This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS

Supplementary Influence Maximization
Problem 1n Social Networks

Yapu Zhang ', Jianxiong Guo

Abstract—Due to important applications in viral marketing,
influence maximization (IM) has become a well-studied problem.
It aims at finding a small subset of initial users so that they can
deliver information to the largest amount of users through the
word-of-mouth effect. The original IM only considers a singleton
item. And the majority of extensions ignore the relationships
among different items or only consider their competitive inter-
actions. In reality, the diffusion probability of one item will
increase when users adopted supplementary products in advance.
Motivated by this scenario, we propose a supplementary indepen-
dent cascade (IC) and discuss the supplementary IM problem.
Our problem is NP-hard, and the computation of the objective
function is #P-hard. We notice that the diffusion probability
will change when considering the impact of its supplementary
product. Therefore, the efficient reverse influence sampling (RIS)
techniques cannot be applied to our problem directly even though
the objective function is submodular. To address this issue,
we utilize the sandwich approximation (SA) strategy to obtain
a data-dependent approximate solution. Furthermore, we define
the supplementary-based reverse reachable (SRR) sets and then
propose a heuristic algorithm. Finally, the experimental results
on three real datasets support the efficiency and superiority of
our methods.

Index Terms—Reverse influence sampling (RIS), sandwich
approximation (SA), social networks, supplementary influence
maximization (SIM).

NOMENCLATURE
Notation Description
G=(V,E) Instance of the social network.
n,m Size of nodes set V and edges set E.

Diffusion probability on edge (u, v)
for product A, B.

Diffusion probability on edge (u, v)
for product B when v is A-active.
In-neighbors and out-neighbors of v.

pau,v), ppu,v)
pis(u, v)
Nin (l)), Nout (l))
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Sa Set of seed nodes for product A.

S4 St of initial A-active nodes.

disg , (w, S4) Minimum distance from S4 to w in
graph g.a.

I. INTRODUCTION

OWADAYS, online social media has been integrated
Ninto our daily lives. The users become accustomed
to receiving and sending information through these media
[1], [2]. Therefore, information diffusion in online social
networks has been extensively studied by researchers. The
influence maximization (IM) problem is to find k& users who
can deliver information to the largest amount of users through
word-of-mouth spread [3]. There are two classic models,
namely, independent cascade (IC) and linear threshold (LT)
models. Although the IM problem is NP-hard under these
two models, Kempe et al. [3] proved that a traditional greedy
algorithm could give a (1 — 1/e)-approximate solution.

However, the traditional greedy algorithm needs to use
Monte-Carlo simulations to estimate the influence spread.
This will make the method unable to be applied to large-
scale networks. Moreover, the Monte-Carlo simulations cannot
give a guarantee when it computes the expected number of
influence spread. Some researchers got down to improving
the efficiency of the algorithm [4], [5], [6], [7], [8], [9].
Among them, Borgs et al. [6] first proposed an important
breakthrough from the view of the reverse influence sampling
(RIS). Also, we observe that the IM problem only considers
the influence of a single item. Generally, multiple items can
diffuse in the same network. There are some multicascade
problems proposed [10], [11]. Some of them simply extend
the classic IC and LT models, which ignore the relation-
ships among multiple cascades [12], [13]. And most existing
works suppose that the entities are pure competitive [14], [15],
[16], [17]. That is, each user can only adopt one of them when
multiple entities spread in the social network. There are a few
diffusion models that allow users to adopt more than one type
of entity [18], [19]. However, in their work, they assume that
the influence probability of one entity will decrease when users
adopted another entity.

In reality, there exists a supplementary relationship among
multiple entities. More specifically, the influence probability of
one item among users will increase after adopting another item
in advance. For instance, one is more inclined to buy AirPods
when he or she has already used the iPhone before. Consider
the following scenario as an instance. There are two items A
and B in the social network. The users would adopt item 5
with a higher probability if they adopted item .4 in advance.
Given the distribution of item A4, one would like to ask for
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a seed of item B to maximize its expected number of their
influence spread.

Motivated by this realistic scenario, we define the supple-
mentary IC (SIC) model and the supplementary IM (SIM)
problem. Actually, Lu et al. [20] discussed a similar issue
called self IM. Different from their work, our entities in the
diffusion model do not be complimentary. More precisely,
they assume that item A can boost the spread of item B,
and item B can also boost the spread of item .A. However,
our problem does not define that item B must boost the
spread of item A. Meanwhile, in their work, the diffusion
probability on each edge is 1. And the probability on each edge
is between 0 and 1 in our model. Lin et al. [21] proposed the
k-Boosting problem, which asks for k boosted users so that it
can maximize influence spread. Boost nodes cannot be active
without being influenced by other active nodes but they can
be more likely to be active once influenced by other nodes.
Unlike our work, this k-Boosting problem focuses on finding
initial boosted users instead of seed users.

In summary, our main contributions to this article are as
below.

1) Considering the supplementary relationships among
items, we extend the IC model and define the SIC model.
Based on this diffusion model, the SIM problem is
proposed. Given the distribution of supplementary items,
the problem is to find the seed users that can maximize
their influence spread. We present that this problem is
NP-hard, and the computation of the objective function
is #P-hard.

2) Fortunately, the objective function is submodular.
However, traditional greedy will cause low efficiency.
And the original RIS cannot apply to our problem
directly since its influence spread will be affected by its
supplementary item. To address this problem, we con-
struct its upper bound and lower bound. Using the
sandwich approximation (SA) strategy, a data-dependent
approximate solution can be obtained.

3) Furthermore, we ignore diffusion probability changes
due to the arrival order of the product and its supplemen-
tary product. According to this assumption, we design
an algorithm based on the supplementary-based reverse
reachable (SRR) sets.

4) Finally, we conduct extensive experiments and compare
our proposed algorithms with some heuristics in three
real-world datasets. These experimental results support
the correctness and superiority of our methods.

We organize our article as below. Section II presents some
related works. Section IIT introduces the diffusion model and
our problem. We discuss the approximation algorithms with
different cases in Section IV. Section V presents the extensive
experiments. Finally, we conclude our work in Section VI. For
ease of reference, we provide some important notations which
are frequently used in nomenclature.

II. RELATED WORK
A. IM Problem
A social network is usually described as a directed graph
G = (V, E) with probability p(u,v) on every edge (u,v).
The node-set and edge-set represent the users and the rela-
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inactive. A node is active if the node adopts one item, or it
is inactive otherwise. Formally, given a graph G = (V, E)
and an integer k, the IM problem aims to seek k nodes
to maximize the final expected number of active nodes.
Domingos and Richardson [1] discussed this problem first.
They modeled the network as a Markov field and proposed
heuristics for maximization. Kempe et al. [3] then considered
the IM as combinatorial optimization. They proposed the IC
and LT models and showed that it is NP-hard in these two
models. Furthermore, they proved that the objective function is
nonnegative, monotone nondecreasing, and submodular. Then,
there is a (1 — 1/e)-approximate solution using the traditional
greedy [22]. The IC model is a classic diffusion model, and it
works as below. In the beginning, let all seed nodes be active
and other nodes be inactive. Next, each newly activated u has
one chance to activate its every inactive out-neighbor v with
success probability p(u, v). This procedure will terminate if no
newly activated nodes are activated. Our model is an extension
of this IC model.

B. Reverse Influence Sampling

At each iteration, the greedy needs to estimate the objec-
tive function since it is #P-hard to compute the objective
function [23], [24]. However, it is time-consuming and lacks
a guarantee when using Monte-Carlo simulations to esti-
mate the objective function. The cost-effective lazy forward
algorithm [4] and degree discount heuristics [5] have been
proposed to improve the efficiency of algorithms. Lately,
Borgs et al. [6] first proposed to estimate the objective function
using the RIS method. They defined the reverse reachable
(RR) set, which contains possible nodes that can reach a
selected node. Given a set S, the fraction of RR sets that
can be covered by this set S will be used to estimate the
objective function for the IM problem. Following this method,
some more efficient algorithms are proposed. For instance,
Tang et al. [7], [25] devised two-phase influence maximization
(TIM), TIM™, and IM via martingales (IMM) algorithms.
They proved their algorithms are near-optimal time complexity
and can return a (1 — 1/e — ¢)-approximate solution with
probability at least 1 — J. Here, both & and 0 are parameters
in their algorithms. Later, Nguyen et al. [26] devised stop-
and-stare algorithm (SSA) and dynamic SSA (DSSA), and
Tang et al. [27] proposed the method for online processing
of influence maximization (OPIM-C). Although our problem
cannot be solved by these techniques directly, our proposed
algorithms are still based on the RIS method.

C. Multicascade IM

We observe that the traditional IM problem studied the
influence spread of a single item. Some researchers then extend
the classic IC and LT models and study some multicascade IM
problems [12], [13], [28], [29]. For example, Zhang et al. [12]
designed the multiple thresholds model and proposed the profit
maximization with multiple adoptions problem. These works
ignore the relationships among different items. Furthermore,
some works focus on solving the competitive IM problem [14],
[15], [16]. Bharathi et al. [14] first discussed the competitive
IM and extended the influence diffusion to multiple competing
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competitive. Lu et al. [20] devised a comparative IC model that
studied the interactions from competition to complementarity.
Based on this model, they discussed self-IM and complemen-
tary IM. According to the complementary relationships, Guo
and Wu [10] studied the IM for complementary products.
In our work, we define a SIM problem, which considers one
item can supplement the diffusion probability of another item.

IIT. PROBLEM FORMULATION

We first introduce the diffusion model and problem defini-
tion in this section. Then, we discuss some properties of this
problem.

A. Diffusion Model

In reality, the owner of one product in one company may
prefer to buy another product from this company. Take the
Apple carrier as an example. This company manufactures the
iPhone and AirPods. It is more likely to buy the AirPods
for iPhone users. We say that the iPhone is a supplementary
product of the AirPods. Considering this scenario, we study
the following model.

Denote the graph G = (V, E) as a social network. Here, V
and E represent the users and the relationship between users,
respectively. And we assume that |V| = n and |E| = m. For
each edge (u,v), let p(u,v) € [0, 1] be the probability of u
influences v.

In our work, there are two products. For ease of explanation,
we denote these two products as A and B. Accordingly,
for each edge (u,v), the diffusion probability of products
A and B are pa(u,v) and pg(u,v), respectively. Suppose
that product A is the supplementary product of 5. That is,
the diffusion probability of product B on each edge (u,v)
increases when user » adopted product A before. We assume
that the probability increases to pg (u,v).

Furthermore, for each cascade, let each node be either active
(i.e., the adopter of the product) or inactive. We say that a node
is A-active (or B-active) when it is activated by A (or B)
cascade. In reality, products .4 and B may not propagate in
the network at the same time. Let S4 be the set of A-active
nodes before the diffusion. Notice that each node in S 4 cannot
influence other nodes to be A-active. Also, products A and B
may be promoted at a new round of propagation. We denote
S and Sp as the seed set for products A and B for the new
round of diffusion process, respectively. Then, we propose the
SIC model, an extension of the IC model. Notice that it can
be easily extended to the LT model. And the diffusion process
is described in discrete time below.

1) In the beginning, each node in S 4 is A-active, and other

nodes are inactive.

2) At time t = 0, let each node in S4 and Sg be A-active

and B-active, respectively.

3) Attimet > 0, for A cascade, each newly activated node

u attempts to activate its each inactive out-neighbor o
with a success probability p4(u,v). At the same time,
for B cascade, each newly activated node u also tries to
let each inactive out-neighbor v be active. Here, if node
v is A-active at time #'(< f), the success probability

@

Fig. 1. Example illustrating the diffusion process.

is pz(u, v)(> pp(u,v)). Otherwise, node v will be B-
active with probability pg(u, v).

4) The process terminates if there are no newly activated
nodes for B cascade.

Now, let us see an example for illustrating the diffusion
process. As shown in Fig. 1, there are only three nodes
vy, 02,03 and two edges (v1,vy) and (v, v3). For each edge
(u,v) € {(v1,v2), (v2,v3)}, we suppose that p4(u,v) =
1, ps(u,0) = 0.5 and pf(u,v) = 0.8. Let S4 = {v3},
S4 = {v1}, and Sp = {v;}. Initially, both »v; and v3 are
A-active, and v; is B-active. Next, node v, can be definitely
A-active since p4(vy,v2) = 1. At the same time, v tries to
activate v, with 0.5 probability for B cascade. If v, cannot
be B-active, then the process terminates. Otherwise, vy will
be active and attempt to activate o3 with probability 0.8 next
time. Here, the probability is 0.8 since vs is A-active before.
Finally, the process will end no matter whether v3 is active
or not.

B. Problem Definition

In what follows, we focus on two products diffused in one
social network and propose a SIM problem.

We refer to G = (V, E, P) as a directed graph, where
P = (Py, P, Pg ). More specifically, P4 and Py are the
influence probabilities of products A and B, respectively.
Pg ={pf(u,v) > pp(u,v) : (u,v) € E} means the influence
probabilities when v is A-active in advance. Let S4 and S4
be the set of initial active nodes and seed nodes for product
A, respectively. Given a network G, sets S ‘4 and S 4, the SIM
problem is to seek a seed set Sp € V with |[Sg| = k such
that it can maximize the expected number of B-active nodes.
Furthermore, we denote by f(Sg) the expected number of
B-active nodes. Formally, the SIM problem is

f(SB) =D _Pr[X]- fx(Sp) ()
X

max
SCV,[Sil=k

where X is one possible outcome with each edge is determin-
istic and fy is the total number of the B-active nodes under
the outcome X.

Given a graph G = (V, E, P), an edge (u,v) is A-live
(or B-live) if A-active (or B-active) node u can successfully
influence node ». Otherwise, this edge is declared to be
A-blocked (or B-blocked). To give a better understanding of
our problem, we compute the value of the objective function
for the example shown in Fig. 1. As aforementioned, we let
pa(u,v) = 1, pg(u,0) = 0.5 and pji(u,v) = 0.8 for
each edge (u,v) € {(v1,02), (v2,03)}. Given S4 = {v3},
Sa = {v1}, and Sg = {v}, there are four outcomes as
shown in Fig. 2. Notice that the B-live and B-blocked edges
are denoted by solid arrows and solid arrows with crosses,
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Fig. 2. Example illustrating the computation of the objective function.

respectively. Here, (v, v2) is B-live (resp. B-block) with prob-
ability 0.5 (resp. 0.5). Since v3 € S4, (02, 03) is B-live (resp.
B-block) with probability 0.8 (resp. 0.2). In the first case,
edges (v, v2) and (v, v3) are B-live, that is, three nodes can
be B-active with probability 0.4. In the second case, (v;, v2)
is B-live and (v2, v3) is B-block, that is, two nodes v; and
vy are B-active with probability 0.1. The last two cases will
cause only one node to be B-active and the total probability
is 0.5. Then, we have f(Sg) =3-04+4+2-0.1+1-0.5=1.9.

C. Property

Theorem 1: The SIM problem is NP-hard, and it is #P-hard
to compute its objective function.

Proof: The SIM problem is totally equivalent to the
IM problem under the classic IC model when S§4 = @
and S4 = . Notice that the IM problem is NP-hard [3].
Thus, the SIM problem is NP-hard. By a similar argument,
for any given set Sg, it is #P-hard to compute its objective
function [23], [24]. O

Theorem 2: The objective function of the SIM problem is
nonnegative, nondecreasing monotone, and submodular.

Proof: By definition, it suffices to prove the submodularity
of the objective function. Denote by X a deterministic out-
come. Like the claim in [3], for a given seed set Sp, a node v
can be B-active if and only if there is a 5-live path from some
node in Sp to v in this outcome X. Notice that we call a path
B-live if each edge in this path is B-live. Let R(v, X) be the
set of nodes that can be B-active after the influence spread of
v in this outcome X. Then, we have fx(Sg) = U,y R(v, X).
Given any two sets S C T and a node v € V \ T, it suffices
to prove

fx(TU{o}) — fx(T) < fx(SU{o}) — fx(S) 2)

Fx(SU{o})— fx (S) is the number of all nodes that are included
in R(v, X) but not included in | J, g R(u, X). Then, (2) holds
since § € T. Furthermore, we have f(Sg) = >y Pr[X] -
fx(Sg) and the theorem follows. O
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Algorithm 1 Max-Coverage
Input: R, k
Output: Sp

1: Initialize S = ¢
2. fori =1tok do
3 v < the node that covers the most RR-sets in R
4: S < S U {v}

5 Remove all RR-sets in which v appears

6: end for

IV. APPROXIMATION ALGORITHMS

Next, we discuss how to tackle the SIM problem. To address
it, we first consider a special case when S4 = ¢ and then
study the case when 8 4 = . We show that the methods when
84 = @ can easily be used for the general SIM problem.

A. Case When Sq =0

According to the definition, A-active nodes influenced by
seed set S 4 is underspecified. In the meantime, the spread of
seed set Sp at each step is related to the spread of S 4. Thus,
the SIM problem is not order-independent. It poses challenges
to solving this problem.

First, we discuss a special case of the SIM when S4 = @.
In this case, we can determine the state of each edge in
advance. A simple way to estimate the influence spread using
Monte-Carlo methods. More specifically, we first sample a
number of deterministic graphs. A deterministic graph is
generated as follows. Given a graph G = (V, E, P) and
set 84, we construct a new propagation probability Q0 =
{g(u,v) : (u,v) € E}, where

pg(u,v), ifoely
pa(u,v),

Denote by Q = (V, E, Q) a graph with edge probability
distribution Q. For a deterministic graph g ~ €, each
edge (u,v) is live with probability ¢ (u, v) and blocked with
probability 1 — g (u, v). Then, for a deterministic graph g, the
influence spread f,(Sp) is the number of nodes that Si can
reach. Given a set of deterministic graphs G, f(Sg) can be
approximated by ¢eg(f¢(SB)/IG). Obviously, this method
cannot provide a theoretical guarantee and it is hard to handle
large-scale social networks.

In this article, we use the RIS [7] technique to estimate
our objective function. This idea is motivated by the RR set
(RR-set). A random RR-set R is generated under the graph
Q= (V, E, Q) as follows: 1) sampling a deterministic graph
g ~ Q; (2) selecting a node v randomly; and 3) collecting all
nodes in g that can reach to » into R.

Lemma 1 [25]: Let R be a collection of RR-sets for Q.
Given a seed set Sp, we say that Sp covers R € R if
Ss N R #@. Then, f(Sg) = n - E[Sgcovers R], where E[-]
is an expected operator.

According to the above lemma, we know that our problem
can be solved by the maximum coverage problem [30]. This
problem asks for k nodes to cover the largest size of the

q(u,v) =[

otherwise.
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given sets. As shown in Algorithm 1, the greedy algorithm
can return a (1 — 1/e)-approximate solution for the maximum
coverage problem. Given a set of RR-sets R, we repeatedly
choose the node v that can cover the most RR-sets in R.
At each iteration, we delete from R all RR-sets covered by v.
The procedure stops until &k nodes are selected. The time
complexity of Algorithm 1is O(k > . % |R]).

Given a set Sg, let I5, be an indicator function. That is,
Is,(R) =1if SsN R # ¥, or I, (R) = 0 otherwise. Then,
we have f(Sg) can be estimated by (1/|R]) - > rcr Lss (R)
for a given set of RR-sets R. The estimation is much more
closely when the size of RR-sets is sufficiently large.

Lemma 2 [25]: Let OPT be the optimal value of the SIM
problem when S4 = . The max-coverage algorithm can
return a (1 — 1/e — ¢)-approximate solution with at least
probability 1 — J, if

2 (1= 1/0)/in 2 + 4= 1/e)(n () n 3y’

£20PT

RI >
3)

Furthermore, there are some methods to estimate the size
of R. For instance, Tang et al. proposed TIM, TIM™ [7], and
IMM algorithms [25]. Also, some efficient algorithms, such
as SSA, DSSA [26], and OPIM-C [27], are proposed. We can
use these methods to complete our algorithm. Actually, if we
use k instead of OPT in (3), it can provide an upper bound of
the size of RR-sets since |Sg| = k.

B. Case When S, =0

We propose two methods to address this SIM problem.
One approximate algorithm utilizes the SA strategy. The other
one is a heuristic algorithm using the RIS technique with the
SRR sets.

1) Sandwich Approximation: As shown in Theorem 2, the
objective function of the SIM problem is submodular. A simple
way is to iteratively choose the node with the maximum
marginal gain until the size of the selected node is k. This
method can return a (1 — 1/e)-approximate solution [22].
However, it is hard to compute the marginal gain A, f(Sg) =
f(SgU{v}) — f(Sp).

Algorithm 2 gives the process to compute f(Sg) by the
Monte-Carlo method with simulation number . Let N™ (1) =
{v|(v,u) € E} and N°"'(u) = {v|(u,v) € E}. At each
iteration, we first generate a realization g4 ~ Q = (G, V, P4)
and a queue Q = {Sg}. Then, we simulate a possible size
of B-active nodes using breadth-first search (BFS). Notice
that the propagation probability changes from pp(u, w) to
pg(u, w) when w is A-active in advance. Let dis(w, Sg)
be the minimum distance from Sz to w for a simulation of
cascade B. In addition, dis,, (w, S4) means the minimum
distance from S4 to w in a deterministic graph g 4. For a
random number a € [0,1], w can be influenced by u if
o < pg(u, w). Also, w can be influenced by u if dis(w, Sg) >
disg , (w, S4) and a < pf(u, w).

The time complexity of BFS is O(k(n + m)) and the total
running time of computing f(Sg) is O(k(n 4+ m)r). Using
the Monte-Carlo method, we should compute the marginal

Algorithm 2 Estimation of Objective Function
Input: G = (V,E, P),S4, S and r
Output: f(Sg)
1: Initialize Total < 0
2:fori=1tor do
3:  Initialize f(Sg) <0
4:  Generate a realization g4 ~ Q = (G, V, Py)
5
6

Initialize a queue Q <« S
Initialize dis(v, Sg) < 0 for v € Sg and dis(u, Sg) <«
oo foru e V\ Sp
7:  Mark each node in Sp as visited

8:  while Q is not empty do

9: u < Q.dequeue()

10: for each non-visited w € N°“ (u) do

11: o is selected from [0, 1] uniformly at random

12: if « < ppu,w) or (dis(u,Sg) + 1 >
disg (w0, Sa) and p < pfi(u, w)) then

13: dis(w, Sg) < dis(u, Sg) + 1

14: Q.enqueue(w) and mark w as visited

15: f(Sp) < f(Sp)+1

16: end if

17: end for

18:  end while

19:  Total < Total + f(Sg)
20: end for

21: return f(Sg) < Total/r

gain of each node at each iteration. Obviously, it is time-
consuming. Therefore, we should find an efficient algorithm.
Since the uncertainty of probability on each edge for product
B, we cannot estimate the objective function using the RIS
technique.

To tackle the SIM, we devise a way based on the SA
strategy [20]. This method can provide a data-dependent
approximate solution according to its submodular lower and
upper bounds. Next, we get down to constructing the upper
and lower bounds of the objective function as follows. Given
G = (V,E, P)and S4, let V4 be a set of nodes that contains
all the nodes that S 4 can reach. Furthermore, we construct a
new propagation probability 0" = {¢T(u,v) : (u,v) € E},
where

ng(u,v), ifo e Vy

ps(u,v), otherwise.

g (u,v) = {

Let R* be a random RR-set under graph Q* = (V, E, Q).
Then, f7(Sg) = n-E[Sg covers RT] is the submdoular upper
bound of the objective function. Similarly, let R~ be a random
RR-set under Q= = (V, E, Pg). We have f~(Sg) = n -
E[Ss covers R™] is the submdoular lowers bound.

In Algorithm 3, an approximate solution to the upper bound
is obtained as follows. We estimate the lower bound of OPT
for f* using the method in [25]. Then, we create a collection
of RR-sets R, where |[R*| is computed by (3) with its lower
bound replacing OPT. According to Algorithm 1, an approx-
imate solution S, is obtained. Similarly, we have an approxi-
mate solution S; to the lower bound f~. The time complexity
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Algorithm 3 SA

Algorithm 4 SRR Set

Input: G = (V, E, P),k, Sy

Output: Sp

1: Initialize Sp < @

2: §; < the approximate solution to the upper bound
3: S, < a solution to the original problem

4: S, < the approximate solution to the lower bound
50 Sp < argmaxseys,,s,,s,) f(5)

of calculating the solutions S; and S, is O(k D" .- |R]) and
O(k D per+ IRI), respectively. Let S, be a solution to f with
any method. Here, we estimate f(v) for each node v € V and
select k nodes with the maximum value of f as our original
solution. SA is to select the best solution to the objective
function f among these three solutions. That is, we select
Sp = argmaxgse(s,.s,.s,) f(S) as our final result. The time
complexity of selecting the best solution Sz is O (k(n+m)r).

Theorem 3: Let S* be the optimal solution for the original
problem. At least 1 — 20 probability, Algorithm 3 can derive a

If(Su) J(8%)
maxy —— , "
JHS) f(5)
approximate solution.

Proof: Let §; and S/ be the optimal solutions for
maximizing the lower bound and upper bound

]-(1—1/6—8) “)

_F(S)
f(Sy) = IR (S
S (Su) .
= sy U Mem o s
S (Su) .
> 7S (1 - 1/e—e)-f+(S )
S (Su) <
= sy (Ve =) 1(5)
and
)= fS)=0-1/e—e)- f7(5)
> —=1/e—¢)- ()
S8 «
= gy U Vem ) f(8).
Since  Algorithm 3 returns a solution Sp =

arg maxgeys,.s,.s,} f (), we have

f(S) (89
S f(8%)

f(SB) = max ] -(1—=1/e—¢)f(OPT).
O

2) Heuristic Algorithm: As mentioned before, we cannot
use the RIS technique to estimate the objective function since
the uncertainty of probability on each edge for product B.
Furthermore, we consider fixing the diffusion probability for
B cascade.

We suppose that the diffusion probability is pj‘(u, v) if and
only if v can be A-active in the diffusion process. That is,
we still think the probability on edge (u, v) is pj\(u, v) even
if v is A-active after being B-active. Accordingly, we define a
random SRR set and compute it using Algorithm 4. Similar to

Input: G = (V, E, P),k and Sy
Output: 7

1: v is a random node from V

2: Initialize a set T <« {v}

3: Initialize a queue Q < Sy

4: Mark all nodes in S 4 as A-active

5. while Q is not empty do

6: u < Q.dequeue()

7. for each A-inactive node w € N°* (u) do

8 a4 is selected from [0, 1] uniformly at random
9 if a4 < pa(u, w) then

10: Q.enqueue(w) and mark w as A-active

11: end if

12:  end for

13: end while

14: Clear Q and let Q <« {v}

15: Mark v as visited

16: while Q is not empty do

17 u < Q.dequeue()

18:  for each non-visited node w € N (1) do

19: ap is selected from [0, 1] uniformly at random

20: if op < pp(w,u) or (u is A-active and ap <
pg(w, u)) then

21: Q.enqueue(w) and mark w as visited

22: T < T U{w}

23: end if

24: end for
25: end while

the RR set, a random SRR set contains the reachable nodes
from a randomly selected node with this assumption.

To obtain a random SRR set, we first determine an outcome
for A cascade. Given seed set S4 and a random node v,
Algorithm 4 first finds the nodes can be .A-active. More
specifically, it utilizes the forward BFS to find the nodes that
can be reached from node S4. Then, Algorithm 4 aims to
find that the nodes can reach » based on the outcome for
A cascade. If u is A-active, w can be added into the SRR
set T with probability p*(w, ). If u is not A-active, w can
be added into the SRR set 7" with probability p(w, u). Here,
we generate the SRR set T using the backward BFS.

Furthermore, we conclude the following lemma.

Lemma 3: Let T be a random SRR set. f,;"(Sg) = n -
E[Sz covers T] is a submodular upper bound of the objective
function for any set Sg.

Proof: By definitions, f(Sg)/n is the probability that a
selected node v is B-active by Si. That is, there is a reachable
path from one node in Sp to node v. Notice that Si covers
T means there is a reachable path from a node in Sp to
node v without the order for cascades. Thus, f;" is an upper
bound of f.

Moreover, f;" is submodular. Given sets §; € S, € V
and node v € V \ S, (f1(S; U {v}) — f(81)/n) is the
probability that v can cover T but S; cannot do it. Therefore,
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TABLE I
STATISTICS OF DATASETS

Name #Nodes #Edges Type Avg. Deg
NetScience 1.589K  2.742K  Undirected 3.45
HepTh 27.7K 352.8K Directed 12.7
Stanford 281.9K 2.3M Directed 8.2

(S U{h) = fH(S)/n) = (fH(S2U{v}) — f7(S2)/n) and
the lemma follows. O

Using the RIS technique, we can estimate n-E[Sg covers T']
and obtain an approximate solution for maximizing n -
E[Si covers T]. We will regard this solution as a solution of f.

C. Case When SA;éQ)andS’A =0

Furthermore, we can use the algorithms when S 4 =@ to
solve the case when S4 # ¥ and S4 # @. More specifically,
we use graph G = (V, E, P) as the initial graph G =
(V,E, P), where P4 = P4; Pg = {pp(u,v) : (u,v) € E}
with pp(u,v) = pz(u, v) if v € 84 and pp(u, v) = pru,v)
otherwise; ISE = Pg .

Notice that f~ will be 0 when pg(u, v) = 0 for each edge
(u,v). Here, pp(u,v) = 0 means that the node cannot be
B-active if it is not A-active. We can only use its upper bound
to obtain a (£ (S,)/f1(S,))-(1—1/e—¢)-approximate solution.

V. EXPERIMENTS

In the following, we conduct several experiments using our
proposed algorithms and other heuristic methods. By compari-
son, these experiments support the effectiveness and efficiency
of our methods.

A. Experimental Settings

1) Datasets: We do our experiments based on three
real networks: 1) Netscience [31] captures a co-authorship
among scientists working on network theory and experiment;
2) HepTh [32] is a citation network from the e-print arXiv.
If paper i cites paper j, there is an edge from i to j; and
3) Stanford [32] is generated from the Stanford University
website. Each node means pages, and each edge means
hyperlinks between them. For the undirected graph, we use
two reversed directed edges to present each undirected edge.
And the statistics of these networks is shown in Table I.

2) Influence Probability: There are three influence prob-
abilities in our problem. More specifically, P4 and Pp are
the influence probabilities of products A and 3, respectively.
And Pj is the influence probability of B when considering
the impact of its supplementary product A. For P4 and Pg,
we sample each element p 4(u, v) and pg(u,v) from [0, 0.1]
uniformly. According to the method in [21], we let pz(u, v) =
1 — (1 — pg(u,v))?, where p > 1 is the supplementary
parameter. Unless otherwise specified, we set f = 2.

3) Selection of Seeds: We should fix the seed set S 4 before
the diffusion process, and we use two methods to give set S4
as follows.

1) We select 20 influential nodes using IMM algo-
rithm [25]. Generally, a company would like to choose
influential persons as their initial users to promote their
products.

2) We choose 200 nodes randomly. In reality, some users
will adopt a product spontaneously. For ease of refer-
ence, we refer to the above two cases as case-1 and
case-2, respectively.

4) Algorithms: The influence probability of each edge is
fixed when applying IM algorithms. However, the probability
can change for cascade B in our problem. To the best of our
knowledge, there is no existing algorithm that can apply to
the SIM problem and we mainly consider several algorithms
as listed below.

1) SA: This method is presented in Algorithm 3. We refer
to IMM [25] to solve the upper and lower bounds.

2) SRR: This algorithm is a max-coverage with SRR sets
generated by Algorithm 4.

3) Random: 1t is to select k nodes randomly, considered a
baseline.

4) OutDegree: This strategy is to choose k nodes with the
maximum out-degree.

5) PageRank: The k nodes with the largest PageRank scores
as the solution [33]. And we let the error value and
damping coefficient be 107¢ and 0.85, respectively.

6) A linear algorithm for influence maximization (LAIM):
This is a linear time algorithm for IM in large-scale
social networks [8]. Here, we set the parameter y = 4
and let the influence probability for cascade 5 be
pi(u,v) for each edge (u,v) without considering the
influence of cascade A.

5) Settings: For both the SA and SRR algorithms, we fix

& = 0.5 and 6 = 1/|V]. To ensure the fairness of the experi-
ments, we use 10000 Monte-Carlo simulations to estimate our
objective function. All experiments run on a machine with a
3.6 GHz, quad-core processor, and 8§ GB memory.

B. Experimental Results

1) Performance With Different Budget k: First, for different
budgets k, we evaluate the influence spread of different seed
sets Sp obtained from different algorithms. As shown in
Figs. 3 and 4, our proposed algorithms (i.e., SA and SRR) out-
perform other algorithms for both case-1 and case-2. And our
algorithms perform particularly well in HepTh and Stanford
networks. This is because the difference in objective function
values is more obvious in large networks. Meanwhile, the
results of case-1 and case-2 are similar. The influence spread
increases when the budget k increases in three networks. And
the results of SA and SRR are very close. These imply the
efficiency of our methods.

2) Approximation Ratio of the SA Strategy: The SA
algorithm can derive a data-dependent approximation ratio.
To show this approximation ratio, we present the results for
the upper bound, original function, and lower bound with the
set Sp returned by the SA algorithm. Likewise, we conduct
our experiments in two cases. As shown in Figs. 5 and 6,
the results among these three functions are very close no
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Fig. 6. Influence spread of upper bound, original function, and lower bound in case-2. (a) Netscience. (b) HepTh. (c) Stanford.

matter what the budget k. Take HepTh as an example. For any
fixed k, the ratio of the upper bound and original function
is about 0.96 in case-1. The ratio of the original function
and lower bound is about 0.96 as well. Meanwhile, the ratios
are both about 0.85 in case-2 for any fixed k. According to
Figs. 5 and 6, we can see that the ratio in case-2 is larger

than case-1 in both HepTh and Stanford networks. That is
because the 20 influential nodes can influence more nodes
than 200 random nodes in HepTh and Stanford networks.

3) Performance With Different Set S4: In the following,
we focus on the performance when giving different sets
S4. To reflect the impact of S4, we only run algorithms
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TABLE I
PERFORMANCE WITH DIFFERENT £ IN THE NETSCIENCE

Name (=2 p=3 =4 =5 p=6
k=5 20.75 235 2596 2823 30.28
k=25 59.74 6535 72.06 76.83 82.88

when S 4 is in case-1. First, we randomly choose 1000 and
10000 nodes as S4 in the Netscience and HepTh, respec-
tively. As shown in Fig. 7, the influence spread of product
B still increases with the budget k increases. Furthermore,
we compare Fig. 7 with Fig. 3. For any fixed k, the results
in Fig. 7 are larger than those in Fig. 3. This demonstrates
that S4 can enforce the final influence spread. Also, we fix
k = 25 and show the performance with different sizes of S4
using Fig. 8. The results returned by the SA and SRR when
k = 25 are about 50% higher than k = 5, respectively.

4) Performance With Different Parameter [f: As shown in
Table II, we record the influence spread of product B with
different supplementary parameters £ in the Netscience. For a
fixed k, the influence spread increases with f from 2 to 6.
It implies that the supplementary product can increase the
influence spread. Moreover, we observe that the increment
when k = 25 is larger than that when k = 5. More specifically,
when k = 5, the result increases by 10 with § from 2 to 6.
And the result increases by 23 when k = 25. This is because
more seed nodes will influence more nodes.

5) Running Time: We only consider the running time of
SA and SRR algorithms since other algorithms are heuristic.
Furthermore, we test the running time when S ‘4 = 0. Table III

TABLE III
RUNNING TIME WHEN k = 5 (SECONDS)

Name case-1 case-2
SA SRR SA SRR
Netscience | 0.8943 | 0.9744 | 0.9463 | 0.9521
HepTh 43.23 32.03 46.85 38.23
Stanford 517.27 | 35291 | 517.60 | 346.56
TABLE IV

RUNNING TIME OF THE HEPTH IN CASE-1 (SECONDS)

Name k=5 k=10 k=15 k=20 k=25
SA 4323  60.12 86.38 119.85 182.62
SRR 32.03 4259 55.10 72.37  105.52

presents the running time of the SA and SSR algorithms when
k = 5 on three networks. We observe that the running time
increases when the size of the network increases. Meanwhile,
the running time of case-1 is close to that case-2. For HepTh
and Stanford, the SA algorithm runs longer than the SRR
algorithm. This is mainly because the SA algorithm needs to
tackle the original function, lower and upper bounds. Finally,
the one maximizing the original objective function will be the
result. Furthermore, the generation of RR sets is simpler than
the generation of SRR sets. Thus, there is not much difference
in the running time of the two algorithms in Netscience.
Table IV shows the running time of the HepTh by varying
the budget k. The running time increases when k increases
using both the SA and SRR algorithms.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on October 03,2023 at 04:38:17 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TABLE V
PERFORMANCE WITH pg(u,v) € [0,0.05] IN THE NETSCIENCE

Name k=5 k=10 B=15 B=20 B=25

SA 108 1875 2469 3311 4021

SRR 891 1924 2291 3143 3949
TABLE VI

PERFORMANCE WITH pg(u,v) € [0,0.05] IN THE NETSCIENCE

Name k=5 k=10 B=15 B=20 B=25
SA 4282 6945 8217  100.01 116.73
SRR 4428 7003 7924 10326 114.59

6) Performance With Different Influence Probability:
Different from other settings, for each edge (u, v), we sample
the influence probability pg(u, v) from [0, 0.05] and [0, 0.2]
in the Netscience, respectively. In the experiments, p4(u, v)
is still sampled from [0, 0.1] and keep constant and f = 2.
As shown in Tables V and VI, experimental results indicate
that the result increases when the value range of pg(u,v)
increases. For instance, when k = 25, the influence spread is
around 40 when pp(u,v) € [0, 0.05] and the influence spread
is around 115 when pg(u,v) € [0, 0.2].

VI. CONCLUSION

This article extends the classic IC to diffuse multiple prod-
ucts and calls this the SIC. Following this model, we study
a natural problem, the SIM problem. Given the distribution
of the supplementary products, the problem aims at finding
k nodes to maximize the influence spread of themselves.
‘We show that the problem is NP-hard, and it is #P-hard to com-
pute the objective function. Fortunately, the objective function
is submodular. However, the RIS method cannot apply to
estimate the objective function directly due to the impact of the
supplementary product. Based on the SA method, we obtain
a data-dependent approximate solution. Also, we define the
SRR sets and propose an algorithm based on them. At last,
to show the effectiveness of our methods, we compare our
strategies with some heuristic algorithms on three networks.
In the future, we will try to consider the relationships from
competition to complementarity based on this model. And we
can study the problem in another model.
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