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Robust statistics traditionally focuses on outliers, or perturbations in to-
tal variation distance. However, a dataset could be maliciously corrupted in
many other ways, such as systematic measurement errors and missing covari-
ates. We consider corruption in either TV or Wasserstein distance, and show
that robust estimation is possible whenever the true population distribution
satisfies a property called generalized resilience, which holds under moment
or hypercontractive conditions. For TV corruption model, our finite-sample
analysis improves over previous results for mean estimation with bounded
kth moment, linear regression, and joint mean and covariance estimation. For
W1 corruption, we provide the first finite-sample guarantees for second mo-
ment estimation and linear regression.

Technically, our robust estimators are a generalization of minimum dis-
tance (MD) functionals, which project the corrupted distribution onto a
given set of well-behaved distributions. The error of these MD functionals
is bounded by a certain modulus of continuity, and we provide a system-
atic method for upper bounding this modulus for the class of generalized
resilient distributions, which usually gives sharp population-level results and
good finite-sample guarantees.

1. Introduction. We study the problem of robust estimation from high-dimensional cor-
rupted data. Corruptions can occur in many forms, such as process error that affects the
outputs, measurement error that affects the covariates, or some fraction of arbitrary outliers.
We will provide a framework for analyzing these and other types of corruptions, study mini-
mal assumptions needed to enable robust estimation at the population level, corruptions, and
construct estimators with provably good performance in finite samples.

We model corruptions in terms of a perturbation distance D(p, q). Specifically, we posit a
true population distribution p* that lies in some family of distribution G, but observe samples
X1,..., X, from a corrupted distribution p such thatAD( p*, p) < €. Our goal is to output
an estimate 6(X1, ..., X,) such that some cost L(p*, #) is small. Note in particular that our
goal is to estimate parameters of the original, uncorrupted distribution p*. As a result, even
as n — oo we typically incur some nonvanishing error that depends on €. We also consider
a more powerful adaptive model where X1, ..., X, are first sampled from true distribution,
and then perturbed by adversary, which is formally defined in Section 2.2.

Throughout the paper, we focus on the case of corruption distance D = TV or Wy, though
many of our results extend to Wasserstein distance over an arbitrary metric space. High di-
mensional robust statistics for D = TV has a long history. The majority of the classical statis-
tics papers focus on the minimum distance functional when the true distribution is Gaussian
or elliptical (Adrover and Yohai (2002), Chen and Tyler (2002), Donoho and Liu (1988a),
Gao (2020), Gao, Yao and Zhu (2020), Huber (1973), Huber (2011)), while recent computa-
tionally efficient algorithms are instead based on assumed tail bounds via, for example, mo-
ments or sub-Gaussianity (Diakonikolas et al. (2017, 2018a), Bateni and Dalalyan (2019),
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Chen, Gao and Ren (2018), Depersin and Lecué (2022), Diakonikolas, Kane and Stewart
(2018), Liu et al. (2018), Steinhardt, Charikar and Valiant (2017), Steinhardt, Koh and Liang
(2017)). In this paper, we propose a different assumption called generalized resilience, which
is more general than either the widely used Gaussian or tail bound assumptions. Generalized
resilience enables the systematic design of polynomial sample complexity algorithms, which
can also be efficiently computed in some cases. Furthermore, it gives near-optimal statistical
rates even in the special case of Gaussian or tail-bounded distributions.

Corruptions under TV only allow an e-fraction of outliers or deletions. In many applica-
tions, we might instead believe that all of the data have been slightly corrupted. We can model
this as perturbation under the (standard) Wasserstein distance between p and ¢, defined as
the minimum cost in £>-norm needed to move the points in p to the points in g. For ex-
ample, measurement bias in sensors usually leads to small perturbations on all the samples,
which can be characterized by perturbation in W; or W, distances (Kowalski (2020)). Stuck
pixels on camera introduce coordinate-wise corruption on several coordinates of the output
image (Leung et al. (2007)), which can be characterized by perturbation in Wy distances. For
W1 corruptions, mean estimation is trivial since the adversary can shift the mean by at most
€. However, estimation of higher moments, as well as least squares estimation, are nontrivial
and we focus on these in the Wy case.

In this paper, we connect ideas from both the classical and modern approaches to handling
TV perturbations, and extend these ideas to Wasserstein perturbations. We summarize our
main contributions as follows:

e Motivated by the minimum-distance (MD) functional (Donoho and Liu (1988a)) and the
recent progress in efficient algorithms, we construct explicit nonparametric assumptions,
generalized resilience, under which MD functionals automatically give tight worst-case
population error for both TV and W perturbations, matching or improving previous bounds
obtained under much stronger assumptions.

e We design finite-sample algorithms based on MD functionals for both TV corruption and
W1 corruption. We propose two different approaches, weakening the distance and expand-
ing the set, that guarantee polynomial (and sometimes optimal) sample complexity and
pave the way for designing computationally efficient algorithms.

For TV corruption, our results improve the best existing bounds for tasks including mean
estimation, linear regression and covariance estimation. For W corruption, we are the first to
provide any good robustness guarantee under natural assumptions.

1.1. Overview of structure. We first summarize the structure of the paper and all the
settings and tasks we consider in the paper. For perturbation distance, we consider D = TV
in Section 3 and D = W in Section 4. Within each section, we begin with introducing our
population assumption, i.e. the design of generalized resilience set that the true distribution
lies in, and provide tight bound for its population limit (Sections 3.1 and 4.1).

After the population result in each section, we proceed with finite-sample algorithms. For
both TV corruption and W; corruption, we propose two different approaches: weaken the dis-
tance (Sections 3.2.1 and Section 4.2.1) and expand the set (Sections 3.2.2 and Section 4.2.2).
For weaken the distance approach under TV corruption, we study the task of mean estimation,
linear regression and joint mean and covariance estimation. For expanding the set approach
under TV corruption, we mainly focus on mean estimation under different assumptions. For
weaken the distance approach under W corruption, we study second moment estimation and
linear regression. For expanding the set approach under W; corruption, we illustrate the idea
via the example of second moment estimation.
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Throughout the paper, we consider two different corruption models, oblivious corruption
and adaptive corruption, which are formally defined in Section 2.2. Intuitively, oblivious cor-
ruption assumes the adversary corrupts the distribution before sampling, while adaptive cor-
ruption allows the adversary to corrupt the data after seeing all the samples. For the con-
venience of analysis, we focus on oblivious corruption when we consider weaken the dis-
tance approach, and focus on adaptive corruption when we consider expand the set approach.
However, both methods work under the two different corruption models. We give further
discussion in Appendix A of the Supplementary Material (Zhu, Jiao and Steinhardt (2022)).

1.2. Main results for TV corruption (Section 3). Throughout the paper, we design algo-
rithms based on the minimum distance (MD) functional estimator (Donoho and Liu (1988a)),
which projects the corrupted empirical distribution p, onto some set of distributions M un-
der a discrepancy measure D:

(1) 0(pn) =60*(g) where g =argmin D(q, p,), 0* (Q)—argmlnL(q 0)
qgeM

Here M and D are design parameters to be specified (think of them as relaxations of G and
D). In other words, this estimator projects the observed distribution p onto the distribution
set M to get ¢, then outputs the optimal parameters for g.

1.2.1. Design of set: Generalized resilience (Section 3.1). We begin with the main re-
sults for TV corruption. In the infinite sample case, if the true distribution p* lies in
some family G and we observe the population corrupted distribution p, the performance
of the MD functional estimator g = argmin,; TV(q, p) is upper bounded by the modu-
lus of continuity (Lemma 2.1, (Donoho and Liu (1988a))), defined as m(G,2¢, TV, L) =
SUD 1| preG:TV(py, pa) <2¢ L(p1,60*(p2)). While the adversary can choose distributions outside
of G, the modulus m only involves pairs of distributions that lie within G, making it amenable
to analysis. In mean estimation, when the set G is taken as the set of resilient distribu-
tions (Steinhardt, Charikar and Valiant (2018)), defined as

p
®) Grean(p.©) = {p llier =l < p.¥r = 21,
the modulus of continuity can be proved to be upper bounded by 2p. The inequality r < 1 ;
can be formally understood as dr < = where d is the Radon—-Nikodym derivative, which

can also be understood as r(A) < ’f (_Ae) for any set A; an equivalent characterization is that r
can be obtained from p by conditioning on an event E of probability 1 — €. Thus, r can be
thought of as an “n-deletion” of p, and equation (2) specifies the set of distributions whose
mean is stable under deleting an € fraction of points.

The reason for the bounded modulus is a mid-point property of TV distance: if TV(py,
p2) < € then there is a midpoint r that can be obtained from either of the p; by condition-
ing on an event of probability 1 — €. Thus, w, is close to both ), and wp, by resilience,
and so wp, and up, are close by the triangle inequality. The argument appears implicitly
in Steinhardt, Charikar and Valiant (2018) and Diakonikolas et al. (2017). Here we make it
explicit in Lemma 3.1.

Next, suppose that the loss L is arbitrary. We generalize Steinhardt, Charikar and Valiant’s
definition of resilience to yield a family with bounded modulus for any given loss L. For loss
L, we will need two conditions: the first condition asks that the optimal parameters for p do
well on any r < 1” while the second asks that if a parameter does well on r then it also
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