Systematic Testing of the Data-Poisoning Robustness of KNN

Yannan Li
University of Southern California
Los Angeles, United States

ABSTRACT

Data poisoning aims to compromise a machine learning based
software component by contaminating its training set to change
its prediction results for test inputs. Existing methods for decid-
ing data-poisoning robustness have either poor accuracy or long
running time and, more importantly, they can only certify some
of the truly-robust cases, but remain inconclusive when certifica-
tion fails. In other words, they cannot falsify the truly-non-robust
cases. To overcome this limitation, we propose a systematic testing
based method, which can falsify as well as certify data-poisoning
robustness for a widely used supervised-learning technique named
k-nearest neighbors (KNN). Our method is faster and more accu-
rate than the baseline enumeration method, due to a novel over-
approximate analysis in the abstract domain, to quickly narrow
down the search space, and systematic testing in the concrete do-
main, to find the actual violations. We have evaluated our method
on a set of supervised-learning datasets. Our results show that the
method significantly outperforms state-of-the-art techniques, and
can decide data-poisoning robustness of KNN prediction results for
most of the test inputs.

CCS CONCEPTS

« Software and its engineering — Formal software verifi-
cation; « Security and privacy — Logic and verification; .
Computing methodologies — Supervised learning.

KEYWORDS

Data Poisoning, Robustness, Certification, Nearest Neighbors, Ab-
stract Interpretation, Testing

ACM Reference Format:

Yannan Li, Jingbo Wang, and Chao Wang. 2023. Systematic Testing of the
Data-Poisoning Robustness of KNN. In Proceedings of the 32nd ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA 23), Fuly
17-21, 2023, Seattle, WA, USA. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3597926.3598129

1 INTRODUCTION

Testing and verification have always been an integral part of soft-
ware engineering and, for critical components, rigorous formal
analysis techniques are frequently used, either in addition to or
together with testing, to ensure that important properties are satis-
fied. With the increasing utilization of machine learning techniques

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0221-1/23/07.
https://doi.org/10.1145/3597926.3598129

Jingbo Wang
University of Southern California
Los Angeles, United States

1207

Chao Wang

University of Southern California
Los Angeles, United States

in practical software systems, testing and verification of software
components that use machine learning have become important
research problems. Since conventional techniques for testing and
verification focus primarily on the software code itself, as opposed
to models learned from the data (which are often more important
in machine learning based components), there is an urgent need
for developing new testing and verification techniques for these
emerging software components.

In this paper, we focus on the testing and verification of a secu-
rity property called data-poisoning robustness. Data poisoning is a
type of emerging security risk where the attacker compromises a
machine learning based software component by contaminating its
training data. Specifically, the attacker aims to change the result of a
prediction model by injecting a small amount of malicious data into
the training set used to learn this model. Such attacks are possible,
for example, when training data elements are collected from online
repositories or gathered via crowd-sourcing. Prior studies have
shown the effectiveness of these attacks, e.g., in malware detection
systems [55] and facial recognition systems [10].

Faced with such a risk, users may be interested in knowing if
the result generated by a potentially-poisoned prediction model is
still robust, i.e., the prediction result remains the same regardless of
whether or how the training set may have been poisoned by up-to-n
data elements [14]. This is motivated, for example, by the following
use case scenario: the model trainer collects data elements from
potentially malicious sources but is confident that the number of
potentially-poisoned elements is bounded by n; and despite the
risk, the model trainer wants to use the learned model to make a
prediction for a new test input. If we can certify the robustness, the
prediction result can still be used; this is called robustness certifi-
cation. If, on the other hand, we can find a possible scenario that
violates the robustness property, the prediction result is discarded;
this is called robustness falsification. Therefore, the robustness fal-
sification and certification problems are analogous to the software
testing and verification problems: falsification aims to detect vio-
lations of a property, while certification aims to prove that such
violations do not exist.

Conceptually, the problem of deciding data-poisoning robustness
can be solved as follows. First, we assume that the training set T
consists of both clean and poisoned data elements, but which of the
up-to-n data elements are poisoned remains unknown. Based on the
training set T, we use a machine learning algorithm L to obtain a
model M = L(T) and then use the model to predict the output class
label y = M(x) for a test input x. Next, we check if the prediction
result could have been different by removing the poisoned elements
from T. Assuming that exactly 1 < i < n of the |T| data elements
are poisoned, where n is the poisoning threshold, the clean subset
T’ c T will have the remaining (|T| — i) elements. Using T’ to
learn the model M’ = L(T’), we could have predicted the result
y’ = M’(x). Finally, by comparing all of the possible y” with y, we

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

decide if prediction for the (unlabeled) test input x is robust: the
prediction result is considered robust if and only if, forall 1 < i < n,
y’ is the same as the default prediction result y.

While the solution presented above (called the baseline approach)
is a useful mental model, as an algorithm it is not efficient enough
for practical use. This is because for a given training set T, the num-
ber of possible clean subsets (T C T) can be as large as X7, (lp),
To see why this is the case, assume that the actual poisoning num-
ber i may be any of 1,2, ..., n. For each specific i value, there are

(|€|) ways of choosing i elements from the |T| elements. By adding

up the numbers for all possible i values, we have Z7_, (lfl). Due
to this combinatorial explosion, it is practically impossible to enu-
merate all the clean subsets and then check if they all generate the
same result as y = M(x). To avoid the combinatorial explosion, we
propose a more efficient method for deciding n-poisoning robust-
ness. Instead of enumerating the clean subsets (T’ C T), we use
an over-approximate analysis to either verify robustness quickly
or narrow down the search space, and in the latter case, rely on
systematic testing in the narrowed search space to find a subset T’
that can violate robustness.

Our method that combines quick certification with systematic
testing is designed for a supervised learning technique called the
k-nearest neighbors (KNN) algorithm. Compared to many other
supervised learning techniques, including decision trees and deep
neural networks, KNN does not have the high computational cost
associated with model training. Thus, it has been widely used in
software systems to implement classification tasks, including com-
mercial video recommendation systems, document categorization
systems, and anomaly detection systems [1, 2, 21, 54]. KNN is vul-
nerable to data-poisoning because, in many of these systems, the
training data are collected from online repositories or via crowd-
sourcing, and thus may be manipulated.

However, deciding the n-poisoning robustness of KNN is a chal-
lenging task. This is because the KNN algorithm has two phases:
the learning phase and the prediction phase. During the learning
phase (K-parameter tuning phase), the entire training set T is used
to compute the optimal value of parameter K such that, if the most
frequent label among the K-nearest neighbors of an input is used
to generate the prediction label, the average prediction error will
be minimized. Here, the prediction error is computed over data
elements in T using a technique called p-fold cross validation (see
Section 2.2) and the distance used to define nearest neighbors may
be the Euclidean distance in the input vector space. As a result,
the learning phase itself can be time-consuming, e.g., computing
the optimal K for the MNIST dataset with |T| =60,000 elements
may take 30 minutes, while computing the prediction result for a
test input may take less than a minute. The large size of T and the
complex nature of the mathematical computations make it difficult
for conventional software testing and verification techniques to
accurately decide the robustness of the KNN system.

To overcome these challenges, we propose three novel tech-
niques. First, we propose an over-approximate analysis to certify
n-poisoning robustness in a sound but incomplete manner. That is,
if the analysis says that the default result y = M(x) is n-poisoning
robust, the result is guaranteed to be robust. However, this quick cer-
tification step may return unknown and thus is incomplete. Second,

1208

Yannan Li, Jingbo Wang, and Chao Wang

we propose a search space reduction technique, which analyzes
both the learning and the prediction phases of the KNN algorithm
in an abstract domain, to extract common properties that all poten-
tial robustness violations must satisfy, and then uses these common
properties to narrow down the search space in the concrete domain.
Third, we propose a systematic testing technique for the narrowed
search space, to find a clean subset T’ C T that violates the robust-
ness property. During systematic testing, incremental computation
techniques are used to reduce the computational cost.

We have implemented our method as a software tool that takes
as input the potentially-poisoned training set T, the poisoning
threshold n, and a test input x. The output may be Certified, Falsified
or Unknown. Whenever the output is Falsified, a subset T’ C T is
also returned as evidence of the robustness violation. We evaluated
the tool on a set of benchmarks collected from the literature. For
comparison, we also applied three alternative approaches. The first
one is the baseline approach that explicitly enumerates all subsets
T’ C T. The other two are existing methods by Jia et al. [24] and
Li et al. [31] which only partially solve the robustness problem: Jia
et al. [24] do not analyze the KNN learning phase at all, and thus
require the optimal parameter K to be given manually; and both Jia
et al. [24] and Li et al. [31] focus only on certification in that they
may return Certified or Unknown, but not Falsified.

The benchmarks used in our experimental evaluation are six
popular machine learning datasets. Two of them are small enough
that the ground truth (robust or non-robust) may be obtained by the
baseline enumerative approach, and thus are useful in evaluating
the accuracy of our tool. The others are larger datasets, e.g., with
up to 60,000 training elements and 10,000 test elements, which are
useful in evaluating the efficiency of our method. The experimental
results show that our method can fully decide (either certify or
falsify) robustness for the vast majority of test inputs.

Furthermore, among the four competing methods, our method
has the best overall performance. Specifically, our method is as
accurate as the ground truth (obtained by applying the baseline
enumerative approach to small benchmarks) while being signifi-
cantly faster than the baseline approach. Compared with the other
two existing methods [24, 31], our method is significantly more
accurate. For example, on the CIFAR10 dataset with the poisoning
threshold n =150, our method successfully resolved 100% of the
test cases, while Li et al. [31] resolved only 36.0%, and Jia et al. [24]
resolved only 10.0%.

To summarize, this paper makes the following contributions:

e We propose the first method capable to certifying as well as
falsifying n-poisoning robustness of the entire state-of-the-
art KNN system, including both the learning phase and the
prediction phase.

e We propose techniques to keep our method accurate as well
as efficient, by using over-approximate analysis in the ab-
stract domain to narrow down the search space before using
systematic testing to identify violations in the concrete do-
main.

e We implement our method as a software tool and evalu-
ate the tool on six popular supervised-learning datasets to
demonstrate the advantages of our method over two state-
of-the-art techniques.

Systematic Testing of the Data-Poisoning Robustness of KNN

The remainder of this paper is organized as follows. First, we
introduce the technical background in Section 2. Then, we present
an overview of our method in Section 3, followed by our quick
certification subroutine in Section 4, our falsification subroutine in
Section 5, and our incremental computation subroutine in Section 6.
Next, we present the experimental results in Section 7. We review
the related work in Section 8. Finally, we give our conclusions in
Section 9.

2 BACKGROUND

In this section, we use two examples to motivate our work and then
highlight the challenges in deciding n-poisoning robustness.

2.1 Two Motivating Examples

First, let us assume that the potentially-poisoned training set T may
be partitioned into T’ and (T \ T”), where T’ consists of the clean
data elements and (T \ T”) consists of the poisoned data elements.
The KNN’s parameter K indicates how many neighbors to consider
when predicting the class label for a test input x. For example, K = 3
means that the predicted label of x is the most frequent label among
the 3-nearest neighbors of x in the training set.

One of the two ways in which poisoned data may affect the clas-
sification result is called direct influence. In this case, the poisoned
elements directly change the K-nearest neighbors of x and thus the
most frequent label, as shown in Figure 1.

Figure 1(a) shows only the clean subset T’, where the triangles
and stars represent the training data elements, and the square rep-
resents the test input x. Furthermore, triangle and star represent
the two distinct output class labels. The goal is to predict the out-
put class label of the test input x. In this figure, the dashed circle
contains the 3-nearest neighbors of x. Since the most frequent label
is star, x is classified as star.

Figure 1(b) shows the entire training set T, including all of the
elements in T’ as well as a poisoned data element. In this figure,
the dashed circle contains the 3-nearest neighbors of x. Due to the
poisoned data element, the most frequent label becomes triangle
and, as a result, x is mistakenly classified as triangle.

The other way in which poisoned data may affect the classifi-
cation result is called indirect influence. In this case, the poisoned
elements may not be close neighbors of x, but their presence in T
changes the parameter K (Section 2.2 explains how to compute K),
and thus the prediction label.

Figure 2 shows such an example where the poisoned element
is not one of the 3-nearest neighbors of x. However, its presence
changes the parameter K from 3 to 5 in Figure 2(b). As a result, the
predicted label for x is changed from star in Figure 2(a) to triangle
in Figure 2(b).

The existence of indirect influence prevents us from verifying
robustness by only considering the cases where poisoned elements
are near x (which is the unsound approach of Jia et al. [24]); instead,
we must consider each T € A, (T).

2.2 The k-Nearest Neighbors (KNN)

Let L be a learning algorithm, M = L(T), which takes a set T =
{(x,y)} of labeled elements as input and returns a model M as
output. Inside T, each x € X C RP is a vector in the D-dimensional

1209

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

A A
A A A
* * *
*x A
A A
A A Poisoning data
A A

(a) clean subset T/ (K=3) (b) poisoned set T (K=3)

Figure 1: Example of direct influence by poisoning data.

A A
A A A A
* * * *
* A * A
A A
A A
V.
A

Poisoning data

(a) clean subset T’ (K=3) (b) poisoned set T (K=5)

Figure 2: Example of indirect influence by poisoning data.

input feature space X, and each y € Y C N is a class label in the
output label space Y. The model is a function M : X — Y that
maps a test input x € X to a class label y € Y.

The KNN algorithm consists of two phases. In the learning phase,
the labeled data in T are used to compute the optimal value of the
parameter K. In the predication phase, an unlabeled input x € X is
classified as the most frequent label among the K nearest neighbors
of x in T. The distance used to decide x’s neighbors in T may be
measured using several metrics. In this work, we use the most
widely adopted Euclidean distance in the input feature space X.

To compute the optimal K value, state-of-the-art KNN implemen-
tations iterate through all possible candidate values in a reasonable
range, e.g., 1 ~ 5000, and use a technique called p-fold cross valida-
tion to identify the optimal value. The optimal K value is the one
that has the smallest average prediction error. During p-fold cross
validation, T is randomly divided into p groups of approximately
equal size. Then, for each candidate K value, the prediction error
of each group is computed, by treating this group as a test set and
the union of all the other p — 1 groups as the training set. Finally,
the prediction errors of the individual groups are used to compute
the average prediction error among all p groups.

2.3 The n-Poisoning Robustness

We follow the definition given by Drews et al. [14], which was
introduced initially for models such as decision tree [37] and linear
regression [38] but was also applied to KNN [31]. It has a significant
advantage: the definition can be applied to unlabeled data, since
robustness does not depend on the actual label of the test input x.

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

Yannan Li, Jingbo Wang, and Chao Wang

Algorithm 1: Procedure FALSIFY_BASELINE(T, 1, x).

Algorithm 2: Our new procedure FALsiFy_New(T, n, x).

1 K < KNN_reArN(T)

2 y < KNN_prepict(T, K, x)

3 Ap(T) < {T" | T" cTand [T\ T’| < n}

4 while A, (T) # O A consumed_time < time_limit do
5 Remove a clean subset T from A, (T)

6 K’ < KNN_LearN(T")

7 y’ « KNN_rrepict(T/, K’, x)

8 if y # y’ then

9 ‘ return Falsified with (T \ T”) as evidence
10 end if
11 end while

if Ap(T) = 0 then
‘ return Certified
else

15 ‘ return Unknown

end if

This is important because the actual label of the test input (i.e., the
ground truth) is often unknown in practice.

Given a potentially-poisoned training set T and a poisoning
threshold n indicating the maximal poisoning count, the set of
possible clean subsets of T is represented by A, (T) = {T’ | T’ C
T and |T \ T’| < n}. That is, A, (T) captures all possible situations
where the poisoned elements are eliminated from T.

We say the prediction y = M(x) for a test input x is robust if
and only, for all T’ € A, (T) such that M’ = L(T’) and y’ = M’ (x),
we have y’ = y. In other words, the default result y = M(x) is the
same as all of the possible results, y’ = M’ (x), no matter which are
the (i < n) poisoned data elements in the training set T.

2.4 The Baseline Method

We first present the baseline method in Algorithm 1, and then
compare it with our proposed method in Algorithm 2 (Section 3).

The baseline method explicitly enumerates the possible clean
subsets T” € Ap(T) to check if the prediction result y” produced by
T’ is the same as the prediction result y produced by T for the given
input x. As shown in Algorithm 1, the input consists of the training
set T, the poisoning threshold n, and the test input x. The sub-
routines KNN_LEARN and KNN_PREDICT implement the standard
learning and prediction phases of the KNN algorithm. Without the
time limit, the baseline method would be both sound and complete;
in other words, it would return either Certified (Line 13) or Falsified
(Line 9). With the time limit, however, the baseline method will
return Unknown (Line 15) after it times out.

The baseline procedure is inefficient for three reasons. First, it is
a slow certification (Line 13) to check whether the prediction result
for x remains the same for all possible clean subsets T € A, (T).
In many cases, the elements around x are almost all from one class,
and thus x’s predicted label cannot be changed by either direct or
indirect influence. However, the baseline procedure cannot quickly
identify and exploit this to avoid enumeration. Second, even if a
violating subset T’ exists, the vast majority of subsets in A, (T)
are often non-violating. However, the baseline procedure cannot
quickly identify the violating T” from A, (T). Third, within the
while-loop, different subsets share common computations inside
KNN_LEARN, but these common computations are not leveraged
by the baseline procedure to reduce the computational cost.

1210

if QuickCerTiFY(T, n, x) then
| return Certified

end if

(K,Error) « KNN_rearn_iNiT(T)

y « KNN_rrepict(T, K, x)

VX(T) < GENProMISINGSUBSETS (T, n, X, y)

while V3 (T) # 0 A consumed_time < time_limit do
Remove a subset T’ from V3 (T)
K’ « KNN_rearN_uppate(T \ T/, Error)
y’ « KNN_prepicT (T, K’, x)
if y # y’ then

12 ‘ return Falsified with (T \ T”) as evidence
end if

end while

if VX (T) = 0 then

16 | return Certified

else

18 ‘ return Unknown

end if

1
2
3
4
5
6
7
8
9

3 OVERVIEW OF THE PROPOSED METHOD

There are three main differences between our method in Algo-
rithm 2 and the baseline method in Algorithm 1. They are marked
in dark blue. They are the novel components designed specifically
to overcome limitations of the baseline method.

First, we add the subroutine QUICKCERTIFY to quickly check
whether it is possible to change the prediction result for the test in-
put x. This is a sound but incomplete check in that, if the subroutine
succeeds, we guarantee that the result is robust. If it fails, however,
the result remains unknown and we still need to execute the rest
of the procedure. The detailed implementation of QUICKCERTIFY is
presented in Section 4.

Second, before searching for a clean subset that violates robust-
ness, we compute VX (T) C A, (T), to capture the likely violating
subsets. In other words, the obviously non-violating ones in A, (T)
are safely skipped. Note that, while A, (T) depends only on T and
n, VX(T) depends also on the test input x. For this reason, V3 (T)
is expected to be significantly smaller than A, (T), thus reducing
the search space. The detailed implementation of GENPROMISING-
SUBSETS is presented in Section 5.

Third, instead of applying the standard KNN_LEARN subroutine
to each subset T’ to perform the expensive p-fold cross validation,
we split it to KNN_LEARN_INIT and KNN_LEARN_UPDATE, where
the first subroutine is applied only once to the original training set
T, and the second subroutine is applied to each subset T € VX(T).
Within KNN_LEARN_UPDATE, instead of performing p-fold cross
validation for T from scratch, we leverage the results returned by
KNN_LEARN_INIT to incrementally compute the results for K. The
detailed implementation of these two new subroutines is presented
in Section 6.

To summarize, our method first uses over-approximation to cer-
tify robustness. If it succeeds, the classification result is guaranteed
to be robust; otherwise, the classification result remains unknown.
Only for the unknown case, our method uses under-approximation
to falsify robustness. If it succeeds, the classification result is guar-
anteed to be not robust. Otherwise, the classification result remains

Systematic Testing of the Data-Poisoning Robustness of KNN

Table 1: Notations used in our new algorithm.

Let T = {(x1, Y1), (x2, Y2), ., (Xm, Ym) } be a set of labeled data
elements, where input x; € X C RP is a feature vector in the
feature space X,and y € Y C Nis a class label in the label space
Y.

Let TX be the set of K nearest neighbors of test input x in the

Training Set T

Set of K-nearest

Neighbors TX training set T

Label Counter Let (D) = { (l; : #1;) } be the set of label counts for a dataset

&(4) D, where I; € Y is a label and #/; € N is the number of elements
in D with label ;.

Most Frequent
Label Freq(-)

Let Freq(&E(D)) be the most frequent label in the label counter
& (D) for the dataset D.

unknown. Therefore, our method does not “mix” over- and under-
approximations in the sense that they are never used simultane-
ously; instead, over- and under-approximations are used sequen-
tially in two separate steps of our algorithm. The formal guarantee
is that: If our method says that a case is robust, it is indeed robust
(see Theorem 4.1); if our method says that a case is not robust, it
is indeed not robust (since a poisoning set is found); and if our
method says unknown, it may be either robust or not robust.

4 QUICKLY CERTIFYING ROBUSTNESS

In this section, we present the subroutine QuickCertify, which is
a sound but incomplete procedure for certifying robustness of the
KNN for a given input x. Therefore, if it returns True, the prediction
result for x is guaranteed to be robust. If it returns False, however,
we still need further investigation.

We define the notations used by the KNN algorithm in Ta-
ble 1, following the ones used by Li et al. [31]. Consider T3 =
{(x1,1a), (x2,1g), (x3,1p) } as an example, which captures the 3-nearest
neighbors of a test input x. Then the corresponding label counter is
E(T2) = {(Ig : 2), (I : 1)}, meaning that two elements in T have
the label /; and one element has the label [;,. The corresponding
most frequent label is Freq(&(T3)) = I,.

For each subset T’ € A, (T), we define a removal set R = (T\T”)
and a removal strategy S = E(R).

o A removal set R for a set T is a non-empty subset R C T, to
represent the removal of the elements in R from T.
o A removal strategy S is the label counter of a removal set R,

ie, S = &(R).

Thus, all the removal sets form the concrete domain, and all the
removal strategies form an abstract domain. While analysis in the
(large) concrete domain is expensive, analysis in the (smaller) ab-
stract domain is much cheaper. This is analogous to the abstract
interpretation [11] paradigm for static program analysis!.

For the set T2 above, there are 6 removal sets: Ry = {(x1,1,)},
Ry ={(x2,la)}, R3 = {(x3,1p) }, Ry = {(x1,1a), (x2,1a) }, Rs = {(x1,
la), (x3,1p)}, and Rg = {(x2,1a), (x3,1c)}. They correspond to 4 re-
moval strategies: S; = {(lz: 1)}, So ={(lc : 1)}, S3 = {(lzg : 1),

I There are Galois connections [12] (e, y) between removal sets and removal strategies
(multisets) that are standard in the context of abstract interpretation, where the a
function abstracts removal sets in the concrete domain to removal strategies (multisets)
in the abstract domain, and the y function concretizes the multisets back to sets.

1211

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

Algorithm 3: Subroutine QUICKCERTIFY(T, n, x).

1 LabelSet « {}
2 for each candidate K value do
Let y = Freq(&(TK)) and add y into LabelSet;
if y # Freq(E(TX*™)\ {(y: n)}) then
| returnFalse
end if
if |LabelSet| > 1 then
| returnFalse
9 end if
10 end for

% N A w e w

11 return True

(I : 1)}, and Sy = {(l5 : 2)}. As the number of elements in T in-
creases, the size gap between the concrete and abstract domains
increases drastically— this is the reason why our method is efficient.

4.1 The QUICKCERTIFY Subroutine

In this subroutine, we check a series of sufficient conditions under
which the prediction result for test input x is guaranteed to be
robust. These sufficient conditions are designed to avoid the most
expensive step of the KNN algorithm, which is the learning phase
that relies on p-fold cross validations to compute the optimal K
parameter.

Since the optimal K parameter is chosen from a set of candidate
values, where p-fold cross validations are used to identify the value
that minimizes prediction error, skipping the learning phase means
we must directly analyze the behavior of the KNN prediction phase
for all candidate K values. That is, assuming any of the candidate K
value may be the optimal one, we prove that the prediction result
remains the same no matter which candidate K value is used as the
K parameter.

Algorithm 3 shows the procedure, which takes the training set
T, poisoning threshold n, and test input x as input, and returns
either True or False as output. Here, True means the result is n-
poisoning robust, and False means the result is unknown. For each
candidate K value, y = F req(S(Tf)) is the most frequent label of
the K-nearest neighbors of x.

Recall that, in Section 2, we have explained the two ways in
which poisoned data in T may affect the prediction result. The first
one is called direct influence: without changing the K value, the
poisoned data may affect the K-nearest neighbors of x and thus
their most frequent label. The second one is called indirect influence:
by changing the K value, the poisoned data may affect how many
neighbors to consider. Inside the QUICKCERTIFY subroutine, we
check for sufficient conditions under which none of the above two
types of influence is possible.

The check for direct influence is implemented in Line 4. Here,
TK*" consists of the (K +n) nearest neighbors of x, and &(TX*") is
the label counter. Therefore, S(T,{G”) \{(y : n)} means removing n
data elements labeled y. Freq(S(Ter") \ {(y : n)}) represents the
most frequent label after the removal. If it is possible for this removal
strategy to change the most frequent label, then we conservatively
assume that the prediction result may not be robust.

The check for indirect influence is implemented in Line 7. Here,
LabelSet stores all of the most frequent labels for different candidate
K values. If the most frequent labels for any two candidate K values

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

A A
* A * 9% A
2 X
A i A
%* *
A A

(a) ForK =1, Freq(S(T,})) = star, and
Freq(E(TYM) \ {star : n}) = star

(b) For K = 3, Freq(&(T3)) = star, and
Freq(&(T3t") \ {star : n}) = star

Figure 3: Robust example for QUICKCERTIFY, where the poi-
soning number is n = 2, and candidate K values are {1, 3}.

A A
o A * % A
AA aA
* A i A
K *
A A

(a) For K = 1, Freq(&(T})) = star, and (b) For K = 3, Freq(&(T2)) = triangle, and
Freq(&(TY™) \ {star : n}) = triangle Freq(&(T3*") \ {triangle : n}) = star

Figure 4: Unknown example for QUIcCKkCERTIFY, where the
poisoning number is n = 2 and the only two candidate values
are K=1 and K=3.

differ, i.e., |[LabelSet| > 1, we conservatively assume the prediction
result may not be robust.

On the other hand, if the prediction result remains the same
during both checks, we can safely assume that the prediction result
is n-poisoning robust.

4.2 Two Examples

We illustrate Algorithm 3 using two examples.

Figure 3 shows an example where robustness can be proved by
QuickCERTIFY. For simplicity, we assume the only two candidate
values for the parameter K are K = 1 and K = 3. When K = 1,
as shown in Figure 3 (a), star is the most frequent label of the x’s
neighbors, denoted &(T}) = {(star : 1)}, and inside Algorithm 3,
we have LabelSet = {star}. The extreme case is represented by
E(TH?)\ {(star : 2)} = {(star : 1)}, which means x is still classi-
fied as star after applying this aggressive removal strategy.

When K = 3, as shown in Figure 3 (b), star is also the most
frequent label in E(T) = {star : 3} and thus LabelSet = {star}.
The extreme case is represented by &(T3+2)\ {star : 2} = {star : 3},
which means x is still classified as star after applying this removal
strategy. In this example n = 2, thus x is proved to be robust against
2-poisoning attacks.

Figure 4 shows an example where the robustness cannot be
proved by QUIckCERTIFY. When K = 1, as shown in Figure 4 (a), star

1212

Yannan Li, Jingbo Wang, and Chao Wang

is the most frequent label in &(T}) = {(star : 1)} and LabelSet =
{star}. The extreme case is E(T,1*2) \ {(star : 2)} = {triangle : 2},
which means x is classified as triangle. Thus, QUICKCERTIFY returns
False in Line 5.

4.3 Correctness and Efficiency

The following theorem states that our method is sound in proving
n-poisoning robustness.

THEOREM 4.1. If QuIcKCERTIFY(T, n, x) returns True, the KNN’s
prediction result for x is guaranteed to be n-poisoning robust.

Due to space limit, we omit the full proof. Instead, we explain
the intuition behind Line 4 of the algorithm. First, we note that
the prediction label F req(S(T,’CK)) from any T” € Ap(T) can corre-
spond to a Freq(&E (D)) where D is obtained by removing i (< n)
elements from TX*". Thus, we only need to pay attention to the
(K + n) nearest neighbors of x; other elements which are further
away from x can be safely ignored (cf. [24, 31]). Next, to maximize
the chance of changing the most frequent label from y to another
label, we want to remove as many y-labeled elements as possible
from x’s neighbors. Thus, the most aggressive removal case is cap-
tured by 8(T,{<+") \ {(y : n)}. If the most frequent label remains
unchanged even in this case, it is guaranteed unchanged.

Next, we explain why QUICKCERTIFY is fast. There are three
reasons. First, it completely avoids the computationally expensive
p-fold cross validations. Second, it considers only the K + n nearest
neighbors of x. Third, it focuses on analyzing the label counts,
which are in the (small) abstract domain, as opposed to the removal
sets, which are in the (large) concrete domain.

For these reasons, the execution time of this subroutine is often
negligible (e.g., less than 1 second) even for large datasets. At the
same time, our experimental evaluation shows that it can prove
robustness for a surprisingly large number of test inputs.

To summarize, mapping a potentially large set of concrete sets
to their corresponding label multiset (label counts) is an over-
approximated abstraction, since the prediction result for a test
input x is determined by the label counts of x’s nearest neighbors.
This over-approximated abstraction allows QUICKCERTIFY to effi-
ciently analyze the impact of the maximal allowable change in the
label counts.

5 REDUCING THE SEARCH SPACE

In this section, we present the subroutine GENPROMISINGSUBSETS,
which narrows down the search space by removing obviously non-
violating subsets from A, (T) and returns the remaining ones, de-
noted by the set V} (T) in Algorithm 2.

5.1 Minimal Violating Removal in Neighbors

We filter the obviously non-violating subsets by computing some
common property for each candidate K value such that it must be
part of every violating removal set.

We observe that any violating removal set for a specific candi-
date K value must ensure that, for test input x, its new K nearest
neighbors after removal have a most frequent label y’ that is dif-
ferent from the default label y. Our method computes the minimal
number of removed elements in x’s neighborhood to achieve this,

Systematic Testing of the Data-Poisoning Robustness of KNN

Algorithm 4: GENPROMISINGSUBSETS(T, 1, x,).

1 for each candidate K value do
start =0;end =n+1;
while start < end do
mid = (start +end)/2;
if y # Freq(&(TX*™)\ {(y: m)}) then
‘ end = mid;
else
| start =mid+1;
end if
end while
min_rmo = start;
if min_rmo < n then
for each Ry € TX*™ s.t. |Ry| > min_rmo do
for each Ry € (T \ TX*™) and |Ry| < n — |Ry| do
R=RyURy;
Add (T \R) to VX(T);
end for
end for
end if
20 end for

R RN R N N L

-
= S

19

let us call it minimal violating removal, denote min_rmo. With this
number, we know the every violating removal set must have at
least min_rmo elements from x’s neighbors TK*™,

The test input x’s new nearest neighbors after removal is rep-
resented as TX* \ {i elements from TX*}, where i = 1,2, ...n. To
compute the minimal violating removal, rather than checking each
possible value of i from 1 to n, we need a more efficient method,
e.g., binary search with O(log n). To use binary search, we need to
prove the monotonicity of violating removals, defined below.

THEOREM 5.1 (MoNOTONICITY). Ifthere is some i allowing T’{Gi \
{i elements from TX*} to have a different most-frequent label y’,
then any larger value j > i will also allow T,{Gj \ {Jj elements from
Tfﬁ} to have a different most-frequent label y’. Conversely, if i does
not allow it, then any smaller value j < i does not allow it either.

ProOF. If there is some i allowing TX*#\ {i elements from TX*7}

to have a different most-frequent label 1/, there exists S ¢ TK+

such that |S| =i and Freq(Tf” \'S) =v’. For any j > i and Tfﬂ,
we can always construct " = S U (Tf + \ Tf”), which satisfies
S c Tfﬂ, |S’| = j and Freq(T,ij \'$’) = ¢/. The reverse can be
proved similarly. O

Lines 2-11 in Algorithm 4 show the process of finding the min-
imal violating removal using binary search. Assume the possible
range is 0 ~ n+1 (line 2), the binary search divides the range in half
(line 4) and checks the middle value (line 5). To check whether a
removal mid can result in a different label y’ # y, the most possible
operation is to remove mid elements with y label. It mid works,
according to Theorem 5.1, we know the minimal removal is in the
range start ~ mid (line 6); otherwise it is in the range mid+1 ~ end
(line 8). The binary search stops when start equals end, and this
will the minimal violating removal.

Since n is the maximal allowed removal, when min_rmo > n, it
is impossible for the most frequent label to change from y to y’.

1213

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

5.2 An Illustrative Example

Here we give an example of the binary search in Algorithm 4.
Assume in the original training set T, for the test input x, the
optimal K is K = 1 and the default label is y = star.

Example 5.2. Assume n = 5, T; = {star * 2, triangle * 1}, T;1 =
{star % 2, triangle * 2}, and T2 = {star * 3, triangle 2}. For the
candidate K = 2, we show how to compute the minimal violating
removal in x’s neighbors.

At first, start = 0 and end = 6, which means the possible value
range of minimal removal is 0 ~ 6. Our method first checks mid = 3,
since T2*3 \ {(star : 3)} results in the most-frequent label triangle,
our method can cut the possible range by half to 0 ~ 3. Next, we
check mid = 1, and reduce the range to 0 ~ 1. Finally, we check
mid = 0, which does not work, so the range becomes 1 ~ 1, and we
return 1 as the minimal violating removal in x’s neighbors.

Since binary search reduces the range by half at each step, it is
efficient. For example, when n=180 for MNIST, binary search needs
only 8 checks to compute the result, whereas going through each
value in the range requires 180 checks. In other words, the speedup
is more than 20X.

5.3 The Reduced Search Space

Based on the minimal violating removal, min_rmo, we compute the
reduced set V(T) as shown in Lines 12-20 of Algorithm 4.

Here, each removal set R is the union of two sets, Ry and Ry,
where Ry is a removal set that contains at least min_rmo elements
from x’s neighborhood TX**, and R, C (T \ TX*") is a subset of
the left-over data elements.

Our experiments show that, in practice, the reduced set V¥ (T)
is often significantly smaller than the original set A, (T). A special
case is when min_rmo = 0, for which V¥(T) is the same as A, (T),
meaning the search space is not reduced. However, this special case
is rare and, during our experimental evaluation, it never occurred.

6 INCREMENTAL COMPUTATION

In this section, we present our method for speeding up an expen-
sive step of the KNN algorithm, the p-fold cross validations inside
KNN_LEARN. We achieve this speedup by splitting KNN_LEARN into
two subroutines: KNN_LEARN_INTIT, which is applied only once to
the original training set T, and KNN_LEARN_UPDATE, which is ap-
plied to each individual removal set R = (T\T’), where T” € VX(T).

6.1 The Intuition

First, we explain why the standard KNN_LEARN is computationally
expensive. This is because, for each candidate value of parameter
K, denoted Kj, the standard p-fold cross validation [35] must be
used to compute the classification error. Algorithm 5 (excluding
Lines 15-16) shows the computation.

First, the training set T is partitioned into p groups, denoted
{G1, G,Gp}. Then, the set of misclassification samples in each

group G| is computed, denoted errSetg; . Next, the error is averaged

over all groups, which results in errorki. Finally, the K; value with
the smallest classification error is chosen as the optimal K value.

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

Yannan Li, Jingbo Wang, and Chao Wang

Algorithm 5: Subroutine KNN_LEARN_INTT(T).

Algorithm 6: KNN_LEARN_UPDATE(R, Error).

1 Partition the training set T into p groups {Gy, Ga, ...,
2 for each candidate K; value do
for each group G; do

Gt
for each data element (x, y) € Gj do
if KNN_prepicT(T \ Gj, Kj, x) # y then
Ki,
‘ Add (x, y) to errSeth,
end if
end for

Gp}

errSet,

K _ K;)
errorg, = |errSeth’ / |Gj|
1 end for

12

K; _ 1 yP Ki
error » Zj:1 errorGj
end for
Kj

14 K < argmin error

Ki
Error « ({G1,Gy, ...,

return (K, Error)

-

5 Gp}, {(errSetgi,...,errSetg;")})

16

Lo . K;
The computation is expensive because error’, for each Kj, re-

quires exactly |G;| calls to the standard KNN_PREDJICT(T\Gj, K, x),
one per data element x € Gj, while treating the set D = (T \ G;)
as the training set.

Our intuition for speeding up this computation is as follows.
Given the original training set T, and a subset T’ € VX(T), the
corresponding removal set R = (T \ T”) can capture the difference
between these two sets, and thus capture the difference of their
errorki. Since K; is fixed when computing errori, we only need
to consider the direct influence (i.e., neighbors change) brought by
removal set R. In practice, the removal set is often small, which
means the vast majority of data elements in the p-fold partition of
T’, denoted {G, ..., Gy}, are the same as data elements in the p-
fold partition of T, denoted {Gj, ..., GP}A Thus, for most elements,
their neighbors are almost the same. Instead of computing the error

sets (errSeth) from scratch for every single G’., we can use the

error sets (errSet ’) for G; as the starting point, and only compute

the change brought by removal set R, leveraging the intermediate
computation results stored in Error.

6.2 The Algorithm

Our incremental computation has two steps. As shown in Algo-
rithm 2, we apply KNN_LEARN_INIT once to the set T, and then
apply KNN_LEARN_UPDATE to each removal set R = (T \ T”).

Our new subroutine KNN_LEARN_INIT is shown in Algorithm 5.
It differs from the standard KNN_LEARN only in Lines 15-16, where
it stores the intermediate computation results in Error. The first
component in Error is the set of p groups in T. The second compo-
nent contains, for each Kj, the misclassified elements in G;.

Subroutine KNN_LEARN_UPDATE is shown in Algorithm 6, which
computes the new errSetK based on the errSet, Ki stored in Error.
First, it computes the new groups G by removmg elements in
R from the old groups G;. Then, it computes influSet, Wthh is
defined in the next paragraph. Finally, it modifies the old errSet

(in Line 16) based on three cases: it removes the set R (Case 1) and

1214

I

Let {Gy,...,G d {(errSett,...,
1 Let (Gy,.... Gy} and {(errSetf!
sets stored in Error

2 Compute the new groups {G | G}

errSetgL)} be groups and error
=Gj\Rwhere j=1,...,p}
3 Compute the new training set T’ = U je(1,...p) Gj'.
4 Compute the influenced set, influSet, using R and {G; }
5 for each candidate K; value do
6 for each new group G} do
newSet™ = newSet™ = {}
for each data element (x,y) € (G}.ﬂinfluSet) do
if KNN_prepict(T \ Gj,K;, x) = y and
KNN_preprct(T’ \ G;.,Ki,x) # y then
10 | Add (x,y) to newSet™;
end if
if KNN_prepicr(T \ G, K;, x) # y and
KNN_prepIcT(T’ \ G}’.,K,-,x) = y then
13 | Add (x,y) to newSet™;
end if
end for

errSetgf = errSetgf \ R\ newSet~ U newSet*
J J

e ® N

/

G

K; K;
error,_, = |errSet
Gj Gj

end for

Ki — 1 yP Ki
» 2o error

error led
J

20 end for
21 K ¢ argmin errorki
Ki

22 return K

the set newSet™ (Case 2), and adds the set newSet* (Case 3). Below
are the detailed explanations of these three cases:

(1) If (x,y) € Gj \ G} was misclassified by (T \ Gj), but this
element is no longer in 77, it should be removed.

(2) If (x,y) € G; N G}. was misclassified by (T \ G;), but this ele-
ment is correctly classified by T” \ G7, it should be removed.

(3) If(x,y) €G;n G;. was correctly classified by (T \ G;), but
is misclassified by T’ \ G}, it should be added.

Case (1) can be regarded as an explicit change brought by the re-
moval set R, whereas Case (2) and Case (3) are implied changes
brought by R: these changes are implied because, while the element
(x,y) is not inside R, it is classified differently after the elements in
R are removed from T.

Since the removal set is small, most data elements in G; will
not be part of the explicit or implied changes. To avoid redun-
dantly invoking KNN_PREDICT on these data elements, we filter
them out using the influenced set (Line 8). Here, assume that
Kmax = max({K;}) is the maximal candidate value, and during
cross-validation, when G; is treated as the test set, D = (T \ Gj) is
the corresponding training set.

influSet = { (x,y) € G; | (x,y) €R,

D,I((m“x NR# 0, and
QuickCerTIFY(D, n, x) = False}

In other words, every element (x, y) inside influSet must satisfy
three conditions: (1) the element is not in R; (2) at least one of its
neighbors in Df’"“" isin R; and (3) the element may be misclassified
when at most n neighbors are removed. Recall that the subroutine
used in the last condition has been explained in Algorithm 3.

Systematic Testing of the Data-Poisoning Robustness of KNN

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

Table 2: Comparing the accuracy of our method with the baseline (ground truth)and two existing methods (which cannot
falsify) on the smaller datasets, for which the ground truth can be obtained by the baseline enumerative method (Algorithm 1).

Benchmark Baseline Jia et al. [24] Lietal. [31] Our Method
dataset test data | certified | falsified | unknown | time | certified | falsified | unknown | time | certified | falsified | unknown | time | certified | falsified | unknown | time
‘ (s) # # # (s) # # # (s) # # # (s)
Iris (n=1) 15 15 0) 49 0 0 15 1 14 0 1 1 15 0 0 1
Iris (n=2) 15 14 1 0 3,086 0 0 15 1 13 0 2 1 14 1 0 5
Iris (n=3) 15 0 1 14 6,721 0 0 15 1 11 0 4 1 13 1 1 120
Digits (n=1) 180 0 1 179 7,168 170 0 10 1 172 0 8 1 179 1 0 3

7 EXPERIMENTS

We have implemented our method using Python and the popular
machine learning toolkit scikit-learn 0.24.2, together with
the baseline method in Algorithm 1, and the two existing methods
of Jia et al. [24] and Li et al. [31]. For experimental comparison,
we used six popular supervised learning datasets as benchmarks.
There are two relatively small datasets, Iris [17] and Digits [19].
Iris has 135 training and 15 test elements with 3 classes and 4-D
features. Digits has 1,617 training and 180 test elements with 10
classes and 64-D features. Since the baseline approach (Algorithm 1)
can finish on these small datasets and thus obtain the ground truth
(i.e., whether prediction is truly robust), these small datasets are
useful in evaluating the accuracy of our method.

The other four benchmarks are larger datasets, including HAR
(human activity recognition using smartphones) [3], which has
9,784 training and 515 test elements with 6 classes and 561-D fea-
tures, Letter (letter recognition) [18], which has 18,999 training
and 1,000 test elements with 26 classes and 16-D features, MNIST
(hand-written digit recognition) [29], which has 60,000 training and
10,000 test elements with 10 classes and 36-D features, and CIFAR10
(colored image classification) [26], which has 50,000 training and
10,000 test elements with 10 classes and 288-D features. Since none
of these datasets can be handled by the baseline approach, they are
used primarily to evaluate the efficiency of our method.

7.1 Evaluation Criteria

Our experiments aimed to answer the following three research
questions:

RQ1 Is our method accurate enough for deciding (certifying or
falsifying) n-poisoning robustness for most of the test cases?

RQ2 Is our method efficient enough for handling all of the datasets
used in the experiments?

RQ3 How often can prediction be successfully certified or falsi-
fied by our method, and how is the result affected by the
poisoning threshold n?

We used the state-of-the-art implementation of KNN in our ex-
periments, with 10-fold cross validation and candidate K values in
the range 1 ~ % |T|. The set T is obtained by inserting up-to-n ma-
licious samples to the datasets. We first generate a random number
n’ < n, and then insert exactly n’ mutations of randomly picked
input features and output labels of the original samples.

We ran all four methods on all datasets. For the slow baseline,
we set the time limit to 7200 seconds per test input. For the other
methods, we set the time limit to 1800 seconds per test input. Our
experiments were conducted (single threaded) on a CloudLab [15]

1215

Table 3: Comparing the accuracy and efficiency of our method
with existing methods on all datasets, with large poisoning
thresholds; the percentages of certified and falsified cases

are reported in Section 7.4 and shown in Figure 5.

Benchmark Jia et al. [24] Lietal. [31] Our Method
dataset poisoning | unknown | time | unknown | time | unknown | time
threshold % (s) % (s) % (s)
Iris n =3 (2%) 100% 1 26.7% 1 6.7% 120
Digits n =16 (1%) 100% 1 19.4% 1 1.0% 19
HAR n =97 (1%) 100% 1 28.3% 1 0.8% 21
Letter n =190 (1%) 100% 1 945% 1 0.0% 4
MNIST n =180 (0.3%) 38.1% 1 25.0% 1 2.0% 47
CIFAR10 | n =150 (0.3%) 90.0% 1 64.0% 1 0.0% 558

€6252-25g node with 16-core AMD 7302P at 3 GHz CPU and 128GB
EEC Memory (8 x16 GB 3200MT/s RDIMMs).

7.2 Results on the Smaller Datasets

To answer RQ1, we compared the result of our method with the
ground truth obtained by the baseline enumerative method on the
two smallest datasets.

Table 2 shows the experimental results. Columns 1-2 show the
name of the dataset, the poisoning threshold n, and the number
of test data. Columns 3-6 show the result of the baseline method,
including the number of test data that are certified, falsified, and
unknown, respectively, and the average time per test input. The
remaining columns compare the results of the two existing methods
and our method. Since the goal is to compare our method with the
ground truth (obtained by the baseline method), we must choose
small n values to ensure that the baseline method does not time
out.

On Iris (n = 2), the baseline method was able to certify 14/15 of
the test data and falsify 1/15. However, it was slow: the average
time was 3,086 seconds per test input. In contrast, the method by
Jia et al. [24] was much faster, albeit with low accuracy. It took
1 second per test input, but failed to certify any of the test data.
The method by Li et al. [31] certified 11/15 of the test data but left
4/15 as unknown. Our method certified 14/15 of the test data and
falsified the remaining 1/15, and thus is as accurate as the ground
truth; the average time is 5 seconds per test input.

While the slow baseline method was able to handle Iris, it did
not scale well. With a slightly larger dataset or larger poisoning
threshold, it would run out of time. On Digits (n=1), the baseline
method falsified only 1/180 of the test data and returned the re-
maining 179/180 as unknown. In contrast, our method successfully
certified or falsified all of the 180 test data.

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

7.3 Results on All Datasets

To answer RQ2, we compared our method with the two state-of-
the-art methods [24, 31] on all datasets, using significantly larger
poisoning thresholds. Since these benchmarks are well beyond the
reach of the baseline method, we no longer have the ground truth.
However, whenever our method returns Certified or Falsified, the
results are guaranteed to be conclusive. Thus, the Unknown cases
are the only unresolved cases. If the percentage of Unknown cases
is small, it means our method is accurate.

Table 3 shows the results, where Column 1 shows the name of
the dataset, and Column 2 shows the poisoning threshold. For the
smallest dataset, we set n to be 2% of the size of T. For medium
datasets, we set it to be 1%. For large datasets, we set it to be 0.3%.

Columns 3-6 show the percentage of test data left as unknown
by the two existing methods and the average time taken. Recall
that these methods can only certify, but not falsify, n-poisoning
robustness.

Columns 7-8 show the percentage of test data left as unknown
by our method. While our method has a higher computational cost,
it is also drastically more accurate than the two existing methods.

On HAR, for example, the existing methods left 100% and 28.3%
of the test data as unknown when n = 97. Our method, on the other
hand, left only 0.8% of the test data as unknown.

On CIFAR10, which has 50,000 data elements with 288-D feature
vectors, our method was able to resolve 100% of the test cases when
the poisoning threshold was as large as n = 150. In contrast, the two
existing methods resolved only 10.0% and 36.0%. In other words,
they left 90.0% and 64.0% as unknown.

7.4 Effectiveness of Our Method and Impact of
the Poisoning Threshold

To answer RQ3, we studied the percentages of certified, falsified,
and unknown cases reported by our method, as well as how they
are affected by the poisoning threshold n.

In addition to the percentage of unknown cases shown in Table 3,
we show the percentages of certified and falsified cases reported by
our method below. There is no need to report these percentages for
the two existing methods, because they always have 0% of falsified
cases.

dataset | poisoning threshold | certified by our method | falsified by our method
Tris n =3 (2%) 86.6% 6.7%
Digits n =16 (1%) 80.0% 19.0%
HAR =97 (1%) 71.8% 26.8%
Letter n =190 (1%) 5.6% 94.4%
MNIST n =180 (0.3%) 75.0% 23.0%
CIFAR10 n =150 (0.3%) 36.0% 64.0%

Figure 5 shows how these percentages are affected by the poi-
soning threshold. Here, the x-axis shows n/|T| in percentage, and
the y-axis shows the percentages of falsified in ‘—°, unknown in *.’
and certified in either ‘|” (quick certify) or °/’ (slow certify).

Recall that in Algorithm 2, a test case may be certified in either
Line 2 or Line 16. When it is certified in Line 2, it belongs to the ‘|’
region (quick certify) in Figure 5. When it is certified in Line 16, it
belongs to the ‘/* region (slow certify).

For example, in Figure 6(e): When n=1, the falsify percentage is
0%, the unknown percentage is 10% and the quick-certify percentage

1216

Yannan Li, Jingbo Wang, and Chao Wang

100%

G L
0% 0%
08% 10% 12% 14% 1.6% 18% 2.0% 2.2% 02% 04% 06% 08% 10%
(a) Iris (b) Digits
100% = 100%
= i
80% 1 — 80%
e
60% 60% \
40% 40%
s
—
20% 20% e ——
=
0% 0% [E==m\HEIN] l 11T
00% 02% 04% 06% 08% 1.0% 00% 02% 04% 06% 08% 10%
(c) HAR (d) Letter
100% 100%
e —— h:
————
T
80% T 80% =
N
\\
\\
60% 60% T
0% 40% =
20% 20%
el AL | - bbb LLLLLULLL L
0.00% 0.05% 0.10% 0.15% 0.20% 0.25% 0.30% 00% 01% 01% 02% 02% 03% 03%
(e) MNIST (f) CIFAR10

Figure 5: Results on how the poisoning threshold (in the
x-axis) affects the percentages of certified, falsified, and un-
known test cases (in the y-axis) in our method. Here, falsified
is in ‘-’ unknown is in ‘’, and certified is in either ‘|’ (quick
certify) or ¢/’ (slow certify).

is 90%. When n=180, the falsify percentage is 23%, the unknown
percentage is 2%, and the quick-certify percentage is 75%.

Figure 5 demonstrates the effectiveness of our method. Since
the ‘.’ regions that represent unknown cases remain small, the vast
majority of cases are successfully certified or falsified.

The results also reflect the nature of n-poisoning robustness: as
n increases, the percentage of truly robust cases decreases. This
is inevitable since having more poisoned elements in T leads to a
higher likelihood of changing the classification label. This is consis-
tent with the results of prior studies [7, 10, 44], which found that
the prediction errors became significant even if a small percentage
(< 0.2%) of training data in T was poisoned.

8 RELATED WORK

As explained earlier, while there has been prior work on certifying
data-poisoning robustness for KNN, none of the existing methods
can falsify the robustness property. Thus, our method is the only
one that can generate both certification and falsification results
with certainty, and can handle both the learning and the predic-
tion phases of a state-of-the-art KNN system. In contrast, existing
techniques such as Wang et al. [51], Jia et al. [23, 24], and Weber

Systematic Testing of the Data-Poisoning Robustness of KNN

et al. [52] can only certify, but not falsify the robustness property.
Thus, in the presence of violations, these methods would remain
inconclusive. Our method, on the other hand, can successfully re-
solve the robustness problem for most of the test inputs, as shown
by our experimental evaluation.

KNN is not the only machine learning algorithm that is vulnera-
ble to data poisoning. Other machine learning algorithms that are
also found to be vulnerable to data poisoning include regression
models [36], support vector machines (SVM) [7, 56, 57], clustering
algorithms [8], and neural networks [13, 44, 47, 59]. So far, there has
been no generic techniques for deciding the robustness property
for all machine learning algorithms. Techniques have also been pro-
posed to defend against data-poisoning attacks [4, 6, 16, 22, 45, 50],
as well as to evaluate the effectiveness of defense techniques [25, 34]
such as data sanitization [25] and differentially-private countermea-
sures [34]. Along this line, there is a growing interest in studying
certified defenses [23, 30, 43] where robustness can be guaranteed
either probabilistically or in a deterministic manner.

At a higher level, our method for using over-approximate analy-
sis to narrow down the search space is analogous to static analysis
techniques based on abstract interpretation [11], which have been
used to verify properties of both software programs [28, 48, 53]
and machine learning models [40-42], including robustness to data
bias [37] and individual fairness [32]. Furthermore, our method for
detecting robustness violations is analogous to techniques used in
bug-finding tools based on program verification and state space
reduction [5, 27]. However, none of these techniques was designed
to certify or falsify data-poisoning robustness of machine learning
based systems.

Our method for using systematic testing to find robustness vio-
lations is related to the idea of fuzz testing [39, 49] in the sense that
mutations are used to generate violation-inducing inputs. There
is a large number of fuzz testing tools including AFL [58], hongg-
fuzz [20], libFuzzer [33], SYMFUZZ [9], and Driller [46]. However,
these tools focus primarily on search space pruning and search
prioritization, e.g., by leveraging the syntax and semantics of the
software code, but for KNN, the situation is significantly more com-
plex. This is because mutations of the training data can lead to
drastic changes of the behavior of the underlying algorithm, dur-
ing both the KNN inference phase and the KNN learning phase.
Thus, while existing techniques from the fuzz testing literature are
inspiring, they are not directly applicable to this problem.

9 CONCLUSION

We have presented a method for deciding n-poisoning robustness
accurately and efficiently for the state-of-the-art implementation
of the KNN algorithm. To the best of our knowledge, this is the
only method available for certifying as well as falsifying the com-
plete KNN system, including both the learning and the prediction
phases. Our method relies on novel techniques that first narrow
down the search space using over-approximate analysis in the ab-
stract domain, and then find violations using systematic testing in
the concrete domain. We have evaluated the proposed techniques
on six popular supervised-learning datasets, and demonstrated the
advantages of our method over two state-of-the-art techniques.
Besides KNN, our method for over-approximating the impact of

1217

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

poisoning on the nearest neighbors is applicable to other distance-
based machine learning classifiers and algorithms based on majority
voting. Furthermore, since cross validation is a widely used param-
eter tuning technique in machine learning systems, our method
for over-approximating cross validation is also applicable to other
systems that rely on cross validation as a subroutine.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feedback.
This work was partially funded by the U.S. NSF grants CNS-1702824
and CCF-2220345.

REFERENCES

[1] David Adedayo Adeniyi, Zhaoqiang Wei, and Y Yongquan. 2016. Automated web
usage data mining and recommendation system using K-Nearest Neighbor (KNN)
classification method. Applied Computing and Informatics 12, 1 (2016), 90-108.
Moa Andersson and Lisa Tran. 2020. Predicting movie ratings using KNN. KTH
Royal Institute of Technology, Stockholm, Sweden.

Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, and Jorge Luis
Reyes-Ortiz. 2013. A public domain dataset for human activity recognition using
smartphones.. In Esann, Vol. 3. 3.

Dara Bahri, Heinrich Jiang, and Maya R. Gupta. 2020. Deep k-NN for Noisy Labels.
In Proceedings of the 37th International Conference on Machine Learning, ICML
2020, 13-18 July 2020, Virtual Event (Proceedings of Machine Learning Research,
Vol. 119). PMLR, 540-550.

Dirk Beyer and Thomas Lemberger. 2017. Software Verification: Testing vs. Model
Checking - A Comparative Evaluation of the State of the Art. In Hardware and
Software: Verification and Testing - 13th International Haifa Verification Confer-
ence, HVC 2017, Haifa, Israel, November 13-15, 2017, Proceedings (Lecture Notes
in Computer Science, Vol. 10629), Ofer Strichman and Rachel Tzoref-Brill (Eds.).
Springer, 99-114.

Battista Biggio, Igino Corona, Giorgio Fumera, Giorgio Giacinto, and Fabio Roli.
2011. Bagging classifiers for fighting poisoning attacks in adversarial classification
tasks. In International workshop on multiple classifier systems. Springer, 350-359.
Battista Biggio, Blaine Nelson, and Pavel Laskov. 2012. Poisoning Attacks against
Support Vector Machines. In Proceedings of the 29th International Conference on
Machine Learning, ICML 2012, Edinburgh, Scotland, UK, June 26 - July 1, 2012.
Battista Biggio, Konrad Rieck, Davide Ariu, Christian Wressnegger, Igino Corona,
Giorgio Giacinto, and Fabio Roli. 2014. Poisoning behavioral malware clustering.
In Proceedings of the 2014 workshop on artificial intelligent and security workshop.
27-36.

Sang Kil Cha, Maverick Woo, and David Brumley. 2015. Program-Adaptive
Mutational Fuzzing. In 2015 IEEE Symposium on Security and Privacy, SP 2015,
San Jose, CA, USA, May 17-21, 2015. IEEE Computer Society, 725-741.

Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. 2017. Targeted
backdoor attacks on deep learning systems using data poisoning. arXiv preprint
arXiv:1712.05526 (2017).

Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Conference Record of the Fourth ACM Symposium on Principles of
Programming Languages, Los Angeles, California, USA, January 1977, Robert M.
Graham, Michael A. Harrison, and Ravi Sethi (Eds.). ACM, 238-252.

Patrick Cousot and Radhia Cousot. 2014. A Galois connection calculus for
abstract interpretation. In The 41st Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 14, San Diego, CA, USA, January
20-21, 2014, Suresh Jagannathan and Peter Sewell (Eds.). ACM, 3-4.

Ambra Demontis, Marco Melis, Maura Pintor, Matthew Jagielski, Battista Biggio,
Alina Oprea, Cristina Nita-Rotaru, and Fabio Roli. 2019. Why do adversarial
attacks transfer? explaining transferability of evasion and poisoning attacks. In
28th { USENIX} Security Symposium ({ USENIX} Security 19). 321-338.

Samuel Drews, Aws Albarghouthi, and Loris D’Antoni. 2020. Proving data-
poisoning robustness in decision trees. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation. 1083-1097.
Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon
Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael
Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. 2019. The De-
sign and Operation of CloudLab. In Proceedings of the USENIX Annual Technical
Conference (ATC). 1-14. https://www.flux.utah.edu/paper/duplyakin-atc19
Jiashi Feng, Huan Xu, Shie Mannor, and Shuicheng Yan. 2014. Robust logistic
regression and classification. Advances in neural information processing systems
27 (2014), 253-261.

[2]

B3

[4]

[5

[6

[10

[11

[12

(13]

(14

=
&

[16]

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

(17

(18]

[19

[20]
[21

[22]

[23

[24]

[25]

[26

[27]

[28

[29

[36]

[37

[38

W
2

[40

Ronald A Fisher. 1936. The use of multiple measurements in taxonomic problems.
Annals of eugenics 7, 2 (1936), 179-188.

Peter W Frey and David J Slate. 1991. Letter recognition using Holland-style
adaptive classifiers. Machine learning 6, 2 (1991), 161-182.

Geoffrey Gates. 1972. The reduced nearest neighbor rule (corresp.). IEEE transac-
tions on information theory 18, 3 (1972), 431-433.

Google. 2016. Honggfuzz. https://google.github.io/honggfuzz/.

Gongde Guo, Hui Wang, David Bell, Yaxin Bi, and Kieran Greer. 2003. KNN model-
based approach in classification. In OTM Confederated International Conferences"
On the Move to Meaningful Internet Systems". Springer, 986-996.

Matthew Jagielski, Alina Oprea, Battista Biggio, Chang Liu, Cristina Nita-Rotaru,
and Bo Li. 2018. Manipulating machine learning: Poisoning attacks and coun-
termeasures for regression learning. In 2018 IEEE Symposium on Security and
Privacy (SP). IEEE, 19-35.

Jinyuan Jia, Xiaoyu Cao, and Neil Zhenqiang Gong. 2021. Intrinsic Certified
Robustness of Bagging against Data Poisoning Attacks. In Thirty-Fifth AAAI
Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Inno-
vative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on
Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February
2-9, 2021. 7961-7969.

Jinyuan Jia, Yupei Liu, Xiaoyu Cao, and Neil Zhenqiang Gong. 2022. Certified
Robustness of Nearest Neighbors against Data Poisoning and Backdoor Attacks.
In Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-
Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI 2022,
The Twelveth Symposium on Educational Advances in Artificial Intelligence, EAAI
2022 Virtual Event, February 22 - March 1, 2022. AAAI Press, 9575-9583.

Pang Wei Koh, Jacob Steinhardt, and Percy Liang. 2022. Stronger data poisoning
attacks break data sanitization defenses. Mach. Learn. 111, 1 (2022), 1-47.

Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

Daniel Kroening and Georg Weissenbacher. 2010. Verification and falsification of
programs with loops using predicate abstraction. Formal Aspects of Computing
22, 2 (2010), 105-128

Markus Kusano and Chao Wang. 2016. Flow-sensitive composition of thread-
modular abstract interpretation. In Proceedings of the 24th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering, FSE 2016, Seattle,
WA, USA, November 13-18, 2016, Thomas Zimmermann, Jane Cleland-Huang, and
Zhendong Su (Eds.). ACM, 799-809.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278—
2324.

Alexander Levine and Soheil Feizi. 2021. Deep Partition Aggregation: Provable
Defenses against General Poisoning Attacks. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
Yannan Li, Jingbo Wang, and Chao Wang. 2022. Proving Robustness of KNN
Against Adversarial Data Poisoning. In 22nd Formal Methods in Computer-Aided
Design, FMCAD 2022, Trento, Italy, October 17-21, 2022, Alberto Griggio and Neha
Rungta (Eds.). IEEE, 7-16.

Yannan Li, Jingbo Wang, and Chao Wang. 2023. Certifying the Fairness of KNN
in the Presence of Dataset Bias. In International Conference on Computer Aided
Verification. Springer.

LLVM. 2021. libFuzzer. https://llvm.org/docs/LibFuzzerhtml.

Yuzhe Ma, Xiaojin Zhu, and Justin Hsu. 2019. Data Poisoning against
Differentially-Private Learners: Attacks and Defenses. In Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelligence, I[JCAI 2019,
Macao, China, August 10-16, 2019, Sarit Kraus (Ed.). ijcai.org, 4732-4738.
Geoffrey J McLachlan, Kim-Anh Do, and Christophe Ambroise. 2005. Analyzing
microarray gene expression data. (2005).

Shike Mei and Xiaojin Zhu. 2015. Using machine teaching to identify optimal
training-set attacks on machine learners. In Proceedings of the AAAI Conference
on Artificial Intelligence.

Anna P. Meyer, Aws Albarghouthi, and Loris D’Antoni. 2021. Certifying Ro-
bustness to Programmable Data Bias in Decision Trees. In Advances in Neural
Information Processing Systems 34: Annual Conference on Neural Information Pro-
cessing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual. 26276-26288.
AnnaP. Meyer, Aws Albarghouthi, and Loris D’Antoni. 2022. Certifying Data-Bias
Robustness in Linear Regression. CoRR abs/2206.03575 (2022).

Barton P Miller, David Koski, Cjin Pheow Lee, Vivekandanda Maganty, Ravi
Murthy, Ajitkumar Natarajan, and Jeff Steidl. 1995. Fuzz revisited: A re-
examination of the reliability of UNIX utilities and services. Technical Report.
University of Wisconsin-Madison Department of Computer Sciences.

Sara Mohammadinejad, Brandon Paulsen, Jyotirmoy V. Deshmukh, and Chao
Wang. 2021. DiffRNN: Differential Verification of Recurrent Neural Networks. In
Formal Modeling and Analysis of Timed Systems - 19th International Conference,
FORMATS 2021, Paris, France, August 24-26, 2021, Proceedings (Lecture Notes in
Computer Science, Vol. 12860), Catalin Dima and Mahsa Shirmohammadi (Eds.).
Springer, 117-134.

1218

[41

[42

[43

S
it

[45

=
&

[47

[48

[51

[52

[54

[55]

[56]

[57

Yannan Li, Jingbo Wang, and Chao Wang

Brandon Paulsen, Jingbo Wang, and Chao Wang. 2020. ReluDiff: differential
verification of deep neural networks. In ICSE "20: 42nd International Conference on
Software Engineering, Seoul, South Korea, 27 June - 19 July, 2020, Gregg Rothermel
and Doo-Hwan Bae (Eds.). ACM, 714-726.

Brandon Paulsen, Jingbo Wang, Jiawei Wang, and Chao Wang. 2020. NEUROD-
IFF: Scalable Differential Verification of Neural Networks using Fine-Grained
Approximation. In 35th IEEE/ACM International Conference on Automated Soft-
ware Engineering, ASE 2020, Melbourne, Australia, September 21-25, 2020. IEEE,
784-796.

Elan Rosenfeld, Ezra Winston, Pradeep Ravikumar, and Zico Kolter. 2020. Certi-
fied robustness to label-flipping attacks via randomized smoothing. In Interna-
tional Conference on Machine Learning. PMLR, 8230-8241.

Ali Shafahi, W. Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer,
Tudor Dumitras, and Tom Goldstein. 2018. Poison Frogs! Targeted Clean-Label
Poisoning Attacks on Neural Networks. In Advances in Neural Information Pro-
cessing Systems 31: Annual Conference on Neural Information Processing Systems
2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, Samy Bengio, Hanna M.
Wallach, Hugo Larochelle, Kristen Grauman, Nicold Cesa-Bianchi, and Roman
Garnett (Eds.). 6106-6116.

Jacob Steinhardt, Pang Wei Koh, and Percy Liang. 2017. Certified Defenses for
Data Poisoning Attacks. In Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, Isabelle Guyon, Ulrike von Luxburg, Samy Bengio,
Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (Eds.).
3517-3529.

Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution. In
23rd Annual Network and Distributed System Security Symposium, NDSS 2016, San
Diego, California, USA, February 21-24, 2016. The Internet Society.

Octavian Suciu, Radu Marginean, Yigitcan Kaya, Hal Daume III, and Tudor Dumi-
tras. 2018. When does machine learning {FAIL}? generalized transferability for
evasion and poisoning attacks. In 27th { USENIX} Security Symposium ({ USENIX}
Security 18). 1299-1316.

Chungha Sung, Markus Kusano, and Chao Wang. 2017. Modular verification
of interrupt-driven software. In Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering, ASE 2017, Urbana, IL, USA, October
30 - November 03, 2017, Grigore Rosu, Massimiliano Di Penta, and Tien N. Nguyen
(Eds.). IEEE Computer Society, 206-216.

Ari Takanen, Jared D Demott, Charles Miller, and Atte Kettunen. 2018. Fuzzing
for software security testing and quality assurance. Artech House.

Brandon Tran, Jerry Li, and Aleksander Madry. 2018. Spectral Signatures in
Backdoor Attacks. In Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018,
December 3-8, 2018, Montréal, Canada, Samy Bengio, Hanna M. Wallach, Hugo
Larochelle, Kristen Grauman, Nicolo Cesa-Bianchi, and Roman Garnett (Eds.).
8011-8021.

Yizhen Wang, Somesh Jha, and Kamalika Chaudhuri. 2018. Analyzing the robust-
ness of nearest neighbors to adversarial examples. In International Conference on
Machine Learning. PMLR, 5133-5142.

Maurice Weber, Xiaojun Xu, Bojan Karlas, Ce Zhang, and Bo Li. 2020. Rab:
Provable robustness against backdoor attacks. arXiv preprint arXiv:2003.08904
(2020).

Meng Wu and Chao Wang. 2019. Abstract interpretation under speculative
execution. In Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26,
2019, Kathryn S. McKinley and Kathleen Fisher (Eds.). ACM, 802-815.

Wenjin Wu, Wen Zhang, Ye Yang, and Qing Wang. 2011. Drex: Developer
recommendation with k-nearest-neighbor search and expertise ranking. In 2011
18th Asia-Pacific Software Engineering Conference. IEEE, 389-396.

Huang Xiao, Battista Biggio, Gavin Brown, Giorgio Fumera, Claudia Eckert, and
Fabio Roli. 2015. Is feature selection secure against training data poisoning?. In
International Conference on Machine Learning. PMLR, 1689-1698.

Huang Xiao, Battista Biggio, Blaine Nelson, Han Xiao, Claudia Eckert, and Fabio
Roli. 2015. Support vector machines under adversarial label contamination.
Neurocomputing 160 (2015), 53-62.

Han Xiao, Huang Xiao, and Claudia Eckert. 2012. Adversarial Label Flips Attack
on Support Vector Machines. In ECAI 2012 - 20th European Conference on Artificial
Intelligence. Including Prestigious Applications of Artificial Intelligence (PAIS-2012)
System Demonstrations Track, Montpellier, France, August 27-31, 2012, Vol. 242.
10S Press, 870-875.

Michal Zalewski. 2017. American Fuzzy Lop. https://lcamtuf.coredump.cx/afl/.

Chen Zhu, W Ronny Huang, Hengduo Li, Gavin Taylor, Christoph Studer, and
Tom Goldstein. 2019. Transferable clean-label poisoning attacks on deep neural
nets. In International Conference on Machine Learning. PMLR, 7614-7623.

Received 2023-02-16; accepted 2023-05-03

	Abstract
	1 Introduction
	2 Background
	2.1 Two Motivating Examples
	2.2 The k-Nearest Neighbors (KNN)
	2.3 The n-Poisoning Robustness
	2.4 The Baseline Method

	3 Overview of The Proposed Method
	4 Quickly Certifying Robustness
	4.1 The QuickCertify Subroutine
	4.2 Two Examples
	4.3 Correctness and Efficiency

	5 Reducing the Search Space
	5.1 Minimal Violating Removal in Neighbors
	5.2 An Illustrative Example
	5.3 The Reduced Search Space

	6 Incremental Computation
	6.1 The Intuition
	6.2 The Algorithm

	7 Experiments
	7.1 Evaluation Criteria
	7.2 Results on the Smaller Datasets
	7.3 Results on All Datasets
	7.4 Effectiveness of Our Method and Impact of the Poisoning Threshold

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

