

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Yannan Li, Jingbo Wang, and Chao Wang

decide if prediction for the (unlabeled) test input G is robust: the

prediction result is considered robust if and only if, for all 1 ≤ 8 ≤ =,

~′ is the same as the default prediction result ~.

While the solution presented above (called the baseline approach)

is a useful mental model, as an algorithm it is not efficient enough

for practical use. This is because for a given training set) , the num-

ber of possible clean subsets () ′ ⊂)) can be as large as Σ=8=1
(|) |
8

)

.

To see why this is the case, assume that the actual poisoning num-

ber 8 may be any of 1, 2, . . . , =. For each specific 8 value, there are
(|) |
8

)

ways of choosing 8 elements from the |) | elements. By adding

up the numbers for all possible 8 values, we have Σ
=
8=1

(|) |
8

)

. Due

to this combinatorial explosion, it is practically impossible to enu-

merate all the clean subsets and then check if they all generate the

same result as ~ = " (G). To avoid the combinatorial explosion, we

propose a more efficient method for deciding =-poisoning robust-

ness. Instead of enumerating the clean subsets () ′ ⊂)), we use

an over-approximate analysis to either verify robustness quickly

or narrow down the search space, and in the latter case, rely on

systematic testing in the narrowed search space to find a subset) ′

that can violate robustness.

Our method that combines quick certification with systematic

testing is designed for a supervised learning technique called the

:-nearest neighbors (KNN) algorithm. Compared to many other

supervised learning techniques, including decision trees and deep

neural networks, KNN does not have the high computational cost

associated with model training. Thus, it has been widely used in

software systems to implement classification tasks, including com-

mercial video recommendation systems, document categorization

systems, and anomaly detection systems [1, 2, 21, 54]. KNN is vul-

nerable to data-poisoning because, in many of these systems, the

training data are collected from online repositories or via crowd-

sourcing, and thus may be manipulated.

However, deciding the =-poisoning robustness of KNN is a chal-

lenging task. This is because the KNN algorithm has two phases:

the learning phase and the prediction phase. During the learning

phase (-parameter tuning phase), the entire training set) is used

to compute the optimal value of parameter such that, if the most

frequent label among the -nearest neighbors of an input is used

to generate the prediction label, the average prediction error will

be minimized. Here, the prediction error is computed over data

elements in) using a technique called ?-fold cross validation (see

Section 2.2) and the distance used to define nearest neighbors may

be the Euclidean distance in the input vector space. As a result,

the learning phase itself can be time-consuming, e.g., computing

the optimal for the MNIST dataset with |) | =60,000 elements

may take 30 minutes, while computing the prediction result for a

test input may take less than a minute. The large size of) and the

complex nature of the mathematical computations make it difficult

for conventional software testing and verification techniques to

accurately decide the robustness of the KNN system.

To overcome these challenges, we propose three novel tech-

niques. First, we propose an over-approximate analysis to certify

=-poisoning robustness in a sound but incomplete manner. That is,

if the analysis says that the default result ~ = " (G) is =-poisoning

robust, the result is guaranteed to be robust. However, this quick cer-

tification step may return unknown and thus is incomplete. Second,

we propose a search space reduction technique, which analyzes

both the learning and the prediction phases of the KNN algorithm

in an abstract domain, to extract common properties that all poten-

tial robustness violations must satisfy, and then uses these common

properties to narrow down the search space in the concrete domain.

Third, we propose a systematic testing technique for the narrowed

search space, to find a clean subset) ′ ⊂) that violates the robust-

ness property. During systematic testing, incremental computation

techniques are used to reduce the computational cost.

We have implemented our method as a software tool that takes

as input the potentially-poisoned training set) , the poisoning

threshold =, and a test input G . The output may be Certified, Falsified

or Unknown. Whenever the output is Falsified, a subset) ′ ⊂) is

also returned as evidence of the robustness violation. We evaluated

the tool on a set of benchmarks collected from the literature. For

comparison, we also applied three alternative approaches. The first

one is the baseline approach that explicitly enumerates all subsets

) ′ ⊂) . The other two are existing methods by Jia et al. [24] and

Li et al. [31] which only partially solve the robustness problem: Jia

et al. [24] do not analyze the KNN learning phase at all, and thus

require the optimal parameter to be given manually; and both Jia

et al. [24] and Li et al. [31] focus only on certification in that they

may return Certified or Unknown, but not Falsified.

The benchmarks used in our experimental evaluation are six

popular machine learning datasets. Two of them are small enough

that the ground truth (robust or non-robust) may be obtained by the

baseline enumerative approach, and thus are useful in evaluating

the accuracy of our tool. The others are larger datasets, e.g., with

up to 60,000 training elements and 10,000 test elements, which are

useful in evaluating the efficiency of our method. The experimental

results show that our method can fully decide (either certify or

falsify) robustness for the vast majority of test inputs.

Furthermore, among the four competing methods, our method

has the best overall performance. Specifically, our method is as

accurate as the ground truth (obtained by applying the baseline

enumerative approach to small benchmarks) while being signifi-

cantly faster than the baseline approach. Compared with the other

two existing methods [24, 31], our method is significantly more

accurate. For example, on the CIFAR10 dataset with the poisoning

threshold = =150, our method successfully resolved 100% of the

test cases, while Li et al. [31] resolved only 36.0%, and Jia et al. [24]

resolved only 10.0%.

To summarize, this paper makes the following contributions:

• We propose the first method capable to certifying as well as

falsifying =-poisoning robustness of the entire state-of-the-

art KNN system, including both the learning phase and the

prediction phase.

• We propose techniques to keep our method accurate as well

as efficient, by using over-approximate analysis in the ab-

stract domain to narrow down the search space before using

systematic testing to identify violations in the concrete do-

main.

• We implement our method as a software tool and evalu-

ate the tool on six popular supervised-learning datasets to

demonstrate the advantages of our method over two state-

of-the-art techniques.

1208

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Yannan Li, Jingbo Wang, and Chao Wang

Algorithm 1: Procedure Falsify_Baseline(), =, G).

1 ← KNN_learn())

2 ~ ← KNN_predict(), , G)

3 Δ= ()) ← {)
′ |) ′ ⊂) and |) \) ′ | ≤ =}

4 while Δ= ()) ≠ ∅ ∧ consumed_time < time_limit do
5 Remove a clean subset) ′ from Δ= ())

6 ′ ← KNN_learn() ′)

7 ~′ ← KNN_predict() ′, ′, G)

8 if ~ ≠ ~′ then
9 return Falsified with () \) ′) as evidence

10 end if

11 end while

12 if Δ= ()) = ∅ then
13 return Certified

14 else
15 return Unknown

16 end if

This is important because the actual label of the test input (i.e., the

ground truth) is often unknown in practice.

Given a potentially-poisoned training set) and a poisoning

threshold = indicating the maximal poisoning count, the set of

possible clean subsets of) is represented by Δ= ()) = {)
′ |) ′ ⊂

) and |) \) ′ | ≤ =}. That is, Δ= ()) captures all possible situations

where the poisoned elements are eliminated from) .

We say the prediction ~ = " (G) for a test input G is robust if

and only, for all) ′ ∈ Δ= ()) such that"′ = !() ′) and ~′ = "′ (G),

we have ~′ = ~. In other words, the default result ~ = " (G) is the

same as all of the possible results, ~′ = "′ (G), no matter which are

the (8 ≤ =) poisoned data elements in the training set) .

2.4 The Baseline Method

We first present the baseline method in Algorithm 1, and then

compare it with our proposed method in Algorithm 2 (Section 3).

The baseline method explicitly enumerates the possible clean

subsets) ′ ∈ Δ= ()) to check if the prediction result ~′ produced by

) ′ is the same as the prediction result~ produced by) for the given

input G . As shown in Algorithm 1, the input consists of the training

set) , the poisoning threshold =, and the test input G . The sub-

routines KNN_learn and KNN_predict implement the standard

learning and prediction phases of the KNN algorithm. Without the

time limit, the baseline method would be both sound and complete;

in other words, it would return either Certified (Line 13) or Falsified

(Line 9). With the time limit, however, the baseline method will

return Unknown (Line 15) after it times out.

The baseline procedure is inefficient for three reasons. First, it is

a slow certification (Line 13) to check whether the prediction result

for G remains the same for all possible clean subsets) ′ ∈ Δ= ()).

In many cases, the elements around G are almost all from one class,

and thus G ’s predicted label cannot be changed by either direct or

indirect influence. However, the baseline procedure cannot quickly

identify and exploit this to avoid enumeration. Second, even if a

violating subset) ′ exists, the vast majority of subsets in Δ= ())

are often non-violating. However, the baseline procedure cannot

quickly identify the violating) ′ from Δ= ()). Third, within the

while-loop, different subsets share common computations inside

KNN_learn, but these common computations are not leveraged

by the baseline procedure to reduce the computational cost.

Algorithm 2: Our new procedure Falsify_New(), =, G).

1 if QuickCertify(),=, G) then
2 return Certified

3 end if

4 ⟨ , �AA>A ⟩ ← KNN_learn_init())

5 ~ ← KNN_predict(), , G)

6 ∇G= ()) ← GenPromisingSubsets(),=, G, ~)

7 while ∇G= ()) ≠ ∅ ∧ consumed_time < time_limit do
8 Remove a subset) ′ from ∇G= ())

9 ′ ← KNN_learn_update() \) ′, �AA>A)

10 ~′ ← KNN_predict() ′, ′, G)

11 if ~ ≠ ~′ then
12 return Falsified with () \) ′) as evidence

13 end if

14 end while

15 if ∇G= ()) = ∅ then
16 return Certified

17 else
18 return Unknown

19 end if

3 OVERVIEW OF THE PROPOSED METHOD

There are three main differences between our method in Algo-

rithm 2 and the baseline method in Algorithm 1. They are marked

in dark blue. They are the novel components designed specifically

to overcome limitations of the baseline method.

First, we add the subroutine �ickCertify to quickly check

whether it is possible to change the prediction result for the test in-

put G . This is a sound but incomplete check in that, if the subroutine

succeeds, we guarantee that the result is robust. If it fails, however,

the result remains unknown and we still need to execute the rest

of the procedure. The detailed implementation of �ickCertify is

presented in Section 4.

Second, before searching for a clean subset that violates robust-

ness, we compute ∇G= ()) ⊆ Δ= ()), to capture the likely violating

subsets. In other words, the obviously non-violating ones in Δ= ())

are safely skipped. Note that, while Δ= ()) depends only on) and

=, ∇G= ()) depends also on the test input G . For this reason, ∇G= ())

is expected to be significantly smaller than Δ= ()), thus reducing

the search space. The detailed implementation of GenPromising-

Subsets is presented in Section 5.

Third, instead of applying the standard KNN_learn subroutine

to each subset) ′ to perform the expensive ?-fold cross validation,

we split it to KNN_learn_init and KNN_learn_update, where

the first subroutine is applied only once to the original training set

) , and the second subroutine is applied to each subset) ′ ∈ ∇G= ()).

Within KNN_learn_update, instead of performing ?-fold cross

validation for) ′ from scratch, we leverage the results returned by

KNN_learn_init to incrementally compute the results for ′. The

detailed implementation of these two new subroutines is presented

in Section 6.

To summarize, our method first uses over-approximation to cer-

tify robustness. If it succeeds, the classification result is guaranteed

to be robust; otherwise, the classification result remains unknown.

Only for the unknown case, our method uses under-approximation

to falsify robustness. If it succeeds, the classification result is guar-

anteed to be not robust. Otherwise, the classification result remains

1210

Systematic Testing of the Data-Poisoning Robustness of KNN ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

Table 1: Notations used in our new algorithm.

Training Set) Let) = { (G1, ~1), (G2, ~2), ..., (G<, ~<) } be a set of labeled data

elements, where input G8 ∈ X ⊆ R
� is a feature vector in the

feature space X, and ~ ∈ Y ⊆ N is a class label in the label space
Y.

Set of -nearest
Neighbors) G

Let) G be the set of nearest neighbors of test input G in the
training set) .

Label Counter
E(·)

Let E(�) = { (;8 : #;8) } be the set of label counts for a dataset
� , where ;8 ∈ Y is a label and #;8 ∈ N is the number of elements
in � with label ;8 .

Most Frequent
Label �A4@ (·)

Let �A4@ (E (�)) be the most frequent label in the label counter
E(�) for the dataset � .

unknown. Therefore, our method does not “mix” over- and under-

approximations in the sense that they are never used simultane-

ously; instead, over- and under-approximations are used sequen-

tially in two separate steps of our algorithm. The formal guarantee

is that: If our method says that a case is robust, it is indeed robust

(see Theorem 4.1); if our method says that a case is not robust, it

is indeed not robust (since a poisoning set is found); and if our

method says unknown, it may be either robust or not robust.

4 QUICKLY CERTIFYING ROBUSTNESS

In this section, we present the subroutine QuickCertify, which is

a sound but incomplete procedure for certifying robustness of the

KNN for a given input G . Therefore, if it returns True, the prediction

result for G is guaranteed to be robust. If it returns False, however,

we still need further investigation.

We define the notations used by the KNN algorithm in Ta-

ble 1, following the ones used by Li et al. [31]. Consider) 3
G =

{(G1, ;0), (G2, ;0), (G3, ;1)} as an example, which captures the 3-nearest

neighbors of a test input G . Then the corresponding label counter is

E() 3
G) = {(;0 : 2), (;1 : 1)}, meaning that two elements in) 3

G have

the label ;0 and one element has the label ;1 . The corresponding

most frequent label is �A4@(E() 3
G)) = ;0 .

For each subset) ′ ∈ Δ= ()), we define a removal set ' = () \) ′)

and a removal strategy S = E(').

• A removal set ' for a set) is a non-empty subset ' ⊂) , to

represent the removal of the elements in ' from) .

• A removal strategy S is the label counter of a removal set ',

i.e., S = E(').

Thus, all the removal sets form the concrete domain, and all the

removal strategies form an abstract domain. While analysis in the

(large) concrete domain is expensive, analysis in the (smaller) ab-

stract domain is much cheaper. This is analogous to the abstract

interpretation [11] paradigm for static program analysis1.

For the set) 3
G above, there are 6 removal sets: '1 = {(G1, ;0)},

'2 = {(G2, ;0)}, '3 = {(G3, ;1)}, '4 = {(G1, ;0), (G2, ;0)}, '5 = {(G1,

;0), (G3, ;1)}, and '6 = {(G2, ;0), (G3, ;2)}. They correspond to 4 re-

moval strategies: S1 = {(;0 : 1)}, S2 = {(;2 : 1)}, S3 = {(;0 : 1),

1There are Galois connections [12] (U,W) between removal sets and removal strategies
(multisets) that are standard in the context of abstract interpretation, where the U
function abstracts removal sets in the concrete domain to removal strategies (multisets)
in the abstract domain, and the W function concretizes the multisets back to sets.

Algorithm 3: Subroutine�ickCertify(), =, G).

1 !014;(4C ← {}

2 for each candidate value do

3 Let ~ = �A4@ (E () G)) and add ~ into !014;(4C ;

4 if ~ ≠ �A4@ (E () +=G) \ { (~ : =) }) then
5 return False

6 end if

7 if |!014;(4C | > 1 then
8 return False

9 end if

10 end for

11 return True

(;2 : 1)}, and S4 = {(;0 : 2)}. As the number of elements in) in-

creases, the size gap between the concrete and abstract domains

increases drastically— this is the reason why our method is efficient.

4.1 The�ickCertify Subroutine

In this subroutine, we check a series of sufficient conditions under

which the prediction result for test input G is guaranteed to be

robust. These sufficient conditions are designed to avoid the most

expensive step of the KNN algorithm, which is the learning phase

that relies on ?-fold cross validations to compute the optimal

parameter.

Since the optimal parameter is chosen from a set of candidate

values, where ?-fold cross validations are used to identify the value

that minimizes prediction error, skipping the learning phase means

we must directly analyze the behavior of the KNN prediction phase

for all candidate values. That is, assuming any of the candidate

value may be the optimal one, we prove that the prediction result

remains the same no matter which candidate value is used as the

 parameter.

Algorithm 3 shows the procedure, which takes the training set

) , poisoning threshold =, and test input G as input, and returns

either True or False as output. Here, True means the result is =-

poisoning robust, and Falsemeans the result is unknown. For each

candidate value, ~ = �A4@(E() G)) is the most frequent label of

the -nearest neighbors of G .

Recall that, in Section 2, we have explained the two ways in

which poisoned data in) may affect the prediction result. The first

one is called direct influence: without changing the value, the

poisoned data may affect the -nearest neighbors of G and thus

their most frequent label. The second one is called indirect influence:

by changing the value, the poisoned data may affect how many

neighbors to consider. Inside the �ickCertify subroutine, we

check for sufficient conditions under which none of the above two

types of influence is possible.

The check for direct influence is implemented in Line 4. Here,

) +=G consists of the (+=) nearest neighbors of G , and E() +=G) is

the label counter. Therefore, E() +=G) \ {(~ : =)}means removing =

data elements labeled ~. �A4@(E() +=G) \ {(~ : =)}) represents the

most frequent label after the removal. If it is possible for this removal

strategy to change the most frequent label, then we conservatively

assume that the prediction result may not be robust.

The check for indirect influence is implemented in Line 7. Here,

!014;(4C stores all of themost frequent labels for different candidate

 values. If the most frequent labels for any two candidate values

1211

Systematic Testing of the Data-Poisoning Robustness of KNN ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

Algorithm 4: GenPromisingSubsets(), =, G,~).

1 for each candidate value do
2 BC0AC = 0;4=3 = = + 1;

3 while start < end do
4 <83 = (BC0AC + 4=3)/2;

5 if ~ ≠ �A4@ (E () +<G) \ { (~ :<) }) then
6 4=3 =<83 ;

7 else
8 BC0AC =<83 + 1;

9 end if

10 end while

11 <8=_A<E = BC0AC ;

12 if<8=_A<E ≤ = then

13 for each '1 ⊆)
 +=
G s.t. |'1 | ≥ <8=_A<E do

14 for each '2 ⊆ () \)
 +=
G) and |'2 | ≤ = − |'1 | do

15 ' = '1 ∪ '2 ;

16 Add () \ ') to ∇G= ()) ;

17 end for

18 end for

19 end if

20 end for

let us call it minimal violating removal, denote<8=_A<E . With this

number, we know the every violating removal set must have at

least<8=_A<E elements from G ’s neighbors) +=G .

The test input G ’s new nearest neighbors after removal is rep-

resented as) +8G \ {8 elements from) +8G }, where 8 = 1, 2, ...=. To

compute the minimal violating removal, rather than checking each

possible value of 8 from 1 to =, we need a more efficient method,

e.g., binary search with $ (;>6 =). To use binary search, we need to

prove the monotonicity of violating removals, defined below.

Theorem 5.1 (Monotonicity). If there is some 8 allowing) +8G \

{8 elements from) +8G } to have a different most-frequent label ~′,

then any larger value 9 > 8 will also allow)
 +9
G \ { 9 elements from

)
 +9
G } to have a different most-frequent label ~′. Conversely, if 8 does

not allow it, then any smaller value 9 < 8 does not allow it either.

Proof. If there is some 8 allowing) +8G \{8 elements from) +8G }

to have a different most-frequent label ~′, there exists (⊂) +8G

such that |(| = 8 and �A4@() +8G \ () = ~′. For any 9 > 8 and)
 +9
G ,

we can always construct (′ = (∪ ()
 +9
G \) +8G), which satisfies

(′ ⊂)
 +9
G , |(′ | = 9 and �A4@()

 +9
G \ (′) = ~′. The reverse can be

proved similarly. □

Lines 2-11 in Algorithm 4 show the process of finding the min-

imal violating removal using binary search. Assume the possible

range is 0 ∼ =+1 (line 2), the binary search divides the range in half

(line 4) and checks the middle value (line 5). To check whether a

removal<83 can result in a different label ~′ ≠ ~, the most possible

operation is to remove <83 elements with ~ label. It <83 works,

according to Theorem 5.1, we know the minimal removal is in the

range BC0AC ∼<83 (line 6); otherwise it is in the range<83+1 ∼ 4=3

(line 8). The binary search stops when BC0AC equals 4=3 , and this

will the minimal violating removal.

Since = is the maximal allowed removal, when<8=_A<E > =, it

is impossible for the most frequent label to change from ~ to ~′.

5.2 An Illustrative Example

Here we give an example of the binary search in Algorithm 4.

Assume in the original training set) , for the test input G , the

optimal is = 1 and the default label is ~ = BC0A .

Example 5.2. Assume = = 5,) 3
G = {BC0A ∗ 2, CA80=6;4 ∗ 1},) 4

G =

{BC0A ∗ 2, CA80=6;4 ∗ 2}, and) 5
G = {BC0A ∗ 3, CA80=6;4 ∗ 2}. For the

candidate = 2, we show how to compute the minimal violating

removal in G ′B neighbors.

At first, BC0AC = 0 and 4=3 = 6, which means the possible value

range of minimal removal is 0 ∼ 6. Our method first checks<83 = 3,

since) 2+3
G \ {(BC0A : 3)} results in the most-frequent label CA80=6;4 ,

our method can cut the possible range by half to 0 ∼ 3. Next, we

check<83 = 1, and reduce the range to 0 ∼ 1. Finally, we check

<83 = 0, which does not work, so the range becomes 1 ∼ 1, and we

return 1 as the minimal violating removal in G ’s neighbors.

Since binary search reduces the range by half at each step, it is

efficient. For example, when ==180 for MNIST, binary search needs

only 8 checks to compute the result, whereas going through each

value in the range requires 180 checks. In other words, the speedup

is more than 20X.

5.3 The Reduced Search Space

Based on the minimal violating removal,<8=_A<E , we compute the

reduced set ∇G= ()) as shown in Lines 12-20 of Algorithm 4.

Here, each removal set ' is the union of two sets, '1 and '2,

where '1 is a removal set that contains at least<8=_A<E elements

from G ’s neighborhood) +=G , and '2 ⊆ () \)
 +=
G) is a subset of

the left-over data elements.

Our experiments show that, in practice, the reduced set ∇G= ())

is often significantly smaller than the original set Δ= ()). A special

case is when<8=_A<E = 0, for which ∇G= ()) is the same as Δ= ()),

meaning the search space is not reduced. However, this special case

is rare and, during our experimental evaluation, it never occurred.

6 INCREMENTAL COMPUTATION

In this section, we present our method for speeding up an expen-

sive step of the KNN algorithm, the ?-fold cross validations inside

KNN_learn. We achieve this speedup by splitting KNN_learn into

two subroutines: KNN_learn_init, which is applied only once to

the original training set) , and KNN_learn_update, which is ap-

plied to each individual removal set ' = () \) ′), where) ′ ∈ ∇G= ()).

6.1 The Intuition

First, we explain why the standard KNN_learn is computationally

expensive. This is because, for each candidate value of parameter

 , denoted 8 , the standard ?-fold cross validation [35] must be

used to compute the classification error. Algorithm 5 (excluding

Lines 15-16) shows the computation.

First, the training set) is partitioned into ? groups, denoted

{�1,�2, ...,�? }. Then, the set of misclassification samples in each

group� 9 is computed, denoted 4AA(4C 8
� 9

. Next, the error is averaged

over all groups, which results in 4AA>A 8 . Finally, the 8 value with

the smallest classification error is chosen as the optimal value.

1213

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Yannan Li, Jingbo Wang, and Chao Wang

Algorithm 5: Subroutine KNN_learn_init()).

1 Partition the training set) into ? groups {�1,�2, ...,�? }

2 for each candidate 8 value do
3 for each group� 9 do

4 4AA(4C
 8
�9
← {}

5 for each data element (G, ~) ∈ � 9 do
6 if KNN_predict() \� 9 , 8 , G) ≠ ~ then

7 Add (G, ~) to 4AA(4C
 8
�9

;

8 end if

9 end for

10 4AA>A
 8
�9

=

�

�

�4AA(4C
 8
�9

�

�

� /
�

�� 9
�

�

11 end for

12 4AA>A 8 = 1
?

∑?

9=1 4AA>A
 8
�9

13 end for

14 ← argmin
 8

4AA>A 8

15 �AA>A ← ⟨{�1,�2, ...,�? }, { (4AA(4C
 8
�1
, . . . , 4AA(4C

 8
�?
) }⟩

16 return ⟨ , �AA>A ⟩

The computation is expensive because 4AA>A 8
� 9

, for each 8 , re-

quires exactly |� 9 | calls to the standard KNN_predict() \� 9 , 8 , G),

one per data element G ∈ � 9 , while treating the set � = () \� 9)

as the training set.

Our intuition for speeding up this computation is as follows.

Given the original training set) , and a subset) ′ ∈ ∇G= ()), the

corresponding removal set ' = () \) ′) can capture the difference

between these two sets, and thus capture the difference of their

4AA>A 8 . Since 8 is fixed when computing 4AA>A 8 , we only need

to consider the direct influence (i.e., neighbors change) brought by

removal set '. In practice, the removal set is often small, which

means the vast majority of data elements in the ?-fold partition of

) ′, denoted {� ′
1
, . . . ,� ′? }, are the same as data elements in the ?-

fold partition of) , denoted {�1, . . . ,�? }. Thus, for most elements,

their neighbors are almost the same. Instead of computing the error

sets (4AA(4C 8
� ′9

) from scratch for every single � ′9 , we can use the

error sets (4AA(4C 8
� 9

) for� 9 as the starting point, and only compute

the change brought by removal set ', leveraging the intermediate

computation results stored in �AA>A .

6.2 The Algorithm

Our incremental computation has two steps. As shown in Algo-

rithm 2, we apply KNN_learn_init once to the set) , and then

apply KNN_learn_update to each removal set ' = () \) ′).

Our new subroutine KNN_learn_init is shown in Algorithm 5.

It differs from the standard KNN_learn only in Lines 15-16, where

it stores the intermediate computation results in Error. The first

component in Error is the set of ? groups in) . The second compo-

nent contains, for each 8 , the misclassified elements in � 9 .

Subroutine KNN_learn_update is shown in Algorithm 6, which

computes the new 4AA(4C
8

� ′9
based on the 4AA(4C 8

� 9
stored in �AA>A .

First, it computes the new groups � ′9 by removing elements in

' from the old groups � 9 . Then, it computes 8=5 ;D(4C , which is

defined in the next paragraph. Finally, it modifies the old 4AA(4C 8
� 9

(in Line 16) based on three cases: it removes the set ' (Case 1) and

Algorithm 6: KNN_learn_update(', �AA>A).

1 Let {�1, . . . ,�? } and { (4AA(4C
 8
�1
, . . . , 4AA(4C

 8
�?
) } be groups and error

sets stored in �AA>A
2 Compute the new groups {� ′9 | �

′
9 = � 9 \ ' where 9 = 1, . . . , ? }

3 Compute the new training set) ′ =
⋃

9 ∈{1,...,?} �
′
9

4 Compute the influenced set, 8=5 ;D(4C , using ' and {� 9 }

5 for each candidate 8 value do
6 for each new group� ′9 do

7 =4F(4C+ = =4F(4C− = {}

8 for each data element (G, ~) ∈ (� ′9∩8=5 ;D(4C) do

9 if KNN_predict() \� 9 , 8 , G) = ~ and

KNN_predict() ′ \� ′9 , 8 , G) ≠ ~ then

10 Add (G, ~) to =4F(4C+ ;

11 end if

12 if KNN_predict() \� 9 , 8 , G) ≠ ~ and

KNN_predict() ′ \� ′9 , 8 , G) = ~ then

13 Add (G, ~) to =4F(4C− ;

14 end if

15 end for

16 4AA(4C
 8
� ′
9

= 4AA(4C
 8
�9
\ ' \ =4F(4C− ∪ =4F(4C+

17 4AA>A
 8
� ′
9

=

�

�

�

�

4AA(4C
 8
� ′
9

�

�

�

�

/

�

�

�� ′9

�

�

�

18 end for

19 4AA>A 8 = 1
?

∑?

9=1 4AA>A
 8
� ′
9

20 end for

21 ← argmin
 8

4AA>A 8

22 return

the set =4F(4C− (Case 2), and adds the set =4F(4C+ (Case 3). Below

are the detailed explanations of these three cases:

(1) If (G,~) ∈ � 9 \ �
′
9 was misclassified by () \ � 9), but this

element is no longer in) ′, it should be removed.

(2) If (G,~) ∈ � 9 ∩�
′
9 was misclassified by () \� 9), but this ele-

ment is correctly classified by) ′ \� ′9 , it should be removed.

(3) If (G,~) ∈ � 9 ∩�
′
9 was correctly classified by () \� 9), but

is misclassified by) ′ \� ′9 , it should be added.

Case (1) can be regarded as an explicit change brought by the re-

moval set ', whereas Case (2) and Case (3) are implied changes

brought by ': these changes are implied because, while the element

(G,~) is not inside ', it is classified differently after the elements in

' are removed from) .

Since the removal set is small, most data elements in � 9 will

not be part of the explicit or implied changes. To avoid redun-

dantly invoking KNN_predict on these data elements, we filter

them out using the influenced set (Line 8). Here, assume that

 <0G = <0G ({ 8 }) is the maximal candidate value, and during

cross-validation, when � 9 is treated as the test set, � = () \� 9) is

the corresponding training set.

8=5 ;D(4C = { (G, ~) ∈ � 9 | (G, ~) ∉ ',

�
 <0G
G ∩ ' ≠ ∅, and

�ickCertify(�,=, G) = False}

In other words, every element (G,~) inside 8=5 ;D(4C must satisfy

three conditions: (1) the element is not in '; (2) at least one of its

neighbors in� <0GG is in '; and (3) the element may be misclassified

when at most = neighbors are removed. Recall that the subroutine

used in the last condition has been explained in Algorithm 3.

1214

Systematic Testing of the Data-Poisoning Robustness of KNN ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

Table 2: Comparing the accuracy of our method with the baseline (ground truth)and two existing methods (which cannot

falsify) on the smaller datasets, for which the ground truth can be obtained by the baseline enumerative method (Algorithm 1).

Benchmark Baseline Jia et al. [24] Li et al. [31] Our Method

dataset test data certified falsified unknown time certified falsified unknown time certified falsified unknown time certified falsified unknown time

(s) # # # (s) # # # (s) # # # (s)

Iris (==1) 15 15 0 0 49 0 0 15 1 14 0 1 1 15 0 0 1

Iris (==2) 15 14 1 0 3,086 0 0 15 1 13 0 2 1 14 1 0 5

Iris (==3) 15 0 1 14 6,721 0 0 15 1 11 0 4 1 13 1 1 120

Digits (==1) 180 0 1 179 7,168 170 0 10 1 172 0 8 1 179 1 0 3

7 EXPERIMENTS

We have implemented our method using Python and the popular

machine learning toolkit scikit-learn 0.24.2, together with

the baseline method in Algorithm 1, and the two existing methods

of Jia et al. [24] and Li et al. [31]. For experimental comparison,

we used six popular supervised learning datasets as benchmarks.

There are two relatively small datasets, Iris [17] and Digits [19].

Iris has 135 training and 15 test elements with 3 classes and 4-D

features. Digits has 1,617 training and 180 test elements with 10

classes and 64-D features. Since the baseline approach (Algorithm 1)

can finish on these small datasets and thus obtain the ground truth

(i.e., whether prediction is truly robust), these small datasets are

useful in evaluating the accuracy of our method.

The other four benchmarks are larger datasets, including HAR

(human activity recognition using smartphones) [3], which has

9,784 training and 515 test elements with 6 classes and 561-D fea-

tures, Letter (letter recognition) [18], which has 18,999 training

and 1,000 test elements with 26 classes and 16-D features, MNIST

(hand-written digit recognition) [29], which has 60,000 training and

10,000 test elements with 10 classes and 36-D features, and CIFAR10

(colored image classification) [26], which has 50,000 training and

10,000 test elements with 10 classes and 288-D features. Since none

of these datasets can be handled by the baseline approach, they are

used primarily to evaluate the efficiency of our method.

7.1 Evaluation Criteria

Our experiments aimed to answer the following three research

questions:

RQ1 Is our method accurate enough for deciding (certifying or

falsifying) =-poisoning robustness for most of the test cases?

RQ2 Is our method efficient enough for handling all of the datasets

used in the experiments?

RQ3 How often can prediction be successfully certified or falsi-

fied by our method, and how is the result affected by the

poisoning threshold =?

We used the state-of-the-art implementation of KNN in our ex-

periments, with 10-fold cross validation and candidate values in

the range 1 ∼ 1
10
|) |. The set) is obtained by inserting up-to-= ma-

licious samples to the datasets. We first generate a random number

=′ ≤ =, and then insert exactly =′ mutations of randomly picked

input features and output labels of the original samples.

We ran all four methods on all datasets. For the slow baseline,

we set the time limit to 7200 seconds per test input. For the other

methods, we set the time limit to 1800 seconds per test input. Our

experiments were conducted (single threaded) on a CloudLab [15]

Table 3: Comparing the accuracy and efficiency of ourmethod

with existing methods on all datasets, with large poisoning

thresholds; the percentages of certified and falsified cases

are reported in Section 7.4 and shown in Figure 5.

Benchmark Jia et al. [24] Li et al. [31] Our Method

dataset poisoning unknown time unknown time unknown time

threshold % (s) % (s) % (s)

Iris = =3 (2%) 100% 1 26.7% 1 6.7% 120

Digits = =16 (1%) 100% 1 19.4% 1 1.0% 19

HAR = =97 (1%) 100% 1 28.3% 1 0.8% 21

Letter = =190 (1%) 100% 1 94.5% 1 0.0% 4

MNIST = =180 (0.3%) 38.1% 1 25.0% 1 2.0% 47

CIFAR10 = =150 (0.3%) 90.0% 1 64.0% 1 0.0% 558

c6252-25g node with 16-core AMD 7302P at 3 GHz CPU and 128GB

EEC Memory (8 x16 GB 3200MT/s RDIMMs).

7.2 Results on the Smaller Datasets

To answer RQ1, we compared the result of our method with the

ground truth obtained by the baseline enumerative method on the

two smallest datasets.

Table 2 shows the experimental results. Columns 1-2 show the

name of the dataset, the poisoning threshold =, and the number

of test data. Columns 3-6 show the result of the baseline method,

including the number of test data that are certified, falsified, and

unknown, respectively, and the average time per test input. The

remaining columns compare the results of the two existing methods

and our method. Since the goal is to compare our method with the

ground truth (obtained by the baseline method), we must choose

small = values to ensure that the baseline method does not time

out.

On Iris (= = 2), the baseline method was able to certify 14/15 of

the test data and falsify 1/15. However, it was slow: the average

time was 3,086 seconds per test input. In contrast, the method by

Jia et al. [24] was much faster, albeit with low accuracy. It took

1 second per test input, but failed to certify any of the test data.

The method by Li et al. [31] certified 11/15 of the test data but left

4/15 as unknown. Our method certified 14/15 of the test data and

falsified the remaining 1/15, and thus is as accurate as the ground

truth; the average time is 5 seconds per test input.

While the slow baseline method was able to handle Iris, it did

not scale well. With a slightly larger dataset or larger poisoning

threshold, it would run out of time. On Digits (==1), the baseline

method falsified only 1/180 of the test data and returned the re-

maining 179/180 as unknown. In contrast, our method successfully

certified or falsified all of the 180 test data.

1215

Systematic Testing of the Data-Poisoning Robustness of KNN ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

et al. [52] can only certify, but not falsify the robustness property.

Thus, in the presence of violations, these methods would remain

inconclusive. Our method, on the other hand, can successfully re-

solve the robustness problem for most of the test inputs, as shown

by our experimental evaluation.

KNN is not the only machine learning algorithm that is vulnera-

ble to data poisoning. Other machine learning algorithms that are

also found to be vulnerable to data poisoning include regression

models [36], support vector machines (SVM) [7, 56, 57], clustering

algorithms [8], and neural networks [13, 44, 47, 59]. So far, there has

been no generic techniques for deciding the robustness property

for all machine learning algorithms. Techniques have also been pro-

posed to defend against data-poisoning attacks [4, 6, 16, 22, 45, 50],

as well as to evaluate the effectiveness of defense techniques [25, 34]

such as data sanitization [25] and differentially-private countermea-

sures [34]. Along this line, there is a growing interest in studying

certified defenses [23, 30, 43] where robustness can be guaranteed

either probabilistically or in a deterministic manner.

At a higher level, our method for using over-approximate analy-

sis to narrow down the search space is analogous to static analysis

techniques based on abstract interpretation [11], which have been

used to verify properties of both software programs [28, 48, 53]

and machine learning models [40–42], including robustness to data

bias [37] and individual fairness [32]. Furthermore, our method for

detecting robustness violations is analogous to techniques used in

bug-finding tools based on program verification and state space

reduction [5, 27]. However, none of these techniques was designed

to certify or falsify data-poisoning robustness of machine learning

based systems.

Our method for using systematic testing to find robustness vio-

lations is related to the idea of fuzz testing [39, 49] in the sense that

mutations are used to generate violation-inducing inputs. There

is a large number of fuzz testing tools including AFL [58], hongg-

fuzz [20], libFuzzer [33], SYMFUZZ [9], and Driller [46]. However,

these tools focus primarily on search space pruning and search

prioritization, e.g., by leveraging the syntax and semantics of the

software code, but for KNN, the situation is significantly more com-

plex. This is because mutations of the training data can lead to

drastic changes of the behavior of the underlying algorithm, dur-

ing both the KNN inference phase and the KNN learning phase.

Thus, while existing techniques from the fuzz testing literature are

inspiring, they are not directly applicable to this problem.

9 CONCLUSION

We have presented a method for deciding =-poisoning robustness

accurately and efficiently for the state-of-the-art implementation

of the KNN algorithm. To the best of our knowledge, this is the

only method available for certifying as well as falsifying the com-

plete KNN system, including both the learning and the prediction

phases. Our method relies on novel techniques that first narrow

down the search space using over-approximate analysis in the ab-

stract domain, and then find violations using systematic testing in

the concrete domain. We have evaluated the proposed techniques

on six popular supervised-learning datasets, and demonstrated the

advantages of our method over two state-of-the-art techniques.

Besides KNN, our method for over-approximating the impact of

poisoning on the nearest neighbors is applicable to other distance-

basedmachine learning classifiers and algorithms based onmajority

voting. Furthermore, since cross validation is a widely used param-

eter tuning technique in machine learning systems, our method

for over-approximating cross validation is also applicable to other

systems that rely on cross validation as a subroutine.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feedback.

This work was partially funded by the U.S. NSF grants CNS-1702824

and CCF-2220345.

REFERENCES
[1] David Adedayo Adeniyi, Zhaoqiang Wei, and Y Yongquan. 2016. Automated web

usage data mining and recommendation system using K-Nearest Neighbor (KNN)
classification method. Applied Computing and Informatics 12, 1 (2016), 90–108.

[2] Moa Andersson and Lisa Tran. 2020. Predicting movie ratings using KNN. KTH
Royal Institute of Technology, Stockholm, Sweden.

[3] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, and Jorge Luis
Reyes-Ortiz. 2013. A public domain dataset for human activity recognition using
smartphones.. In Esann, Vol. 3. 3.

[4] Dara Bahri, Heinrich Jiang, andMaya R. Gupta. 2020. Deep k-NN for Noisy Labels.
In Proceedings of the 37th International Conference on Machine Learning, ICML
2020, 13-18 July 2020, Virtual Event (Proceedings of Machine Learning Research,
Vol. 119). PMLR, 540–550.

[5] Dirk Beyer and Thomas Lemberger. 2017. Software Verification: Testing vs. Model
Checking - A Comparative Evaluation of the State of the Art. In Hardware and
Software: Verification and Testing - 13th International Haifa Verification Confer-
ence, HVC 2017, Haifa, Israel, November 13-15, 2017, Proceedings (Lecture Notes
in Computer Science, Vol. 10629), Ofer Strichman and Rachel Tzoref-Brill (Eds.).
Springer, 99–114.

[6] Battista Biggio, Igino Corona, Giorgio Fumera, Giorgio Giacinto, and Fabio Roli.
2011. Bagging classifiers for fighting poisoning attacks in adversarial classification
tasks. In International workshop on multiple classifier systems. Springer, 350–359.

[7] Battista Biggio, Blaine Nelson, and Pavel Laskov. 2012. Poisoning Attacks against
Support Vector Machines. In Proceedings of the 29th International Conference on
Machine Learning, ICML 2012, Edinburgh, Scotland, UK, June 26 - July 1, 2012.

[8] Battista Biggio, Konrad Rieck, Davide Ariu, Christian Wressnegger, Igino Corona,
Giorgio Giacinto, and Fabio Roli. 2014. Poisoning behavioral malware clustering.
In Proceedings of the 2014 workshop on artificial intelligent and security workshop.
27–36.

[9] Sang Kil Cha, Maverick Woo, and David Brumley. 2015. Program-Adaptive
Mutational Fuzzing. In 2015 IEEE Symposium on Security and Privacy, SP 2015,
San Jose, CA, USA, May 17-21, 2015. IEEE Computer Society, 725–741.

[10] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. 2017. Targeted
backdoor attacks on deep learning systems using data poisoning. arXiv preprint
arXiv:1712.05526 (2017).

[11] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Conference Record of the Fourth ACM Symposium on Principles of
Programming Languages, Los Angeles, California, USA, January 1977, Robert M.
Graham, Michael A. Harrison, and Ravi Sethi (Eds.). ACM, 238–252.

[12] Patrick Cousot and Radhia Cousot. 2014. A Galois connection calculus for
abstract interpretation. In The 41st Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’14, San Diego, CA, USA, January
20-21, 2014, Suresh Jagannathan and Peter Sewell (Eds.). ACM, 3–4.

[13] Ambra Demontis, Marco Melis, Maura Pintor, Matthew Jagielski, Battista Biggio,
Alina Oprea, Cristina Nita-Rotaru, and Fabio Roli. 2019. Why do adversarial
attacks transfer? explaining transferability of evasion and poisoning attacks. In
28th {USENIX} Security Symposium ({USENIX} Security 19). 321–338.

[14] Samuel Drews, Aws Albarghouthi, and Loris D’Antoni. 2020. Proving data-
poisoning robustness in decision trees. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation. 1083–1097.

[15] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon
Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael
Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. 2019. The De-
sign and Operation of CloudLab. In Proceedings of the USENIX Annual Technical
Conference (ATC). 1–14. https://www.flux.utah.edu/paper/duplyakin-atc19

[16] Jiashi Feng, Huan Xu, Shie Mannor, and Shuicheng Yan. 2014. Robust logistic
regression and classification. Advances in neural information processing systems
27 (2014), 253–261.

1217

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Yannan Li, Jingbo Wang, and Chao Wang

[17] Ronald A Fisher. 1936. The use of multiple measurements in taxonomic problems.
Annals of eugenics 7, 2 (1936), 179–188.

[18] Peter W Frey and David J Slate. 1991. Letter recognition using Holland-style
adaptive classifiers. Machine learning 6, 2 (1991), 161–182.

[19] Geoffrey Gates. 1972. The reduced nearest neighbor rule (corresp.). IEEE transac-
tions on information theory 18, 3 (1972), 431–433.

[20] Google. 2016. Honggfuzz. https://google.github.io/honggfuzz/.
[21] Gongde Guo, HuiWang, David Bell, Yaxin Bi, and Kieran Greer. 2003. KNNmodel-

based approach in classification. In OTM Confederated International Conferences"
On the Move to Meaningful Internet Systems". Springer, 986–996.

[22] Matthew Jagielski, Alina Oprea, Battista Biggio, Chang Liu, Cristina Nita-Rotaru,
and Bo Li. 2018. Manipulating machine learning: Poisoning attacks and coun-
termeasures for regression learning. In 2018 IEEE Symposium on Security and
Privacy (SP). IEEE, 19–35.

[23] Jinyuan Jia, Xiaoyu Cao, and Neil Zhenqiang Gong. 2021. Intrinsic Certified
Robustness of Bagging against Data Poisoning Attacks. In Thirty-Fifth AAAI
Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Inno-
vative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on
Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February
2-9, 2021. 7961–7969.

[24] Jinyuan Jia, Yupei Liu, Xiaoyu Cao, and Neil Zhenqiang Gong. 2022. Certified
Robustness of Nearest Neighbors against Data Poisoning and Backdoor Attacks.
In Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-
Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI 2022,
The Twelveth Symposium on Educational Advances in Artificial Intelligence, EAAI
2022 Virtual Event, February 22 - March 1, 2022. AAAI Press, 9575–9583.

[25] Pang Wei Koh, Jacob Steinhardt, and Percy Liang. 2022. Stronger data poisoning
attacks break data sanitization defenses. Mach. Learn. 111, 1 (2022), 1–47.

[26] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

[27] Daniel Kroening and Georg Weissenbacher. 2010. Verification and falsification of
programs with loops using predicate abstraction. Formal Aspects of Computing
22, 2 (2010), 105–128.

[28] Markus Kusano and Chao Wang. 2016. Flow-sensitive composition of thread-
modular abstract interpretation. In Proceedings of the 24th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering, FSE 2016, Seattle,
WA, USA, November 13-18, 2016, Thomas Zimmermann, Jane Cleland-Huang, and
Zhendong Su (Eds.). ACM, 799–809.

[29] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–
2324.

[30] Alexander Levine and Soheil Feizi. 2021. Deep Partition Aggregation: Provable
Defenses against General Poisoning Attacks. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.

[31] Yannan Li, Jingbo Wang, and Chao Wang. 2022. Proving Robustness of KNN
Against Adversarial Data Poisoning. In 22nd Formal Methods in Computer-Aided
Design, FMCAD 2022, Trento, Italy, October 17-21, 2022, Alberto Griggio and Neha
Rungta (Eds.). IEEE, 7–16.

[32] Yannan Li, Jingbo Wang, and Chao Wang. 2023. Certifying the Fairness of KNN
in the Presence of Dataset Bias. In International Conference on Computer Aided
Verification. Springer.

[33] LLVM. 2021. libFuzzer. https://llvm.org/docs/LibFuzzer.html.
[34] Yuzhe Ma, Xiaojin Zhu, and Justin Hsu. 2019. Data Poisoning against

Differentially-Private Learners: Attacks and Defenses. In Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019,
Macao, China, August 10-16, 2019, Sarit Kraus (Ed.). ijcai.org, 4732–4738.

[35] Geoffrey J McLachlan, Kim-Anh Do, and Christophe Ambroise. 2005. Analyzing
microarray gene expression data. (2005).

[36] Shike Mei and Xiaojin Zhu. 2015. Using machine teaching to identify optimal
training-set attacks on machine learners. In Proceedings of the AAAI Conference
on Artificial Intelligence.

[37] Anna P. Meyer, Aws Albarghouthi, and Loris D’Antoni. 2021. Certifying Ro-
bustness to Programmable Data Bias in Decision Trees. In Advances in Neural
Information Processing Systems 34: Annual Conference on Neural Information Pro-
cessing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual. 26276–26288.

[38] Anna P. Meyer, Aws Albarghouthi, and Loris D’Antoni. 2022. Certifying Data-Bias
Robustness in Linear Regression. CoRR abs/2206.03575 (2022).

[39] Barton P Miller, David Koski, Cjin Pheow Lee, Vivekandanda Maganty, Ravi
Murthy, Ajitkumar Natarajan, and Jeff Steidl. 1995. Fuzz revisited: A re-
examination of the reliability of UNIX utilities and services. Technical Report.
University of Wisconsin-Madison Department of Computer Sciences.

[40] Sara Mohammadinejad, Brandon Paulsen, Jyotirmoy V. Deshmukh, and Chao
Wang. 2021. DiffRNN: Differential Verification of Recurrent Neural Networks. In
Formal Modeling and Analysis of Timed Systems - 19th International Conference,
FORMATS 2021, Paris, France, August 24-26, 2021, Proceedings (Lecture Notes in
Computer Science, Vol. 12860), Catalin Dima and Mahsa Shirmohammadi (Eds.).
Springer, 117–134.

[41] Brandon Paulsen, Jingbo Wang, and Chao Wang. 2020. ReluDiff: differential
verification of deep neural networks. In ICSE ’20: 42nd International Conference on
Software Engineering, Seoul, South Korea, 27 June - 19 July, 2020, Gregg Rothermel
and Doo-Hwan Bae (Eds.). ACM, 714–726.

[42] Brandon Paulsen, Jingbo Wang, Jiawei Wang, and Chao Wang. 2020. NEUROD-
IFF: Scalable Differential Verification of Neural Networks using Fine-Grained
Approximation. In 35th IEEE/ACM International Conference on Automated Soft-
ware Engineering, ASE 2020, Melbourne, Australia, September 21-25, 2020. IEEE,
784–796.

[43] Elan Rosenfeld, Ezra Winston, Pradeep Ravikumar, and Zico Kolter. 2020. Certi-
fied robustness to label-flipping attacks via randomized smoothing. In Interna-
tional Conference on Machine Learning. PMLR, 8230–8241.

[44] Ali Shafahi, W. Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer,
Tudor Dumitras, and Tom Goldstein. 2018. Poison Frogs! Targeted Clean-Label
Poisoning Attacks on Neural Networks. In Advances in Neural Information Pro-
cessing Systems 31: Annual Conference on Neural Information Processing Systems
2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, Samy Bengio, Hanna M.
Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman
Garnett (Eds.). 6106–6116.

[45] Jacob Steinhardt, Pang Wei Koh, and Percy Liang. 2017. Certified Defenses for
Data Poisoning Attacks. In Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, Isabelle Guyon, Ulrike von Luxburg, Samy Bengio,
Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (Eds.).
3517–3529.

[46] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution. In
23rd Annual Network and Distributed System Security Symposium, NDSS 2016, San
Diego, California, USA, February 21-24, 2016. The Internet Society.

[47] Octavian Suciu, Radu Marginean, Yigitcan Kaya, Hal Daume III, and Tudor Dumi-
tras. 2018. When does machine learning {FAIL}? generalized transferability for
evasion and poisoning attacks. In 27th {USENIX} Security Symposium ({USENIX}
Security 18). 1299–1316.

[48] Chungha Sung, Markus Kusano, and Chao Wang. 2017. Modular verification
of interrupt-driven software. In Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering, ASE 2017, Urbana, IL, USA, October
30 - November 03, 2017, Grigore Rosu, Massimiliano Di Penta, and Tien N. Nguyen
(Eds.). IEEE Computer Society, 206–216.

[49] Ari Takanen, Jared D Demott, Charles Miller, and Atte Kettunen. 2018. Fuzzing
for software security testing and quality assurance. Artech House.

[50] Brandon Tran, Jerry Li, and Aleksander Madry. 2018. Spectral Signatures in
Backdoor Attacks. In Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018,
December 3-8, 2018, Montréal, Canada, Samy Bengio, Hanna M. Wallach, Hugo
Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (Eds.).
8011–8021.

[51] Yizhen Wang, Somesh Jha, and Kamalika Chaudhuri. 2018. Analyzing the robust-
ness of nearest neighbors to adversarial examples. In International Conference on
Machine Learning. PMLR, 5133–5142.

[52] Maurice Weber, Xiaojun Xu, Bojan Karlas, Ce Zhang, and Bo Li. 2020. Rab:
Provable robustness against backdoor attacks. arXiv preprint arXiv:2003.08904
(2020).

[53] Meng Wu and Chao Wang. 2019. Abstract interpretation under speculative
execution. In Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26,
2019, Kathryn S. McKinley and Kathleen Fisher (Eds.). ACM, 802–815.

[54] Wenjin Wu, Wen Zhang, Ye Yang, and Qing Wang. 2011. Drex: Developer
recommendation with k-nearest-neighbor search and expertise ranking. In 2011
18th Asia-Pacific Software Engineering Conference. IEEE, 389–396.

[55] Huang Xiao, Battista Biggio, Gavin Brown, Giorgio Fumera, Claudia Eckert, and
Fabio Roli. 2015. Is feature selection secure against training data poisoning?. In
International Conference on Machine Learning. PMLR, 1689–1698.

[56] Huang Xiao, Battista Biggio, Blaine Nelson, Han Xiao, Claudia Eckert, and Fabio
Roli. 2015. Support vector machines under adversarial label contamination.
Neurocomputing 160 (2015), 53–62.

[57] Han Xiao, Huang Xiao, and Claudia Eckert. 2012. Adversarial Label Flips Attack
on Support Vector Machines. In ECAI 2012 - 20th European Conference on Artificial
Intelligence. Including Prestigious Applications of Artificial Intelligence (PAIS-2012)
System Demonstrations Track, Montpellier, France, August 27-31 , 2012, Vol. 242.
IOS Press, 870–875.

[58] Michal Zalewski. 2017. American Fuzzy Lop. https://lcamtuf.coredump.cx/afl/.
[59] Chen Zhu, W Ronny Huang, Hengduo Li, Gavin Taylor, Christoph Studer, and

Tom Goldstein. 2019. Transferable clean-label poisoning attacks on deep neural
nets. In International Conference on Machine Learning. PMLR, 7614–7623.

Received 2023-02-16; accepted 2023-05-03

1218

	Abstract
	1 Introduction
	2 Background
	2.1 Two Motivating Examples
	2.2 The k-Nearest Neighbors (KNN)
	2.3 The n-Poisoning Robustness
	2.4 The Baseline Method

	3 Overview of The Proposed Method
	4 Quickly Certifying Robustness
	4.1 The QuickCertify Subroutine
	4.2 Two Examples
	4.3 Correctness and Efficiency

	5 Reducing the Search Space
	5.1 Minimal Violating Removal in Neighbors
	5.2 An Illustrative Example
	5.3 The Reduced Search Space

	6 Incremental Computation
	6.1 The Intuition
	6.2 The Algorithm

	7 Experiments
	7.1 Evaluation Criteria
	7.2 Results on the Smaller Datasets
	7.3 Results on All Datasets
	7.4 Effectiveness of Our Method and Impact of the Poisoning Threshold

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

