth rate leads to selection
for higher transmission and in turn higher virulence. Effectively this is the equivalent of an

infectious disease “live fast, die young” strategy. The outcome is due to the dynamical

12
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replacement of variants, with new variants invading the population continually leading to
a continual selection for the variants that invade better 242°. As such we predict that any
degree of antigenic escape will in general select for more acute faster transmitting variants
with higher virulence in the presence of a transmission-virulence trade-off. Although such
a trade-off is a classical assumption in evolutionary epidemiology, it would be interesting

to examine the impact of antigenic escape under different assumptions.

Partial cross-immunity leads to a series of jumps in antigenic space that are characteristic
of the epidemiology of a number of diseases and in particular of the well-known dynamics
of influenza A in humans >2°. Here a cloud of variants remains in antigenic space until
there is a jump that, on average, overcomes the cross immunity and leads to the invasion
of a new set of variants that are distant enough to escape the immunity of the resident
variants -2, In order to examine the evolutionary outcome in this scenario we applied a
novel oligomorphic analysis ?® and again we find that antigenic escape selects for higher
virulence toward the maximization of the intrinsic growth rate r. Both our analysis and
simulations show that in the long term the virulence increases until it reaches a new
optimum potentially of an order of magnitude higher than would be expected by the classic
prediction of maximizing R,. Therefore, antigenic escape whether it is through a
continuous wave of antigenic drift or through large jumps, selects for higher virulence. We
therefore expect this result to apply across the wide range of ‘jumpiness’ that we see across
different viruses between these two extremes of continuous drift and punctuated jumps.
We show that virulence increases after each antigenic jump, falling slightly at the next
jump before increasing again until it reaches this new equilibrium. It is also important to

note that the diversity within the morph increases in both antigenicity and virulence as we
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move towards the next epidemic, reaching a maximum just at the point when the jump
occurs. This increase in diversity could in principle be used as a predictor of the next jump

in antigenic space.

Clearly the virulence of any particular infectious disease depends on multiple factors,
including both host and parasite traits, and critically the relationship between transmission
and virulence. This makes comparisons of the virulence across different infectious diseases
problematic since the specific trade-off relationship between transmission and virulence is
often unknown. However, our model shows that antigenic escape will, all things being
equal, be a driver of higher virulence favoring more acute variants. It is also important to
note that since antigenic escape is a very general mechanism that selects for higher
virulence it follows that we may see high virulence in parasites even when the costs in
terms of reduced infectious period are substantial. Amongst the influenzas, although there
is a paucity of data, influenza C does not show obvious antigenic escape and is typically
much less virulent than the other influenzas 3*. Furthermore, influenza A/H3 tends to show
much more antigenic escape than influenza B and influenza A/H1 and again in line with
our predictions typically influenza A/H3N2 is the more virulent 6. It is important to note
that these differences can be ascribed to multiple factors including circumvention of
vaccination and that cross-immunity may itself directly impact disease severity.
Furthermore the higher virulence of influenza A is often posited to be due to a more recent
zoonotic emergence *’. Moreover, direct comparisons between the rates of antigenic escape
between influenza A/H1 and influenza B are difficult and clearly there are also highly
virulent pathogens that do not show antigenic escape such as measles. Therefore, a formal

comparative analysis is confounded by multiple factors. Nevertheless, our model suggests
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that differences in the rates of antigenic escape of the different influenzas may impact their
virulence and the evidence from influenza is at least consistent with the predictions of the

model.

An important implication of our work is that antigenic escape selects for variants with a
higher virulence than the value that maximizes R, and therefore leads to the evolution of
infectious diseases with lower Ry. From this point of view, it may be naively concluded
that diseases with antigenic escape may be easier to eliminate and control with vaccination.
Of course, in practice the opposite is often true since producing an effective vaccine is
much more problematic when there is antigenic escape ***. On the other hand with lower
R, epidemics will tend to be less explosive than they otherwise would have been, having a
lower peak but lasting longer, with evolution here effectively ‘flattening the curve’.
Infectious diseases that show punctuated antigenic escape are characterized by repeated
epidemics, but our work suggests that due to the selection for a lower R, the eco-
evolutionary feedback will have significantly impacted the pattern of these epidemics.
More generally our results highlight how ecological/epidemiological dynamics can impact
evolutionary outcomes that in turn feedback into the epidemiology characteristics of the

disease.

We have used oligomorphic dynamics ?® to make predictions on the waiting times and
outcomes of the antigenic jumps in our model with cross immunity. This approach tracks
changes in both mean trait values and trait variances in models with explicit ecological
dynamics. As such it combines aspects of eco-evolutionary theory “*#! and quantitative
genetics approaches >4 to provide a more complete understanding of the evolution of

quantitative traits. Our approach can take into account a wide range of different ecological
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and evolutionary time scales and therefore allows us to address fundamental questions on
eco-evolutionary feedbacks and on the separation between ecological and evolutionary
time scales. This is important since it allows us to test the implications of the different
assumptions of classical evolutionary theory and to better understand the role of eco-
evolutionary feedbacks on evolutionary outcomes. Furthermore, the approach can be
applied widely to model transient dynamics, and to predict the waiting times and extent of
diversification that occurs in a range of contexts 244, Moreover, antigenic evolution is
known to also lead to diversification and variant coexistence *~*¥, and it would be

interesting to extend our analysis to these other evolutionary outcomes.

Our results emphasize that epidemiological dynamics may have important implications for
the evolution of infectious disease. To facilitate its broader application, the oligomorphic
methodology should be extended to structured populations and combined with stochastic
evolutionary theory in order to fully address the evolutionary dynamics of emerging
disease. Human coronaviruses can evolve antigenically to escape antibody immunity +
and it would be useful to apply our approaches to a more specific model of the SARS-Cov-
2 epidemic. In particular, our ability to predict the waiting time until the emergence of the

next antigenic cluster has the potential to be important in such applied contexts.

In principle epidemics of new variants that adapts to a novel host would display equivalent
dynamics to those described here for antigenic escape. It also follows that interventions
that impact epidemiological dynamics may also have impacts on the evolution of pathogen
traits such as virulence or transmission. Our results suggest that immune escape driven by
transmission blocking imperfect vaccination might also select for higher virulence in the

longer term *°>!, although these effects are likely overwhelmed by selection on transmission
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in an emerging pandemic such as SARS-Cov-2 3233, Furthermore, dynamical feedbacks
are important in a range of contexts beyond infectious disease and our approach may help
us examine the importance of interactions between frequency dependent ‘stabilizing” and
equalizing evolutionary drivers **. The oligomorphic analytical approaches we use here
are therefore likely to be useful in understanding a wide range of dynamical evolutionary

outcomes.

Methods

Oligomorphic dynamics of antigenic escape

We consider a model of the antigenic escape of a pathogen from host herd immunity on a
one-dimensional antigenicity space (x). We track the changes in the density S(t, x) of hosts
that are susceptible to antigenicity variant x of pathogen at time t, and the density I(t, x)
of hosts that are currently infected and infectious with antigenicity variant x of pathogen

at time t:

aS(t, ®
S = s [ pote- it )
oI(t,x) 2%1(t, x)
T BS(t, x)I(t,x) — (y + &)I(t,x) + D T (6)

where 3, a, and y are the transmission rate, virulence (additional mortality due to
infection), and recovery rate of pathogens which are independent of antigenicity. The
function o(x — y) denotes the degree of cross immunity: a host infected by pathogen
variant y acquires perfect cross immunity with probability o(x — y) but fails to acquire
any cross immunity with probability 1 — o(x — y) (this is called polarized cross immunity

by Gog and Grenfell ?%). The degree a(x — y) of cross-immunity is assumed to be a
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decreasing function of the distance |x — y| between variants x and y. When a new variant
with antigenicity x = 0 is introduced at time t = 0, the initial host population is assumed
to be susceptible to any antigenicity variant of pathogen: S(0,x) = 1.1In (6), D = uc?2 /2
is one half of the mutation variance for the change in antigenicity, representing random

mutation in the continuous antigenic space.

Susceptibility profile molded by the primary outbreak. We first analyze the dynamics
of the primary outbreak of a pathogen and derive the resulting susceptibility profile, which
can be viewed as the fitness landscape subsequently experienced by the pathogen. For
simplicity we assume that mutation can be ignored during the first epidemic initiated with
antigenicity stain x = 0. The density So(t) = S(t,0) of hosts that are susceptible to the
currently prevailing antigenicity variant x = 0, as well as the density I(t) = I(t, 0) of

hosts that are currently infected by the focal variant change with time as

as,

d_to = =SoB 1y, @
dl,

ar SoBly — (v + a)ly, (8)

R Yo ©
dt 0

with §;(0) = 1, ,(0) = 0, and Ry(0) = 0. The final size of the primary outbreak,

Yo = Rp(0) =1 —5y(0) = exp [_ﬁj Io(t) dtl.
0

is determined as the unique positive root of

'(I)O =1- e—P(ﬂ/)o’ (10)
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where p, = B/(y + @) > 1 is the basic reproductive number 7. Associated with this
epidemiological change, the susceptibility profile S, (t) = S(t,x) against antigenicity x

(x # 0) other than the currently circulating variant (x = 0) changes by cross immunity as

ds,

- = Ba(x),, (x #0). (11D

Integrating both sides of (11) from t = 0 to t = oo, we see that the susceptibility profile

s(x) = S, (o) after the primary outbreak at x = 0 is

s(x) = exp [—ﬁa(x) jwlo(t) dtl = (1 —1y)°® = g=Poo(X)Po, (12)
0

where the last equality follows from (10). The susceptibility can be effectively reduced by
cross-immunity when the primary variant has a large impact (i.e. when the fraction of hosts
remaining uninfected, 1 — 1, is small) and when the degree of cross immunity is strong
(i.e. when o (x) is close to 1). With a variant antigenically very close to the primary variant
(x = 0), the cross immunity is very strong (ag(x) = 1) so that the susceptibility against
variant x is nearly maximally reduced: s(x) = 1 — 1,. With a variant antigenically distant
from the primary variant, g (x) becomes substantially smaller than 1, making the host more
susceptible to the variant. For example, if the cross immunity is halved (o (x) = 0.5) from
its maximum value 1, then the susceptibility to that variant is as large as (1 — )%>.If a
variant is antigenically very distant from the primary variant, then a(x) =~ 0, and the host

is nearly fully susceptibility to the variant (s(x) = 1).
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Threshold antigenic distance for escaping immunity raised by primary outbreak. Of
particular interest is the threshold antigenicity distance x, that allows for antigenic escape,
i.e. any antigenicity variant more distant than this threshold from the primary variant (x >
X.) can increase when introduced after the primary outbreak. Such a threshold is

determined from

Bs(xc)
y_l_; = pos(xc) =1
or
1
s(x.)=(1- 1/)0)"("0) = e Poo(xc)Yo = (13)

Po

where we used (12). With a specific choice of cross-immunity profile,

X

o(x) = exp l— ml, (14)

the threshold antigenicity beyond which the virus can increase in the susceptibility profile

s(x) after the primary outbreak is obtained, by substituting (14) into (13)

x? 1
exp [—potpo €xp |— 202 = ,D_'
0

and taking logarithm of both sides twice:

X =W ’ZIOg%. (15)
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Oligomorphic dynamics. Integrating both sides of (6) over the whole space, we obtain the

dynamics for the total density of infected hosts, I(t) = fjooo I(t,x)dx:

ar ® _ _ _
. [ﬂ | swoend - +o|l© =850 -0+l 16

where

d(t,x) =1(t,x)/I(),

is the relative frequency of antigenicity variant x in the pathogen population circulating at

time t, and

S() = ij(t,x)qb(t,x) dx (17)

is the mean susceptibility experienced by currently circulating pathogens. The dynamics

for the relative frequency ¢(t, x) of pathogen antigenicity is

9%
0x2’

d _
9 _ pist,x) — S}t ) + D

ot (18)

As in Sasaki and Dieckmann 2, we decompose the frequency distribution to the sum of

several morph distributions (oligomorphic decomposition) as
B(tx) = ) pii(t,) (19)
i

where p;(t) is the frequency of morph i and ¢;(t,x) is within-morph distribution of

antigenicity. By definition, Y;p; = 1 and fjooo ¢d;(t,x)dx = 1.Let

X = jqubi(t, x) dx (20)
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be the mean antigenicity of a morph and

vi= [ - 200 dx = 06 1)

be the within-morph variance of each morph, which is assumed to be small, of the order of
€2. Let us denote the mean susceptibility of host population for viral morph i by S; =
fjooo S(t,x)¢;(t,x)dx. As shown in Sasaki and Dieckmann 2%, the dynamics for viral

morph frequency is expressed as

dp; .= &
L= B - i+ 0(), 22)

while the dynamics for the within-morph distribution of antigenicity is

d¢; . ¢,
or = BS(Ex) ~S39u(t.0) + D5 (23)
From this, the dynamics for the mean antigenicity of a morph,
dx; S
— =V, — 0(e3). 24
dt lﬁ ax x:fi + (E ) ( )
and the dynamics for the within-morph variance of a morph
av, 1 0a%S 4 5 5
E—E szf.{E[fi]—Vi}‘FZD'FO(E ) (25)

are derived, where §; = x — %; and E[é}] = f_oooo(x — x;)*¢; (t, x)dx is the fourth central
moment of antigenicity around the morph mean. Assuming that the within-morph

distribution is normal (Gaussian closure), E [ff] = 3Vi2 and hence Eq. (25) becomes

av,  9%S

=Bz V2D +0(e) (26)
X Y -

=xl
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Second outbreak predicted by OMD. Equations (22), (24) and (26) are general, but they
rely on a full knowledge of the dynamics of the susceptibility profile S(t,x). In order to
make further progress, we use an additional approximation by substituting Eq. (13), the
susceptibility profile over viral antigenicity space after the primary outbreak at x = 0 and
before the onset of the second outbreak at a distant position. We keep track of two morphs
at positions Xq(t) and x4 (t), where the first morph is that caused the primary outbreak at
X = 0, and the second morph is that emerged in the range X > X, beyond the threshold
antigenicity X, defined in Eq. (13) (and (15) for a specific form of ¢(x)) as the source of

the next outbreak.
Ass(x) = (1 — )™ = exp[a(x) log(1 — )], we have

d d
é(fi) = [£ (%) log(1 — lpo)] s(x,),

and

d?s
dx?

d? d ?
@o=[agwamal—wo+&§@awg1—¢@}F@w.

Therefore, the frequency, mean antigenicity, and variance of antigenicity of an emerging

morph (i = 1) change respectively as

dp,

p—ﬁb@ﬂ—ﬂ%ﬂmﬂ Py,

dx1

dt = Vl,B (x1) (27)
dh _ V2 + 2D,

dt 'Bd z(xl) 1 +
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The predicted change in the mean antigenicity is plotted by integrating Eq. (27). As initial
condition, we choose the time when a seed of second peak in the range x > x_ first appears,

and then compute the mean trait as

x(t) = xo(l - P1(t)) + X1p1 (0). (28)

In the case of Fig. 2, where f = 2,y + a = 0.6, D = 0.001, and w = 2, the final size of
epidemic for the primary outbreak, defined as (7) was i = 0.959, and the critical antigenic
distance for the increase of pathogen variant obtained from (26) was x, = 2.795. The
initial condition for the oligomorphic dynamics (27) for the second morph was then
p1(ty) = 1.6 X 1078, x,(t,) = 3.239, V,(t,) = 0.2675 at t, = 41. In Fig. 2, the
predicted trajectory for the mean antigenicity (28) is plotted as a red curve, together with

the mean antigenicity change observed in simulation (blue curve).

The accuracy of predicting with OMD the antigenicity and the timing of the second
outbreak. Here we describe how we define the initial conditions for oligomorphic
dynamics, i.e., the frequency, the mean antigenicity and the variance in antigenicity of the
morph that caused the primary outbreak and the morph which may cause the second
outbreak. We then show how the accuracy in prediction of the second outbreak depends on

the timing of the prediction.

We divide the antigenicity space into two at x = x, above which the pathogen can increase
under the given susceptibility profile after the primary outbreak, but below which the
pathogen cannot increase. We then take relative frequencies of pathogens above x. and

below x., and the conditional mean and variance in these separated regions to set the initial
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frequencies, means, and variances of the morphs at the time t, when we start integrating

the oligomorphic dynamics to predict the second outbreak:

foxcl(to,x) dx fxc: 1(t, x) dx

po(te) = m; p1(to) = W.

i} Jy fxl(t, x) dx ) ~ fxf xI(to, x) dx

Xo(ty) = 1oy dx % (t) = fxo: o) e (29)
V,(ty) = foxc(x - fo(to))zl(tmx) dx Yty = f,::(x - JZ1(t0))21(t0' x) dx

foxc I(tg, x) dx fxoo I(tg, x) dx

We then compare the trajectory for mean antigenicity change observed in simulation (blue
curve in Fig. 2) and the predicted trajectory (red curve in Fig. 2) for mean antigenicity (28)
by integrating oligomorphic dynamics (27) with initial condition (29) at time t = t,.
Extended Fig. 2 shows how the accuracy of prediction, measured by the Kullback-Leibler
divergence between these two trajectories depends on the timing t,chosen for the
prediction. The second outbreak occurs around t = 54.6 where mean antigenicity jumps
from around O to around 5. The prediction with OMD is accurate if it is made for t, > 40.
Fig. 2 is drawn for t, = 41 where the second peak is about to emerge (see Extended Data
Fig. 2). Even for the latest prediction for t, = 51 in Extended Fig. 2, the morph frequency
of the emerging second morph was only 0.3% off, so the prediction is still worthwhile to

make.

Extended Data Fig. 2 shows that the prediction power is roughly constant (albeit with a
wiggle) for 5 < t, < 30 (the predicted timings are 10-15% longer than actual timing for
5 <ty < 30), and steadily improved for t, > 30. When the prediction is made very early

(ty < 5) the deviations are larger.
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Oligomorphic dynamics for the joint evolution of antigenicity and virulence

Let s(x) be the susceptibility of the host population against antigenicity x. A specific
susceptibility profile is given by (12) with cross-immunity function o (x) and the final size
1, of epidemic of the primary outbreak. Note that, as above, the susceptibility profile is in
general a function of time. The density I(x,a) of hosts infected by a pathogen of

antigenicity x and virulence a changes with time, when rare, as

oI(x, ) 021 021
= - I D,—+D, —.
5t s (x,a) — (v + a)I(x,a) + Dy 52z T Dazs

(30)

The change in the frequency ¢(x,a) = I(x,a)/f [ I(x,@)dxda of a pathogen with

antigenicity x and virulence a follows

d¢ B _ 0%¢ 0%¢
E—{W(X,(Z)—W}(,bﬁ'Dxﬁﬁ'Dam, (31)
where
w(x, a) = B(a)s(x) — a, (32)

is the fitness of a pathogen with antigenicity x and virulence @ and w = [ [ w(x, a)dxda

is the mean fitness.

Let us decompose the joint frequency distribution ¢(x, ) of the viral quasispecies as

(oligomorphic decomposition):

p(x,a) = Z ¢i(x, )p;, (33)
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where ¢;(x, @) is the joint frequency distribution of antigenicity x and virulence a in
morph i (f [ ¢p;dxda = 1) and p; is the relative frequency of morph i (¥;p; = 1). The

frequency of morph i then changes as

i E wp; |p
de |\ " el
j (34)

0; _ 0%¢; 0%¢;
Otl = (w(x, a) —w)o¢;(x,a) + D, ale + D, aazl'

where w; = [ [ w(x, @)¢;(x, @) dxda is the mean fitness of morph i.

Assuming that the traits are distributed narrowly around the morph means x; =
J [ x¢;(x,@)dxda and @; = [ [ ad;(x, @) dxda, so that & = x — ¥; = O(€) and {; =
a — a; = 0(€) where € is a small constant, we expand the fitness w(x, a) around the

means X; and @; of morph i,

w(x, a) = w(x;, @;) + (aa—::)l i + (Z—Z)i Gi

+1 d0%w 2, d0%w +1 0%w 2 1 0(e?)
2\ 0x2 ifi 0xda ifi(i 2\ 0a? i{i €

Substituting this and

1/0°w 0w 1/0*w
5. = L2 i e xx xa 4 aa 3
Wi = w(x, @) + 5 <6x2>i Vi + <6x6a>i Vi +5 <6a2>i VE +0(e?)

into (34), we have
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532
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534

535

536

d l -
d_i = Wi~ Z w;p;|pi + 0(e), (35)
| j
¢, _ [ ow ow 0%w N 92w
at a (_)fl-l_(_)(l (a ) (fl _V )+<a da ) (fl{l )
0w 02 ; 92 ;
* 2( ) & - V“)l i + Dy ax"l + D aadz +0(€®). (36)

ow ow ,_  _ ow ow ,_ _ 2%w %w ,_ _
where w; = w(¥x;, @;), (ax) =— X, @), (g)i = —— (X, @), (ﬁ)i =——= (%, @),

a2 22w a2 ?w ,_ _ . .
(—w) =" (%, @), and ( W), = aT:Z(xi, @;) are fitness and its first and second

0xda oxda oa?/;

derivatives evaluated at the mean traits of morph i, and

Vix = E;[(x — fi)z];
Ci = Ei[(x — xp)(a — @), (37)
Via = E;[(a - 671')2]:

are within-morph variances and covariance of the traits of morph i. Here, E;[f (x, a)] =
[ [ f(x, @)¢;(x, @) dx da denotes taking expectation of a function f with respect to the

joint trait distribution ¢; (x, &) of morph i.

Substituting (36) into the change in the mean antigenicity of morph i

4ot [ S i

we have

Similarly, the change in the mean virulence of morph i is expressed as

da; (ow owy\ 3
dt (ax)i Cit (aa)ivi +0(). (39)
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537  Equations (38)-(39) from the mean trait change is summarized in a matrix form as

()

d /% Ox )

538 &(j‘cll) =G, gfv L+ o, (40)
da);

539  where
vVr oG

540 G = ( ‘. V-‘l") (41)
l L

541  is the variance-covariance matrix of the morph i.

542  Substituting (36) into the right-hand side of the change in variance of antigenicity of morph

543 i,

44 L[ [e et = [ |2 asas

545  and those in the change in the other variance and covariance, we have

avy 9%w 4 x 0w x
at —2< ) [E: (&) — (V)?] + ( ) [E;(E3¢) — V(i)

[E;(§7C7) — VFVE] + 2D, + 0(€5),

2aw)
a6 _1 (0" xc 92w
dt 5( x2> [E(&¢) — Ve + (a v ) B0 — 7]
546 : y
1(0*w
+5< 2) [E(§:6) = GV + 0(€9),
dVia L(ow E; vaa o%w - )
dt §<6x2> [E;(§7¢7) — 1+ (6 6) [E;(£:33) — C;VE&]
+%<67VZ> [E; (¢ — (V)] + 2D, + O(€®).
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If we assume that antigenicity and virulence within a morph follow two-dimensional
Gaussian distribution for given means, variances and covariance, we should have E;(¢}") =
(V)2 Ei(§P4) = 3Vi*Ciy Ei(§2¢H) = VIV + 2C2, Ei(§:67) = 3VCy, and Ey(§) =

3(V¥)?, and hence

dvy> 02w d0%w 0%w
- _x2 2 X 2 2D 5 4
It (a )(l) + (axaa>vc+<aa>c+ + 0(e>), (43)

dc; da“w 0w 0w
— X xXyya a 5 44
e <6x2> V; a'+<axa ){V Vi C}-k(aa ) CVE + 0(e®), (44)

av® (az ) ( 9’w ) (62w>
CF+2 VAC; + V)% + 2D, + 0(€%), (45)
dt dx2 da? ).

Oxda

Eqgs. (43)-(44) are rewritten in a matrix form as

dG;

2D, V¥ 0
dtl = GiHiGi + ( Xt

0 2D,V

)+0@%, (46)

where

d*w d*w
<6x2 )i <6x6a>l,

d*w *w\ |’
<6x6a'>i <6a2>i

is the Hessian of the fitness function of the morph i.

H; = (47)

In our case (30) of the joint evolution of antigenicity and virulence of a pathogen after its

primary outbreak, the fitness function is given by w(x, @) = B(a)s(x) — «, and hence

w; = B(a)s(x) — a;, (Z_:)i = p(a;)s'(xy), (Z_w) =B (a)s(x) - (?727‘:)1- -

B(@)s" (x;), (;;;;)i = B'(a)s'(x), (;:;;)i = p'(a)s'(x), and (Z%)i -

B"(a;)s(x;), where a prime on B(a) and s(x) denotes differentiation by a and x,
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respectively. Substituting these into the dynamics for morph frequencies (35), for morph

means (38)-(39), and for within-morph variance and covariance (43)-(45), we have

1 p@os - a- Y (@)s() - 5o )
7

% = B(@)s' (x)VF + {B'(@)s(x;) — 13C;, (49)

ddo_;i = B(@)s' (®)C; + {B'(@)s(x) — BVS, (50)

d;;x = B(@)s" (x) (V)2 + 2B (@)s' (x)V¥C; + B (@;)s(%;)C? + 2D, (51)

% = B(@)s" XV C; + B’ (@)s'(@)VIVE — C2 + B (@)s(x)CVE,  (52)

d;za = B(&@)s" (%) CE + 2B"(@)s' @IVEC, + B (@)s(®)VE)? + 2D,.  (53)

Equations (48)-(53) describe the oligomorphic dynamics of the joint evolution of
antigenicity and virulence of a pathogen for a given host susceptibility profile s(x) over

pathogen antigenicity.

Of particular interest is whether antigenicity or virulence evolve faster when they jointly
evolve than when they evolve alone. After the primary outbreak at a given antigenicity, say
x = 0, the susceptibility s(x) of host population increases due to cross-immunity as the
distance x > 0 from the antigenicity at the primary outbreak increases. Hence, s'(X;) >
0. Combining this with the positive tradeoff between transmission rate and virulence, we
see that (02w/dxda); = B'(@;)s'(X;) > 0, and then from (52) we see that the within-
morph covariance between antigenicity and virulence becomes positive starting from a zero

initial value:
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dc;
dt

0°w
= X« . 4
cimo (axaa>i VrveE >0 (54)

If all second moments are sufficiently small initially for an emerging morph, a quick look
at the linearization of (51)-(53) around (V{*, C;, V/*) = (0,0,0) indicates that both V;* and
V¥ become positive due to the random generation of variance by mutation, D, > 0 and
D, > 0, while the covariance stays close to zero. Then (54) guarantees that first move of
covariance is from zero to positive, which then guarantees that C; > 0 for all ¢t. Therefore,
the second term in (38) is positive until the mean virulence reaches its optimum
(B'(a)s(x) = 1). This means that joint evolution with virulence accelerates the evolution
of antigenicity. The same is true for virulence evolution: the first term in (39) (which
denotes the associated change in virulence due to the selection in antigenicity through
genetic covariance between them) is positive, indicating that joint evolution with

antigenicity accelerates the virulence evolution.

Numerical example. Fig. 5 shows the oligomorphic dynamics prediction of the emergence
of next variant in antigenicity-virulence coevolution. In order to make progress numerically
we assume s(X) to be constant in the following analysis because we are interested in the
process between the end of the primary outbreak and the emergence of the next antigenicity
virulence morph. The partial differential equations for the density of host S(t, x)
susceptible to the antigenicity variant X at time t, and the density of hosts infected by

pathogen variant with antigenicity X and virulence a are

as , @max [ Xmax
(att x) = —=5(t, x) j B(a)a(x — y)I(t,y, a)dyda,
min 0 (55)
oI(t, x, @) 52 5
TEED @St - ¢ + it x, @) + (Dx_z D, 2) e,
Jat ) e
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with the boundary conditions (0S/dx)(t,0) = (0S/0x)(t, Xma) = 0, (01/0x)(t,0, ) =
(81/0x)(t, Xpax, 0) = 0, (01/0x)(t, x, Apiy) = (81/0x)(t, X, &y0) = 0, and the initial
conditions S(0,x) = 1, and 1(0,x, @) = €5(x)5(a) where &(-) is delta function and € =
0.01. The trait space is restricted in a rectangular region: 0 < x < X, = 300 and a,,;, =
0.025 < a < 10 = a,,,c. Oligomorphic dynamics prediction for the joint evolution of
antigenicity and virulence is applied for the next outbreak after the outbreak with the mean
antigenicity around x = 108 at time t = 102. The susceptibility of host to antigenicity
variant x at t, = 104.8 after the previous outbreak peaked around time t = 102 came to
an end is
s(x) = S(ty, x).
This susceptibility profile remains unchanged until the next outbreak starts, and hence the
fitness of a pathogen variant with antigenicity x and virulence « is given by
w(x, @) = B(a)s(x) — (v + )

We bundle the pathogen variants into two morphs at time ¢t at the threshold antigenicity
x. above which the net growth rate of pathogen variant under the given susceptibility

profile s(x) and the mean antigenicity becomes positive:

w(xe, @(ty)) = B(@(to))s(x,) — (y + alty)) = 0.

The initial frequency and the moments of two morphs, the variant O with x < x. and the
variant 1 with x > x, are then calculated respectively from the joint distribution I(t,, x, @)
in the restricted region {(x, a); 0 < x < X, Apin < & < Apae) and that in the restricted
region {(x, @); x; < X < Xpax> Amin < & < Amax). The frequency p; of the morph 1 (the

frequency of the morph 0 is given by p, = 1 — p;), the mean antigenicity X; and mean
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virulence @; of the morph i, and variances and covariance, V¥, C;, V¥ of the morph i (i =
0,1) follow (48)-(53), where the dynamics for the morph frequency (48) is simplified in

this two morph situation as

dp, o o
d_i = [B(a;)s(x,) — B(@)s(Xo) — (@ — ag)lpy (1 — py),

with py(t) = 1 — p,(t). This is iterated from t = t, = 104.8 to t, = 107. The frequency
p,of the new morph, the population mean antigenicity X = pyX, + p,X;, virulence a& =
Po®o + P1&,, variance in antigenicity V, = poV§ + p,V{*, covariance between antigenicity
and virulence C = p,Cy + p;C;, and variance in virulence V, = p,Vs* + p,V* are
overlayed by red thick curves on the trajectories of moments observed in full dynamics

(55).

In the panel (a) of Fig. 5, the dashed vertical line represents the threshold antigenicity x,
above which Ry = fs(x)/(y + @) > 1 at t = t; = 104.8 where oligomorphic dynamics
(OMD) prediction is attempted. Two morphs are then defined according to whether or not
the antigenicity exceeds a threshold x = x.: the resident morph (morph 1) is represented
as the dense cloud to the left of x = x. and the second morph (morph 2) consisting of all
the genotypes to the right of x = x, with their R, greater than one. The within-morph
means and variances are then calculated in each region. The relative total densities of
infected hosts in the left and right regions defines the initial frequency of two morphs in
OMD. A 2D Gaussian distribution is assumed for within-morph trait distributions to have
the closed moment equations as explained before. Using these as the initial means,
variances, covariances of the two morphs at t = t;, the oligomorphic dynamics for 11

variables (relative frequency of morph 1, mean antigenicity, mean virulence, variances in
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antigenicity and virulence and their covariance in morph O and 1) is integrated up to t =
t.. The results are shown in red curves in the panels of second and third rows, which are

compared with the simulation results (blue curves).

The panels (c)-(e) in Fig. 5 show the change in total infected density (c), mean antigenicity
(d), and mean virulence (e). Red curves show the prediction by oligomorphic dynamics
from the initial moments of each morph at t = ¢, to the susceptibility distribution s(x) =
S(ts, x). Red curves in the (e) and (e) show the OMD prediction, which is compared with
the simulation results (blue curves). The OMD predicted mean antigenicity, for example,

1s defined as

x(t) = (1 - P1(t))fo(t) + p1 ()%, (2),

where p, (t) is the frequency of morph 1, X, and X; are the mean antigenicity of morph O

and 1.

The red curves in the third row (f)-(h) of Fig. 5 show the OMD-predicted changes in the
variance in antigenicity, variance in virulence, and covariance between antigenicity and
virulence, which are compared with the simulation results (blue curves). The OMD

predicted covariance, for example, is defined as

C(t) = (1 =p(©)Co (1) + p1 (D) C1(0)

+p,(0)(1 = p1(0) (x(0) — %, () (@ (1) — @, (1))

where Cy(t) and C;(t) are antigenicity-virulence covariance in morph 0 and 1, and @ (t)

and @, (t) are mean virulence of morph O and 1.
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Selection for maximum growth rate

We next show that a pathogen that has the strategy maximizing the growth rate in a fully

susceptible population is evolutionarily stable in the presence of antigenic escape.

At stationarity, the travelling wave profiles of [(z) and $(z) along the moving coordinate,

z = x — vt, that drifts constantly to right with the speed v are defined as

d?1(z) dI( )

0=D I +v + BS(2)I(2) — (y + ) (2),

dS( )

0= G(Z = OI) ds. (56)

with [ (=) = [(c0) = 0, §(o0) = 1.

Let j(t,x) be the density of a mutant pathogen variant with virulence a' and
transmission rate 8’ that is introduced in the host population where the resident variant is
already established (50). For the initial transient phase in which the density of mutant is
sufficiently small, we have an equation for the change in J(t, z) = j(t, x):

ik d
](t z) = D—+v—+,85(z)—()/+a') J(t, 2), (57)
with the initial condition J(0,z) = €5(z), where € is a small constant and §(+) is Dirac

function.
Consider a system
ow { 0%

)
= = Da—+v—+ﬁ—()/+a)} (58)
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with w(0, z) = J(0,z) = €5(z). Noting that $(z) < 1, we have J(t,z) < w(t, z) for any

t > 0 and z € R from the comparison theorem. The solution to (52) is

w(t, z) = (59)

where ' = B’ — (y + a'). This follows by noting that w(t,x)e™"'¢ follows a simple

diffusion equation 0w/dt = D0?w/dx?. By rearranging the exponents of (53),

w(t,z) = explat — kz o—22/4Dt
pl ]\/47TDt
< explat — kZ
VvanDt P
where
v'% —p?
=720 (61)
v
k=30 (62)

Here v’ = 2+/7'D is the asymptotic wave speed if the mutant variant monopolizes the host
population. Therefore, if v’ < v, then a < 0, and hence w(t, z) for a fixed z converges to
zero as t goes to infinity; which in turn implies that J(t,z) converges to zero because
J(t,z) < w(t,z) for all t and z. Therefore, we conclude that any mutant that has a slower

wave speed than the resident can never invade the population, implying that a variant that

has the maximum wave speed v = 24/rD is locally evolutionarily stable.
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Figure Legends

Fig. 1: Continuous antigenic drift (a) and periodical antigenic shifts (b) of the model.
The grey colored surface denotes the infected density I(t,x) varying in time t and
antigenicty x, and the yellow colored surface denotes the density of hosts S(t, x) that are
susceptible to antigenicity variant x of pathogen at time t. The cross immunity o(x) =
exp(—x?/2w?) has a width of w = 0.2 in (a) and w = 0.6 in (b). Other parameters are

B=2 a=01,y=05andD = 0.001.

Fig. 2: Oligomorphic dynamics prediction of the emergence of antigenicity shift. (a)
Oligomorphic prediction for the change in the mean antigenicity after the primary outbreak
at x = 0 and that after the second outbreak starting around x = 5.5 (red curves), compared
with that obtained by numerical simulations (blue dots). (b) Heat map representation of
the time change of the antigenic drift model (1). Parameters: f = 2,y + a = 0.6, 0(x) =
exp(—x?/2w?) with w = 2, D = 0.001. Initially, all hosts are equally susceptible with
5(0,x) = 1. The primary pathogen variant is introduced at x = 0 with infected density

0.001.

Fig. 3: Marginal distribution of antigenicity (left) and virulence (right) in the absence
(a) or presence (b) of cross-immunity. (a) No cross immunity is assumed so that each
antigenicity genotype causes specific herd immunity: o(x — y) = 6(x — y), where 6(-) is
Dirac’s delta function. There are 1600 antigenic variations having equally divided

antigenicity between 0 and 80. (b) We assume a Gaussian cross-immunity kernel,
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o(x —y) = exp(—(x —y)?/2w?), with width w = 5. There are 300 antigenic variations
having equally divided antigenicity between 0 and 300. In both panels, there are 100 viral
virulence traits each having virulence equally divided between 0 and 20, and Diffusion
constants due to mutations are D,, = 0.01 (for antigenicity) and D, = 0.01(for virulence).
The blue dashed lines show the ES virulence predicted from maximizing RO, as expected
in the absence of antigenic escape, while the red dashed lines show the predicted ES

virulence that maximizes r(a) = f(a) — (y + a) as predicted from our analysis. Other

parameters: y = 0.5, and f(a) = 5Va .

Fig. 4: Graphical representation of the predicted ES virulence with or without
antigenic escape under the assumption of a transmission-virulence trade-off. In the
absence of antigenic escape, the ES virulence, ay, can be predicted from the maximization
of the pathogen’s epidemiological basic reproduction ratio, Ry = f/(y + a), or
equivalently by the minimization of the total density of susceptible hosts since, at
equilibrium, s* = 1/R,,. The slope of the transmission-virulence trade-off at the ESS is
then 1/s* = R,. With antigenic escape, the ES virulence, a;, can be predicted from the
maximization of the pathogen’s growth rate in a fully susceptible population, ry, = f(a) —
(¥ + a). The slope of the transmission-virulence trade-off at the ESS is then 1. This holds
true in the limit of a large antigenicity trait, but intermediate values of ES virulence,
corresponding to intermediate slopes, can also be selected for if other processes constrain

the evolution of the antigenicity trait, as explained in the main text.
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Fig. 5: Oligomorphic dynamics predictions compared to the simulation results of the
emergence of the next variant during antigenicity-virulence coevolution. Panels (a)
and (b) are simulation results showing snapshots of contour plots for the joint trait
distribution observed near (a) the starting and (b) finishing time of emergence. The overlaid
curves are the trajectory of mean traits (X,@) up t = 104.8 and t = 109 observed in the
simulation. Panels (c)-(h) show the dynamics of the total density of infected hosts, mean
antigenicity, mean virulence, the variance in antigenicity, the variance in virulence, and the
covariance between antigenicity and virulence, respectively predicted by the oligomorphic
analysis compared to the simulation results. Parameters: y = 0.5, f(a) = 5va ,Dy =
0.005, D, = 0.0002. As in Fig. 2 we assume a Gaussian cross-immunity kernel,
o(x—y) =exp(—(x—y)?/2w?), with width w =5. The oligomorphic dynamics
describing the changes in the frequency py(t) = 1 — p,(t) of the currently prevailing
morph at time ty = 104.8 and the frequency p;(t) of upcoming morph, the mean
antigenicity X;(t) and mean virulence @;(t) of the two morphs (i = 0,1), and the within-
morph variances V;* and Vi in antigenicity and virulence, as well as the within-morph

covariance C;(t) between antigenicity and virulence in each morph (i = 0,1) are defined as

(48)-(53) in the methods.
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Ext Fig. 1: Sasaki, Lion, Boots
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Supplementary Information: Sasaki, Lion and Boots — “‘Antigenic escape selects for

the evolution of higher virulence”
Multidimensional antigenic space

Here we show that our key results obtained with using 1-dimensional antigenic space
remain the same when we extend the antigenicity space into two dimensions. We first
describe our antigenic drift model in 2-dimensional space. Let S(¢,x) be the density of
hosts that are susceptible to pathogens of antigenicity x = (x4, x,)= at time t. Let also
I(t, %, @) be the density of hosts that are currently infected and infectious with the pathogen

of antigenicity x and virulence a at time t. These distributions change with time as

65 ) S © [es}
((;t X) = —=5(t,%x) f_oo f_wfo B@)o(x—y)I(ty, a)dady,dy,,

I(t,xa a2
(a—:) = [(a)S(t,x) — (y + @)]I(t,x, @) + DVZI + D, ppet

where y is recovery rate, a is virulence, f(a) is transmission rate as a function of

virulence,

2w?

o(jx - y[) = exp [— Iyl ]

denotes the degree of cross-immunity between viruses of antigenicity x and y, where

) o a2 a2
|x —y| = \/ (x; — ¥1)? + (x, — y,)? is antigenic distance between them, V2= o
1 2

D= %umz is the half of mutation variance for the changes in antigenicity (the mutation is

assumed to be isotropic in either direction in 2-dimensional antigenic space), D, = u,m2
is the half of mutation variance for the change in virulence. The initial host population is

assumed to be susceptible to any antigenicity variant of pathogen: S(0,x) = 1, for all x.
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Supplementary Figure 1, Joint evolution of virulence and antigenicity in 2-dimensional
antigenic space. A) The time change in the distribution of antigenic distance, r =
Vx2 + x% , of viruses from their founder variant at antigenicity (x;, x,) = (0,0) and time
t = 0. B) The time change in the virulencefrom its initial value @ = 0.025 at time ¢t = 0.
The dashed line at @ = 0.5 indicates the ESS virulence in the endemic population which
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should have been attained if there were no antigenic escape. C-E) The snapshots of the 2-
dimensional antigenicity distribution at time ¢t = 4, 12 and 20. See Equation (S.1) for the
model. The transmission rate § and virulence a has a tradeoff § = 5va. The recovery rate
is ¥y = 0.5. The partial cross-immunity between two virus variants with antigenic distance
r is o(r) = exp(—1r? /2w?), where the width w of cross-immunity 1 here. The mutation
variance-covariance matrix for the change in antigenicity is isotropic in the two directions
of the 2-dimensional antigenic space with the half of mutation variance (mutation rate times
the squared width of mutation distance) D = um?/2 = 0.01. The half of mutation variance
for the change in virulence is D, = pu,m2/2 = 0.04.
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