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Infectious diseases may cause some long-term damage to their host, leading
to elevated mortality even after recovery. Mortality due to complications
from so-called ‘long COVID’ is a stark illustration of this potential, but the
impacts of such post-infection mortality (PIM) on epidemic dynamics are
not known. Using an epidemiological model that incorporates PIM, we
examine the importance of this effect. We find that in contrast to mortality
during infection, PIM can induce epidemic cycling. The effect is due to inter-
ference between elevated mortality and reinfection through the previously
infected susceptible pool. In particular, robust immunity (via decreased sus-
ceptibility to reinfection) reduces the likelihood of cycling; on the other
hand, disease-induced mortality can interact with weak PIM to generate
periodicity. In the absence of PIM, we prove that the unique endemic equili-
brium is stable and therefore our key result is that PIM is an overlooked
phenomenon that is likely to be destabilizing. Overall, given potentially
widespread effects, our findings highlight the importance of characterizing
heterogeneity in susceptibility (via both PIM and robustness of host immu-
nity) for accurate epidemiological predictions. In particular, for diseases
without robust immunity, such as SARS-CoV-2, PIM may underlie complex
epidemiological dynamics especially in the context of seasonal forcing.
1. Introduction
The ongoing SARS-CoV-2 pandemic starkly illustrates the potential of infectious
diseases to continue to cause significant infections and mortality across the
world. It has also focused attention on the importance of pathogen-induced mor-
tality after active infection (e.g. [1–5]), i.e. post-infection mortality (hereafter
referred to as ‘PIM’). Thus, to understand the potential future dynamics of SARS-
CoV-2, it is important to characterize the effects of PIM on epidemic dynamics.
In a broader context, this current observation of PIM for SARS-CoV-2 is part of a
wider body of work that examines the long-term impact of infections on hosts.
For example, historical findings suggest elevated later-life mortality due to airborne
pathogens encountered early in life [6]. Additionally, studies link inflammation due
to infectious diseases (early in life) with an increase in later-life mortality [7,8].
Despite these effects being widespread, epidemiological models typically only
include virulence during the infectious stage and ignore PIM.

In general, PIM can emerge via (at least) two biological mechanisms. First,
pathogens may cause damage that does not lead to host death during active
infection, but that eventually results in other impacts that shorten host lifespan
(compared to never-infected susceptible individuals). For instance, a number of
other long-term complications from SARS-CoV-2 infections, such as cardiovas-
cular issues [9], indicate potential mechanisms for increased mortality following
recovery. Other examples of pathogens that result in long-term effects following
recovery from infection range from human papilloma virus (HPV) causing
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Figure 1. Formulation of epidemiological model with PIM. (a) Schematic illustration of epidemiological processes that are encompassed in the model framework.
(b) Model flow diagram with rates into/out of each compartment.
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cancer [10], to Epstein–Barr virus potentially causing multiple
sclerosis [11]. Additionally, recent work has shown that immu-
nomodulation due to measles infection increases subsequent
susceptibility to other diseases [12,13]. In very recent work,
Levine et al. [14] examined the impact of multiple viruses on
neurodegeneration and found multiple positive associations.
In turn, these consequences increase the likelihood of PIM.

Second, to successfully clear an infecting pathogen, hosts
may disproportionately allocate resources to mount a robust
immune response. This could then lead to other consequences
that increase mortality after infection, in contrast to those
susceptible individuals that have never been infected. For
example, a parasitic nematode infection can trigger the release
of interleukin 33 (IL-33) as a defence mechanism [15]; in turn,
IL-33 might contribute to inflammatory bowel disease [16],
which might lead to a decreased lifespan [17]. Related trade-
offs have also been invoked to understand the evolutionary
emergence of immune systems (e.g. [18]). Both of these mech-
anisms are very general and there is therefore considerable
potential for PIM to be the common outcome of infection.

While there exists a significant body of epidemiological
modelling literature that includes host mortality during active
infection (often referred to as ‘virulence’) (see, e.g. [19–22])
dynamic impacts of PIMhas generally been overlooked. Busen-
berg & van den Driessche [23] formulated and analysed a
model with additional mortality in the infectious and recovered
(fully immune) states, where individuals return to complete
susceptibility with no additional mortality once host immunity
has waned. However, the epidemiological dynamics that result
from PIM coupled with a return to (potentially partial) suscep-
tibility is unknown. Recent models that include buffered
susceptibility have shown that the strength of immunity can
crucially shape epidemic dynamics [24–27]. In particular,
simple epidemiological models have revealed that the relative
susceptibility to subsequent infection (once a period of com-
plete natural or vaccinal immunity has waned) can govern
medium-term epidemic trajectories [25]. Therefore, a key ques-
tion is to determine the epidemiological impacts of potential
interactions between PIM and host immunity via a reduced
susceptibility to reinfection.

Here, we study the impact of PIM on epidemic dynamics.
We also examine the interplay that emerges if either host
immune responses (that reduce the likelihood of reinfection
upon recovery) are present or if there is disease-induced mor-
tality during active infection. To accomplish this, we leverage
a simple model embedded with PIM, buffered susceptibility
and disease-induced mortality during active infection. We
show that PIM has strong destabilizing effects both on its
own and in combination with virulence during infection
unless acquired immunity is very robust.
2. Model framework
To distill the effect of PIM on epidemiological dynamics, we
use a mathematical model that distinguishes between never-
infected susceptibles and those susceptible individuals that
were previously infected (figure 1a).

In our model, recruited individuals (via birth and immi-
gration, at constant rate L) are first never-infected (and
fully) susceptible (SP). By successful infection, they become
infectious (I), and recover to the ‘secondary’ susceptible
class (SS) at rate γ. In this stage, PIM occurs at rate αS. After
recovery, individuals’ relative susceptibility to (re)infection
is 1, where 0 � 1 � 1. Thus, if infection confers some immu-
nity against reinfection, then 1 , 1. On the other hand, if
immune responses are absent after recovery, then 1 ¼ 1.
Furthermore, αI denotes the rate of infection-induced
mortality during active infection. Finally, μ denotes the rate
of demographic death. Our model is depicted in figure 1b
and formulated as follows:

dSP
dt

¼ L� bSPI � mSP ð2:1aÞ
dI
dt

¼ bIðSP þ 1SSÞ � ðgþ mþ aIÞI ð2:1bÞ

and
dSS
dt

¼ gI � 1bSSI � mSS � aSSS: ð2:1cÞ

Since the total population N = SP + I + SS, it follows that

dN
dt

¼ L� mN � aI I � aSSS, ð2:2Þ

and any three of the SP , I, SS and N equations determine the
dynamics in this system.
3. Epidemiological dynamics
In Model (2.1), it is clear that there is a disease-free equilibrium
P0 with SP,0 ¼ L=m and I0 = SS,0 = 0. Since there is only
one infected compartment, rearranging ð@=@IÞðdI=dtÞjP0

. 0
gives that the basic reproduction number R0 is

R0 ¼ bðL=mÞ
gþ mþ aI

: ð3:1Þ
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Biologically, since L=m is the size of the population when there
is no disease, bðL=mÞ represents the number of new infections
per time in a fully susceptible population. Furthermore, 1/(γ +
αI + μ) is the average time an infectious individual spends in
the I class. Thus, bðL=mÞ=ðgþ mþ aIÞ is the average number
of new infections in a fully susceptible population. Note that
R0 in this model does not depend on PIM (αS).

Intuitively, and as generally with compartmental models in
epidemiology (see [28,29]), R0 ¼ 1 is a key epidemiological
threshold. IfR0 , 1, it follows that P0 is locally asymptotically
stable [29]. On the other hand, if R0 . 1, P0 is unstable and
there is a unique endemic equilibrium bP ¼ ðbSP, bI, bSSÞ (theorem
1; electronic supplementary material).

(a) Endemic equilibrium characteristics
Explicit formulas for the endemic values of bSP, bI and bSS are
given in the electronic supplementary material (see proof of
theorem 1; electronic supplementary material). To guide
our understanding of how PIM affects epidemic dynamics,
we examine how the endemic states in our model vary
with PIM. We find that the equilibrium value of never-
infected susceptibles, bSP, is an increasing function of PIM
(theorem 2; electronic supplementary material). By contrast,
the equilibrium values of infectious and previously infected
susceptible individuals, bI and bSS, decrease as PIM increases
(theorem 2; electronic supplementary material).

In electronic supplementary material, figure S1, we illus-
trate how bSP, bI and bSS change as αS increases, for different
robustness of immunity 1 (electronic supplementary material,
figure S1A–S1C), transmission rate (electronic supplementary
material, figure S1D–S1F) and disease-induced mortality
during active infection (electronic supplementary material,
figure S1G–S1I). Across scenarios, bSP increases and eventually
decelerates as PIM increases (electronic supplementary
material, figure S1A, S1D and S1G). In tandem, while bI
decreases when PIM increases, it seems to eventually also
decelerate (electronic supplementary material, figure S1B, S1E
and S1H).

The impact of other host and pathogen characteristics on
the dependence of bSS on PIM is less clear, as illustrated by
comparisons within and across additional disease parameters
(electronic supplementary material, figure S1C, S1F and S1I).
Thus, the landscape of susceptibility at the population level
crucially depends on the degree of PIM. Additionally, how
this susceptibility landscape changes as PIM increases is
determined by the robustness of immunity, the level of patho-
gen transmission and the degree of disease-induced mortality
during active infection.

In the absence of PIM, i.e. αS = 0, the endemic equilibrium
in Model (2.1) is always locally asymptotically stable
whenever it exists (theorem 3; electronic supplementary
material). Therefore, in the long term, epidemiological
trajectories attain this value.

(b) Post-infection mortality can induce epidemic cycles
If PIM occurs, i.e. αS > 0, determining the stability of the ende-
mic equilibrium is more complicated, and the eigenvalues of
the Jacobian matrix for the SS, I and N equations at the ende-
mic equilibrium can be numerically computed (see remark 1;
electronic supplementary material for the Jacobian matrix).
To titrate the effect of PIM on epidemic dynamics, we begin
our analyses by examining the limiting case with no
immunity following recovery, i.e. 1 ¼ 1, akin to an SIS
model. (In particular, if there is no PIM [i.e. αS = 0], our
model reduces to an SIS model [by setting S = SP + SS].)
We also first assume that there is no mortality during active
infection (αI = 0). For other parameters, we take the recovery
rate g ¼ 1 week�1, i.e. the infection lasts a week, and
m ¼ 0:02 year�1. Finally, we assume that the magnitude of
the recruitment rate L is equal to that of μ. For interpretation,
note that this last assumption means that the state variables
SP(t), I(t), SS(t) and N(t) therefore denote fractions of the popu-
lation in these classes relative to the initial (disease-free)
population size. Thus, the transmission rate β is approximately
equal to R0 in magnitude.

Figure 2 illustrates potential epidemiological dynamics
with PIM for realistic parameter values. As PIM increases,
we find that epidemic cycles can appear. As a function of
the rate of PIM and for different transmission rates, we plot
in figure 2b,d,f,h a pair of eigenvalues (in the complex plane)
of the Jacobian matrix (remark 1; electronic supplementary
material) whose real parts become eventually positive with
large enough PIM (αS indicated by the line colour). Since the
real parts of a pair of eigenvalues become positive, there is a
Hopf bifurcation that gives rise to a limit cycle. Note that,
for each plot, we have selected these values of PIM to highlight
that PIM can lead to oscillations. In figure 2a,c,e,g, we present
corresponding illustrative time series of the epidemiological
dynamics for increasing transmission rates with sufficient
PIM to trigger periodicity (each star symbol in figure 2b,d,f,h
illustrates the value of PIM used for the time series in the
previous panel). In these figures, to illustrate the limit cycle
and because the cycle period can be long, we plot weeks
(52 × 400) + 1 to 52 × 600.

As highlighted by figure 2, low values of PIM are
sufficient to trigger periodicity, particularly for low R0. As
the transmission rate increases in the examples of figure 2,
larger values of PIM are necessary for epidemic cycling;
and the resulting cycles have shorter periods. If PIM is
very strong, the real part of the pair of eigenvalues
becomes negative again (figure 2h). Intuitively, very high
PIM means that the contribution of previously infected indi-
viduals to the susceptible pool is substantially reduced and
eventually is negligible. In the limit of αS→∞, i.e. individuals
die immediately upon ‘recovery’, our model is akin to an
SI epidemiological model. In an SI model, the endemic
equilibrium is locally asymptotically stable whenever it exists.

In figure 3, we illustrate the transition from a stable
endemic equilibrium to periodicity as PIM increases. Since
the resulting cycle is shorter for these parameter values
than for those in figure 2a,c,e, we plot weeks (52 × 400) + 1
to 52 × 500 instead. As seen in figure 3c, the periodic behav-
iour can lead to large changes in I(t) compared with the
endemic equilibrium values for smaller values of αS that
do not lead to cycles. Interestingly, the infection peak of
the cycle appears to be higher for larger PIM (figure 3c).
In electronic supplementary material, figure S2, we also
highlight a limit cycle example in the SS–SP phase plane
(note that in electronic supplementary material, figure S2,
we plot weeks (52 × 300) + 1 to 52 × 500 to illustrate the
behaviour in the SS–SP phase plane prior to (and including)
that visualized in figure 3).

Since disease transmission can often be seasonal, we
examine in electronic supplementary material, figure S3 the
impact of an annually forced transmission rate, i.e. β(t) =
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β0(1 + δsin (2πt/52)). When PIM is weak and the endemic
equilibrium is stable, seasonal variations in transmission
lead to annual cycles (e.g. electronic supplementary material,
figure S3A). However, when PIM enables cycles, we find that
adding a seasonal transmission rate can lead to complex
dynamics (electronic supplementary material, figure S3B–
S3D). In particular, small outbreaks are first immediately fol-
lowed by larger ones; these then abate, slowly decreasing to
very low levels of infection. During this time, the susceptible
pool builds up, thus enabling this process to repeat.
(c) Impacts of other characteristics on epidemic
dynamics with post-infection mortality

To determine the impact of PIM on epidemic dynamics,
we have focused on the simplest SIS-like model that
includes PIM but no disease-induced mortality during
active infection nor immunity following recovery. However,
directly transmitted diseases often deviate from these basic
assumptions, and increased model complexity can lead to
subtle effects on epidemic dynamics. In particular, these
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additional biological complexities can interplay with the
emergent periodicity driven by PIM. We illustrate these
with examples below.
(i) Host immunity
Many diseases do not exhibit classic SIS-type characteristics,
with hosts developing some immunity following recovery.
For example, measles elicits very robust immunity following
recovery [30]. Other pathogens, such as respiratory syncytial
virus or rotavirus, elicit immunity against reinfection, but it is
incomplete [31,32]. In these cases, 1 , 1, i.e. the relative
susceptibility to reinfection is less than to primary infection.
We find that with partial immunity, periodicity can still
occur with PIM (figure 4a–d ).

In the limiting case where host immunity following infec-
tion is ‘perfect’ and no reinfection is possible, i.e. 1 ¼ 0, then
the endemic equilibrium bE is locally asymptotically stable
(theorem 4; electronic supplementary material). This result
implies that for a fixed value of PIM that induces cycling in
the SIS case, robust enough host immunity catalyses a
collapse of the epidemic cycle to the endemic equilibrium.
We illustrate this transition in figure 4a–d. Intuitively,
as immunity increases and the critical ‘collapse’ point
approaches, more frequent epidemics occur (figure 4a), and
the landscapes of susceptibility correspondingly change
(figure 4b,c). If PIM is higher, then periodicity can persist
with stronger immunity, i.e. for smaller values of 1 (see
electronic supplementary material, figure S4).
(ii) Pathogen-induced mortality during active infection
So far, we have focused on settings where there is no patho-
gen-induced mortality during active infection, i.e. αI = 0.
However, pathogens can cause some infectious individuals
to die during infection (see e.g. [19]). Therefore, we next
relax this initial assumption and examine the impact of
death due to disease during infection, i.e. αI > 0, on epidemic
dynamics with PIM.

When there is no PIM, we have proved that the endemic
equilibrium is locally asymptotically stable if R0 . 1 (theorem
3; electronic supplementary material). Surprisingly, we find
that, in the presence of some limited PIM not sufficiently
strong enough to trigger cycling by itself, disease-induced
mortality during active infection can cause a transition from
a stable endemic state to periodicity (figure 4e–h). Thus, this
analysis illustrates that disease-induced death during infection
can heighten the impact of PIM on epidemic dynamics.
4. Discussion and conclusion
Finding periodicity in simple epidemiological models has
long been a research focus (e.g. [33]). For example, with non-
linear incidence rates to model transmission, Liu et al. [34,35]
found that a variety of behaviours are possible, including per-
iodic solutions. In other work, Hethcote et al. [36] proved that
periodicity can occur in SIRS models with three or more
recovered classes. In a generalization of this result, Röst &
Tekeli [37] showed that cycles can emerge (via Hopf
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bifurcation) in SIS models with four or more infected stages.
Furthermore, in a simple mathematical model, Tidbury et al.
[38] found that immune priming can cause periodicity. By
contrast, Busenberg & van den Driessche [23] formulated
an SIRS model with exponential births and deaths, and
with potentially increased mortality in both the infected
and the recovered classes. In that model, the unique endemic
equilibrium for the proportions of individuals in each
compartment is globally asymptotically stable.

Here, we have used a simple mathematical model to show
that PIM in combination with a return to (some) susceptibility
can lead to periodicity. The intuition that underlies this key
result is that PIM interferes with reinfection by impacting the
secondary susceptible pool. When periodicity occurs, we
have shown that the length of the cycles is partly set by the
magnitude of the transmission rate (note that larger rates of
PIM are needed for larger transmission rates). Furthermore,
we found that disease-induced mortality during active infec-
tion can synergistically promote cycling. By contrast, robust
host immunity (captured via a low relative susceptibility to
reinfection) decreases the impact of the secondary susceptible
pool on epidemic dynamics, which can therefore cause the dis-
appearance of the cycling behaviour. Thus, for childhood
infections that are fully immunizing or nearly so, such as
measles, our results show that PIM does not qualitatively
change the dynamics (i.e. no potential periodicity). This may
explain why childhood disease dynamics are so well under-
stood with their dynamics well described by seasonally
forced SIR models. On the other hand, for the dynamics of
infectious diseases that do not elicit sterilizing lifelong immu-
nity after recovery, our work highlights an overlooked
but likely very common driver of complexity, with cycles
emerging. In particular, our findings reveal that ‘hidden’
characteristics of (potentially partially) susceptible individuals,
beyond their potential susceptibility to reinfection, can destabi-
lize epidemic dynamics. Untangling these characteristics will
requires simple models (for intuition) in conjunction with care-
ful data collection and analyses (for calibration). Our work
particularly highlights the need to quantify PIM in infectious
disease systems without robust immunity.

Since there is already evidence that SARS-CoV-2 infec-
tions can lead to elevated mortality after recovery, our
results show that it is important to determine the value
of αS for predictions of future SARS-CoV-2 dynamics.
Furthermore, given that low amounts of PIM can trigger
periodicity, this phenomenon may be widespread for circulat-
ing endemic diseases that potentially contribute to early
mortality. To measure PIM, large cohort studies designed
to study immuno-epidemiology and evolution for SARS-
CoV-2 and beyond (as discussed in [39] for SARS-CoV-2)
could include explicit longer-term morbidity and mortality.

Building on our work, there are a number of other poten-
tial future avenues that should be investigated. In particular,
we have assumed SIS-like dynamics, where individuals are
either immune for life, or are immediately (potentially par-
tially) re-susceptible to infection upon recovery. However,
the impact of a period of ‘perfect immunity’, e.g. strain-
transcending immunity for influenza [40], before a return to
(partial) susceptibility (akin to the SIR(S) model [24,25])
should be determined. Similarly, we have ignored the possi-
bility of a short recovery period after acute infection with
no (or little) risk of additional mortality, with a subsequent
increase in PIM. We have also considered a homogeneous
population and ignored age heterogeneities. Since transmission
patterns could be different across and among different age
groups (e.g. older individuals may participate less in trans-
mission), future work should examine the confluence of
PIM and age structure. Since periodicity emerges in our model
due to the interactionbetweenelevatedmortalityandreinfections,
we conjecture that either a period of complete immunity, a short
recovery period with decreased PIM followed by increased mor-
tality, or age structure (where older, or both younger and older,
individuals have an elevated risk of PIM) would still result in
cycles, provided that this interaction remains present.

Perhaps more importantly, vaccination can have impor-
tant epidemiological (e.g. [41]) and evolutionary effects (e.g.
[42,43]) on pathogen dynamics. Vaccination can prevent (or
decrease the likelihood of) infection via host immune
responses. Additionally, as highlighted by SARS-CoV-2,
vaccines may also potentially decrease the likelihood of
long-term symptoms (i.e. ‘long COVID’) after infection
[44–46], and may even decrease long-term symptoms for
those that were infected before vaccination [47]. Such a
decrease of longer-term symptoms could represent a decrease
in PIM. Thus, the impacts of vaccination on epidemic
dynamics with PIM should be investigated.

In terms of the host response to infection, we have taken
the simplifying assumption that a secondary and beyond
infection is equivalent to a primary infection. However, the
transmissibility and duration of infection may be different.
In particular, if host immunity is present, it is possible that
a reinfection is both less transmissible and shorter in duration
than a primary infection. Future work should examine the
impact of these other forms of immunity on epidemic
dynamics with PIM. Relatedly, we have assumed that suscep-
tibility after recovery from secondary infections and beyond
is identical to susceptibility after recovery to primary infec-
tions. In reality, however, their characteristics may differ.
First, due to prolonged damage from multiple infections,
PIM could increase with the number of infections. Second,
immunity may increasingly become more robust as a host
experiences multiple infections. Thus, incorporating multiple
classes of susceptibility, with potentially different degrees of
PIM, is a fruitful avenue for future research.

While we have formulated a population-level model, a key
future direction is to take a cross-scalemodelling approachwith
within-host kinetics (e.g. [48]). For example, such a model may
be able to untangle the underlying mechanisms that shape
PIM, disease-induced mortality during active infection, and
immunity following recovery. A within-host model could also
reveal how pathogen loads affect the combination of these
characteristics. Other interesting avenues would be to study
the potential interplay between PIM and different functional
forms for births, or dynamic births as in wildlife populations,
and to examine the impact of stochasticity (both as a potential
driver and in local extinction). Finally, while we have focused
on the long-term behaviour in our model, it would be useful
to characterize the transient dynamics (see e.g. [49,50] for
transient dynamics in ecology) that emerge due to PIM.

Overall, our results underline the importance of character-
izing different degrees of susceptibility in populations in
conjunction with the life-history trajectories of individuals
as their susceptibility changes. In particular, we have
illustrated that small changes in the characteristics of suscep-
tible individuals after they recover (i.e. increased mortality)
can result in surprising population-level effects. More
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generally, our work underlines the use of simple epidemiolo-
gical models to obtain qualitative insights. Since the inclusion
of PIM induces cycles in the simplest model formulation, our
work stresses the importance of investigating the impact of
PIM in larger, less tractable models of epidemic dynamics.
In tandem, our results suggest that empirical studies to
quantify PIM are key for predictability.
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