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AbstractAU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:
The management of future pandemic risk requires a better understanding of the mecha-

nisms that determine the virulence of emerging zoonotic viruses. Meta-analyses suggest

that the virulence of emerging zoonoses is correlated with but not completely predictable

from reservoir host phylogeny, indicating that specific characteristics of reservoir host immu-

nology and life history may drive the evolution of viral traits responsible for cross-species vir-

ulence. In particular, bats host viruses that cause higher case fatality rates upon spillover to

humans than those derived from any other mammal, a phenomenon that cannot be

explained by phylogenetic distance alone. In order to disentangle the fundamental drivers of

these patterns, we develop a nested modeling framework that highlights mechanisms that

underpin the evolution of viral traits in reservoir hosts that cause virulence following cross-

species emergence. We apply this framework to generate virulence predictions for viral zoo-

noses derived from diverse mammalian reservoirs, recapturing trends in virus-induced

human mortality rates reported in the literature. Notably, our work offers a mechanistic

hypothesis to explain the extreme virulence of bat-borne zoonoses and, more generally,

demonstrates how key differences in reservoir host longevity, viral tolerance, and constitu-

tive immunity impact the evolution of viral traits that cause virulence following spillover to

humans. Our theoretical framework offers a series of testable questions and predictions

designed to stimulate future work comparing cross-species virulence evolution in zoonotic

viruses derived from diverse mammalian hosts.

Introduction

The devastating impact of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-
CoV-2) pandemic highlights the extreme public health outcomes that can result upon cross-
species emergence of zoonotic viruses. Estimating the relative threats posed by potential future
zoonoses is an important but challenging public health undertaking. In particular, efforts to
predict the virulence of emerging viruses can be complicated since chance will always play a
role in dictating the initial spillover that precedes selection [1], virulence upon emergence may
be maladaptive in novel hosts [2,3], and patterns in available data may be muddled by
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attainment bias if avirulent infections go underreported [1]. Nonetheless, a growing body of
recent work highlights clear associations between reservoir and spillover host phylogeny and
the virulence of a corresponding cross-species infection [4–7]. In many cases, increasing phy-
logenetic distance between reservoir and spillover hosts is correlated with higher virulence
infections [4–6], suggesting that spillover host immune systems may be poorly equipped to tol-
erate viral traits optimized in more distantly related reservoirs. Still, the effect of phylogeny on
spillover virulence appears to supersede that of simple phylogenetic distance [7,8], indicating
that taxon-specific reservoir host immunological and life history traits may be important driv-
ers of cross-species virus virulence. Notably, bats host viruses that cause higher human case
fatality rates than zoonoses derived from other mammals and birds, a phenomenon that can-
not be explained by phylogenetic distance alone [8]. Understanding the mechanisms that select
for the evolution of unique viral traits in bats compared to those selected in other mammalian
reservoirs should enable us to better predict the virulence of future zoonotic threats.

Although the disproportionate frequency with which the Chiropteran order may source
viral zoonoses remains debated [9,10], the extraordinary human pathology induced by many
bat-borne zoonoses—including Ebola and Marburg filoviruses, Hendra and Nipah henipa-
viruses, and SARS, MERS, and SARS-CoV-2 coronaviruses [11]—is not contested. Remark-
ably, bats demonstrate limited clinical pathology from infection with viruses that cause
extreme morbidity and mortality in other hosts [12]. Bats avoid pathological outcomes from
viral infection via a combination of unique resistance and tolerance mechanisms, which,
respectively, limit the viral load accrued during infection (“resistance”) and reduce the disease
consequences of a given viral load (“tolerance”) [13–16]. Viral resistance mechanisms vary
across bat species; those described to date include: receptor incompatibilities that limit the
extent of infection for certain viruses in certain bats [17–20], constitutive expression of antivi-
ral cytokines in some bat species [21], and enhanced autophagy [22] and heat-shock protein
expression [23] in others. Expansion of anti-viral APOBEC3 genes has also been documented
in a few well-studied bat genomes [24,25]. While such robust antiviral immunity would result
in widespread immunopathology in most mammals, bats—as the only mammals capable of
powered flight—have evolved numerous unique mechanisms of mitigating inflammation
incurred during the intensive physiological process of flying [26–28]. These anti-inflammatory
adaptations include loss of PYHIN [29–31] and down-regulation of NLRP3 [32] inflamma-
some-forming gene families, loss of pro-inflammatory genes in the NF-κΒ pathway [24],
dampened interferon activation in the STING pathway [33], and diminished caspase-1 inflam-
matory signaling [34]. In addition to facilitating flight, this resilience to inflammation has
yielded the apparent by-products of extraordinarily long bat lifespans [35] and tolerance of the
immunopathology that typically results from viral infection [11]. Moreover, recent work dem-
onstrates how high virus growth rates easily tolerated in constitutively antiviral bat cells cause
significant pathology in cells lacking these unique antiviral defenses [36]. The extent to which
inflammatory tolerance may modulate the evolution of the viruses that bats host, however,
remains largely unexplored.

Modern theory on the evolution of virulence typically assumes, either explicitly or implic-
itly, that high pathogen growth rates should both enhance between-host transmission and ele-
vate infection-induced morbidity or mortality, resulting in a trade-off between virulence and
transmission [37–39]. Theory further suggests that because viral “tolerance” mitigates viru-
lence without reducing viral load, most host strategies of tolerance should select for higher
growth rate pathogens that achieve gains in between-host transmission without causing dam-
age to the original host [39–41]. The widely touted viral tolerance of bats [11,16,42–44] should
therefore be expected to support the evolution of enhanced virus growth rates, which—though
avirulent to bats—may cause significant pathology upon spillover to hosts lacking unique
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features of bat immunology and physiology. Beyond tolerance, other life history characteristics
unique to diverse reservoir hosts should also impact the evolution of traits in the viruses they
host—with important consequences for cross-species virulence following spillover. However,
to date, we lack a specific theory that examines the relative impact of reservoir host life history
on spillover virulence. Here, we explore the extent to which the immunological and life history
traits of mammalian reservoirs can explain variation in the virulence of zoonotic viruses
emerging into human hosts.

Results

General trends in the evolution of high growth rate viruses

To elucidate how immunological and life history traits of mammalian hosts combine to drive
zoonotic virus virulence, we adopt a nested modeling approach [45], embedding a simple
within-host model of viral and leukocyte dynamics within an epidemiological, population-
level framework (Fig 1). We examine how the life history traits of a primary reservoir drive the
evolution of viral traits likely to cause pathology in a secondary, spillover host—chiefly, a
human. Using our nested model in an adaptive dynamics framework [46], we first express the
conditions—called the “invasion fitness”—which permit invasion of an evolutionarily “fitter,”
mutant virus into a reservoir host system in within-host terms. From this, we derive an expres-
sion for r∗R, the optimal within-host growth rate of a persistent virus evolved at equilibrium

prevalence in its reservoir host; our modeling framework allows us to express r∗R as a function

of within-host traits that we might expect to vary across mammalian reservoirs with divergent
life histories. We deduce that r∗R can, consequently, also be expected to vary as a result of these

life history differences, which modulate the optimization process by which a virus maximizes
gains in between-host transmission (b∗rR) while mitigating virulence incurred on its reservoir

(a∗rR ; Fig 1). From this framework, we next derive an expression for αS, the virulence incurred

by a reservoir-optimized virus immediately following spillover to a novel host. We expressed
αS as a function of the reservoir-optimized virus growth rate (r∗R), combined with spillover host

tolerance of virus pathology (TvS), which we model as proportional to the phylogenetic dis-
tance between reservoir and spillover host (Fig 1).

Our nested modeling approach first follows Alizon and van Baalen (2005) [45] in derivation
of an expression for r∗R, the within-host virus growth rate optimized based on endemic circula-

tion in a reservoir host. The equation for r∗R can be captured as follows:

r∗R à
cRg0R

mR
á

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
c2
Rm2

RgRg0RmRTvRTwRÖvTwR á gRwTvRÜ
p

m2
RÖvTwR á gRwTvRÜ

;

where μR signifies the natural mortality rate of the reservoir host, and all other parameters rep-
resent within-host viral and immune dynamics in a persistently infected reservoir. Thus, cR
corresponds to the rate of virus clearance by leukocytes, g0R is the magnitude of constitutive
immunity, mR is the natural leukocyte mortality rate, and gR is the rate of leukocyte activation
following infection, all in the reservoir host. The parameters v and w correspond, respectively,
to the intrinsic virulence of the virus and its propensity to elicit a damaging inflammatory
response from its host’s immune system—while TvR and TwR respectively represent reservoir
host tolerance to direct virus pathology and to immunopathology. From the above expression,
we explore a range of optimal within-host virus growth rates (r∗R) for viruses evolved in reser-

voir hosts with diverse cellular and immunological parameters (Figs 2, S1 and S2 and Table 1).
We subsequently calculate the corresponding transmission (b∗rR ) and virulence (a∗rR) incurred

by viruses evolved to r∗R in their reservoir hosts, then, following Gilchrist and Sasaki (2002)
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Fig 1. Conceptual mechanistic framework to predict zoonotic virus virulence from reservoir immunology and life history traits. (A) A within-host predator–
prey-like model of leukocyte–virus dynamics is embedded in a population-level transmission model for reservoir hosts. Between-host rates of transmission (brR ) and

virulence (arR ) are expressed as functions of within-host dynamics to derive optimal virus growth rates in the reservoir (r∗R). See S1 File and Table 1 for parameter

definitions and values. (B) Because most mammalian hosts are relatively intolerant of virus pathology and immunopathology, viruses typically evolve low optimal
growth rates in reservoir hosts (r∗R) that minimize virulence incurred on the reservoir (a∗rR ). Low growth rates should also generate relatively low between-host

transmission in the reservoir population (b∗rR ). Zoonotic viruses evolved in a reservoir host spillover to human hosts to generate acute infections. These spillover

infections yield spillover host virulence (αS), which we express as a function of the original growth rate of the reservoir-optimized virus (r∗R), combined with the
spillover host tolerance of direct virus pathology (TvS). We model this latter term as inverse to phylogenetic distance between reservoir and spillover (human) host.
Zoonoses with low r∗R—and those from phylogenetically related hosts (like primates) that result in high human TvS—should generate correspondingly low spillover
virulence (αS) in human hosts. (C) As a result of unique bat virus tolerance, viruses evolved in bat reservoir hosts may optimize at high r∗R values that maximize bat-to-
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[47], model the nascent spillover of a reservoir-evolved virus as acute infection in a secondary
host. In this spillover infection, we assume that the virus retains its reservoir-optimized growth
rate (r∗R) while replicating in the physiological and immunological environment of its novel

spillover host. We express this spillover virulence (αS) as:

aS à VSavg

r∗Rv
TvS
á gSwr∗R

TwS

✓ ◆
;

where VSavg corresponds to the average viral load experienced across the timecourse of an acute

spillover host infection, and gS, TvS, and TwS represent the spillover host analogues of previ-
ously described within-host parameters in the reservoir host equations (Figs 2, S1, and S2 and
Table 1). We present all main text results under assumptions by which tolerance manifests as a
constant reduction of either direct virus-induced pathology (Tv) or immunopathology (Tw).
See S1 File for comparable results under assumptions of complete tolerance, whereby tolerance
completely eliminates virus pathology and immunopathology up to a threshold value, beyond
which pathology scales proportionally with virus and immune cell growth.

Our analyses highlight several critical drivers of virus evolution likely to generate significant
pathology following spillover to a secondary host (Fig 2): higher within-host virus growth rates
(r∗R) are selected in reservoir hosts with higher background mortality (μR), elevated constitutive

immune responses (g0R), more rapid leukocyte activation upon infection (gR), and more rapid
virus clearance by the host immune system (cR). Additionally, higher r∗R viruses are selected in

hosts exhibiting lower leukocyte mortality rates (mR), resulting in longer-lived immune cells.
Critically, higher reservoir host tolerance of both virus-induced pathology (TvR) and immuno-
pathology (TwR) also select for higher r∗R. In keeping with trade-off theory, changes in the

majority of within-host parameters drive corresponding increases in r∗R; b
∗
rR

, and a∗rR , such that

viruses evolved to high growth rates experience high transmission within the reservoir host
population—but also generate high virus-induced mortality (Fig 2). By definition, the 2 mod-
eled mechanisms of tolerance (TvR and TwR) decouple the relationship between transmission
and virulence, permitting evolution of high r∗R viruses that achieve gains in between-host trans-

mission (b∗rR), while simultaneously incurring minimal virulence (a∗rR ) on reservoir hosts. By

extension, we demonstrate that viruses evolving high optimal r∗R values in reservoir hosts incur

substantial pathology upon spillover to secondary hosts (αS). Intriguingly, the virulence that a
virus incurs on its spillover host (αS) accelerates substantially faster than that incurred on its
reservoir host (a∗rR ) at higher values for certain parameters, chiefly, g0R, cR as well as, most criti-

cally, TvR and TwR. This underscores the important capacity of these within-host traits to drive
cross-species virulence in emerging viruses.

Order-specific estimates for optimal virus growth rates evolved in reservoir
hosts

We next apply our model to attempt to make broad predictions of the evolution of optimal
virus growth rates (r∗R) across diverse mammalian reservoir orders, based on order-specific var-

iation in 3 key parameters from our nested model: the reservoir host background mortality

bat transmission (b∗rR ) but cause only minimal pathology in the bat host (a∗rR ). Such viruses are likely to generate extreme virulence upon spillover (αS) to secondary

hosts, including humans, that lack bat life history traits. The virulence of a virus in its spillover host is amplified (αS) in cases where large phylogenetic distance between
reservoir and spillover host results in minimal spillover host tolerance of virus pathology (TvS).

https://doi.org/10.1371/journal.pbio.3002268.g001
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rate (μR), the reservoir host tolerance of immunopathology (TwR), and the reservoir host mag-
nitude of constitutive immunity (g0R). Within-host immunological data needed to quantify
these parameters is lacking for most taxa; thus, we use regression analyses to summarize these
terms across mammalian orders from publicly available life history data. In particular, we use
well-described allometric relationships between mammalian body mass and basal metabolic
rate (BMR) with lifespan and immune cell concentrations [49–53] to proxy μR, TwR, and g0R

across mammalian orders (Figs 3A–C, S4 and S1 Table). From here, we use our nested model-
ing framework to predict optimal virus growth rates (r∗R) across diverse mammalian reservoirs

(Fig 3D). Then, we estimate TvS, the spillover host tolerance of direct virus pathology, as pro-

portional to the time to most recent common ancestor (MRCA) between the human primate
order and each mammalian reservoir order, now focusing our analysis on zoonotic spillover
(Fig 3E and 3F and S1 Table). Finally, we combine estimates for r∗R and TvS to generate a pre-

diction for αS, the virulence of a reservoir-optimized virus in a human spillover host, which we

Fig 2. Optimal virus growth rates—and subsequent spillover virulence—vary across reservoir host immunological and life history parameters.
Rows (top-down) indicate the evolutionarily optimal within-host virus growth rate (r∗R) and the corresponding between-host transmission rate (b∗rR ),

and virus-induced mortality rate (a∗rR ) for a reservoir host infected with a virus at r∗R. The bottom row then demonstrates the resulting virulence (αS) of a

reservoir-optimized virus evolved to r∗R upon nascent spillover to a novel, secondary host. Columns demonstrate the dependency of these outcomes on
variable within-host parameters in the reservoir host: background mortality (μR), magnitude of constitutive immunity (g0R), rate of leukocyte activation
upon viral contact (gR), rate of virus consumption by leukocytes (cR), and leukocyte mortality rate (mR). Darker colored lines depict outcomes at higher
reservoir host tolerance of direct virus pathology (TvR, red) or immunopathology (TwR, blue), assuming no tolerance of the opposing type. Heat maps
demonstrate how TvR and TwR interact to produce each outcome. Parameter values are reported in Table 1. Figure assumes tolerance in the “constant”
form. See S2 Fig for “complete” tolerance assumptions and S3 Fig for changes in αS across a variable range of parameter values for spillover host
tolerance of direct virus pathology, TvS, and immunopathology, TwS. Data and code used to generate all figure panels are available in our publicly
available GitHub repository (github.com/brooklabteam/spillover-virulence-v1.0.0; doi: 10.5281/zenodo.8136864).

https://doi.org/10.1371/journal.pbio.3002268.g002
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can compare against case fatality rates for mammalian zoonoses reported in the literature [4,8]
(Figs 3G and S5–S9).

We first fit a simple linear regression to the response variable of the inverse of maximum
lifespan across diverse mammalian hosts with a single predictor of reservoir host order (Fig 3A
and S2 Table). From this simple model, we can easily make projections that summarize μR, the
reservoir host annual mortality rate, to an average value for each of 26 mammalian orders. We
express μR in units of days-1 on a timescale most relevant to viral dynamics; as a result, even
multiyear differences in maximum longevity do little to drive differences in μR across mamma-
lian orders. Nonetheless, 8 orders (Afrosoricida, Dasyuromorphia, Didelphimorphia, Eulipo-
typhla, Macroscelidea, Notoryctemorphia, Peramelemorphia, and Rodentia) demonstrate
significantly elevated annual mortality rates using the median order mortality rate (Diproto-
dontia) as a reference. By contrast, Carnivora, Cetartiodactyla, Primates, and Perissodactyla
demonstrate significantly reduced annual mortality rates as compared to the same reference
(Fig 3C and S1 and S2 Tables).

Drawing on well-described allometric relationships between mass and lifespan [49] and
more recent literature that links longevity with resilience to inflammation [11,44,57–61], we
next sought to characterize variation in TwR, reservoir host tolerance of immunopathology,
across mammalian orders. Smaller-bodied organisms are hypothesized to be shorter-lived due
to higher metabolic rates, more rapid energy expenditure, and faster accumulation of oxidative
damage, which can manifest as inflammation [62]. We hypothesized, then, that organisms that
are longer-lived than predicted for their body size might be more resilient to inflammatory
stressors—and, therefore, by extension, more tolerant of immunopathology. Building on this

Table 1. Default parameter values for population-level and within-host models.

Parameter Definition Units Value* Scale

bR reservoir host natural birth rate days-1 0.2 population-level

qR reservoir host crowding term to regulate density-dependent growth days-1 0.002 population-level

μyR reservoir host background mortality rate days-1 1
20∗365

population-level

gy0R reservoir host magnitude of constitutive immunity
(rate of baseline neutrophil supply)

days-1 .3 within-host

gR rate of leukocyte activation by virus days-1 0.9 within-host

cR rate of virus consumption by leukocyte days-1 0.5 within-host

mR background mortality rate for leukocytes days-1 1
21

within-host

z scaling factor translating within-host viral load to between-host transmission rate days-1 0.2 within-host

w intrinsic virus propensity to elicit inflammatory immune response from host leukocytes-1 1 within-host

v intrinsic virus virulence virions-1 1 within-host

TwR
† reservoir host tolerance of immunopathology

(constant or complete)
unitless variable

constant: 1 − 2
complete: 0 − 1

within-host

TvR reservoir host tolerance of virus pathology
(constant or complete)

unitless variable
constant: 1 − 2
complete: 0 − 1

within-host

TvS
† human tolerance of viral pathology

(constant or complete)
unitless variable

constant: 1 − 2
complete: 0 − 1

between-host spillover

*Value column gives parameter values fixed in Figs 2 and S2, excepting instances when parameter was modulated along the x-axis or internally (TwR, TvR) as indicated in

the figure legend. Parameter values are comparable to the ranges explored in Miller and colleagues [40] and Boots and colleagues [48].
†Parameters μR, g0R, TwR, and TvS were modeled as functions of mammalian order-specific life history traits in Figs 3 and S4–S9, as outlined in the Methods.

https://doi.org/10.1371/journal.pbio.3002268.t001
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Fig 3. Reservoir host life history traits predict evolution of zoonotic virus virulence. (A) Variation in log10 maximum lifespan (y-axis, in years) with log10 adult body
mass (x-axis, in grams) across mammals, with data derived from Jones and colleagues [54] and Healy and colleagues [55]. Points are colored by mammalian order,
corresponding to legend. Black line depicts predictions of mammalian lifespan per body mass, summarized from fitted model (but excluding random effect of
mammalian order), presented in S2 Table. (B) Baseline neutrophil concentrations (y-axis, in 109 cells/L) per mass-specific metabolic rate (x-axis, in W/g) across
mammals, with data from Jones and colleagues [54] and Healy and colleagues [55] combined with neutrophil concentrations from Species360 [53]. Black line projects
neutrophil concentration per mass-specific metabolic rate (excluding random effects of mammalian order), simplified from fitted model presented in S2 Table. (C)
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hypothesis, we scale TwR after order-level deviations in lifespan as predicted by body mass. To
this end, we fit a linear mixed effect regression with a random effect of host order to the log10

relationship of lifespan (in years) as predicted by body size (in grams), again spanning data
representing 26 diverse mammalian orders. From this, we identify 5 orders (Carnivora, Chir-
optera, Cingulata, Monotremata, and Primates) with significantly longer lifespans than pre-
dicted by body size—which scale to enhanced estimates for TwR. By contrast, we identify 8
orders (Afrosoricida, Cetartiodactyla, Dasyuromorphia, Didelphimorphia, Eulipotyphla,
Notoryctemorphia, Peramelemorphia, and Rodentia) with significantly shorter lifespans than
predicted by body size, which scale to lower value estimates for TwR (Figs 3A, 3C, S4 and S1
and S2 Tables). Because the same data on host lifespan are included in both estimation of μR
and TwR, order-level estimates for TwR largely mirror those for μR—such that longer-lived
orders are modeled with low values for annual mortality rate and high values for tolerance to
immunopathology (and vice versa). However, because mass is not factored into estimation of
μR, these parameters diverge in select cases: for example, we estimate mid-range mortality
rates for order Chiroptera, as compared with other mammals, but very high values for TwR

becase Chiropteran lifespans—though not remarkably long at face value—far exceed those pre-
dicted by body size. By contrast, we estimate low values for both μR and TwR for order Cetartio-
dactyla, as hosts in this order are long-lived but less long-lived than predicted for body size.

Finally, we fit another linear mixed effect regression with a random effect of host order to
the log10 relationship of baseline circulating neutrophil concentration (in 109 cells/L) as pre-
dicted by mass (in grams) and BMR (W); these data spanned only 19 mammalian orders (Fig
3B). From this, we identify a significant positive association between the orders Chiroptera
and Monotremata and the response variable of baseline neutrophil concentration, indicating
that species in these orders may have more enhanced constitutive immune responses than pre-
dicted by mass-specific BMR (Fig 3C). The orders Cetartiodactyla, Dasyuromorphia, Diproto-
dontia, and Scandentia, by contrast, show significant negative associations, representing lower
baseline neutrophil concentrations than predicted per mass-specific BMR. We scale these
order-level effects to correspondingly high and low estimates for g0R, the within-host parame-
ter representing the magnitude of reservoir-host constitutive immunity in our nested model-
ing framework (Figs 3B, 3C, S4 and S1 and S2 Tables).

Order-level parameters for nested modeling framework were derived from fitting of linear models and linear mixed models visualized here and presented in S4 Fig and S2
Table to data from (A) and (B). Average annual mortality rate (μR) was predicted from a linear regression of species-level annual mortality (the inverse of maximum
lifespan), as described by a predictor variable of host order; tolerance of immunopathology (TwR) was derived from the scaled effect of host order on the linear mixed
effects regression of log10 maximum lifespan (in years) by log10 mass (in grams), incorporating a random effect of order. The magnitude of constitutive immunity (g0RÜ
was derived from the scaled effect of order on the regression of log10 neutrophil concentration per log10 body mass (in grams), combined with BMR (in W) (S4 Fig and S1
and S2 Tables). Panels shown here give numerical estimates for μR and order-level effects from fitted models that were scaled to numerical values for TwR and g0R, as
presented in S4 Fig (S1 Table). Red and blue colors correspond to, respectively, significantly positive or negative order-level partial effects from these regressions. (D)
Reservoir-host estimates for μR, TwR, and g0R were combined in our modeling framework to generate a prediction of optimal growth rate for a virus evolved in a host of
each mammalian order (r∗R). Here, point size corresponds to the average number of species-level data points used to generate each of the 3 variable parameters impacting
r∗R, as indicated in legend. (E) Phylogenetic distance from Primates (in millions of years, indicated by color) on a timescaled phylogeny, using data from TimeTree [56].
(F) An order-level estimate for the nested model parameter, TvS, the spillover human host tolerance of pathology induced by a virus evolved in a different reservoir order,
was estimated as the scaled inverse of the phylogenetic distance shown in (E) (S4 Fig and S1 Table). (G) Reservoir-host predictions of optimal virus growth rates (r∗R) from
(D) were combined with human spillover host estimates of tolerance for direct virus pathology (TvS) from (F) in our nested modeling framework to generate a prediction
of the relative spillover virulence (αS) of a virus evolved in a given reservoir host order immediately following spillover into a secondary, human host. Here, the left panel
visualizes predictions from our nested modeling framework, using order-specific parameters for μR, TwR, g0R, and TvS (S1 Table). The right panel depicts relative human
αS estimates derived from case fatality rates and infection duration reported in the zoonotic literature [8]. For the left panel, point size corresponds to the average number
of species-level data points used to generate each of the 4 variable parameters impacting αS. For the right panel, point size indicates the total number of independent host–
virus associations from which virulence estimates were determined. In (C), (D), and (G), 95% confidence intervals were computed by standard error; in (G) for the left
panel, these reflect the upper and lower confidence intervals of the optimal virus growth rate in (D). See S1 Table for order-level values for r∗R, μR, TwR, g0R, and TvS and
Table 1 for all other default parameters involved in calculation of αS. Sensitivity analyses for zoonotic predictions are summarized in S5–S9 Figs and S3 Table. Data and
code used to generate all figure panels are available in our publicly available GitHub repository (github.com/brooklabteam/spillover-virulence-v1.0.0; doi: 10.5281/
zenodo.8136864).

https://doi.org/10.1371/journal.pbio.3002268.g003
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From life history-derived estimates for μR, TwR, and g0R, we next generate a prediction of

the optimal growth rate of a virus evolved in a reservoir host r∗R
� �

for each of 19 distinct mam-

malian orders for which we possess the full suite of proxy data for all 3 variable within-host
parameters (Fig 3D). In keeping with results from our general model (Fig 2), we predict the
evolution of high r∗R viruses from reservoir orders exhibiting high μR, TwR, and/or g0R. Because

our nested model expresses parameters in timesteps most relevant to viral dynamics (days),
differences in mortality rates across mammalian orders—though substantial on multiyear
timescales of the host—have limited influence on downstream predictions of differences in the
evolution of virus growth rates. This result echoes prior observations from Fig 2, which
showed reduced sensitivity of r∗R to realistic variation in the magnitude of μR, as compared with

other parameters. As a result, we ultimately recover the highest predicted optimal growth rates
for viruses evolved in the orders Chiroptera and Monotremata, which exhibit both long life-
spans per body size (corresponding to high estimates for TwR) and high baseline neutrophil
concentrations (corresponding to high estimates for g0R). Data are particularly sparse, how-
ever, for order Monotremata, for which complete records are only available for 2 species (the
platypus and the short-beaked echidna). As a result, predictions for this order should be inter-
preted with caution. More data, particularly for baseline neutrophil concentrations, will be
needed to evaluate the extent to which these predictions hold across all 5 extant species in the
Monotremata order. Additionally, we predict the evolution of the lowest growth rate viruses in
reservoir hosts of the orders Scandentia, Cetartiodactyla, Diprotodontia, and Dasyuromorphia,
all of which demonstrate significantly low estimates for the magnitudes of constitutive immu-
nity and 2 of which (Cetartiodactyla, Dasyuromorphia) also demonstrate significantly low esti-
mates for tolerance of immunopathology.

Estimating zoonotic virus virulence in spillover human hosts

After establishing optimal growth rates for viruses evolved in diverse reservoir host orders (r∗R),

we subsequently model the corresponding “spillover virulence” (αS) of these viruses following
emergence into a human host. Zoonotic spillovers are modeled as acute infections in the
human, and virulence is calculated while varying only the growth rate of the spillover virus
(r∗R) and the human tolerance of direct virus pathology (TvS) between viruses evolved in differ-

ing reservoir orders. We vary this last parameter, TvS, to account for any differences in virus
adaptation to reservoir host immune systems that are not already captured in estimation of
reservoir host TwR and g0R. TvS is thus computed as the inverse of the scaled time to MRCA for
each mammalian reservoir host order from Primates (Figs 3E, S4 and S1 and S2 Tables), such
that we estimate low human tolerance to viruses evolved in phylogenetically distant orders
(e.g., monotreme and marsupial orders), and high human tolerance to viruses evolved in Pri-
mate and Primate-adjacent orders. In general, the modulating effects of TvS do little to alter
virulence rankings of zoonotic viruses from those predicted by raw growth rate (r∗R) alone—

with the highest spillover virulence predicted from viruses evolved in orders Monotremata
and Chiroptera and the lowest spillover virulence predicted from viruses evolved in orders
Cetartiodactyla and Scandentia (Fig 3D and 3G). Notably, modulating TvS enhances predic-
tions of spillover virulence for some marsupial clades (Peramelemorphia, Dasyuromorphia,
Diprotodontia) relative to eutherian orders with similar predicted r∗R values. This results in

dampened predicted spillover virulence for the eutherian order Perissodactyla as compared
with marsupial orders Dasyuromorphia and Diprotodontia, despite lower predicted r∗R values

for the latter 2 clades (Figs 3D, 3G, and S5). Similarly, this elevates spillover virulence predic-
tions for Peramelemorphia above Eulipotyphla, Afrosoricida, and Hyrocoidea, despite higher
predicted r∗R in the 3 eutherian orders (Figs 3D, 3G, and S5).
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Comparing predictions of spillover virulence by reservoir order with
estimates from the literature

Since parameter magnitudes estimated from life history traits are largely relative in nature, we
scale predictions of spillover virulence (αS) by reservoir order in relative terms to compare
with estimates gleaned from the zoonosis literature [8] (Figs 3G and S5–S9). For 8 reservoir
orders (Chiroptera, Eulipotyphla, Primates, Carnivora, Rodentia, Diprotodontia, Perissodac-
tyla, and Cetartiodactyla), we are able to fit a simple linear regression comparing the relative
virulence of zoonoses derived from each order as reported from case fatality rates in the litera-
ture [4,8] versus those predicted by our nested modeling approach (S6 and S8 Figs and S3
Table). Our nested modeling framework recovers available case fatality rate data well, yielding
an R2 value of 0.57 in the corresponding regression of observed versus predicted values (S6 Fig
and S3 Table). Critically, we successfully recover the key result from the zoonosis literature:
bat-derived zoonoses yield higher rates of virus-induced mortality upon spillover to humans
(αS) than do viruses derived from all other eutherian mammals (Figs 3G and S5–S8). In gen-
eral, high estimates for TwR, μR, and g0R, and low estimates for TvS predict high spillover viru-
lence to humans (αS). Bats demonstrate uniquely long lifespans for their body sizes and
uniquely enhanced constitutive immune responses [21] as compared with other taxa; when
combined, as in our analysis, to represent high TwR and high g0R, these reservoir host traits ele-
vate predicted r∗R and αS beyond all other eutherian orders (Fig 3D and 3G).

Evaluated against the data [4,8], our model overpredicts cross-order comparative virulence
rankings for viruses evolved in order Eulipotyphla (Figs 3G and S6), largely as a result of our
parameterization of high values for annual mortality rate (μR) and correspondingly low values
for tolerance of immunopathology (TwR) in this order. In addition, our model underpredicts
virulence for Carnivora-derived viruses, based on within-host parameter estimates largely
inverse to those recovered for Eulipotyphla (e.g., low μR and high TwR). We are able to resolve
this underprediction of Carnivora virulence when excluding rabies lyssavirus from data com-
parisons [4,8] (S8 Fig); though most rabies zoonoses are sourced from domestic dogs, lyssa-
viruses are Chiropteran by origin [63], and viral traits responsible for rabies’ virulence may
reflect its bat evolutionary history more than that of any intermediate carnivore host. Nonethe-
less, while excluding rabies from comparison improves recovery of literature-estimated relative
virulence of Carnivora-derived viruses, it somewhat destabilizes predictions for other orders,
such that the overall performance of the model is largely equivalent as to when comparing
against all available data (S8 Fig; R2 = 0.57).

In all cases, our model successfully reproduces estimates of significantly lower virulence
incurred by zoonotic viruses evolved in Cetartiodactyla hosts as compared with all other orders
considered [8]. While previous work suggested that low observed virulence for Cetartiodacty-
lan zoonoses might result from overreporting of avirulent zoonoses in domestic livestock with
frequent human contact [8], our analysis indicates that viral zoonoses emerging from Cetartio-
dactylan hosts may truly be less virulent to humans. Our mechanistic framework demonstrates
that reduced tolerance of immunopathology (manifest as shorter lifespans than predicted by
body size) and limited constitutive immune responses identified in Cetartiodactylan hosts may
drive the evolution of low growth rate viruses that cause correspondingly benign infections fol-
lowing zoonotic emergence. Further research into the extent to which Cetartiodactylans are
impacted by immunopathology, as well as the degree to which low reported baseline neutro-
phil concentrations accurately reflect their innate immunity, is needed to evaluate these pre-
dictions. Quantification of the natural growth rates of Cetartiodactylan-evolved viruses could
offer one means of testing this modeling framework.
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Sensitivity analyses demonstrate that, as previously observed in Fig 2, within-host parame-
ters have unequal impacts on the resulting prediction of spillover virulence in our nested
modeling framework (S9 Fig and S3 Table). Individually profiling TwR, g0R, and TvS while hold-
ing all other parameters constant across host orders is insufficient to recover previously
reported estimates of spillover virulence for zoonoses. Nonetheless profiling g0R—and to a
lesser extent TvS or TwR—while paired with order-specific estimates generated from life history
data for the other 2 parameters greatly improves our recovery of spillover virulence as reported
in the literature (yielding an R2 value of 0.99 from the corresponding regression of observed
versus predicted values; S9 Fig and S3 Table). These findings suggest that no single parameter
in our nested modeling framework underpins observed variation in predicted spillover viru-
lence across reservoir host orders; still, g0R, the magnitude of constitutive immunity attributed
to each reservoir order, appears to modulate these resulting differences to a greater extent than
do TvS and TwR.

Discussion

Our work formalizes a mechanistic hypothesis into the biological processes that underpin
cross-species patterns in the evolution of virus virulence—a major advance for efforts to evalu-
ate zoonotic risk. Using a simple model of evolving virus in a reservoir host immune system,
we successfully recapture patterns previously reported in the literature that document both the
extreme virulence of viral zoonoses derived from bats and the surprising avirulence of viruses
derived from Cetartiodactylan hosts [8]. Notably, our nested modeling approach produces
rank-ordered predictions of spillover virulence recovered in the literature [8], which are dis-
tinct from those that would result from a scaled inversion of phylogenetic distance alone.
Additionally, our mechanistic approach allows us to make powerful predictions about the vir-
ulence of potential future viral spillovers, using general life history traits across mammals,
including from orders for which zoonoses have not yet been reported [8]. Our model indicates
that we should anticipate the evolution of high growth rate viruses likely to cause virulence
upon cross-species emergence from mammalian hosts with protracted lifespans for their body
size (which we link to molecular mechanisms of immunopathological tolerance [49]), as well
as from hosts with robust constitutive immune responses [36]. While both immunopathologi-
cal tolerance and constitutive immunity should drive the evolution of high growth rate viruses
(Fig 2), only tolerance will do so in the absence of reservoir host pathology, thus highlighting
its importance in driving observed variation in the virulence of viral zoonoses. Notably, while
tolerance reduces pathogen-induced mortality for a single host, tolerant host populations
(with limited checks on virus transmission) may demonstrate high pathogen prevalence. If
imperfectly tolerant hosts still experience some virus-induced pathology, high prevalence can
consequently elevate total population-level mortality for infected hosts—a phenomenon
known as the “tragedy of tolerance” [40,41]. Reports of virus-induced mortality in bats are rare
[64], suggesting that bat virus tolerance is likely very effective.

Intriguingly, our independent evaluations of mammalian life history traits associated with
enhanced longevity (which we model as a proxy for immunopathological tolerance) and
robust constitutive immunity highlight several mammalian orders—chiefly Chiroptera and
Monotremata—which show synergy in both features, offering support for ongoing efforts to
elucidate links between antiaging molecular pathways and antiviral immunity [59,64]. Further
bolstering these hypotheses, we demonstrate the inverse synergy in order Cetartiodactyla,
which exhibits shorter than predicted lifespans per body size but significantly reduced consti-
tutive immune responses as compared with other mammals. Though exciting, our predictions
should nonetheless be regarded with considerable caution, as taxon-specific insights resulting
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from our modeling framework are limited by a dearth of comparative data. For example, we
characterize host tolerance of immunopathology based on deviations in lifespan as predicted
for body size because more directly representative measures of, for example, mammalian anti-
oxidant capacity, are not universally available. In addition, we model variation in reservoir
host immunology almost exclusively based on variation in baseline neutrophil concentrations
across mammalian orders, while holding constant many basic immunological parameters that
almost certainly vary across taxa. Though crude, baseline neutrophil data nonetheless produce
an estimate of enhanced constitutive immune responses for order Chiroptera, which is
robustly supported by independent molecular work describing constitutive interferon expres-
sion in bat cells across multiple species [21,65,66].

All told, this analysis highlights a critical need for compilation of a more complete compara-
tive immunological database that would enable quantification of the many additional within-
host parameters (e.g., leukocyte activation rate, virus consumption rate, leukocyte mortality
rate, and host tolerance of direct virus pathology) represented in our model. Our relative suc-
cess in recapturing broad patterns in spillover virulence, despite data constraints, suggests that
improvements in parameter estimation will almost certainly yield gains in our nuanced under-
standing of the process of cross-species virus emergence. For example, we model host toler-
ance of direct virus pathology as proportional to phylogenetic distance between reservoir and
spillover host, but this term will likely also be modulated by virus tropism—presenting yet
another mechanism by which viral adaptation to reservoir hosts could enhance spillover viru-
lence. Indeed, coronavirus tropism is thought to be localized largely in the gastrointestinal
tract for bat hosts [67,68]: In our modeling framework, higher tolerance of direct virus pathol-
ogy in this tissue should promote the evolution of higher growth rate viruses in bats, which are
likely to cause virulence upon infection of more vulnerable tissues, such as the respiratory
tract, in spillover hosts.

By summarizing within-host traits across mammalian orders, we generalize substantial
within-clade diversity that likely also contributes to heterogeneous patterns in available data.
Bats alone make up more than 1,400 species and account for some 20% of mammalian diver-
sity [69]. Only a subset of bats are long-lived [70], and the magnitude of constitutive immunity
is known to vary across bat species [21,36,44], suggesting considerable variation in the parame-
ters μR, TwR, and g0R, which we here model universally across the entire Chiropteran order.
Thus, we can expect considerable variation in the evolution of virulence for viruses evolved in
diverse species within a given order—which we largely disregard here. As more data becomes
available, our modeling approach could be fine-tuned to make more specific, species-level pre-
dictions of highly virulent disease risk.

Our analysis does not consider the probability of cross species viral emergence, or the
potential for onward transmission of a spilled-over virus in a human host—both of which have
been shown to correlate inversely with phylogenetic distance across mammals [4,8,9]. Indeed,
in keeping with trade-off theory, onward transmission of viruses following spillover is more
commonly associated with low virulence infections [6,8,71,72], suggesting that reservoir orders
highlighted here as potential sources for high virulence pathogens are not necessarily the same
orders likely to source future pandemics. Nonetheless, the possibility for virus adaptation to
gain transmission advantages in human hosts following spillover—as witnessed for Ebola [73]
and SARS-CoV-2 [74]—should not be ignored.

Currently, our work emphasizes the uniqueness of bats as flying mammals and, in conse-
quence, as long-lived, tolerant reservoirs for highly virulent viral zoonoses. For the first time,
we formalize a mechanism for the evolution of bat-derived viruses that demonstrate significant
pathology upon spillover to non-bat, particularly human, hosts. In providing a theoretical
framework to explain this phenomenon, we generate a series of testable questions and
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hypotheses for future comparative immunological studies, to be carried out at in vitro and in
vivo scales. Empirical work should aim to measure rates of immune cell activation, growth,
and mortality across diverse mammalian orders and determine whether natural virus growth
rates are truly higher when evolved in bat hosts. Additional studies should test whether anti-
inflammatory mechanisms in bat cells of different tissues are equally effective at mitigating
virus-induced pathology and immunopathology and whether comparative taxonomic predic-
tions of virus tolerance, resistance, and virulence evolution apply to non-viral pathogens, too.
In light of the emergence of SARS-CoV-2, the field of bat molecular biology has echoed the
call for mechanistic understanding of bat immunology [75], and the NIH has responded [76],
soliciting research on the development of tools needed to test the predictions outlined here.
We offer a bottom-up mechanistic framework enabling the prediction of emerging virus viru-
lence from the basic immunological and life-history traits of zoonotic hosts.

Methods

Evolutionary framework

Population-level dynamics. To evaluate the selective pressures that drive the evolution of
cross-species virus virulence, we first derive an equation for an optimal virus growth rate
expressed in within-host parameters specific to the life history of the reservoir host. To this
end, and in keeping with classic examples of viral maintenance in reservoir populations [77–
83], we first model the dynamics of a persistent infection (I1) in a hypothetical reservoir host,
allowing for the introduction of a rare mutant virus strain which generates distinct infections
in that same host (I2) (see S1 File for more detailed methodology and derivations):

dS
dt
à N bR � qRNÖ Ü � br1R

SI1 � br2R
SI2 � mRS Ö1aÜ

dI1

dt
à br1RSI1 � mRI1 � ar1R I1 Ö1bÜ

dI2

dt
à br2R

SI2 � mRI2 � ar2R
I2: Ö1cÜ

Here, N corresponds to the total host population and S to all hosts susceptible to infection,
such that N = S + I1 + I2. We assume that hosts are born at rate bR and die of natural death at
rate μR, where bR> μR. We further assume that all hosts are born susceptible and that popula-
tion density is regulated via a crowding term (qR) applied to the birth rate. The subscript “R”
on the birth, death, and crowding terms emphasizes that these rates are specific to the reservoir
host. Because we aim to model the evolution of rates that link to within-host dynamics for the
reservoir host, we further represent transmission and virulence as functions of the virus caus-
ing the infection (respectively, brR

and arR), where rR denotes the intrinsic virus growth rate

and is represented distinctly for both the endemic (r1R) and mutant (r2R) virus strains.
With the use of model (1), we perform an evolutionary invasion analysis (see S1 File) and

conclude that the virus should evolve to maximize the ratio of transmission over infection
duration. We refer to this ratio as the invasion fitness:

brR

mR á arR

: Ö2Ü
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Within-host dynamics. Next, to evaluate the within-host selective conditions underpin-
ning the evolution of the virus growth rate (rR), we express the between-host parameters of
transmission (brR ) and virulence (arR) in within-host terms, using a nested modeling approach.

To this end, we establish a simple within-host model representing the dynamics of infection
within each I1 and I2 host as outlined above. We follow Alizon and Baalen (2005) [45] to adapt
a class of Lotka–Volterra predator–prey-like within-host models (reviewed in [84]), to over-
come some constraints of basic predator–prey models of the immune system, chiefly (i) by
allowing leukocytes to circulate in the absence of infection; and (ii) by scaling leukocyte growth
with virion density, independent of direct leukocyte-virion contact [45,85,86]. This results in
the following model, which demonstrates interactions between the virus population (VR) and
the leukocyte population (LR) within each infected reservoir host:

dVR

dt
à rRVR � cRVRLR Ö3aÜ

dLR

dt
à g0R á gRrRVR �mRLR: Ö3bÜ

Here, rR corresponds to the intrinsic virus growth rate, cR corresponds to the attack efficacy
of the immune system upon contact with the virus, and gR signifies the recruitment rate of
immune cells scaled to the virus growth rate. The parameter, g0R, describes the constitutive,
baseline leukocyte recruitment in the absence of infection, and mR gives the natural leukocyte
death rate, all in the reservoir host.

Building from above, we express rates of population-level transmission and virulence
known to depend on within-host dynamics (br1R=r2R

and ar1R=r2R) in terms of their within-host

components, assuming that within-host dynamics are fast relative to host population-level
dynamics and, therefore, converge to the endemic equilibrium (i.e., mRrR> cRg0R).

In line with previous work, we assume transmission to be a linear function of viral load
[45], which we represent as:

brR
à zV∗

R: Ö4Ü

Where z corresponds to a scaling term equating viral load to transmission. We additionally
assume that:

arR
à vrRV∗

R

TvR
á wgRrRV∗

R

TwR
; Ö5Ü

by which infection-induced host mortality (“virulence”) is modeled to result from both virus-
induced pathology (a function of the intrinsic virulence of the parasite, v, multiplied by the
parasite growth rate rRV∗

R) and immunopathology—which we model as proportional to the

leukocyte growth rate (gR) multiplied by the virus growth rate (rRV∗
R) multiplied by the para-

site’s intrinsic propensity for host immune antagonism (w). The terms TvR and TwR corre-
spond to host tolerance of virus-induced pathology and immunopathology, respectively,
under assumptions of “constant” tolerance, by which both virus pathology and immunopa-
thology are reduced by a constant proportion across the course of infection. For constant toler-
ance, we assume that TvR> 1 and TwR> 1. See S1 File for detailed derivations under
assumptions of “complete” tolerance, whereby virus pathology and immunopathology are
completely eliminated up to a threshold value, beyond which pathology scales proportionally
with virus and immune cell growth.
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Now, we rewrite the equations for transmission (4) and virulence (5) in purely within-host
terms:

brR
à zÖmRrR � cRg0RÜ

cRgRrR
Ö6Ü

arR à
vÖmRrR � cRg0RÜ

cRgRTvR
á wÖmRrR � cRg0RÜ

cRTwR
: Ö7Ü

Using these within-host expressions, we then recompute the expression for invasion fitness
(2) in within host terms and determine the optimal intrinsic virus growth rate, which is an evo-
lutionarily stable strategy (ESS) (see S1 File):

r∗R à
cRg0R

mR
á

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
c2
Rm2

RgRg0RmRTvRTwRÖvTwR á gRwTvRÜ
p

m2
RÖvTwR á gRwTvRÜ

: Ö8Ü

In Fig 2, we explore the sensitivity of r∗R, and the corresponding reservoir host population-

level transmission (b∗rR ) and virulence (a∗rR) at that growth rate, across varied values for its

within-host component parameters.
Cross-species dynamics. We next derive an expression to explore the consequences of

spillover of a virus evolved to its optimal growth rate in a reservoir host population—which we
term r∗R—following cross-species emergence into the human population. Contrary to its estab-

lished persistent infection in the reservoir host, we assume that such a virus will produce an
acute infection in the spillover host. To model the dynamics of this acute spillover, we borrow
from Gilchrist and Sasaki [47], who developed a within-host parasite–leukocyte model in
which an immortal leukocyte successfully eradicates the parasite population to near-zero. We
modify their acute model to be more comparable to our chronic infection model ((3a)/(3b))
and to reflect our differing notation for within-host dynamics.

dVS

dt
à r∗RVS � cSVSLS: Ö9aÜ

dLS

dt
à r∗RgSVS: Ö9bÜ

Here, r∗R represents the reservoir-evolved virus growth rate, but all other terms reflect

within-host conditions of the spillover host: VS and LS correspond, respectively, to the spillover
host virus and leukocyte populations, cS is the virus consumption rate upon contact with leu-
kocytes in the spillover host, and gS is the growth rate of the spillover host leukocyte population
in response to virus. We express the model in units of τ, which we assume to be short in com-
parison to the t time units of dynamics in the reservoir host population. Rather than solving
for virus and leukocyte populations at equilibrium (as in the reservoir host population), we fol-
low Gilchrist and Sasaki [47] to instead derive an expression for the virus population at the
peak of infection (VSmax), where we anticipate maximum pathology for the spillover host. We

then extend this prior work to generate an expression for the average viral load (VSavg) in the

spillover host across the timecourse of acute infection, which we can use in comparisons of
spillover host virulence with reported case fatality rates for zoonoses in the literature.
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If we divide Eq (9a) by Eq (9b), we derive a simple time-independent relationship between
virus and leukocyte density:

dVS

dLS
à 1

gS
1� cSLS

r∗R

✓ ◆
: Ö10Ü

If we then let LS (0) = 1, VS (0) = 1, assuming that both virus and leukocyte populations will
be small at τ = 0, we can integrate (10) to establish the following relationship between virus
and leukocyte:

VS à
1

gS
LS �

cS
2r∗RgS

LSÖ Ü
2 á 1� 1

gS
á cS

2r∗SgS
: Ö11Ü

Notice that the above (11) is simply a quadratic equation (see (12) below):

VS LSÖ Ü à �
cS

2r∗RgS
LSÖ Ü

2 á 1

gS
LS á 1� 1

gS
á cS

2r∗SgS

✓ ◆
: Ö12Ü

Now, we can take the derivative of Eq (12) to formulate an expression for VSmax, the maxi-

mum viral load, which should precede the end of acute infection and the point of host recovery
at the maximum duration of infection:

VSmax à
r∗R
gScS
� r∗R

2gScS
á 1� 1

gS
á cS

2r∗RgS
: Ö13Ü

Then, extending previous work [47], we calculate the average viral load by taking the inte-
gral of Eq (12) from VS(0) to VSmax and dividing by the duration of that interval. From this

exercise, we express the average value of Eq (12) as:

VSavg à
r∗R

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
c2
S á 2r∗R gS � 1Ö Ücá r∗R

� �2
q

á r∗R
� �2 á 4r∗R g � 1Ö Ücá 2c2

S

6cSgSr∗R
: Ö14Ü

Now, with this established expression for VSavg , we adapt Eq (7) to reflect the acute within-

host dynamics of “spillover virulence,” which we model (as before) as a combination of mortal-
ity induced from direct virus pathology and from immunopathology. As in the reservoir host
system, we also model the mitigating impact of tolerance on the 2 mechanisms of virulence:

aS à VSavg
r∗Rv
TvS
á gSwr∗R

TwS

✓ ◆
: Ö15Ü

This yields the above expression for “spillover virulence.” Here, the growth rate of the virus
is expressed at its evolutionary optimum evolved in the reservoir host (r∗R), and the virus’s

intrinsic virulence (v) and propensity to elicit an inflammatory immune response (w)
remained unchanged from one host to the next. Inspired by findings in the literature that
report higher virulence in cross-species infections between hosts separated by larger phyloge-
netic distances [8–12], we model spillover host tolerance of virus-induced pathology (TvS) as a
decreasing function of increasing phylogenetic distance between the reservoir and secondary
host. All other immune-related parameters assume characteristics of the spillover host: gS is
the spillover host’s leukocyte growth rate, and TwS corresponds to the spillover host’s tolerance
of immunopathology.
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Order-specific estimates for optimal virus growth rates evolved in reservoir
hosts

Next, we develop estimates for the optimal virus growth rate (r∗R) expected to evolve across a

suite of diverse mammalian reservoir orders. Because within-host immunological data needed
to quantify within-host parameters underpinning the expression for r∗R are largely lacking, we

proxy a few key within-host parameters from well-described allometric relationships for mam-
malian life history data. As such, we here focus on 3 key parameters for which data could be
gleaned from the literature: the reservoir host mortality rate (μR), the reservoir host tolerance
of immunopathology (TwR), and the magnitude of reservoir host constitutive immunity (g0R).

To generate order-level summary terms for μR we fit a simple linear regression to the
response variable of the inverse of maximum lifespan (in days) with a single categorical predic-
tor of host order, using data from Jones and colleagues [54] and Healy and colleagues [55] that
span 26 mammalian orders and 1,060 individual species (Fig 3A). This first model thus takes
the form:

Yij à a0 á
Xk�1

jà1
bjdij á εij; Ö16Ü

where Yij corresponds to natural mortality rate observations for i species belonging to j orders;
α0 is the overall intercept; k indicates the total number of available orders (here, 26); βj is an
order-specific slope; δij indicates observations of i species grouped into j orders; and εij is a
normally distributed error term corresponding to species i within order j. We estimate μR by
simply generating predictions from this fitted model across all 26 mammalian orders repre-
sented in our dataset (Fig 3C and S2 Table).

We next use the same dataset of 1,060 species grouped into 26 mammalian orders to gener-
ate order-level estimates for the reservoir host tolerance of immunopathology (TwR). Here, we
fit a linear mixed effects regression to the log10 relationship of lifespan (in years) as predicted
by body mass (in grams). This second model takes the form:

Yij à a0 á b1X1 á u0j á εij; Ö17Ü

where Yij corresponds to the log10 value of record of maximum lifespan (in years) for i species
belonging to j orders; α0 is the overall intercept; β1 indicates the slope of the fixed predictor of
log10 mass (in grams), here represented as X1; u0j is the order-specific random intercept; and
εij is a normally distributed error term corresponding to species i within order j. To estimate
TwR, we extract the relative partial effects of mammalian order on maximum lifespan per body
size, and then rescale these effects between 1 and 2 for assumptions of constant tolerance and
between 0 and 1 for assumptions of complete tolerance (S1 and S2 Tables). We justify this
approach based on literature that highlights links between antiaging molecular pathways that
promote longevity and those that mitigate immunopathology [11,44,57–61].

Finally, to generate order-level summary terms for the magnitude of constitutive immunity
(g0), we fit another linear mixed effects regression to the relationship between the predictor
variables of log10 mass (in g) and BMR (in W) and the response variable of log10 baseline neu-
trophil concentration (in 109 cells/L), which offers an approximation of a mammal’s constitu-
tive innate immune response. BMR data for this model are derived from Jones and colleagues
[54] and Healy and colleagues [55], while neutrophil concentrations were obtained from zoo
animal data presented in the Species360 database [53]; prior work using this database has dem-
onstrated scaling relationships between body size and neutrophil concentrations across mam-
mals [52]. Paired neutrophil and BMR data were limited to just 19 mammalian orders and 144

PLOS BIOLOGY Reservoir host life history traits shape virulence evolution in zoonotic viruses

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002268 September 7, 2023 18 / 28

https://doi.org/10.1371/journal.pbio.3002268


species. Our model also includes a random effect of host order, resulting in the following form:

Yij à a0 á b1X1 á b2X2 á u0j á εij; Ö18Ü

where Yij corresponds to the log10 baseline neutrophil concentrations (in 109 cells/L) for i spe-
cies belonging to j orders; α0 is the overall intercept; β1 indicates the slope of the fixed predictor
of log10 mass (in grams), here represented as X1; β2 indicates the slope of the fixed predictor of
BMR (in W), here represented as X2; u0j is the order-specific random intercept; and εij is a nor-
mally distributed error term corresponding to species i within order j. Using a similar
approach as that employed above for TwR, we estimate g0 by extracting the relative partial
effects of mammalian order on neutrophil concentration per mass-specific BMR, then rescale
these effects between 0 and 1. Because we estimate significantly positive partial effects between
the orders Chiroptera and Monotremata and baseline neutrophil concentration (Fig 3C), this
generates correspondingly high estimates of g0R for these two orders (S4 Fig and S1 Table).

Using these order-level summary terms for μR, TwR, and g0R, we then generate an order-
level prediction for r∗R across all mammalian host orders, following Eq (8) (Fig 3D). All other

parameters (cR, gR, mR, w, v, and TvR) are held constant across all taxa at values listed in
Table 1.

Estimating zoonotic virus virulence in spillover human hosts

Once we have constructed an order-level prediction for r∗R, we explore the effects of these reser-

voir-evolved viruses upon spillover to humans, following Eq (15). As when computing viru-
lence for the reservoir host population, we hold immunological parameters,cS, gS, and mS

constant in humans (at the same values listed above) due to a lack of informative data to the
contrary. Then, to generate an order-level estimate for virus virulence incurred on humans
(αS), we combine our order-level predictions for r∗R with order-specific values for TvS, the

human tolerance of an animal-derived virus, which we scale such that viruses derived from
more closely related orders to Primates are more easily tolerated in humans. Specifically, we
represent TvS as the scaled inverse of the cophenetic phylogenetic distance of each mammalian
order from Primates. No summarizing is needed for TvS because, following Mollentze and
Streicker [10], we use a composite timescaled reservoir phylogeny derived from the TimeTree
database [56], which produces a single mean divergence date for all clades. Thus, all species
within a given mammalian order are assigned identical times to MRCA with the order Pri-
mates. To convert cophenetic phylogenetic distance into reasonable values for TvS, we divide
all order-level values for this distance by the largest observed (to generate a fraction), then sub-
tract that fraction from 2 for assumptions of constant tolerance (yielding TvS estimates ranging
from 1 to 2) and from 1 for assumptions of complete tolerance (yielding TvS estimates ranging
from 0 to 1).

We then combine reservoir host order-level predictions for r∗R with these estimates for

human tolerance of virus pathology (TvS) to generate predictions of the expected spillover viru-
lence of viral zoonoses emerging from the 19 mammalian orders for which we possess com-
plete data across the 4 variable parameters (μR, TwR, g0R, and TvS). We scale these αS estimates
—and their 95% predicted confidence intervals—in relative terms (from 0 to 1) to compare
with estimates from the literature.

Comparing predictions of spillover virulence by reservoir order with
estimates from the literature

To compare estimates of spillover virulence generated from our nested modeling approach
(αS) with estimates from the literature, we follow Day (2002) [87] to convert case fatality rates
of viral zoonoses in spillover human hosts (CFRS) reported in the literature [8] to empirical
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estimates of αS for each mammalian order, using data on the duration of human infection
(DIS) for each viral zoonosis. For this purpose, we collected data on DIS by searching the pri-
mary literature; raw data for infection durations and associated references are reported in our
publicly available GitHub repository (github.com/brooklabteam/spillover-virulence-v1.0.0;
doi: 10.5281/zenodo.8136864). Briefly, Day (2002) [13] notes that the equation for case fatality
rate in the spillover host (CFRS) takes the form:

CFRS à
aS

aS á sS
; Ö19Ü

where σS corresponds to the recovery rate from the spilled-over virus in the human host. We
also note that the total duration of infection, DIS, is given by:

DIS à
1

aS á sS
: Ö20Ü

Therefore, we translated human case fatality rates of viral zoonoses (CFRS) into estimates of
spillover virulence (αS) using the following equation:

aS à
CFRS

DIS
: Ö21Ü

To obtain a composite order-level prediction for αS from DIS and CFRS as reported in [8],
we adopt the best-fit generalized additive model (GAM) [88] used by the authors in [8] to sum-
marize CFRS by order and, here, apply it to αS estimates converted from CFRS reported in the
literature (S2 Table). This best-fit GAM estimates the response variable of spillover virulence
(αS) from corresponding predictor variables of reservoir host order, virus family, virus species
publication count (a measure of research effort), spillover type (via bridge host versus direct),
and vector-borne disease status (yes or no). Following [8], we summarize αS at the order-level
from the fitted GAM, excluding the effects of viral family, to yield a literature-derived value for
αS across disparate mammalian orders, against which to compare predictions from our nested
modeling approach. Because the majority of the within-host parameters underpinning αS pre-
dictions in our nested modeling approach (μR, TwR, g0R, and TvS) are quantified only in a rela-
tive fashion, we were unable to compare direct magnitudes of virulence (e.g., in terms of host
death per unit time). To account for this, we rescale αS estimates from both our nested model-
ing approach and from the empirical literature from 0 to 1 and compare the relative rank of
virulence by mammalian order instead. We predict αS for 19 discrete mammalian orders,
though data from the literature are available for only 8 orders against which to compare.

Finally, because bats are the most likely ancestral hosts of all lyssaviruses [63], and it may be
more appropriate to class carnivores as “bridge hosts” for rabies, rather than reservoirs (as the
authors discuss in Guth and colleagues (2022) [8]), we recompute literature-derived estimates
of relative αS by fitting the same GAMs (S2 Table) to a version of the dataset excluding all
entries for rabies lyssavirus. We rescale these new estimates of spillover virulence between 0
and 1 and compare them again to predictions from our nested modeling approach.

To quantitatively evaluate the extent to which our nested model accurately recaptures esti-
mates of relative spillover virulence (αS) recovered from the literature, we fit a simple linear
regression to the relationship between observed and predicted virulence across the 8 mamma-
lian orders for which we possess comparative data (S6 and S8 Figs and S3 Table). We then
determine the sensitivity of our predictions for αS across reservoir orders to changes in the
parameters we estimated from the literature. Because reservoir host natural mortality rate (μR)
has minimal influence on optimal virus growth rates (r∗R)—and because we assume mortality
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data to be the most likely to be accurately reported in the literature—we focus this sensitivity
analysis on the extent to which variation in estimation of reservoir host tolerance of immuno-
pathology (TwR), reservoir host magnitude of constitutive immunity (g0R), and spillover host
tolerance of reservoir-derived virus pathology (TvS) impacts the resulting prediction for spill-
over virulence (αS) (S9 Fig and S3 Table). To this end, we undertook 2 different analyses: first,
we replaced order-specific values of TwR, g0R, and TvS with constant values across all orders
and profiled each of these 3 parameters in turn across a range of reasonable values; our aim
here was to determine whether perturbation of a single parameter could replicate αS estimates
from the literature. Because this single parameter modulation was largely unsuccessful in
recapturing order-specific differences in αS, we next individually profiled TwR, g0R, and TvS in
turn while paired with life history-derived, order-specific values for the other 2 parameters, as
presented in the main text (S9 Fig and S3 Table). To quantify the impact of this profiling on
the accuracy with which we estimated spillover virulence across orders, we refit linear regres-
sions of observed versus predicted spillover virulence using both parameter profiling
approaches (S9 Fig and S3 Table).

Supporting information

S1 Fig. Pairwise invasibility plots demonstrate optimal viral growth rate, under low and
high tolerance conditions. Invading growth rates (rR2) will displace resident growth rates
(rR1) at values indicated by the shaded regions. Reservoir host tolerance of immunopathology
(TwR) and tolerance of direct virus pathology (TvR) are both modeled as low in left column (0.5
and 10 for row 1 and 2, respectively) and high in right column (0.97 and 100 for row 1 and 2),
assuming a complete (row 1) or a constant form (row 2). For this visualization, rR1 and rR2

span from 3.18 to 3.5. All other parameters involved in computation of r∗R (see S1 File equa-

tions [25,26]) were fixed at values listed in Table 1 (main text). Data and code used to generate
all figure panels are available in our publicly available GitHub repository (github.com/
brooklabteam/spillover-virulence-v1.0.0; doi: 10.5281/zenodo.8136864).
(PNG)

S2 Fig. Optimal virus growth rates—and subsequent spillover virulence—vary across reser-
voir host immunological and life history parameters. Figure replicates Fig 2 (main text)
under assumptions of complete tolerance. Rows (top-down) indicate the evolutionarily opti-
mal within-host virus growth rate (r∗R) and the corresponding transmission rate (b∗rR), and

virus-induced mortality rate (a∗rR) for a reservoir host infected with a virus at r∗R. The bottom

row then demonstrates the resulting virulence (αS) of a reservoir-optimized virus evolved to r∗R
upon nascent spillover to a novel, secondary host. Columns demonstrate the dependency of
these outcomes on variable reservoir host parameters: background mortality rate (μR), extent
of constitutive immunity (g0R), leukocyte activation rate upon viral contact (gR), virus con-
sumption rate by leukocytes (cR), leukocyte mortality rate (mR). Darker colored lines depict
outcomes at higher values for reservoir host tolerance of virus pathology (TvR, red) or immu-
nopathology (TwR, blue), assuming no tolerance of the opposing type. Heat maps demonstrate
how TvR and TwR interact to produce each outcome. Outcome ranges differ between lineplots
(y-axes) and heat maps (scale bars). Parameter values are listed in Table 1 (main text). Data
and code used to generate all figure panels are available in our publicly available GitHub repos-
itory (github.com/brooklabteam/spillover-virulence-v1.0.0; doi: 10.5281/zenodo.8136864).
(PNG)

S3 Fig. Spillover host tolerance of direct virus pathology and immunopathology modulate
resulting virulence of spilled-over viruses. Virulence of spilled-over virus (αS) across a range
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of values for 2 mechanisms of tolerance in the spillover host: tolerance of direct virus pathology
(TvS, left column) and tolerance of immunopathology (TwS, right column). Results are
expressed under assumptions of constant tolerance (top panels) and complete tolerance (bot-
tom panels). In main text results, TwS is held constant for all predictions of spillover virulence
but TvS is varied proportionally to the inverse time to MRCA between reservoir and spillover
host. Data and code used to generate all figure panels are available in our publicly available
GitHub repository (github.com/brooklabteam/spillover-virulence-v1.0.0; doi: 10.5281/zenodo.
8136864).
(PNG)

S4 Fig. Parameter estimates for life history traits across mammalian orders. Model param-
eter estimates for (A) reservoir-host background mortality (μR), (B) tolerance of immunopa-
thology (TwR) (left y-axis: constant tolerance assumptions; right y-axis: complete tolerance
assumptions), (C) magnitude of constitutive immunity (g0R), and (D) magnitude of human
tolerance of virus pathology for a virus evolved in a disparate mammalian reservoir (TvS). Esti-
mates are derived from (A) linear model predictions of maximum lifespan at the order level,
(B) the scaled effect of order on a linear mixed model prediction of lifespan per body size, (C)
the scaled effect of order on a linear mixed model prediction of neutrophil concentration for
mass-specific BMR, and (D) the magnitude of human tolerance of virus pathology for a virus
evolved in a disparate mammalian reservoir (TvS), corresponding to data presented in Fig 3E
(main text). Default parameter values involved in the estimation process are summarized in
Table 1 (main text), and estimated parameters and corresponding 95% confidence intervals by
standard error are presented in S1 Table. See main text Methods and our open-source GitHub
repository for a detailed walk-through of the parameter estimation process. Data and code
used to generate all figure panels are available in our publicly available GitHub repository
(github.com/brooklabteam/spillover-virulence-v1.0.0; doi: 10.5281/zenodo.8136864).
(PNG)

S5 Fig. Optimal virus growth rates (r∗R) and subsequent spillover virulence (αS) for viruses

evolved in diverse mammalian reservoirs. Figure replicates Fig 3D and 3G from the main
text, here under assumptions of complete tolerance. Panel (A) depicts optimal r∗R across 19

mammalian orders, for which we were able to estimate order-level specific values for the 3
within-host reservoir parameters which we varied in our analysis (μR, TwR, and g0R; visualized
in S4 Fig), while panel (B) depicts the resulting estimation of relative spillover virulence (αS),
which also relies on order-specific values for the spillover host tolerance of direct virus pathol-
ogy (TvS). Taxa in panels (A) and (B) are arranged in descending order from highest to lowest
predicted values for, respectively r∗R and αS. This order varies slightly from panel (A) to (B), as

highlighted by alluvial flows and discussed in the main text. See S1 Table for order-level values
for r∗R, μR, TwR, g0R, and TvS and Table 1 (main text) for all other parameters involved in calcula-

tion of r∗R and αS. Data and code used to generate all figure panels are available in our publicly

available GitHub repository (github.com/brooklabteam/spillover-virulence-v1.0.0; doi: 10.
5281/zenodo.8136864).
(PNG)

S6 Fig. Comparison of human spillover virulence (αS) as observed in the literature vs. pre-
dicted from nested modeling framework. Figure plots observed vs. predicted spillover viru-
lence for 8 orders from Fig 3G (main text) for which case fatality rates from corresponding
zoonoses are reported in the literature [8]. Panel (A) compares nested modeling predictions
under assumptions of constant tolerance with those from the literature, while panel (B) does
the same under assumptions for complete tolerance. In both cases, a fitted linear regression
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and corresponding R2 value is shown as a quantitative evaluation of model fit to the data.
Dashed lines give the residual of each data point from the regression line. Data and code used
to generate all figure panels are available in our publicly available GitHub repository (github.
com/brooklabteam/spillover-virulence-v1.0.0; doi: 10.5281/zenodo.8136864).
(PNG)

S7 Fig. Comparison of relative human spillover virulence (αS) predictions for zoonoses
from nested life history model with estimates from the literature, excluding rabies.
Figure replicates Fig 3G (main text), respectively, under assumptions of (A) constant and (B)
complete tolerance but excluding rabies lyssavirus from the zoonotic data (right-half of pan-
els). Rank-order predictions of virulence are more consistent with order Carnivora further
down in the rankings. As in Fig 3G, order-specific parameter values for r∗R, μR, TwR, g0R, and

TvS are listed in S1 Table; all other parameters involved in calculation of αS are listed in Table 1
(main text). Data and code used to generate all figure panels are available in our publicly avail-
able GitHub repository (github.com/brooklabteam/spillover-virulence-v1.0.0; doi: 10.5281/
zenodo.8136864).
(PNG)

S8 Fig. Comparison of human spillover virulence (αS) as observed in the literature (exclud-
ing rabies) vs. predicted from nested modeling framework. Plot recapitulates S6 Fig exactly,
but comparisons are drawn from case fatality rates reported in the literature but excluding
rabies lyssavirus, which is often classed as a Carnivora-derived virus, though its evolutionary
origins are found in bats. Removal of rabies improves estimates of virulence for Carnivora-
derived zoonoses as compared with the complete dataset, but resulting linear regression offers
no better fit to the entire dataset than previously shown in S6 Fig. Data and code used to gener-
ate all figure panels are available in our publicly available GitHub repository (github.com/
brooklabteam/spillover-virulence-v1.0.0; doi: 10.5281/zenodo.8136864).
(PNG)

S9 Fig. Sensitivity analysis of individual parameter influence on nested model fit to
observed data. Figure replicates S6 Fig in part with observed spillover virulence (αS) from case
fatality rates reported in the literature [8] depicted on the x-axis and predictions from nested
modeling framework on the y-axis. In all panels, circles correspond to nested modeling predic-
tions of spillover virulence using parameter values recovered from regression analysis of pub-
licly available life history data as presented in the main text, replicating points from S6 Fig.
Projections from nested modeling approach assuming constant tolerance are shown in the top
panels and complete tolerance in the bottom. In lieu of life history-derived parameter values,
squares show αS estimates from nested model using constant, universal values across all orders
for all parameters excepting the parameter profiled in the corresponding column (TwR, TvS, or
g0R). When not profiled, TwR = 1.5 (constant) and 0.5 (complete); TvS = 1.5 (constant) and 0.5
(complete); and g0R = 0.5 for simulations resulting in square points. Finally, triangles give αS

estimates from nested model approach using parameters generated by profiling the parameter
in the corresponding column (TwR, TvS, or g0R), while pairing it with values recovered using
regression analysis the literature for other variable parameters (S1 Table). Lines and corre-
sponding R2 values signify the fit of a simple linear regression of observed vs. predicted αS

across all mammalian orders, where predicted values are generated from nested modeling
approach using: linear regression analysis of life history data for TwR, TvS, and g0R (solid line,
red, same as reported in the main text); profiling TwR, TvS, or g0R while holding constant all
other parameters across orders (thin dashed line); and profiling TwR, TvS, or g0R while using
linear regression estimates from life history data for parameters not being profiled (thick
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dashed line). Data and code used to generate all figure panels are available in our publicly
available GitHub repository (github.com/brooklabteam/spillover-virulence-v1.0.0; doi: 10.
5281/zenodo.8136864).
(PNG)

S1 Table. Order-specific parameter values for within-host nested model.
(PDF)

S2 Table. Model summary outputs for within-host parameter estimation.
(PDF)

S3 Table. Sensitivity analysis and comparison of influence of individual parameter esti-
mates on overall fit of nested model to data.
(PDF)

S1 File. Supplementary Information Text.
(PDF)
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2. André JB, Hochberg ME. Virulence evolution in emerging infectious diseases. Evolution. 2005; 59
(7):1406. PMID: 16153027

3. Bolker BM, Nanda A, Shah D. Transient virulence of emerging pathogens. J R Soc Interface. 2010; 7
(46):811–822. https://doi.org/10.1098/rsif.2009.0384 PMID: 19864267

4. Guth S, Visher E, Boots M, Brook CE. Host phylogenetic distance drives trends in virus virulence and
transmissibility across the animal—human interface. Philos Trans R Soc B. 2019; 374
(1782):20190296. https://doi.org/10.1098/rstb.2019.0296 PMID: 31401961

PLOS BIOLOGY Reservoir host life history traits shape virulence evolution in zoonotic viruses

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002268 September 7, 2023 24 / 28

https://github.com/brooklabteam/spillover-virulence/tree/v1.0.0
https://doi.org/10.5281/zenodo.8136864
https://doi.org/10.5281/zenodo.8136864
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3002268.s010
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3002268.s011
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3002268.s012
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3002268.s013
http://www.ncbi.nlm.nih.gov/pubmed/16153027
https://doi.org/10.1098/rsif.2009.0384
http://www.ncbi.nlm.nih.gov/pubmed/19864267
https://doi.org/10.1098/rstb.2019.0296
http://www.ncbi.nlm.nih.gov/pubmed/31401961
https://doi.org/10.1371/journal.pbio.3002268


5. Farrell MJ, Davies TJ. Disease mortality in domesticated animals is predicted by host evolutionary rela-
tionships. Proc Natl Acad Sci U S A. 2019; 116(16):7911–7915. https://doi.org/10.1073/pnas.
1817323116 PMID: 30926660

6. Mollentze N, Streicker DG, Murcia PR, Hampson K, Biek R. Virulence mismatches in index hosts shape
the outcomes of cross-species transmission. Proc Natl Acad Sci U S A [Internet]. 2020. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/33122433. https://doi.org/10.1073/pnas.2006778117 PMID:
33122433

7. Longdon B, Hadfield JD, Day JP, Smith SCL, McGonigle JE, Cogni R, et al. The causes and conse-
quences of changes in virulence following pathogen host shifts. Schneider DS, editor. PLoS Pathog.
2015 Mar 16; 11(3):e1004728. https://doi.org/10.1371/journal.ppat.1004728 PMID: 25774803

8. Guth S, Mollentze N, Renault K, Streicker DG, Visher E, Boots M, et al. Bats host the most virulent—but
not the most dangerous—zoonotic viruses. Proc Natl Acad Sci U S A. 2022 Apr 5; 119(14):
e2113628119. https://doi.org/10.1073/pnas.2113628119 PMID: 35349342

9. Olival KJ, Hosseini PR, Zambrana-Torrelio C, Ross N, Bogich TL, Daszak P. Host and viral traits predict
zoonotic spillover from mammals. Nature [Internet]. 2017. Available from: http://www.nature.com/
doifinder/10.1038/nature22975.

10. Mollentze N, Streicker DG. Viral zoonotic risk is homogenous among taxonomic orders of mammalian
and avian reservoir hosts. Proc Natl Acad Sci U S A. 2020;1–8. https://doi.org/10.1073/pnas.
1919176117 PMID: 32284401

11. Irving AT, Ahn M, Goh G, Anderson DE, Wang LF. Lessons from the host defences of bats, a unique
viral reservoir. Nature. 2021; 589(842):363–370.

12. Schountz T, Baker ML, Butler J, Munster V. Immunological control of viral infections in bats and the
emergence of viruses highly pathogenic to humans. Front Immunol. 2017; 8:1098. https://doi.org/10.
3389/fimmu.2017.01098 PMID: 28959255

13. Boots M. Fight or learn to live with the consequences. Trends Ecol Evol. 2008; 23(5):245–248.

14. Råberg L, Sim D, Read AF. Disentangling genetic variation for resistance and tolerance to infectious
diseases in animals. Science. 2007; 318(5851):812–814. https://doi.org/10.1126/science.1148526
PMID: 17975068

15. Råberg L, Graham AL, Read AF. Decomposing health: tolerance and resistance to parasites in animals.
Philos Trans R Soc Lond B Biol Sci. 2009; 364(1513):37–49. https://doi.org/10.1098/rstb.2008.0184
PMID: 18926971

16. Mougari S, Gonzalez C, Reynard O, Horvat B. Fruit bats as natural reservoir of highly pathogenic
henipaviruses: balance between antiviral defense and viral tolerance. Curr Opin Virol. 2022 Jun;
54:101228.

17. Ng M, Ndungo E, Kaczmarek M, Herbert AS, Binger T, James R, et al. NPC1 contributes to species-
specific patterns of Ebola virus infection in bats. Elife. 2015; 4:e11785.

18. Starr TN, Zepeda SK, Walls AC, Greaney AJ, Alkhovsky S, Veesler D, et al. ACE2 binding is an ances-
tral and evolvable trait of sarbecoviruses. Nature. 2022 Mar 31; 603(7903):913–918. https://doi.org/10.
1038/s41586-022-04464-z PMID: 35114688

19. Letko M, Miazgowicz K, McMinn R, Seifert SN, Sola I, Enjuanes L, et al. Adaptive evolution of MERS-
CoV to species variation in DPP4. Cell Rep. 2018; 24(7):1730–1737. https://doi.org/10.1016/j.celrep.
2018.07.045 PMID: 30110630

20. Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2
and other lineage B betacoronaviruses. Nat Microbiol. 2020; 5(4):562–569. https://doi.org/10.1038/
s41564-020-0688-y PMID: 32094589

21. Zhou P, Tachedjian M, Wynne JW, Boyd V, Cui J, Smith I, et al. Contraction of the type I IFN locus and
unusual constitutive expression of IFN-α in bats. Proc Natl Acad Sci U S A. 2016 Mar 8; 113(10):2696–
2701.

22. Laing ED, Sterling SL, Weir DL, Beauregard CR, Smith IL, Larsen SE, et al. Enhanced autophagy con-
tributes to reduced viral infection in black flying fox cells. Viruses. 2019; 11(3). https://doi.org/10.3390/
v11030260 PMID: 30875748

23. Chionh YT, Cui J, Koh J, Mendenhall IH, Ng JHJ, Low D, et al. High basal heat-shock protein expression
in bats confers resistance to cellular heat/oxidative stress. Cell Stress Chaperones. 2019; 24(4):835–
849. https://doi.org/10.1007/s12192-019-01013-y PMID: 31230214

24. Jebb D, Huang Z, Pippel M, Hughes GM, Lavrichenko K, Devanna P, et al. Six reference-quality
genomes reveal evolution of bat adaptations. Nature. 2020 Jul 23; 583(7817):578–584. https://doi.org/
10.1038/s41586-020-2486-3 PMID: 32699395

25. Hayward JA, Tachedjian M, Cui J, Cheng AZ, Johnson A, Baker ML, et al. Differential evolution of anti-
retroviral restriction factors in Pteropid bats as revealed by APOBEC3 gene complexity. Teeling E,

PLOS BIOLOGY Reservoir host life history traits shape virulence evolution in zoonotic viruses

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002268 September 7, 2023 25 / 28

https://doi.org/10.1073/pnas.1817323116
https://doi.org/10.1073/pnas.1817323116
http://www.ncbi.nlm.nih.gov/pubmed/30926660
http://www.ncbi.nlm.nih.gov/pubmed/33122433
https://doi.org/10.1073/pnas.2006778117
http://www.ncbi.nlm.nih.gov/pubmed/33122433
https://doi.org/10.1371/journal.ppat.1004728
http://www.ncbi.nlm.nih.gov/pubmed/25774803
https://doi.org/10.1073/pnas.2113628119
http://www.ncbi.nlm.nih.gov/pubmed/35349342
http://www.nature.com/doifinder/10.1038/nature22975
http://www.nature.com/doifinder/10.1038/nature22975
https://doi.org/10.1073/pnas.1919176117
https://doi.org/10.1073/pnas.1919176117
http://www.ncbi.nlm.nih.gov/pubmed/32284401
https://doi.org/10.3389/fimmu.2017.01098
https://doi.org/10.3389/fimmu.2017.01098
http://www.ncbi.nlm.nih.gov/pubmed/28959255
https://doi.org/10.1126/science.1148526
http://www.ncbi.nlm.nih.gov/pubmed/17975068
https://doi.org/10.1098/rstb.2008.0184
http://www.ncbi.nlm.nih.gov/pubmed/18926971
https://doi.org/10.1038/s41586-022-04464-z
https://doi.org/10.1038/s41586-022-04464-z
http://www.ncbi.nlm.nih.gov/pubmed/35114688
https://doi.org/10.1016/j.celrep.2018.07.045
https://doi.org/10.1016/j.celrep.2018.07.045
http://www.ncbi.nlm.nih.gov/pubmed/30110630
https://doi.org/10.1038/s41564-020-0688-y
https://doi.org/10.1038/s41564-020-0688-y
http://www.ncbi.nlm.nih.gov/pubmed/32094589
https://doi.org/10.3390/v11030260
https://doi.org/10.3390/v11030260
http://www.ncbi.nlm.nih.gov/pubmed/30875748
https://doi.org/10.1007/s12192-019-01013-y
http://www.ncbi.nlm.nih.gov/pubmed/31230214
https://doi.org/10.1038/s41586-020-2486-3
https://doi.org/10.1038/s41586-020-2486-3
http://www.ncbi.nlm.nih.gov/pubmed/32699395
https://doi.org/10.1371/journal.pbio.3002268


editor. Mol Biol Evol. 2018 Jul 1; 35(7):1626–1637. https://doi.org/10.1093/molbev/msy048 PMID:
29617834

26. O’Shea TJ, Cryan PM, Cunningham AA, Fooks AR, Hayman DTS, Luis AD, et al. Bat flight and zoonotic
viruses. Emerg Infect Dis. 2014 May; 20(5):741–745. https://doi.org/10.3201/eid2005.130539 PMID:
24750692

27. Thomas BYSP, Suthers RA. The physiology and energetics of bat flight. J Exp Biol. 1972; 57:317–335.

28. Speakman J, Thomas D. Physiological ecology and energetics of bats. In: Kunz T, Fenton M, editors.
Bat ecology. Chicago: University of Chicago Press; 2003. p. 430–90.

29. Zhang G, Cowled C, Shi Z, Huang Z, Bishop-Lilly KA, Fang X, et al. Comparative analysis of bat
genomes provides insight into the evolution of flight and immunity. Science. 2013 Jan 25; 339
(6118):456–460. https://doi.org/10.1126/science.1230835 PMID: 23258410

30. Santillan DM, Lama T, Guti Y, Brown A, Zhao H, Rossiter S, et al. Large-scale genome sampling
reveals unique immunity and metabolic adaptations in bats. Mol Ecol. 2021.

31. Ahn M, Cui J, Irving AT, Wang LF. Unique loss of the PYHIN gene family in bats amongst mammals:
Implications for inflammasome sensing. Sci Rep. 2016; 6(August 2015):21722. https://doi.org/10.1038/
srep21722 PMID: 26906452

32. Ahn M, Anderson DE, Zhang Q, Tan CW, Lim BL, Luko K, et al. Dampened NLRP3-mediated inflamma-
tion in bats and implications for a special viral reservoir host. Nat Microbiol [Internet] 2019; 4(May).
Available from: http://dx.doi.org/10.1038/s41564-019-0371-3 https://doi.org/10.1038/s41564-019-
0371-3 PMID: 30804542

33. Xie J, Li Y, Shen X, Xie J, Li Y, Shen X, et al. Dampened STING-dependent interferon activation in bats.
Cell Host Microbe. 2018; 23:1–5.

34. Goh G, Ahn M, Zhu F, Lee L, Luo D, Irving AT. Complementary regulation of caspase-1 and IL-1 β
reveals additional mechanisms of dampened inflammation in bats. Proc Natl Acad Sci U S A. 2020.

35. Austad SN, Fischer KE. Mammalian aging, metabolism, and ecology: evidence from the bats and
marsupials. J Gerontol. 1991 Mar; 46(2):B47–B53. https://doi.org/10.1093/geronj/46.2.b47 PMID:
1997563

36. Brook CE, Boots M, Chandran K, Dobson AP, Drosten C, Graham AL, et al. Accelerated viral dynamics
in bat cell lines, with implications for zoonotic emergence. Elife. 2020; 9:e48401. https://doi.org/10.
7554/eLife.48401 PMID: 32011232

37. Ebert D, Bull JJ. Challenging the trade-off model for the evolution of virulence: is virulence management
feasible? Trends Microbiol. 2003 Jan; 11(1):15–20. https://doi.org/10.1016/s0966-842x(02)00003-3
PMID: 12526850

38. Alizon S, Hurford A, Mideo N, Van Baalen M. Virulence evolution and the trade-off hypothesis: History,
current state of affairs and the future. J Evol Biol. 2009; 22(2):245–259. https://doi.org/10.1111/j.1420-
9101.2008.01658.x PMID: 19196383

39. Anderson RM, May RM. Coevolution of hosts and parasites. Parasitology. 1982; 85:411–426. https://
doi.org/10.1017/s0031182000055360 PMID: 6755367

40. Miller MR, White A, Boots M. The evolution of parasites in response to tolerance in their hosts: The
good, the bad, and apparent commensalism. Evolution. 2006; 60(5):945. PMID: 16817535

41. Best A, White A, Boots M. The coevolutionary implications of host tolerance. Evolution. 2014 May; 68
(5):1426–1435. https://doi.org/10.1111/evo.12368 PMID: 24475902

42. Randolph HE, Barreiro LB. Holy Immune Tolerance, Batman! Immunity. 2018; 48(6):1074–1076.
https://doi.org/10.1016/j.immuni.2018.05.016 PMID: 29924972

43. Hayman DTS. Bat tolerance to viral infections. Nat Microbiol. 2019; 4(5):728–729. https://doi.org/10.
1038/s41564-019-0430-9 PMID: 31015739

44. Pavlovich SS, Lovett SP, Koroleva G, Guito JC, Arnold CE, Nagle ER, et al. The Egyptian Rousette
genome reveals unexpected features of bat antiviral immunity. Cell. 2018; 173:1–13.

45. Alizon S, van Baalen M. Emergence of a convex trade-off between transmission and virulence. Am Nat.
2005; 165(1537–5323 (Electronic)):E155–E167. https://doi.org/10.1086/430053 PMID: 15937740
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