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Abstract— Offline reinforcement learning (RL) algorithms seek
to learn an optimal policy from a fixed dataset without active
data collection. Based on the composition of the offline dataset,
two main methods are used: imitation learning which is suitable
for expert datasets, and vanilla offline RL which often requires
uniform coverage datasets. From a practical standpoint, datasets
often deviate from these two extremes and the exact data
composition is usually unknown. To bridge this gap, we present
a new offline RL framework, called single-policy concentrabil-
ity, that smoothly interpolates between the two extremes of
data composition, hence unifying imitation learning and vanilla
offline RL. Under this new framework, we ask: can one develop
an algorithm that achieves a minimax optimal rate adaptive to
unknown data composition? To address this question, we consider
a lower confidence bound (LCB) algorithm developed based on
pessimism in the face of uncertainty in offline RL. We study finite-
sample properties of LCB as well as information-theoretic limits
in multi-armed bandits, contextual bandits, and Markov decision
processes (MDPs). Our analysis reveals surprising facts about
optimality rates. In particular, in both contextual bandits and RL,
LCB achieves a fast convergence rate for nearly-expert datasets,
analogous to the one achieved by imitation learning, contrary
to the slow rate achieved in offline RL. In contextual bandits,
we prove that LCB is adaptively optimal for the entire data
composition range, achieving a smooth transition from imitation
learning to offline RL. We further show that LCB is almost
adaptively optimal in MDPs.

Index Terms— Reinforcement learning theory, offline reinforce-
ment learning, imitation learning, lower confidence bound (LCB),
adaptive optimality.

I. INTRODUCTION
EINFORCEMENT learning (RL) algorithms have
recently achieved tremendous empirical success includ-
ing beating Go champions [1], [2] and surpassing professionals
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Fig. 1. Dataset composition range for offline RL problems. On one end,
we have expert data for which imitation learning algorithms are well-suited.
On the other end, we have uniform exploratory data for which vanilla offline
RL algorithms can be used.

in Atari games [3], [4], to name a few. Most success stories,
however, are in the realm of online RL in which active data
collection is necessary. This online paradigm falls short of
leveraging previously-collected datasets and dealing with sce-
narios where online exploration is not possible [5]. To tackle
these issues, offline (or batch) reinforcement learning [6], [7]
arises in which the agent aims at achieving competence by
exploiting a batch dataset without access to online explo-
ration. This paradigm is useful in a diverse array of appli-
cation domains such as healthcare [8]-[10], autonomous
driving [11]-[13], and recommendation systems [14]-[16].

The key component of offline RL is a pre-collected dataset
from an unknown stochastic environment. Broadly speaking,
there exist two types of data composition for which offline
RL algorithms have shown promising empirical and theoretical
success; see Figure 1 for an illustration.

« Expert data. One end of the spectrum includes datasets
collected by following an expert policy. For such datasets,
imitation learning algorithms (e.g., behavior cloning [17])
are shown to be effective in achieving a small sub-optimality
competing with the expert policy. In particular, it is recently
shown in the work [18] that the behavior cloning algo-
rithm achieves the minimal sub-optimality 1/N in episodic
Markov decision processes, where NV is the total number of
samples in the expert dataset.

o Uniform coverage data. On the other end of the spectrum
lies the datasets with uniform coverage. More specifically,
such datasets are collected with an aim to cover all states
and actions, even the states never visited or actions never
taken by satisfactory policies. Most vanilla offline RL algo-
rithms are only suited in this region and are shown to diverge
for narrower datasets [5], [19], such as those collected via
human demonstrations or hand-crafted policies, both empir-
ically [20], [21] and theoretically [22], [23]. In this regime,
a widely-adopted requirement is the uniformly bounded
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concentrability coefficient which assumes that the ratio of
the state-action occupancy density induced by any policy
and the data distribution is bounded uniformly over all
states and actions [24]-[27]. Another common assumption
is uniformly lower bounded data distribution on all states
and actions [28], [29], which ensures all states and actions
are visited with sufficient probabilities. Algorithms devel-
oped for this regime are demonstrated to achieve a 1/ VN
sub-optimality competing with the optimal policy; see for
example the papers [30]—-[32].

A. Motivating Questions

Clearly, both of these two extremes impose strong assump-
tions on the dataset: at one extreme, we hope for a solely
expert-driven dataset; at the other extreme, we require the
dataset to cover every, even sub-optimal, actions. In practice,
there are numerous scenarios where the dataset deviates from
these two extremes, which has motivated the development
of new offline RL benchmark datasets with different data
compositions [5], [19]. With this need in mind, the first and
foremost question is regarding offline RL formulations:

Question 1 (Formulation): Can we propose an offline
RL framework that accommodates the entire data composition
range?

We answer this question affirmatively by proposing a new
formulation for offline RL that smoothly interpolates between
two regimes: expert data and data with uniform coverage.
More specifically, we characterize the data composition in
terms of the ratio between the state-action occupancy density
of an optimal policy' and that of the behavior distribution
which we denote by C*; see Definition 1 for a precise
formulation. In words, C* can be viewed as a measure
of the deviation between the behavior distribution and the
distribution induced by the optimal policy. The case with
C* = 1 recovers the setting with expert data since, by the
definition of C*, the behavior policy is identical to the optimal
policy. In contrast, when C* > 1, the dataset is no longer
purely expert-driven: it could contain “spurious” samples—
states and actions that are not visited by the optimal policy.
As a further example, when the dataset has uniform coverage,
say the behavior probability is lower bounded by fiy,i, over all
states and actions, it is straightforward to check that the new
concentrability coefficient is also upper bounded by /L;iln.

Assuming a finite C* is the weakest concentrability require-
ment [27], [33], [34] that is currently enjoyed only by some
online algorithms such as CPI [35]. C* imposes a much
weaker assumption in contrast to other concentrability require-
ments which involve taking a maximum over all policies;
see [33] for a hierarchy of different concentrability defini-
tions. We would like to immediately point out that existing
works on offline RL either do not specify the dependency of
sub-optimality on data coverage [36], [37], or do not have a
batch data coverage assumption that accommodates the entire
data spectrum including the expert datasets [38], [39].

'In fact, our developments can accommodate arbitrary competing policies,
however, we restrict ourselves to the optimal policy for ease of presentation.

8157

With this formulation in mind, a natural next step is design-
ing offline RL algorithms that handle various data composi-
tions, i.e., for all C* > 1. Recently, efforts have been made
toward reducing the offline dataset requirements based on a
shared intuition: the agent should act conservatively and avoid
states and actions less covered in the offline dataset. Based on
this intuition, a variety of offline RL algorithms are proposed
that achieve promising empirical results. Examples include
model-based methods that learn pessimistic MDPs [37], [39],
[40], model-free methods that reduce the Q-functions on
unseen state-action pairs [41]-[43], and policy-based methods
that minimize the divergence between the learned policy and
the behavior policy [20], [21], [44]-[49].

However, it 1is observed empirically that existing
policy-based methods perform better when the dataset
is nearly expert-driven (toward the left of data spectrum in
Figure 1) whereas existing model-based methods perform
better when the dataset is randomly-collected (toward the
right of data spectrum in Figure 1) [37], [50]. It remains
unclear whether a single algorithm exists that performs well
regardless of data composition—an important challenge from
a practical perspective [5], [19], [51]. More importantly, the
knowledge of the dataset composition may not be available a
priori to assist in selecting the right algorithm. This motivates
the second question on the algorithm design:

Question 2 (Adaptive Algorithm Design): Can we design
algorithms that can achieve minimal sub-optimality when
facing different dataset compositions (i.e., different C*)?
Furthermore, can this be achieved in an adaptive manner, i.e.,
without knowing C* beforehand?

To answer the second question, we analyze a pessimistic
variant of a value-based method in which we first form a
lower confidence bound (LCB) for the value function of a
policy using the batch data and then seek to find a policy
that maximizes the LCB. A similar algorithm design has
appeared in the recent work [36]. It turns out that such a simple
algorithm—fully agnostic to the data composition—is able to
achieve almost optimal performance in multi-armed bandits
and Markov decision processes, and optimally solve the offline
learning problem in contextual bandits. See the section below
for a summary of our theoretical results.

B. Main Results

In this subsection, we give a preview of our theoretical
results; see Table I for a summary. Under the new frame-
work defined via C*, we instantiate the LCB approach to
three different decision-making problems with increasing com-
plexity: (1) multi-armed bandits, (2) contextual bandits, and
(3) infinite-horizon discounted Markov decision processes.
We will divide our discussions on the main results accordingly.
Throughout the discussion, N denotes the number of samples
in the batch data, S denotes the number of states, and we
ignore the log factors.

1) Multi-Armed Bandits: To address the offline learning
problem in multi-armed bandits, LCB starts by forming a
lower confidence bound—using the batch data—on the mean
reward associated with each action and proceeds to select
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TABLE I
A SUMMARY OF OUR THEORETICAL RESULTS WITH ALL THE LOG FACTORS IGNORED

Multi-armed bandits C*ell1,2) C* € [2,00)
Algorithm | (MAB-LCB) sub-optimality - ol
(Theorem 1) N N
Information-theoretic lower bound ( 9 -

exp(—(2—-C*)-lo (*—>N> ¢
(Theorem 2) P~ ) log (&= N
Most pl??led arm exp (—N - KL (Bern (3) |[Bern (&5))) N/A
(Proposition 2)
Contextual bandits C* € [1,00)
Algorithm 2 (CB-LCB) sub-optimality S(C*—1) , §
(Theorem 4) v tw
Information-theoretic lower bound S(C—1) |, §

NoTw

(Theorem 5)

Markov decision processes

C*e[l,1+1/N) C*e[1+1/N,0)

Algorithm 3 (VI-LCB) sub-optimality
(Theorem 6)

Information-theoretic lower bound
(Theorem 7)

S *
(1—7v)*N (1—v)°N
S(C*—1) S S(Cx—1) S
A=y T I A=y + T

the one with the largest LCB. We show in Theorem 1 that
LCB achieves a y/C*/N sub-optimality competing with the
optimal action for all C* > 1. It turns out that LCB is
adaptively optimal in the regime C* € [2,00) in the sense
that it achieves the minimal sub-optimality /C*/N without
the knowledge of the C*; see Theorem 2. We then turn to the
case with C* € [1,2), in which the optimal action is pulled
with more than probability 1/2. In this regime, it is discovered
that the optimal rate has an exponentially decays with N, i.e.,
exp (—N), and is achieved by the naive algorithm of selecting
the most played arm (cf. Theorem 2). To complete the picture,
we also prove in Theorem 3 that LCB cannot be adaptively
optimal for all ranges of C* > 1 if the knowledge of C* range
is not available.

At first glance, it may seem that LCB for offline RL mirrors
upper confidence bound (UCB) for online RL by simply
flipping the sign of the bonus. However, our results reveal
that the story in the offline setting is much more subtle than
that in the online case. Contrary to UCB that achieves optimal
regret in multi-armed bandits [52], LCB is provably not adap-
tively optimal for solving offline bandit problems under the
C* framework.

2) Contextual Bandits: The LCB algorithm for contex-
tual bandits shares a similar design to that for multi-armed
bandits. However, the performance upper and lower bounds
are more intricate and interesting when we consider con-
textual bandits with at least two states. With regards to the
upper bound, we show in Theorem 4 that LCB exhibits two
different behaviors depending on the data composition C*.
When C* > 1 4 S/N, LCB enjoys a /S(C*—1)/N

sub-optimality, whereas when C* ¢ [1,1 + S/N), LCB
achieves a sub-optimality with the rate S/N; see Figure 2(b)
for an illustration. The latter regime (C* =~ 1) is akin to
the imitation learning case where the batch data is close to
the expert data. LCB matches the performance of behavior
cloning for the extreme case C* = 1. In addition, in the
former regime (C* > 1 4 S/N), the performance upper
bound depends on the data composition through C* — 1,
instead of C*. This allows the rate of sub-optimality to
smoothly transition from 1/N to 1/y/N as C* increases.
More importantly, both rates are shown to be minimax optimal
in Theorem 3, hence confirming the adaptive optimality of
LCB for solving offline contextual bandits—in stark contrast
to the bandit case. On the other hand, this showcases the
advantage of the C* framework as it provably interpolates
the imitation learning regime and the (non-expert) offline
RL regime.

On a technical front, to achieve a tight dependency on
C* — 1, a careful decomposition of the sub-optimality is
necessary. In Section IV-C, we present the four levels of
decomposition of the sub-optimality of LCB that allow
us to accomplish the goal. The key message is this: the
sub-optimality is incurred by both the value difference and
the probability of choosing a sub-optimal action. A purely
value-based analysis falls short of capturing the probability of
selecting the wrong arm and yields a 1/ V/N rate regardless
of C*. In contrast, the decomposition laid out in Section IV-C
delineates the cases in which the value difference (or the
probability of choosing wrong actions) plays a bigger
role.
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