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While mixed integer linear programming (MILP) solvers are routinely used to solve a wide range of important
science and engineering problems, it remains a challenging task for end users to write correct and efficient
MILP constraints, especially for problems specified using the inherently non-linear Boolean logic operations.
To overcome this challenge, we propose a syntax guided synthesis (SyGuS) method capable of generating
high-quality MILP constraints from the specifications expressed using arbitrary combinations of Boolean
logic operations. At the center of our method is an extensible domain specification language (DSL) whose
expressiveness may be improved by adding new integer variables as decision variables, together with an
iterative procedure for synthesizing linear constraints from non-linear Boolean logic operations using these
integer variables. To make the synthesis method efficient, we also propose an over-approximation technique for
soundly proving the correctness of the synthesized linear constraints, and an under-approximation technique
for safely pruning away the incorrect constraints. We have implemented and evaluated the method on a
wide range of benchmark specifications from statistics, machine learning, and data science applications. The
experimental results show that the method is efficient in handling these benchmarks, and the quality of the
synthesized MILP constraints is close to, or higher than, that of manually-written constraints in terms of both
compactness and solving time.

CCS Concepts: » Software and its engineering — Automatic programming; « Applied computing —
Mixed integer optimization; « Theory of computation — Formal verification.

Additional Key Words and Phrases: Program Synthesis, Automated Verification, Mixed Integer Programming,
Optimization

ACM Reference Format:

Jingbo Wang, Aarti Gupta, and Chao Wang. 2023. Synthesizing MILP Constraints for Efficient and Robust

Optimization. Proc. ACM Program. Lang. 7, PLDI, Article 184 (June 2023), 24 pages. https://doi.org/10.1145/
3591298

1 INTRODUCTION

Many important science and engineering problems may be formulated as mixed integer linear pro-
gramming (MILP) problems and then solved using off-the-shelf MILP solvers such as Gurobi [Bixby
2007]. Here, the word “mixed” means that the variables appearing in these linear constraints and
the objective function are of either integer or real type, where the integer variables are often used to
model binary decisions. Thus, MILP constraints are capable of expressing a wide range of decision
problems and optimization problems, including binary classification, path planning in dynamical
and partially known systems, and provisioning long-haul network capacity in cloud services. In
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Fig. 1. SYNMio — our method for synthesizing the MILP constraint i from the SMT specification ¢.

addition, with the rapid advance in the runtime performance of modern MILP solvers, they are also
increasingly used in statistics, machine learning, and data science applications.

However, writing correct and efficient MILP constraints remains a challenging task [Aghaei et al.
2019; Bertsimas and Dunn 2017; Chang et al. 2012; Chang 2012; Paulsen and Wang 2022a,b; Wang
et al. 2022], for two reasons. First, many problems cannot be directly expressed using a conjunction
of linear integer and real arithmetic constraints. Instead, they require the use of Boolean variables,
together with Boolean logic operations such as AND (A), OR (V), and Implication (—) between
the constraints. In the context of MILP, these Boolean logic operations are non-linear operations.
Since the decision variant of MILP is NP-complete, which has the same complexity as Boolean
satisfiability (SAT), it is possible to model Boolean variables using integer variables (with 0 and
1 values) and model Boolean logic operations using linear arithmetic constraints. However, in
practice, the modeling process is labor intensive and error prone. Second, when domain experts
write MILP constraints, they often do not use the objective function as is; instead, they use heuristic
simplifications or convex proxies to replace the exact objective function with an alternative, easier-
to-solve objective function. However, this kind of manual optimization is challenging for end
users.

To overcome the aforementioned limitations, we propose a solver-independent and generally-
applicable method to automate the process of transforming specifications with Boolean logic
operations to correct, efficient and robust MILP constraints that can be solved using any MILP solver.
By generally-applicable, we mean the method works for arbitrary combinations of Boolean logic
operations. Fig. 1 shows the overall flow. The input of our method is a specification ¢ expressed in
the LIA/LRA fragments of the SMT-LIB format. Here, LIA stands for linear integer arithmetic while
LRA stands for linear real arithmetic; thus, ¢ consists of both linear arithmetic constraints and
Boolean logic operations. The output is a constraint i in the MILP format; that is,  is a conjunction
of linear integer/real arithmetic constraints.

Internally, our method uses syntax guided synthesis (SyGuS) [Alur et al. 2013], which relies on a
domain specification language (DSL) to define the search space for ¢, and enumerative search to
explore the candidates for ¢ that are equivalent to ¢. While we can fix the set of grammar rules of
the DSL, denoted D, the set of variables cannot be fixed a priori. Thus, we propose to iteratively
strengthen the DSL. This is accomplished by starting from an initial DSL under which i may be
unrealizable, and strengthening it until ¥ becomes realizable. Strengthening is accomplished by
adding new decision variables, which effectively decompose the input specification ¢ and improve
the expressiveness of D. We leverage the counterexamples (CEX) generated by both the realizability
checking step and the verification subroutine as feedback, to decide which new variables to add, to
maximize the improvement in each refinement step.

Given a sufficiently expressive DSL, there are still two challenges in synthesizing the MILP
constraint ¢. First, due to the large search space, there may be too many candidates, each of which
must be checked to see if it is equivalent to ¢. Second, verifying the equivalence of ¢ and i may be
time-consuming. To overcome these challenges, we propose an under-approximation technique to
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quickly falsify the equivalence of ¢ and ¢, and then use the result to prune the search space. The
under-approximation is to reduce integer variables to small bit-vectors. This drastically speeds up
the falsification subroutine of SyGuS. We also propose an over-approximation technique to soundly
verify the equivalence of i and ¢. Since the goal of verification is to prove the equivalence of ¢ and
1 for any data element, rather than solving the optimization problem encoded by i over concrete
data elements, we over-approximate the equivalence verification by rewriting complex operations
in ¥ and ¢ as uninterpreted functions (UF) and then connecting them using high-level relations.

Sometimes, there may be multiple candidates for i/, all of which are equivalent to the specification
¢, and yet some are significantly easier to solve than others. In such a case, it is important for
our method to choose the most efficient candidate. Consider the specification (xg = 0 — x7; =
0) A (xs =0 — x17 = 0) as an example of ¢, where 0 < x7, x5, x1; < 1, and x7, x5, x11 € Z. The
two candidates may be ¢ : x1; + x17 < 2xg and ¢’ : x1; < x5 A x17 < x3. While both of them are
equivalent to ¢, our experience with modern MILP solvers shows that ¢ is significantly easier to
solve. This is due to the fact that, while both correspond to the same discrete set F of feasible
points, the polyhedra formed by linear relaxations (i.e., relaxing variables of ¢ and /' from integer
to continuous value) are different. The polyhedra for ¢ is significantly closer to the convex hull
of F. To choose the high-quality candidate, we combine our heuristic decomposition of the input
specification ¢ (used to add new variables to the DSL) with a convex-hull based optimization to
allow the relaxation space to get closer to the convex hull. Details of this optimization are presented
in Section 4.

Our method differs significantly from existing techniques. Broadly speaking, there are two
lines of related work. One line of work, which is adopted by some MILP solvers, is to provide
limited support for Boolean logic expressions internally. For example, both Gurobi [Bixby 2007] and
CPLEX [CPLEX 2015] can linearize simple Boolean logic expressions by adding indicator variables
and then explicitly branching on these variables. However, this may lead to exponential blowup;
furthermore, since the linearization is solver-dependent, it cannot benefit other solvers. Another
line of work is on linearizing Boolean logic expressions externally, but only for a restricted syntax.
For example, the Big-M method [Cococcioni and Fiaschi 2021; Glover 1975] adds a large number
for an artificial M variable, to ensure that a Boolean logic expression holds whenever a Boolean
indicator variable evaluates to False. However, the M value has a significant and yet unpredictable
impact on performance. Bertsimas et al. [Bertsimas et al. 2021] propose another way to reformulate
simple Boolean logic expressions as convex binary optimization problems; however, it works only
for a restricted syntax. To the best of our knowledge, our method is the first solver-independent
and generally-applicable solution.

It is worth pointing out that the decision variant of an MILP problem can be solved using an
SMT solver. However, its performance is not as competitive as MILP solvers. To demonstrate this,
we have conducted an experiment using the Protein Folding example (also explained in Section 2.2).
The state-of-the-art MILP solver, Gurobi [Bixby 2007], solved it in 0.23 seconds, while the state-of-
the-art SMT solver, Z3 [Moura and Bjerner 2008], solved it in 18.27s. Although there have been
efforts on extending SMT solvers to make them more efficient in solving both the decision and the
optimization variants of the MILP problem, for example, in [Devriendt et al. 2021] and [King et al.
2014], the performance is still far from being competitive.

We have implemented our method in a tool and evaluated the tool on a diverse set of bench-
marks. They include 38 specifications from statistics, machine learning, and data science applica-
tions [CPLEX 2015; Forrester and Greenberg 2008; Williams 2013]. To evaluate the quality of the
synthesized MILP constraints, we have compared them with the MILP constraints manually written
by domain experts. The results show that, in terms of compactness, the synthesized constraints
are similar to the manually-written constraints; and in terms of MILP-solving performance, the
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Fig. 2. An example SMT specification ¢ (left), the equivalent MILP constraint /! written by a domain expert
(middle), and the equivalent MILP constraint 1/ synthesized by our method (right). Here, x is a new integer
variable (whose value is either 0 or 1), while minA and maxA are constant values.

synthesized constraints are either similar to, or better than, the manually-written constraints.
Specifically, our synthesized constraints are able to reduce the MILP-solving time by more than
41%. To evaluate the efficiency of the synthesis tool, we have also analyzed its execution time, and
quantified the impact of individual optimization techniques. Our experimental results show that
the tool is able to synthesize all of the MILP constraints quickly, and our optimization techniques
are effective in speeding up the synthesis process.

To summarize, this paper makes the following contributions:

e We propose a solver-independent and generally-applicable method for synthesizing correct,
efficient and robust MILP constraints from specifications with Boolean logic operations.

e We propose an under-approximation technique to prune the search space, and propose an
over-approximation technique to speed up equivalence verification.

e We propose a method for generating high-quality candidates by leveraging a convex-hull
based optimization to decompose the input specification and strengthen the DSL.

e We implement our method and demonstrate its effectiveness on 38 statistical modeling
benchmarks with a wide range of Boolean logic operations.

The remainder of this paper is organized as follows. First, we use examples to motivate our work
in Section 2. Then, we present an overview of our method in Section 3. This is followed by the
detailed algorithms for strengthening the DSL in Section 4, generating candidates in Section 5,
verifying equivalence in Section 6, and domain-specific optimizations in Section 7. We present the
experimental results in Section 8, the related work in Section 9, and the conclusions in Section 10.

2 MOTIVATION

In this section, we give an overview of our approach using two motivating examples.

2.1 Example 1: From Online Q&A

This example comes from the StackExchange website. The input specification can be expressed
asIf a > 0 then b = K1;else b = K2; where a and b are real-valued variables and K1 and K2
are constants. Given the input specification, it is easy to write down the formula expressed in the
SMT-LIB format, ¢ := ¢; A ¢, where ¢ and ¢, are defined in Fig. 2 (left).

The four predicates a > 0, a < 0, b = K1 and b = K2 in ¢ are linear constraints that can be
normalized to ax < b. The Boolean logic operator —, which stands for “implies”, can be transformed
to elementary Boolean operations; that is, A — B is equivalent to =A V B.

While it is easy for end users to write the SMT specification ¢, it is a challenging task to
transform ¢ into a correct and efficient MILP constraint, since MILP does not allow disjunction (V)
or implication (—), or any combination of Boolean logic operators. Instead, an MILP constraint
must be a conjunction of linear arithmetic constraints.
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Fig. 3. Basic DSL for expressing the MILP constraint, where ¢ denotes constant, var denotes variable and A
denotes array. Both var and A are sets of elements extracted from the input SMT specification ¢.

2.1.1  The MILP constraints y/* and 2. Fig. 2 shows two equivalent MILP constraints. The one in
the middle, denoted /!, is written by a domain expert, while the one on the right, denoted /2, is
synthesized by our method.

Domain experts often adopt the Big-M method from the literature [Cococcioni and Fiaschi 2021;
Glover 1975]. In this running example, x is a newly-added decision variable whose value is restricted
to either 0 or 1, while minA and maxA are two constant values satisfying (minA < a A minA <
0 A maxA > a A maxA > 0). In other words, minA (maxA) must be a negative (positive) value
smaller (bigger) than all possible values of the variable a. As such, the approach has two limitations.
First, it requires a priori estimation of the minimal and maximal values of the variable a, which
may not be easy to do. Second, the quality of the MILP constraint depends on the quality of these
two bounds; loose bounds of minA and maxA will make the MILP constraint difficult to solve, or
make the solving time unpredictable.

In contrast, our method is able to synthesize a correct, efficient and robust MILP constraint tﬁz, as
shown in Fig. 2 (right). Unlike the manually-written constraint, it does not rely on the two constant
values (minA and maxA); thus, there is no need to estimate the minimal and maximal values of the
variable a. Furthermore, our experience with modern MILP solvers shows that 12 is significantly
easier to solve than ¢/!. In the remainder of this subsection, we will explain, at a high level, how
our method synthesizes the MILP constraint /* from the input specification ¢.

2.1.2  Our Method for Synthesizing y/*. Our method starts by defining a domain specific language
(DSL), and then strengthens the DSL until it is expressive enough to capture the MILP constraint
/? equivalent to the input specification ¢. During this strengthening process, the set of grammar
rules of the DSL is fixed, while the set of variables of the DSL is expanded.

Fig. 3 shows the grammar rules of the DSL. Each rule maps a type (left-hand side of ":=") to a
set of compatible values (right-hand side of ":="). For instance, the compatible values for atomic
predicate are D[p] = {a © a}, i.e., the linear arithmetic constraints. With the grammar rules fixed,
the expressiveness of the DSL depends on c, var, r, and A ; they are the sets of constants, variables,
relations, and arrays, respectively.

In this running example, the set of variables is var = {a, b, K1, K2} initially. With these four
variables, however, the equivalent MILP constraint lﬁz is unrealizable. We must add new variables
to the DSL to improve its expressiveness, until 12 becomes realizable.

This is accomplished by first adding a Boolean indicator variable x, whose value is either True
or False, to replace the predicates (a > 0) and (a < 0) in ¢. We capture the relationship between
a and x using ¢3: (a <0 = x =True) A (a > 0 — x = False).

With the addition of this new variable x, we have var = {a, b, K1, K2, x}, which improves the
expressiveness of the DSL. Furthermore, the updated input specification is ¢ = ¢ A ¢; A ¢3, where
¢1 and ¢, are new versions of ¢; and ¢, by replacing predicates a > 0 and a < 0 with x =False
and x =True, respectively.

With the updated DSL D and input specification ¢, our method checks the realizability of an
equivalent MILP constraint again. This time, the answer becomes yes, and the resulting 12 is shown
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Fig. 4. The protein folding example. Fig. 5. Requirements for protein folding.

in Fig. 2 (right). While /% contains the product of program variables, it can still be modeled as linear
constraints, since at least one of the two variables in a product is binary (e.g., x).

To understand why the synthesized MILP constraint /2 is equivalent to the SMT specification ¢,
consider the following two cases:

e When x = 0, we can reduce /> to ¢ : a > 0,y : a < a,and /3 : b = K1.
e When x = 1, we can reduce /> to ¢; : @ > a, /5 : 2a < —1,and ¢ : b = K2.

In both cases, the result is consistent with ¢; :a >0 —>b=Kland ¢, :a <0 — b =K2.
The equivalence of ¢ and ¢/ holds as long as a precondition ®< (a) holds. That is,

Va,b,K1,K2 € R, x € {0,1}. ®<(a) — $(a,b,K1,K2,x) = /*(a,b,K1,K2,x) (2)

The precondition @< (a) is defined as a < 0 — a < —0.5 to remove strict inequality (<) in ¢s.
Since strict inequality is not supported by the MILP solver, a tolerance value (—0.5) is introduced to
convert a < 0 into a < —0.5.

One advantage of our method is that the correctness of /% is guaranteed by construction, since
our method returns 12 only after it formally proves the equivalence of 12 and ¢. This is in contrast
to the manually-written /!, for which domain experts must manually verify the correctness.

2.2 Example 2: Protein Folding

This is a molecular biology problem [Forrester and Greenberg 2008] where a chain of amino acids
must be folded. Some of the amino acids are hydrophobic (water-hating) while others are hydrophilic
(water-loving). The goal is to maximize the pairing of hydrophobic acids. Fig. 4 shows the folding
in two dimensions, with hydrophobic amino acids marked by blue circles, and the matches marked
by blue dashed lines.

Given a chain of 50 amino acids A = {1,2,...,50} and the subset of hydrophobic amino acids
H =1{2,4,5...} C A, for example, the goal here is to compute the best folding, to maximize the
number of matchings of hydrophobic amino acids. Fig. 5 shows the matching constraints, where
i € [1,50] and j € [1,50] are integer variables. Since the third constraint is straightforward, let us
focus on the first two constraints

Based on the requirements in Fig. 5, end users will be able write the input specification ¢ =
¢1 A P2 A3 A ... shown in Fig. 6 (left). Here, ¢; and ¢, encode the first requirement of Fig. 5, while
¢35 encodes the second requirement, meaning that there is only one fold between hydrophobic acids
i and j, if the two hydrophobic acids i and j match.

2.2.1 Using Boolean Relations. Inside ¢, Boolean relations such as M(i, j) and f(k) are used to
write the input specification symbolically. This is in contrast to the use of individual Boolean
variables such as M_i_j for all i € [0,50] and j € [0,50]. For example, M(i, j) = True indicates
that a hydrophobic acid i is matched with another hydrophobic acid j, for all hydrophobic acids
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Fig. 6. Input specifications are in {¢1, 2, #3}, specifications generated by our decomposition procedure are
in {¢4, 5}, and the synthesized MILP constraints are in {7 — s }.

i+1 < j e H,while f(k) = True holds if and only if a fold occurs between the k-th and (k + 1)-th
amino acids in the chain, where k € A.

One advantage of using Boolean relations in ¢, as shown in Fig. 6, is that the specification ¢ is
applicable to a chain of amino acids of any length, not just a chain of amino acids of length 50.

2.2.2  Rewriting the Accumulative Operations. Given this input specification ¢, our method first
simplifies ¢, and then strengthens the DSL to ensure that the equivalent MILP constraint is realizable,
before synthesizing . Our simplification focuses on rewriting the accumulative operations such as
Dier and A;¢j using pre-defined rewriting rules.

These rewriting rules are derived from the semantics of the accumulative operators. For the };¢;
operator, there are two rules applicable to this example: Ry : }};c; g(i) & g(i’) + Xiernizi 9(i) and
Ryt Xierg(i) =0 — g(i) = 0.

With rule Ry, subformula ¢ is rewritten as f (k) + X<k« jar 2k f (k') = 1. Specifically, assuming
the LHS of ¢, holds (e.g., M(i, j) = True, k = (i + j — 1) /2), we obtain f(k) = 1 from the RHS of
Thus, ¢5 is rewritten as 3; < jarr 2k f (k') = 0, implying 3; < < jakr#(ivj—1)/2 f (k') = 0. With rule
Ry, ¢5 is finally simplified as follows: M (i, j) Ak" # (i+j—1)/2 — f(k") = 0.

2.2.3 Checking Unrealizability. Next, our method checks if the equivalent MILP constraint ¢/ is
realizable using the initial DSL (D). This check is formulated as

Find € L(D), Vi, j, k, M(i, j), F(k). ¢ (i, j, k, M, F) = y(i, j, k, M, F) 3)

Here, L(D) represents the set of all possible formulas that can be expressed using the DSL D. For
this example, the result is unrealizable. To make it realizable, we must add new decision variables
to the var set of the DSL. This is accomplished by replacing some of the predicates in ¢ with the
new decision variables, until Eq. 3 says realizable. The detailed algorithm for checking realizability
will be presented in Section 4.2.

There may be multiple ways of decomposing ¢ to add new variables. Below is an example.

xe((+j-D)%2=0Ayok=(>G0+j-1)/2Azeo MU j)A-yAzl & MU j) Ay (4)

However, this may introduce too many new variables.
A better way is to introduce only two new variables x and y, as defined in the subformulas ¢4
and ¢s. Fig. 6 (right) shows the equivalent MILP constraint synthesized by our method.

3 OURMETHOD

The top-level procedure of our method, SyNMio, is presented in Algorithm 1. It takes the SMT
specification ¢ as input and returns the equivalent MILP constraint ¢ as output.

Internally, it first identifies from the input specification ¢ the sets of constants, relations, variables,
and arrays that appear in ¢@. Then, it uses these sets to initialize the DSL D, whose grammar rules
have been defined in Fig. 3. It also initializes Sg, which will be used to store the set of negative
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Algorithm 1 Our synthesis method i « SyNMI1o(¢).

1: Let ¢, r, var and A be the sets of constants, relations, variables, and arrays appeared in specification ¢

2: D « INttDsL(c, r, var, A)

3: Sp < 0 > Sg is the set of negative examples
4: do

5: (D, ¢) « EnricHDSL(D, Sg, ¢) > Strengthen DSL if Sg contains evidence that i is unrealizable
6 do

7 Y« GENCANDI(D, SE, §) > using under-approximation to prune the SyGuS search
8 E « VERIFYEQ(9, ¥) > using over-approximation to speed up verification
9 Sg «— SEU{E}

10: while E # 0 A runtime < threshold
11: while E # 0
2: return ¢

oy

examples. Here, a negative example is a set of concrete values for variables in the DSL, to show
¥ # ¢. Initially, Sg is an empty set.

Inside the first loop (Line 4), our method first checks if the equivalent MILP constraint i is
realizable. If there is evidence in Sg that ¥ may be unrealizable, the DSL is strengthened until such
negative examples no longer exist. This is done inside the subroutine ENrRicHDsL, which returns
the strengthened D and the updated ¢.

While the detailed algorithm of ENrRIcHDSL will be presented in Section 4, here, it suffices to say
that the realizability-checking procedure is designed to be sound but not necessarily complete, for
efficiency reasons. That is, when it reports unrealizable, it means the equivalent MILP constraint is
definitely unrealizable; however, when it reports unknown, the result is inconclusive. In the latter
case, ENRICHDSL returns the current D and ¢ without modification.

With the strengthened DSL, our method goes into the second loop, to generate i using the syntax
guided synthesis (SyGuS) framework. Specifically, it uses the subroutine GENCANDI to generate a
candidate ¥, and then uses the subroutine VERIFYEQ to prove the equivalence of ¢ and ¢.

To improve performance, it uses under-approximation inside GENCANDI to quickly prune the bad
candidates, and uses over-approximation inside VERIFYEQ to speed up verification. Any negative
examples generated by these two subroutines will be added to the set Sg.

Whenever ¢ and i are proved equivalent, VERIFYEQ returns an empty set (E), which allows our
method to jump out of the loops and return the synthesized MILP constraint i (Line 12).

If the running time of the inner loop exceeds a predefined threshold, then the subroutine
EnrIcHDSL is used to strengthen the DSL again, using the accumulated negative examples in Sg.

In the next three sections, we will present the detailed algorithms inside the three subroutines
ENnrIicHDSL (Sec 4), GENCANDI (Sec 5), and VERIFYEQ (Sec 6).

4 STRENGTHENING THE DSL

In this section, we present the algorithm inside the subroutine ENrRicHDsL. The pseudo code is
shown in Algorithm 2. The input of this subroutine consists of the DSL D, the negative example set
Sk, and the specification ¢. The output consists of the updated versions of D and ¢.

Internally, there are three steps. The first step, UNREALIZABLE, checks whether the example set
Sg contains any evidence to show that an MILP constraint equivalent to ¢ is unrealizable. The
second step, DEcomp, strengthens the DSL by decomposing ¢ to replace some of its predicates
with new decision variables; adding these new variables to the var set of the DSL will improve its
expressiveness. The third step, ConveExHULLSPLIT, further decomposes ¢ to add more variables.
However, unlike DEcomp, the goal here is to increase the chance of generating a high-quality MILP
constraint. In the remainder of this section, we explain these three steps in detail.
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Algorithm 2 (D, ¢) < ENricHDsL(D, Sg, §) $rixz0Ax<l— y<10
1: while UNREALIZABLE(D, Sg, ¢) do ¢ faix21AX<2—> y=35 o
2 (D, ¢) — Decomp(D, Sg, ¢) Git... (up to 10 implications)
3: end while Pn:x>10 — y <10
4: (D,¢) «— ConvexHuLLSpLIT(D, ¢)
5: return (D, ¢) Fig. 7. Specification ¢ for StackExchange 2873.

4.1 Decomposing the Specification

We start with the subroutine DEcomp. Instead of showing the pseudo code, which is straightforward,
we illustrate the process using an example. The specification of this example, named StackExchange
2873, is shown in Fig. 7. That is, ¢ = ¢1 A P2 A ...¢; A ...¢p, contains a conjunction of subformulas,
each of which may have both linear constraints and Boolean logic operations such as Implication
(—). In our method, each subformula, ¢;, is treated as an input, for which an equivalent MILP
constraint is synthesized.

X20Ax<1>y<10|dig: x>0 w

I
WAX<1oy<10|dp: x <1 wy $rix20Ax<1—> y<10

wl/\w2—>y§10|¢1cz wAwW Sz [T

|¢1d:z—>yS10 b1

Fig. 8. The decomposed specifications from ¢;. Fig. 9. Decomposing ¢;.

Consider ¢, as our running example, Fig. 9 shows several ways of decomposing the antecedent,
to replace predicates in the set {x > 0 Ax < 1, x > 0, x < 1} with new decision variables. For
example, DEcoMP may introduce a new variable z to replace ¢;.left() = x > 0 A x < 1. DEcomp
may also introduce two more variables w; and w; to replace the children of ¢;.left() such that
wi=x>0andw, =x < 1.

After introducing these three new variables, the specification ¢; becomes ¢1, A P15 A P1c A P14,
where the subformulas are defined in Fig. 8.

Our method will synthesize an equivalent MILP constraint for each of these subformulas. Thus,
the final MILP constraint for ¢; will be 1 = 14 A Y1p A Y1c A Y14, Where 14 is defined as
y < 10+ W * (1 — z) and the other subformulas are defined as follows:

lpla{W>x<w12x+eps ¢1b{W*W221_x C{ZSWI/\ZSWZ 5)

W (l—w) 20-x W (1—-wp) 2x—1+eps wi+wy,—1<z2

Here, W and eps are symbolic variables such that W is the largest possible value among all
expressions in i, and eps is a small constant used to make the inequality non-strict, similar to the
tolerance value used in in Equation 2. For eps, we always add the bound constraint 0 < eps < 1.

For W, we first extract all the subexpressions (i.e., x + eps and 0 — x from ¢/;,) and then impose
the constraint W > x +eps AW > 0 — x.

4.2 Checking for Unrealizability

Now, we explain the subroutine UNREALIZABLE, which decides whether Sg contains any evidence
showing that a ¢-equivalent MILP constraint is unrealizable. The verification problem is defined as
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follows:
Find ¢ € L(D), Yoar,r, A. ¢(var,r, Z) = ¢(var,r, X) (6)

However, this problem is difficult to solve.

Instead, we leverage the unrealizability verification technique proposed by Hu et al. [Hu et al.
2019, 2020]. The core idea is to reduce the unrealizability proof over all inputs (Eq. 6) to a proof
over the finite number of examples in Sg:

Find ¢ € L(D), A

This is a sound (and not necessarily complete) procedure in that, if it is unrealizable according to
Eq. 7, it is unrealizable according to Eq. 6; however, the reverse is not always true.

This procedure is practically fast, because the set Sg of negative examples is finite, which means
the unrealizability proof of Eq. 7 can be encoded as a reachability problem in a non-deterministic
program P, as shown by Hu et al. [Hu et al. 2019, 2020]. Each program path in P,, models a possible
candidate expression that the DSL D can represent. Furthermore, P, has an assertion (Eq. 8) such
that, if the assertion cannot be falsified, it means the synthesis instance Eq. 7 is unrealizable.

- /\ var,r,ZESE ¢(Uar’ " A) = [//(Uar’ r A) (8)

¢ (var,r, X) = y(var,r, X) (7)

-
var,r,A€Sg

4.3 Convex-hull Based Splitting

Finally, we explain the subroutine CONVEXHULLSPLIT. At this moment, the DSL has been strength-
ened such that there is no longer evidence in Sg showing that the ¢-equivalent MILP constraint is
unrealizable. Thus, the goal of adding new variables is not improving the expressiveness; instead,
the goal is improving the quality of the synthesized MILP constraint.

Our method for adding new variables in CONVEXHULLSPLIT is inspired by the fact that, within
MILP solvers, the original problem is often reformulated into a more relaxed problem before it is
solved. There are many such reformulations, all of which keep the original part of the solution
space, but may add more solutions to make the solution space convex. In this context, a convex hull
is defined as the smallest convex solution space for the relaxed problems [Belotti et al. 2011].

Consider an example whose input specification ¢ is given as follows:

Y1:5-7%(1—-k) <x1<9+7%(1-k)

$1:k—>5<x1<9IAN0<x2<4 Y2 =T (1-k) <x2<4+7%(1-k)
¢ $2: k> 0<x1<5A4<x2<6 4 Us: =Tk <x1<5+7x*k
Yp:4-T7T+xk<x2<6+7xk

©)

The solution space of ¢ is shown as the blue shaded areas in Figure 10a, where x1 is the horizontal
axis and x2 is the vertical axis.

Without adding any new variable, our method will synthesize 1! as shown in the above Eq. 9.
The solution space of /! is shown as the orange region in Figure 10b, which contains the blue
region (actual solution space).

However, this is not a tight relaxation since the orange region over-approximates the blue region
too much. This may lead to a long solving time, because MILP solvers routinely search for a solution
in the relaxation space and then check if it also belongs to the actual solution space. Thus, a smaller
relaxation space (orange) is more likely to reduce the solving time. However, without adding new
variables, it is not possible for our synthesis method to get a tighter relaxation.

The reason is because /! is synthesized from ¢ by treating each of the subformulas (¢; and ¢)
in isolation. In other words, the synthesizer fails to capture and then utilize the correlation between
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@¢ (b) ¢! () y*

Fig. 10. The solution spaces for ¢, and two possible equivalent MILP constraints 1! and /2.

them. To see why ¢; and ¢, are correlated, consider the fact that they are defined over the same set
of variables {x1, x2}.

One way to capture the correlation is to split variable x1 into x1; and x1_j such that x1 =
X1 +x1-. If x1; is activated, x1_ is equivalent to 0 (deactived); and vice versa. CONVEXHULLSPLIT
is designed to handle this kind of scenarios, to split each (non-decision) variable to two new
variables such that only one of them can be activated.

For the running example, the var set of the DSL will be augmented by the set {x1x, x1_, X2k, x2_x }
of new variables. With the updated DSL, our method will synthesize the MILP constraint 1/* defined
as follows:

Y1 i xl =x1p +x1p AX2 = %2 + X2
9 U210 < x1p A0 < x1
s :5k < x1 < 9k A0 < x1g <5(1—k)
Yy :0<x2 <4k AN4(1-k) <x2_ <6(1—k)

14 (10)

Figure 10c shows the region of 1%, where the relaxation space (orange) is reduced to the convex
hull of the blue region.

To summarize, the subroutine CoNvEXHULLSPLIT is designed to introduce new variables by
splitting the existing variables with the goal of capturing the relation between two subformulas ¢;
and ¢;, where the antecedent of ¢; is the negation of the antecedent of ¢;. Our observation is that,
by extracting the correlation between them and make the information available during synthesis,
our method will be able to synthesize high-quality candidates.

5 GENERATING THE MILP CANDIDATES

In this section, we present the algorithm implemented in the subroutine GENCANDI, which takes
the DSL (D), the example set (Sg) and the specification (¢) as input, and returns a candidate ¥
as output. The pseudo code is shown in Algorithm 3. The baseline is a counterexample guided
inductive synthesis (CEGIS) procedure [Alur et al. 2013], which enumerates candidates in a search
space defined by D and, for each candidate ¢/, checks whether it is equivalent to ¢. To improve
performance, however, we use under-approximation during the equivalence checking.

5.1 Under-approximation for Search Space Pruning

While variables in ¢ and i are either integer or real-valued variables, we redefine them as bit-vectors
during the verification step. By reducing the length of the bit-vectors to 2 or 3, for example, the
verification time will be drastically reduced.
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Algorithm 3 Subroutine for generating candidate: iy «— GENCANDI(D, Sg, ¢).

1: @ « True; b « INIT();
2: while runtime < threshold do

3: Y « AsseMmBLE(D, Sg, ¢, b) > Ngesg - P(E) — @(E) =¢(E)
4 E « FALSIFYBIT(¢, ¥, b) »VE, 0 < E < 2071 — 1. ®(E) = ¢(E) = Y/(E)
5: if E # 0 then > E : counterexample
6: if CHECKCEX(E, ¢, /) then
7: SE <« SgpU {E} > E is a real counterexample — add to Sg
8: else
9: ® « UPDATEPRE(D, ¢/, b, E) > E is a bogus counterexample — update precondition ®

10: end if

11: else

12: return ¢

13: end if

14: end while
15: return

Our verification step has three phases, each of which is slower and yet more accurate than the
previous one. In the first phase, we check if the equivalence of ¢ and i holds on all examples E € Sg.
Since Sg is a finite set, this is captured by ¥;, defined as follows:

W) = N\, PE) = $(E) = Y(E) (11)

Here, ¢ (E) denotes the value of ¢ on the example E, and ¢(E) = /(E) means ¢ and ¢ are equivalent
for this particular example E.

®(E) is the precondition that is necessary to establish the equivalence in this bit-vector domain,
defined as ®(E) = ®<(E) A ®1(E). The subformula ® is used to remove strict inequality as
explained using the example @ (a) in Equation 2. The subformula ®1, on the other hand, accounts
for overflow/underflow in the bit-vector domain. Details of ®; will be explained in Section 5.2.

As shown in Line 3 of Algorithm 3, the subroutine ASSEMBLE returns the candidate only when ¢
and ¢ satisfy Eq. 11.

In the second phase, we check if the equivalence holds for all values in the bit-vector domain;
this is captured by ¥,, defined as follows:

¥,(y) :=VE, 0 <E<2'"'—1.®(E) — ¢(E) = y(E) (12)

Here, b is the length of the bit-vector. Again, the number of E is finite. As shown in Line 4 of
Algorithm 3, the subroutine FALSIFYBIT is used to check Eq. 12.

In the third phase, we check if the equivalence holds in the unbounded integer/real domain Z/R.
Since @1 is no longer needed to account for overflow and underflow in the bit-vector domain, the
precondition ® = &< A @1 reduces to ®<. This is captured by ¥3, defined as follows:

W () =VEE€Z E €R.D(EE) — ¢(EE)=y(EE) (13)

The reason why we need the third phase is because, even if ¥, (1) holds, ¥3(y) may not hold. The
third phase is implemented in VERIFYEQ (used in Algorithm 1), and it will be discussed again in
Section 6.

The three-phase approach presented above is designed to significantly speed up verification,
by quickly falsifying equivalence in smaller domains (Sg and [0, 2°~! — 1]) before falsifying in the
unbounded domain. This effectively prunes the redundant search space.

The effectiveness of pruning is affected by the length of bit-vector. In our implementation, we
set the length to 2 initially, and then keep increasing it as long as the equivalence checking is
falsified in the third phase. This can be illustrated using the Decentralized Planning example below.
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Example Sg Candidate i/ FALSIFYBIT E=0 VERIFYEQ E=0 MILP
?
E E CEX
CHECKCEX
G Update precondition ° Increase bit-vector length/CEX
.
GENCANDI

Fig. 11. The overall flow of the subroutine GENCANDI presented in Algorithm 3.

In this example, the input specification ¢ is given as follows, together with the synthesized MILP
constraint /%

mou(d, c,d2,c2) — loc(d,c) mov(d, ¢, d2,c2) < loc(d,c)
¢ ymoou(d, ¢, d2,c2) — loc(d2,c2) ¢2 mou(d, ¢, d2,c2) < loc(d2,c2)
loc(d, c) Aloc(d2, c2) — mou(d,c,d2,c2) loc(d, c) +loc(d2,c2) < 1+ mov(d,c,d2,c2)

(14)
Here, both loc and mov are Boolean relations, where loc(d, ¢) means a factory d is located at a city
¢, and mov(d, ¢, d2, c2) means moving d from c to ¢2 and renaming it as d2.
While /2 is the equivalent MILP constraint synthesized by our method, it is not synthesized in
one iteration. Initially, we use length-2 bit-vectors, and GENCANDI produces a different candidate
!, shown as follows:

mou(d, ¢, d2, c2) + loc(d2, c2) + mov(d, ¢, d2, c2) + loc(d, c¢) < (#b01 + #b01 + #b01 + #b01 + #b01)

Here, #b01 stands for a bit-vector constant of value 1. While this candidate ¢/* satisfies ¥, defined
in Eq. 12, it does not satisfy ¥; defined in Eq. 13.

That is why we increase the bit-vector length to 3, and then to 4, which leads to the correct
candidate /2.

5.2 Defining Preconditions

Recall that in Eq. 11 and Eq. 12, the preconditon ®1(E) is used to establish the equivalence in the
bit-vector domain, to account for overflow and underflow. For example, the summation of two
bit-vectors of length 2 may create a positive value that is too big, and the overflow may cause the
value to become negative. Both overflow and underflow may lead to incorrect verification results.

Consider the example below, which illustrates the overflow. The input specification ¢ and the
equivalent MILP constraint ¢/ are shown as follows:

(15)

¢1:x>LB— wl=True Y1 :Wxwl+LB2>x
¢ :x < LB — wl =False Yo : W (1—wl)+x > LB+eps

While ¢ is equivalent to ¢ in the integer and real domains, when we check them in bit-vector
domain, the equivalence may no longer hold.

Thus, FALSIFYBIT produces a counterexample E = (W =7, wl = True, LB = 2, x = 4). While
both ¢(E) and /(E) evaluate to True, in the length-4 bit-vector domain (signed), /(E) evaluates to
False. This is because 7 is the maximum positive value in this bit-vector domain. Thus W s w1+ LB,
which is supposed to be 9, becomes —7. As a result, /(E) evaluates to False, thus (mistakenly)
failing ¥, defined in Eq. 12. The consequence is that the correct candidate is missed.
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To avoid the above scenario, we must add the precondition ®; into Eq. 11 and Eq. 12. Instead of
enforcing constraints on a particular variable, we propose a general constraint to eliminate the
overflow case of the summation over k-bit domain.

Assuming k = 4, we add to @1, for each arithmetic operation of the form (+ opl op2), the
following constraint: opl > 04 A 0p2 > 04 — opl+op2 > 04 Similarly, for each (+ 01 02),
we add the following constraint: v1 > 04 A v2 > 04 — 0vl+02 > 04.

If FALSIFYBIT generates a counterexample E, it is evident that ¢ (E) = /(E) fails in the bit-vector
domain. However, it remains unclear if E is a valid counterexample in the integer and real domains.
To make sure that E is a real counterexample, inside CHECKCEX (Line 6 of Algorithm 3), we check
whether ¢(E) = ¢/(E) fails in the integer and real domains.

Figure 11 shows the details of generating and then validating the counterexample E, before
adding it to the set Sg. In addition to FALSIFYBIT, the counterexample may also be generated by
VERIFYEQ. In both cases, E is added to Sg only when it is confirmed to be a valid counterexample.

If, on the other hand, E is found to be a spurious counterexample, we identify the arithmetic
operations causing the discrepancy (E being valid in the bit-vector domain but spurious in the
integer/real domain). These arithmetic operations, e.g., (+ opl op2) and (+ vl v2), will be used
to update the precondition @1, as explained in the paragraphs above.

To summarize, in Algorithm 3, the first step, ASSEMBLE, produces a candidate i that is equivalent
to ¢ for all the examples E € Sg (Eq. 11). The second step, FALSIFYBIT, further checks the validity
of ¥ in the bit-vector domain (Eq. 12). If ¢ is validated by FALsIFYBIT, it would be returned for
further checking in VERIFYEQ (Line 12). Otherwise, a counterexample E is generated. As E is not
guaranteed to be a real counterexample, CHECKCEX checks the validity of E. Based on the result of
CHECKCEX, it would be either added to Sg (real counterexample) or used to define the precondition
(spurious counterexample).

6 VERIFYING THE EQUIVALENCE

We now present the algorithm implemented in the subroutine VERIFYEQ, which is used in Algo-
rithm 1 to soundly prove that / and ¢ are equivalent under the precondition ®< as defined in Eq. 13.
This is accomplished by leveraging an off-the-self SMT solver. However, instead of proving the
validity of

(p=9)=(@=>PA{Y—9), (16)

we use the SMT solver to check the satisfiability of the negated formula (¢ # ¥), which is equivalent
to (¢ A =~ V = A ). We say that ¢ and ¢ are equivalent if and only if the negated formula is
unsatisfiable (UNSAT).

However, directly applying the SMT solver to check the UNSAT of the negated formula may still
be costly. As the sizes of ¢ and ¢ increase, the verification time increases rapidly, which prevents
our method from handling larger synthesis problems. To overcome this limitation, we propose to
verify the equivalence of ¢ and ¢ at a higher level of abstraction, i.e., by treating complex arithmetic
operations as uninterpreted functions (UF). This is motivated by the fact that, during equivalent
verification, our goal is to prove the equivalence of ¢ and i/, without having to solve these arithmetic
constraints on the potentially large amount of concrete data.

6.1 An Example

To understand the idea of verifying equivalence at a higher level of abstraction, let us revisit the
protein folding example. Recall that, in this example, both ¢ and ¥ are constraints over index
variables such as i, j and k. Neither ¢ nor ¢ refers to the concrete data. Here, the concrete data
refers to the chain of 50 amino acids A = {1,2,...,50} and the subset of hydrophobic amino acids
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M, j) — E(i, j) M, j) < E(i, j), M(i, j) < S, j. k)

M(i, j) ASGi, j. k) — f(k) x < E(i,j),x < S(i,j,k),E(i, j) + S(i, j, k) < x+1
¢s: M(i, j) A =S(i, j, k1) — =f (k1) M(i, j) +x < f(k) +1
¢s:x & E(i,j) ANS(i, j, k) Vs f(k1) + M(i,j) < 1+5(i, j, k1)

Fig. 12. Abstracted specification ¢ for protein folding (left) and ¢ synthesized by our method (right). Arithmetic
operations in ¢; — @3 are replaced by UFs, and ¢4 is created by DEcomp to add the new decision variable x.

H={2,4,5,...}. As aresult, both ¢ and ¢ are valid for arbitrarily long chains of amino acids, not
merely the chain of length 50.

During equivalence verification, we want to keep i, j, k as unbounded integers in [1, +o0], as
opposed to integers in a concrete range such as [1, 50]. In other words, the relations defined on
these index variables must be kept symbolic.

e E(i,j): Trueif (i + j — 1)%2 = 0; False otherwise.
e S(i,j,k): Trueif (i + j — 1)/2 = k; False otherwise.

During equivalence verification, we replace these symbolic relations as uninterpreted functions
(UFs), to abstract away the correlation between the input (i, j) and the output of E(i, j), except that
(i=i"ANj=j") > E(i,j) = E(i',j*). This is a sound over-approximation in that, as long as we
prove the equivalence of ¢ and i using these UFs, the equivalence of ¢ and ¢ in the integer/real
domain is guaranteed.

Another benefit of verifying the equivalence at a higher level of abstraction is that our synthesis
method can produce more compact candidates for ¢, e.g., by replacing the actual arithmetic
computations in ¢ with UFs. Consider the input specification ¢ on the left-hand side of Figure 12,
where the arithmetic computation has been abstracted away. For this ¢, the number of new variables
that needs to be added to the var set of the DSL will be drastically reduced.

Indeed, after adding one new variable, x, which is shown in ¢4 on the left-hand side of Figure 12,
our method is able to synthesize the MILP constraint i shown on the right-hand side of Figure 12.
This is significantly simpler than the one shown on the right-hand side of Figure 6.

6.2 Abstracting with Uninterpreted Functions

In our implementation of the subroutine VERIFYEQ, given the input specification ¢, we first trans-
form ¢ to the conjunctive normal form (CNF), consisting of ¢; A ¢2 A ..., Agy,, and then try to
remove the redundant subformulas. For example, if the end user includes another subformula
¢s : =E(i, j) — —M(i, j) in the original specification ¢, upon detecting that ¢s is equivalent to
¢1: M(i, j) — E(i, j) and thus is redundant, we will remove it from ¢.

Then, we use syntactic-level rewriting rules to replace accumulative operations (such as ¢y
and /\;c;) with functionally equivalent, non-accumulative operations. This has been explained in
Section 2.2.2, while we introduced the protein folding example.

Next, we start abstracting the arithmetic operations to uninterpreted functions (UF). For example,
in protein folding, the uninterpreted function E(i, j) is introduced to replace the actual predicate
(i+j—1)%2=07? True : False. We also use UF(i, j) to replace the array X[i] [j] for efficient
verification.

This leads to a sound over-approximation. By sound, we mean that the equivalence of ¢ and ¢
using these UFs implies the equivalence of ¢ and ¢ in the concrete domain. However, the reverse
is not necessarily true: it is possible that ¢ and ¢ are equivalent, and yet VERIFYEQ cannot prove
the equivalence. Nevertheless, our experimental evaluation shows that, in practice, VERIFYEQ is
effective in proving equivalence of ¢ and ¢ in most cases.
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Boolean ¢ = ploAP|ds— ¢ Arith Expr ND a, := af|ap+an|a,*a,|an%a,
Boolean ND On = DnlPn A dn Input Expr ND af := c|oar,
Atomic Pred ND p, = a,0Qay,

Fig. 13. DSL Dy for non-decision (ND) variables, which may occur as the antecedent of the Implication (—)
operator whereas decision variables cannot.

7 OPTIMIZATIONS

While the method presented so far has all the functionalities, we can make it produce a more
compact MILP constraint using a DSL annotated with the type information.

7.1 Type Annotations for the DSL

While the DSL shown in Figure 3 is general enough, individual MILP solvers may have their
own syntactic restrictions, e.g., over the index variables (ND) and decision variables. To speed up
the synthesis using such information, we introduce a variant of the DSL, denoted Dy, to capture
user-provided syntactic restrictions. Our method combines D;, which is defined in Figure 13, with
the DSL D defined in Figure 3, to take these type annotations into consideration.

Figure 3 captures the syntactic restrictions for both ND and decision variables while Figure 13
focuses exclusively on ND variables. In Figure 13, var, represents ND variables, the values of which
are decided by the dataset. In contrast, the values of decision variables are decided after the
optimization is finished. For instance, in the protein folding example, i, j and k are ND variables
while M and F are decision variables.

In Figure 13, each rule maps a type (left-hand side of ":=") to a set of compatible values (right-hand
side of ":="). For instance, the compatible values for Boolean formula are D[¢] = {p, § A ¢, ¢, — H}.
Here ¢, represents the Boolean formula consisting of pure ND variables, which may be the antecedent
of — operator, whereas a formula consisting of decision variable is prohibited.

7.2 Leveraging the Type Information

Next, we explain why the combined DSL allows the synthesis procedure to generate a more compact
candidate ¢. The reason is because, by allowing more operations to be associated with ND variables,
it may prevent some unrealizability cases from happening. As D, relaxes the syntactic restrictions
on ND variables, it enlarges the set of syntactically-valid formulas, which reduces the probability of
being unrealizable. Hence, our synthesizer is able to reduce the newly-created variables and obtain
a more compact solution.

Again, in the protein folding example, type information allows the synthesis method to generate
the following candidate:

=E(i, j) = ~M(i, j) AE(i, j) AS(i, j. k) = M(i, j) < f(k) A=S(i, j.k1) — f(k1) + M(i, j) < 1
(17)

This is compact and does not rely on any new variables.

8 EXPERIMENTS

We have implemented our method in a software tool (SynMio), which uses Rosette [Torlak and
Bodik 2013] to generate candidates in small bit-vector domain. We choose Rosette over other
synthesis tools, such as cvc4sy [Reynolds et al. 2019] and EUSolver [Alur et al. 2017], since it
directly supports uninterpreted functions as a syntactic construct for syntax-guided synthesis
(SyGuS) [Alur et al. 2013]. Our verification subroutines, FALsIFYBIT and VERIFYEQ, are implemented
using the Z3 SMT solver [Moura and Bjerner 2008]. The difference is that, while FALSIFYBIT uses
the bit-vector (BV) domain, VERIFYEQ uses the linear integer/real arithmetic (LIA/LRA) domain.
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[ Name | Description of the Problem \ Name | Description of the Problem ‘

01 | Protein Folding 015 | Continuous If2 NonStrict o _
02 | Decentralized Planning 016 | Continuous If Combine SN - Solving Time of the MIO Constraints
03 | Protein Comparison 017 | Continuous If Combine NS se00q e on b "
04 | Task Scheduling 018 | Continuous If Combine SS
05 | Food Manufacture 019 | Continuous If Combine NN 4000
06 | ILOG CPLEX OR Q1-11 | StackOverflow/StackExchange g "
07 | Cardinality Problem M1 | Decision Tree Learning E 3000 + * ++
08 | Minimize Num of Workers M2 | Ranking Function-AUC g 2000 N to@
09 | Traffic Scheduling M3 | Ranking Function-RRF 3 &
010 | Warehouse locating M4 | Sparse PCA 1000
O11 | Factory Production Planning | M5 | Branch Constraints ® .
012 | Continuous If1 Strict Mo Bipartite Ranking o BgtaapbEed @ ® & & @
013 | Continuous If1 NonStrict M7 | Best Subset Selection T T T Py % > B =
014 | Continuous If2 Strict M8 | Associate Classification Benchmark ID
Fig. 14. The list of input specifications’. Fig. 15. The MILP-solving time.

We ran all of our experiments on a computer with 2.9 GHz Intel Core i5 CPU and 64 GB RAM.
Our experiments were designed to answer the following questions:

e What is the quality of the MILP constraints synthesized by our method, measured in terms
of both compactness and the MILP-solving time?

e How efficient is our method in synthesizing MILP constraints, measured in terms of both the
size of the input specifications and the synthesis time?

8.1 Benchmarks

As shown in Fig. 14, our benchmarks include 38 mixed-integer optimization problems specified
using a variety of Boolean logic operations. They come from statistics, machine learning, and data
science applications. Broadly speaking, they fall into three categories. The first category (O1 to O19)
are problems from transportation [Fourer 2014], financial services, supply network design [Belotti
et al. 2011], and as well as biomedical research [Forrester and Greenberg 2008]. The second category
(Q1to Q11) are problems collected from various online Q&A platforms, including the StackExchange
website. Due to difficulties in manually linearizing Boolean logic operations, novice data analysts
frequently seek assistance from domain experts on these platforms. The third category (M1 to M8)
are problems created by researchers who leverage MILP solvers in a variety of machine learning
applications, including ranking [Chang 2012], decision tree learning [Bertsimas and Dunn 2017],
and sparse PCA [Bertsimas et al. 2022].

All of these problems have the corresponding, manually-written MILP constraints. They come
from three sources: online Q&A forums, textbooks, and specialists. These manually-written MILP
constraints serve as a baseline for evaluating the quality of the solutions produced by our method.

8.2 Results: The Quality of Synthesized MILP Constraints

To evaluate the quality of the synthesized MILP constraints, we compared them with the MILP
constraints manually written by domain experts. The results are shown in Table 1. The first four
columns show, for each benchmark, the name, the size of the input specification ¢, the number of
variables in ¢, and the size of the concrete dataset.

Since input specifications may be expressed symbolically using index variables, such as i, j, and
k in the protein folding example, concrete datasets, such as A = {1,2,...,50} and H = {2,4, ...},
must be used to concretize them before giving the flattened formula to MILP solvers. This is a
common practice in the Liver Disorders [McDermott and Forsyth 2016], MicroMass [Mahe et al.

1Optimization benchmarks include O1-2, 04-5 [Williams 2013], O3, 8-9 [Fourer 2014], 06-7 [CPLEX 2015], 010-11 [Belotti
et al. 2011]. Machine learning benchmarks include M1,5 [Bertsimas and Dunn 2017], M2-3 [Chang 2012] and M4 [Bertsimas
et al. 2022].

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 184. Publication date: June 2023.



184:18

Table 1.

The quality of the synthesized MILP constraints in terms of compactness.

Jingbo Wang, Aarti Gupta, and Chao Wang

‘ Synthesized ‘Manually-Written H Name #formula  #var

Synthesized

‘ Manually-Written ‘

Name  #formula #var [C| ‘ #formula  #var ‘ #formula  #var ‘ ‘ il ‘ #formula  #var ‘ #formula  #var ‘
01 3 6 197 4 8 3 6 01 2 4 1700 3 5 3 7
02 1 6 69 3 6 3 6 Q2 2 5 1647 2 5 2 5
03 1 6 99 3 6 3 6 Q3 2 4 1600 3 4 5 5
04 1 4 96 2 6 4 6 04 21 13 3800 96 38 103 38
05 5 11 920 20 20 50 40 Q5 1 4 160 1 4 1 4
06 1 2 200 2 3 3 3 Q6 24 15 2500 101 25 101 25
o7 2 4 200 4 6 4 6 Q7 5 5 1100 21 11 7 9
08 2 2 252 2 4 2 4 Q8 7 9 1300 19 13 14 14
09 1 6 200 3 6 3 6 Q9 27 12 2600 107 20 125 29

010 3 7 27 6 8 15 10 Q10 30 16 1880 134 22 144 27
011 5 13 156 9 15 5 13 Q11 22 19 240 40 21 50 30
012 1 4 200 2 5 2 5 M1 2 8 2.6M 5 10 5 10
013 1 4 200 2 5 2 5 M2 1 5 5700 2 6 4 6
014 1 4 200 2 5 2 5 M3 2 11 3366 4 11 4 11
015 1 4 200 2 5 2 5 M4 2 6 5586 5 6 5 6
016 2 5 280 4 7 4 7 M5 2 5 280 4 7 4 7
017 2 5 280 4 7 4 7 Meé 4 10 4200 8 14 10 15
018 2 5 280 4 7 4 7 M7 5 9 4530 7 11 7 11
019 2 5 280 4 7 4 7 M8 4 8 3702 6 9 8 11

2014], Adult [Kohavi et al. 1996] and Haberman Surv. datasets. We show |C| in Column 4, which is
the number of pre-simplified decision variables generated by Gurobi solver; |C| is a frequently-used
indicator for estimating the size of the search space. Here, M1 is an outlier: it has an unusually-large
value for |C| because it takes the entire Adult [Kohavi et al. 1996] dataset as input, consisting of
48,842 concrete data elements.

The remainder of Table 1 compares the size of the synthesized MILP constraint with the size of
the manually-written constraint. The size is measured in terms of both the number of subformulas
in ¢ and the number of variables in .

8.2.1 Compactness. The results in Table 1 show that, overall, the synthesized constraints are
as compact as the manually-written constraints. This is a significant achievement on its own,
considering the amount of time and expertise needed to write the equivalent MILP constraints
manually. Except for a few cases such as Q7 and Q8, the synthesized constraints are either as
compact as, or more compact than, the manually-written constraints. In some cases, the synthesized
constraints are significantly more compact. For Q9, the number of subformulas is 14% smaller. For
05, in particular, the number of subformulas is less than half of the manually-written version.

8.2.2  MILP-solving Time. We also compared the synthesized constraint with the manually-written
constraints in terms of the MILP-solving time. For consistency, we encoded all problems in Ju-
lia [Bezanson et al. 2017] and then solved them using the state-of-the-art Gurobi solver [Gurobi Op-
timization 2018]. The results are shown in Fig. 15, which represents the running time of the
synthesized constraints using "o", and the running time of the manually-written constraints using
"+". Here, the x-axis is the benchmark index for 01-O19, Q1-Q11, and M1-M8, while the y-axis is
the time in seconds.

The results show that, for more than 50% of the benchmarks, the synthesized constraint has
almost the same MILP-solving time as the manually-written constraint. While some manually-
written constraints have shorter MILP-solving time (e.g., 08, M3), the difference is less than 4%. For
the remainder of the benmarks, the synthesized constraints have signficantly shorter MILP-solving
time. For Q3-4, Q6, Q9-10, the synthesized constraints have much shorter MILP-solving time. Overall,
the average performance improvement is more than 9.8%.

This improvement can be attributed in part to the CoNVEXHULLSPLIT procedure, which splits
variables to capture the correlation between subformulas in ¢ and thus significantly reduces the
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o D | Synthesis Time o I D | Synthesis Time
| None Decomp Farsiey Both | | None Decomp Farsiry Both | o1

O1 [ 6 [7689s 7689s  181s 181s | Q1 | 5| T/0  2293s T/0  133s ———

02 | 4| 57s 37s 3s 3s | Q2 | 4|2517s  846s 95s 95s —

03 | 4| 133 53s 6s 6s | Q3| 5] T/0  615s 112s  112s = —

04 | 6| T/0  2409s T/O 158 | Q4 | 6| T/0  T/0 T/0 42125 B

05 | 5| T/0 47855 T/O 552 | Q5 | 3| 174s  174s 3s 3s e

06 | 5] T/0 1836s T/0 217s | Q6 | 6 | T/0 T/0 T/0 5522s gor B

07 | 5| T/0 3439 T/0 351s | Q7 | 7| T/0  7131s T/0  651s Eon =

08 | 3| T/0  2049s T/0 37s | Q8 | 6| T/0  7845s T/0 379 = e )

09 | 4 |1893s  931s 10s 10s | Q9 | 6| T/0 T/0 T/0  4503s -

010 | 7| T/0  7309s T/0 612s [ Q10| 6| T/0  T/0 T/O 48225 £ gy :

O11| 6| T/0  4968s  3727s 430s | Q11| 4 | T/0  T/0 T/O  1265s y— .

012 |3 | T/0  526s T/0 3s | M1 | 7] T/0 41255 T/0  373s o .

013 |3 | T/0 519 T/0 8s | M2 | 6| T/0  2323s T/0  206s s

014 |3 | T/0  534s T/0 9s | M3 | 7| T/0  3579s  826s  335s 04 )

015| 3| T/0  507s T/0 9s | M4 | 4| T/0 29645  685s  244s oa—E

016 | 4| T/0  1207s T/O  138s | M5 | 4 | T/0  2554s /0 167s = e

017 | 4 | T/0 12255 T/0O  163s | M6 | 6 | T/0  3213s T/0O 188 s E = sty

018 | 4| T/0 12465 T/O  74s | M7 | 6| T/0  4062s T/0  275s

019 | 4| T/0 12885 T/0O  94s | M8 | 6 | T/0  3491s T/0  210s 10 thesie e (10 scaley. o
Fig. 16. The performance of our synthesis tool. Here, T/0 means > 3 Fig. 17. The impact of each op-
hours. timization technique.

relaxed solution space. Although CoNvEXHULLSPLIT may add more variables, these variables are
effective in constraining the solution space, allowing the MILP solver to converge faster. This is
the case for O11, in particular: although the splitting has led to more subformulas (9 versus 5), the
synthesized constraint reduces the MILP-solving time by more than 41%, (69.42s versus 118.17s).

8.3 Results: The Efficiency of the Synthesis Tool

To evaluate the efficiency of the synthesis tool, we analyzed its running time for all benchmarks.
We also investigated the impact of two important components of our method, by comparing
the performance with and without them. The results are shown in Fig. 16. Column 1 shows the
benchmark name, and Column 2 shows the maximal depth of the intermediate AST (corresponding
to a decomposed constraint ¢;). The next four columns show the running time of four variants
of our synthesis tool. NONE uses neither ENRICHDSL nor FALSIFYBIT subroutines; DEcomP uses
ENRICHDSL but not FALSIFYBIT; FALSIFY uses FALSIFYBIT but not ENRICHDSL; and BOoTH uses both
components.

The results in Fig. 16 show that our complete method (BoTH) is efficient in synthesizing MILP
constraints and scalable for handling real-world specifications. For most of the benchmarks, it
finishes quickly. For more than half of the benchmarks, it finishes within 5 minutes. For a few
benchmarks, e.g., Q4 and Q6, it takes more than an hour; however, considering how labor-intensive
and time-consuming it is for end users to write the MILP constraints manually, the time taken by
the synthesis tool is acceptable. In terms of scalability, since the benchmark set consists of a diverse
set of specifications collected from various sources, the fact that all of them can be handled by our
tool means the tool is scalable enough in practice.

The results also demonstrate the impact of the two main algorithmic innovations in our method.
Without DEcomp and FALSIFY, the synthesis tool cannot finish most of the benchmarks within the
time limit. Here, T/O stands for timed out after 3 hours. With either of them, while the performance
improves significantly, there are still many benchmarks that cannot be finished within the time
limit. However, it is clear that they have complementary strengths in speeding up the synthesis
process. With both of them enabled, our tool is able to finish all benchmarks.
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Table 2. Results for benchmarks that have no manually-written solutions.

‘ Name | Description of the Problem #formula #var |C] }M’ MILP-solving Time | D ‘ Synthesis Time ‘

#formula  #var ‘ NoNE Decomp FALSIFY BoTH ‘
Q12 | Implication Constraints (SO) 3 4 216 12 7 195s 5| T/O 3209s T/O 212s
Q13 | Implication of Int/Bool/Real (MathSE) 1 7 459 11 12 421s 6| T/O 4261s T/O 359s
Q14 | Chain of Implications (OR SE) 3 7 392 5 11 136s 5| T/O 4350s T/O 297s
Q15 | Disjunctive Expression (OR SE) 3 5 180 6 7 72s 5| T/O 2062s T/O 183s
Q16 | Disjunctive Expression in DAG (OR SE) 5 11 1940 21 17 1618s 7| T/O 6598s T/O 589s
Q17 | Chain of Disjunctions (OR SE) 1 6 270 3 6 186s 5| T/O 2795s 678.4s  241s
Q18 | Exclusive Conditions (OR SE) 3 6 954 7 9 487s 6| T/O 2928s T/O 263s
Q19 | Robust Implication (OR SE) 3 2 1650 3 3 711s 4| T/O 1448s T/O 125s
Q20 | Union-closed Sets Conjecture (OR SE) 1 4 1800 3 4 846s 4| T/O 814s 132s 132s
Q21 | Max in Constraints (OR SE) 1 4 2395 12 7 2024s 6| T/O 3850s T/O 324s
Q22 | Absolute in Constraints (OR SE) 1 3 476 2 5 315s 4| T/O 1266s T/O 107s
Q23 | Compact Continuous If (SO) 2 2 150 1 3 69s 4| T/O 1741s T/O 143s

The two optimizations are also synergistic in that, when using both of them, the performance
improvement is significantly more than the addition of what can be achieved by each in isolation. To
illustrate this observation, we plot in Fig. 17 the running time of the four variants of our synthesis
tool for a subset of the benchmarks, namely 02-O19. We omit O1 since the numbers are too big
to fit in the same scale as those of the other benchmarks. For T/0 case, we plot zero as its value.
First, let us focus on the blue (Decomp) and pink (Falsify) bars in Fig. 17: they show that DEcomp
is more effective than FALSIFY when each of them is used in isolation (the latter of which still
corresponds to many T/O cases). Next, let us focus on the blue (Decomp) and orange (Both) bars:
they show that, when FALSIFY is used together with DEcomp, the reduction (from the blue bars to
the orange bars) is drastic.

8.4 Results: Benchmarks without Manually-Written Solutions

In addition to the 38 benchmarks shown in Fig. 14, we also evaluated SyNM1o on 12 benchmarks
for which manually-written solutions do not exist. In other words, answers to these 12 problems
collected from various online forums are either empty, incomplete, incorrect or only applicable to a
certain optimizer.

Table 2 shows the benchmark name and the type of logical constraints in Columns 1-2, where
S0, MathSE, and ORSE stands for the online forums STACKOVERFLOW, MATHSTACKEXCHANGE and
OPERATIONSRESEARCHSTACKEXCHANGE, respectively.

Columns 3-7 are similar to Columns 2-6 of Table 1. They indicate that, for most benchmarks,
new variables are needed in the synthesized constraints to linearize the input logical constraints.
Furthermore, the synthesized constraint may have many more formulas than the input constraint
(e.g., Q13 and Q21). The reason is that the input constraint has to be decomposed to many subcon-
straints, or the input constraint contains operations such as max(x1,x2,x3). In order to remove the
max () function, our method needs to introduce multiple variables v1,v2,v3 and the corresponding
predicates v1e (x1>x2), v2emax (x1,x2) and v3e (max(x1,x2)>x3).

Columns 9-13 shows that our method is efficient and scalable in synthesizing MILP constraints for
these benchmarks. They also demonstrate the effectiveness of our two main algorithmic innovations.
Specifically, our complete method (Both) is the most efficient and, for more than 70% of the
benchmarks, it is able to finish synthesis within 5 minutes.

9 RELATED WORK

There are two lines of prior work on converting Boolean logic operations to MILP constraints,
which are the most closely related to ours. However, as we have already mentioned briefly, they both
have severe limitations in the kinds of Boolean logic constraints that they can handle. In particular,
Bertsimas et al. [Bertsimas et al. 2021; Bertsimas and Van Parys 2020] impose a regularization
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term to their objective functions, with the goal of allowing Boolean logic relations; however, the
method works only for a restricted subclass of problems and thus cannot linearize arbitrary Boolean
expressions. The Big-M methods [Cococcioni and Fiaschi 2021; Fourer et al. 1987; Glover 1975]
introduce a large number associated with each artificial variable, called M, to ensure that the
Boolean logic constraint holds when the Boolean indicator variable is False. However, the M value
has a significant and often unpredictable impact on the MILP-solving performance, which may lead
to numerical instability. In contrast, our method does not have such problems since it linearizes the
Boolean logic operations without using the M value at all.

Traditionally, MILP solvers and SMT solvers focus on problems in different niche applications.
However, in recent years, there are efforts on bridging the gap. On the MILP solver side, there
are efforts on extending the core MILP-solving algorithms to handle a limited number of Boolean
logic operations natively. For example, IBM ILOG CPLEX [CPLEX 2015] automatically transforms
logical constraints into equivalent linear formulations via automatic creation of new indicator
variables. However, it explicitly branches on the indicator variable inside its solving procedure,
without inferring the linearized formulation. As a result, this linearization only works for CPLEX
and cannot be applied to other solvers that do not have such an inner solving algorithm to support
the logical constraints. Gurobi [Bixby 2007] restricts the antecedent of implication operator to be a
singular Boolean variable, as opposed to equality or inequality constraints. In contrast, our method
can handle arbitrary combinations of Boolean logic operators. It is also a solver-independent way of
transforming logical constraints to equivalent MILP constraints, before solving the MILP constraints
using any MILP optimization tool.

On the SMT solver side, there are efforts on extending the SMT/Pseudo-Boolean solving paradigm
to more efficiently solve subclassess of MILP problems [Devriendt et al. 2021; King et al. 2014;
Nuzzo et al. 2010; Shoukry et al. 2018]. For example, Pseudo-Boolean solvers [Chai and Kuehlmann
2003; Devriendt et al. 2021] optimize 0-1 integer linear programs (ILP) by interleaving LP solving
with conflict-driven pseudo-Boolean search. King et al. [King et al. 2014] integrate MIP solvers with
SMT, to improve its optimization performance. However, these techniques focus exclusively on
enhancing SMT solvers with optimization modules. None of them paid attention to the linearized
formulas translated from Boolean constraints. Other works [Nuzzo et al. 2010; Shoukry et al. 2018]
use a lazy combination of SMT solving and convex programming to determine the satisfiability
of logic formulas over Boolean variables and convex constraints; however, they do not focus on
optimizing the MILP problems.

While Mixed Boolean-Arithmetic (MBA) expressions [Feng et al. 2020; Liem et al. 2008; Liu et al.
2021; Shen and Ming 2021; Zhou et al. 2007] appear to be similar to MILP constraints, there are
signficant differences. MBA expressions can directly combine arithmetic operations (in the integer
modular ring Z/2") with Boolean operations, but they focus on the discrete domain. In contrast,
MILP contains arithmetic operations for both discrete and continuous values, but does not allow
arbitrary bitwise Boolean operations. In practice, MBA-based techniques have been used primarily
for obfuscation as well as deobfuscation [Blazytko et al. 2017; Shen and Ming 2021; Zhou et al.
2007], where the focus is on converting computations into MBA expressions, and vice versa, instead
of supporting the optimization goals such as maximization/minimization in MILP.

Since our method relies on the popular SyGuS [Alur et al. 2013] framework for synthesizing
MILP constraints, it is related to a large body of work on partitioning or pruning the search space
and improving the efficiency of SyGusS [Alur et al. 2017; Eldib and Wang 2014; Eldib et al. 2016;
Feng et al. 2018; Feser et al. 2015; Guo et al. 2019; Polikarpova et al. 2016; Reynolds et al. 2019; Wang
et al. 2017]. Some of them rely on partitioning [Eldib and Wang 2014; Eldib et al. 2016] or utilize
type-directed pruning techniques to avoid infeasible programs [Feser et al. 2015; Frankle et al. 2016;
Guo et al. 2019; Osera and Zdancewic 2015; Polikarpova et al. 2016], while others leverage semantic
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information of the DSL to check the feasibility of partial programs [Feng et al. 2018, 2017]. There
is also work on using abstract interpretation to build the space of feasible programs [Wang et al.
2017]. However, the difference is that, while these prior works start from an infinitely large search
space and gradually shrink it until the desired solution is obtained, our method starts from an
under-approximated search space and we gradually enlarge it, which significantly speeds up the
enumeration.

In the context of improving SyGusS, there are bottom-up enumeration techniques [Alur et al. 2017;
Lee 2021] that recursively decompose a given large synthesis problem into smaller subproblems,
and produce small program subexpressions via enumerative search. However, unlike our method
that decomposes the input specification to make the synthesis problem realizable, they are not
concerned with realizability; instead, they work on a sub-problem satisfying a subset of examples.

We have used existing program synthesis tools as part of our tool. In this context, EUsolver [Alur
et al. 2017] and cvc4Syn [Reynolds et al. 2019] are the most closely related synthesis tools, as they
both target SMT expressions. However, our approach goes far beyond, by supporting the unin-
terpreted function (UF) symbols as syntactic constructs during syntax-guided synthesis, whereas
EUsolver and cvc4Syn are unable to manipulate UF during syntax-guided synthesis.

10  CONCLUSIONS

We have proposed a solver-independent and generally-applicable method for synthesizing correct,
efficient and robust MILP constraints from a specification expressed using linear integer/real
arithmetic constraints together with arbitrary combinations of Boolean logic operations. Starting
from the input specification, our method first creates a domain specific language that is expressive
enough, then uses syntax-guided synthesis (SyGuS) to assemble a candidate, and finally proves
that the candidate is equivalent to the input specification. To improve performance, our method
uses an under-approximation technique to quickly prune the search space, and uses an over-
approximation technique to speed up equivalence verification. Our experiments on a diverse set of
benchmarks show that the quality of the synthesized constraints are comparable to constraints
written manually by domain experts. Furthermore, the synthesis tool is fast and scalable enough
for handling real-world applications.
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