10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Constraint Based Compiler Optimization for
Energy Harvesting Applications

Yannan Li! &
University of Southern California, USA

Chao Wang &
University of Southern California, USA

—— Abstract

We propose a method for optimizing the energy efficiency of software code running on small computing
devices in the Internet of Things (IoT) that are powered exclusively by electricity harvested from

ambient energy in the environment. Due to the weak and unstable nature of the energy source,
it is challenging for developers to manually optimize the software code to deal with mismatch
between the intermittent power supply and the computation demand. Our method overcomes the
challenge by using a combination of three techniques. First, we use static program analysis to
automatically identify opportunities for precomputation, i.e., computation that may be performed
ahead of time as opposed to just in time. Second, we optimize the precomputation policy, i.e., a way
to split and reorder steps of a computation task in the original software to match the intermittent
power supply while satisfying a variety of system requirements; this is accomplished by formulating
energy optimization as a constraint satisfiability problem and then solving the problem using an
off-the-shelf SMT solver. Third, we use a state-of-the-art compiler platform (LLVM) to automate
the program transformation to ensure that the optimized software code is correct by construction.
We have evaluated our method on a large number of benchmark programs, which are C programs
implementing secure communication protocols that are popular for energy-harvesting IoT devices.
Our experimental results show that the method is efficient in optimizing all benchmark programs.
Furthermore, the optimized programs significantly outperform the original programs in terms of
energy efficiency and latency, and the overall improvement ranges from 2.3X to 36.7X.

2012 ACM Subject Classification Software and its engineering — Compilers; Theory of computation
— Constraint and logic programming

Keywords and phrases Compiler, energy optimization, constraint solving, cryptography, IoT
Digital Object Identifier 10.4230/LIPIcs. ECOOP.2023.18

Funding This work was partially funded by the U.S. NSF grants CNS-1702824 and CCF-2220345.

1 Introduction

Energy harvesting is an environment-friendly technology that converts ambient energy in the
environment such as sunlight, RF emission, and vibration into electricity [40, 37, 7, 32, 34,
31, 47]. When being used to power small computing devices in the Internet of Things (IoT),
it avoids a main problem in the deployment of IoT at scale, which is the need to frequently
change batteries [12]. Due to this reason, energy harvesting has been increasingly used in
real-world deployment of IoT devices [43, 26]. However, due to the weak and unstable nature
of the energy source, it is often challenging for developers to manually optimize the software
code running on these IoT devices, to deal with problems caused by mismatch between the
intermittent power supply and the often unpredictable computation demand.

Consider an IoT device powered by electricity harvested from sunlight as an example.
During the day time, there may be significantly more harvested electricity than the combined

! Corresponding author

© Yannan Li and Chao Wang;

oY licensed under Creative Commons License CC-BY 4.0
37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 18; pp. 18:1-18:29

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

18:2

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

Constraint Based Compiler Optimization for Energy Harvesting Applications

Online input
available

Free energy
available

Program P

Program P’ saving

precomputation step online computation step

........................... ._\...............: e D
\\ e //
Store coupons\ /' Load coupons

non-volatile
memory

Figure 1 Using precomputation to reduce the energy needed by the (online) computation task.

total of what can be stored in the supercapacitor of the device, and what can be consumed
by the software code running on the device. During the night time, however, the electricity
stored in the supercapacitor may be significantly less than what is needed by the software
code running on the device. In this context, an important research question is whether the
mismatch between supply and demand can be avoided, or at the very least mitigated by
rewriting the original software in such a way that, while the functionality of the software
remains the same, the overall energy efficiency is improved. Prior work [4, 5, 46] has
demonstrated the feasibility of this approach, based on two observations made for typical
energy-harvesting IoT devices.

The first observation is that, since the software on an IoT device only runs from time
to time, rather than continuously, the device may be idle when ambient energy in the
environment is abundant (e.g., sunlight during the day time) and yet the supercapacitor
used to store the harvested electricity is full. In such a case, the freely available energy in
the environment cannot be utilized. The second observation is that, in such an IoT device,
the most common computation tasks are collecting sensor data from time to time, and
encrypting these sensor data before sending them to some remote servers, e.g., servers in
the cloud. Thus, the most time-consuming and energy-consuming part of the computation
is the execution of the secure communication protocol. While the sensor data may have
to be collected just in time, a significant part of the secure communication protocol (e.g.,
computing security tokens needed for encrypting the sensor data) may be executed ahead of
time. This leads to the idea of leveraging the precomputation opportunities to utilize the
freely-available ambient energy in the environment.

Figure 1 illustrates how to optimize a computation task that must be executed during
the night time, when ambient energy is not available. While the original program (P) has
to execute the entire computation task during the night time using electricity stored in the
supercapacitor, the optimized program (P’) executes a significant part of the task during
the day time, by harvesting the freely-available ambient energy that otherwise would have to
be wasted due to the storage limit of the supercapacitor. In some sense, the precomputation
performed during the day time transforms the solar energy to a digital form, called coupons,
and stores them in the non-volatile memory of the IoT device. During the night time, these
coupons are used to lower the energy cost of the remaining part of the computation task.

74

75

76

v

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

Y. Li and C. Wang

i Static Analysis Optimization Transformation |
Original H ! MSP430

i . ! Emulation
Program 1| Dependency Constraint Equivalence !

H Analysis Solving Analysis !

: —— - :

! 1
LLVM E Identifying Optimizing Refézté)ering H LLVM
Bitcode ——: preSet preSet :‘—> Bitcode

! 1

Figure 2 The overall flow of our constraint based method for energy optimization.

There are two main benefits. The first one is reduction in latency for the online computa-
tion part, since a significant portion of the computation task has been completed ahead of
time. The second one is increase in the number of computation tasks that can be completed
by the device. As a concrete example, Suslowicz et al. [46] show that, for a popular secure
communication protocol based on one-time pad (OTP) [44], using precomputed OTPs for
sensor data encryption reduces the energy cost of the online computation to 5% of the
original energy cost needed for AES-OFB. Since the energy used to precompute OTPs is
free, the overall energy reduction is close to 18 times (18X). To understand what this means,
consider an IoT device that must complete 20 tasks during the day time and 20 tasks during
the night time, but the electricity stored in the supercapacitor is only enough to support
the completion of 2 tasks during the night time. Without precomputation, the device may
be able to complete 20 tasks during the day time and only 2 tasks during the night time.
By leveraging the coupons precomputed during the day time, the same device is able to
complete 20 tasks and 20 partial tasks during the day time and finish off these 20 partial
tasks during the night time.

However, to obtain the aforementioned benefits of precomputation, the current state of
the art [4, 5, 46] requires a domain expert to optimize the software code manually, which
is not only labor intensive but also error prone. Furthermore, the domain expert must be
familiar with both the functionality of the software code and the energy characteristics of
the hardware platform. The domain expert must also consider all of the system requirements
while making the trade-off between energy reduction and increase in storage cost. In addition,
manual optimization does not respond well to frequent software updates in practice: if the
original software code is updated due to a bug fix or a security patch, there will be no easy
way to update the manually-optimized software code.

To solve these problems, we propose a fully automated method for optimizing the energy
efficiency of software running on energy-harvesting IoT devices. Toward this end, we must
overcome three technical challenges. The first challenge is to identify the precomputation
opportunities from the original software code automatically. The second challenge is to
optimize the precomputation policy by exploiting the energy—storage trade-off and deciding
which part of the computation task should be precomputed and which part of the computation
task should be computed just in time. The third challenge is to automatically transform the
software code to implement the energy optimization policy.

Figure 2 shows the overall flow of our method, which builds upon the state-of-the-art
LLVM compiler platform [29]. Given the original program, our method takes three steps
to produce the optimized program. In the first step, our method conducts a static analysis
of the original program to identify precomputation opportunities, which are captured by
preSet — the set of instructions in the program that may be computed ahead of time. In the
second step, our method computes an optimal subset of preSet based on a variety of system

18:3

ECOOP 2023

18:4

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

Constraint Based Compiler Optimization for Energy Harvesting Applications

requirements, to minimize the energy cost while satisfying all requirements, including the
storage limit of non-volatile memory used to save precomputation results. In the third step,
our method leverages the LLVM compiler to generate the optimized program that has the
ability to load the precomputation results from non-volatile memory and leverage them to
speed up the just-in-time (online) computation part of the task. Finally, we evaluate the
performance of the optimized programs on a popular hardware platform (MSP430 [24]) for
energy-harvesting applications.

At the center of our method is a constraint based technique for optimizing the precom-
putation policy. The policy captures a solution to the complex optimization problem. The
optimization problem is complex for several reasons. First, just because an instruction may
be precomputed does not mean it is beneficial to precompute it, since precomputing does
not always reduce energy cost; there is a trade-off between the cost of storing a precomputed
coupon and the benefit of avoiding computing it directly. Second, decisions on which in-
structions to precompute cannot be made in isolation, since many of these instructions are
dependent on each other; the precomputation policy has to consider all of the intra- and
inter-procedural control- and data-flow dependencies in the program. Third, the size of the
non-volatile memory used to store the precomputed coupons may not grow monotonically
with the number of precomputed instructions, and furthermore, not all intermediate compu-
tation results in the program need to be stored as coupons in non-volatile memory. We will
use concrete examples in Section 2 to illustrate these challenges and our proposed solution
to overcome these challenges.

To demonstrate the effectiveness of our method, we have implemented and evaluated it
on a large number of benchmark programs. Our implementation builds upon the LLVM
compiler [29] and the Z3 SMT solver [11]. Specifically, we use LLVM to parse the original
software code (written in the C language), conduct static program analysis, and generate the
optimized software code; we use Z3 to solve the constraint satisfiability problems formulated
by our method. Our tool was evaluated on 26 benchmark programs, which are C programs
implementing popular secure communication protocols for IoT devices; in total, they have
31,113 lines of C code (LoC). The LoC of each program ranges from 339 to 1,572. Our target
hardware platform is MSP430 [24], a family of ultra-low-power microcontroller units (MCUs)
popular for energy-harvesting IoT applications.

Our experimental results are promising. In terms of the efficiency of our method, the
experimental evaluation shows that all of the benchmark programs can be optimized by our
tool quickly, and the optimization time is always limited to a few seconds. In terms of the
effectiveness of our method, the experimental evaluation shows that all of the optimized
programs significantly outperform the original programs in terms of energy efficiency and
latency. Specifically, reduction in the overall energy cost ranges from 2.3X to 36.7X.

To summarize, this paper makes the following contributions:

We propose a compiler based technique for automatically identifying precomputation
opportunities in the software code using static analysis and then exploiting these oppor-
tunities using a semantic-preserving program transformation.

We formulate energy optimization as a constraint satisfiability problem and solve the
problem using an off-the-shelf SMT solver; this approach is not only flexible but also
efficient in minimizing the energy cost while satisfying a variety of system requirements.

We implement the method using a state-of-the-art compiler (LLVM) and a popular
hardware platform (MSP430) for energy-harvesting applications, and demonstrate the
effectiveness on a large number of benchmark programs.

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

Y. Li and C. Wang

2 Background

We review the technical background, including the characteristics of the hardware platform
(MSP430) and an example software program to motivate our approach.

2.1 The Hardware Platform

MSP430 is a family of microcontroller units (MCUs) based on a 16-bit RISC instruction set
architecture. Due to our focus on energy-harvesting applications, we are concerned with a
subset of MSP430 MCUs that have the main memory partitioned into the volatile part and
the non-volatile part. Depending on the application, data may be stored either in volatile
memory or in non-volatile memory. These MCUs have a large number of configuration
parameters, including sixteen nominal frequencies in the range 0.06 MHz to 16 MHz. For
example, they may run in a low-power mode at the clock frequency of 1 MHz and the supply
voltage of 1.8V, or in a high-performance mode at the clock frequency of 16 MHz and the
supply voltage of 2.9V.

Since MSP430 MCUs are designed for low-power applications, they have no instruction
cache or data cache. Unlike high-end CPUs widely used in servers and desktops, which
routinely use advanced frequency or voltage scaling techniques, low-power MCUs such as
MSP430 have significantly simpler energy models: fluctuations in power consumption are
primarily due to the dynamics in supply voltage and clock speed. In fact, power consumption
may be modeled using a non-linear function derived by empirically measuring the impact of
varying voltage supplies and clock speeds on the power consumption of real hardware for all
possible MCU configurations [2].

Accurate compile-time analysis for energy prediction [10, 3] is well studied topic for
transiently powered computing systems [2], where software developers need to know the
worst-case energy cost of a computation task, to maximize the software’s utilization of the
electricity harvested from the environment and to ensure timely checkpointing of the program
state before loss of power. The accuracy of such compile-time analysis techniques have come
close to direct hardware emulation. While direct hardware emulation [20, 8] offers the highest
possible accuracy due to the direct measurement on target hardware, it does not offer the
level of convenience and automation desired at the early stages of software development.

In this work, we evaluate our proposed method using MSPSim [15, 38], which is a
popular compile-time analysis tool for MSP430, Specifically, we use MSPSim to compute and
then compare the latency and energy cost of all benchmark programs, before and after our
constraint-based optimization. MSPSim allows the developer to tag a piece of the software
code for which energy consumption will be estimated. It does this by first generating the
assembly code for MSP430, and then analyzing the assembly code to compute the number of
MCU cycles needed to execute each basic block. Then, it estimates the energy consumption
of each basic block based on the empirically derived energy model, the supply voltage, and
the clock speed of the device.

At a high level, the energy consumption depends on the supply voltage as well as the
electrical current for a given resistance of the MCU, the latter of which in turn depends on
the supply voltage and the clock speed. For more details on the energy model used in such
compile-time analysis tools, refer to Ahmed et al. [2].

18:5

ECOOP 2023

18:6

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Constraint Based Compiler Optimization for Energy Harvesting Applications

__interrupt void ISR(void) {
if (msg_ready) {
wots(msg, pub_key, sig);
//Send the pair <pub_key,sig> to verifier;
}
}
void wots(MSG msg, KEY pub_key, SIG sig) {
gen_key(priv_key, pub_key);
sign(msg, priv_key, sig);

O OO Uk WN -

[

Figure 3 An example program that invokes the W-OTS routine when msg is ready. Here,
msg_ready and msg are global variables updated by other functions not presented in this figure. For
wots (), msg is the input while pub_key and sig are the output. For gen_key (), both priv_key and
pub_key are the output. For sign(), msg and priv_key are the input while sig is the output.

2.2 The Software Program

Figure 3 shows the program, where ISR stands for the interrupt service routine. Assume that
the routine is triggered periodically by a timer. Whenever the input data stored in msg is
ready, the subroutine wots () is invoked (Line 3). It implements a hash-based cryptographic
primitive called the Winternitz one-time signature (W-OTS [39]). Here, msg is the input,
while pub_key and sig are the output. After generating the output, the device sends the
pair (pub_key,sig) to a verifier on a remote server (Line 4).

Let us take a closer look at the routine wots() defined in Lines 7-10, which consists of
two subroutines. The subroutine gen_key () is invoked first, which returns a fresh pair of the
private key priv_key and the public key pub_key as output. Then, the subroutine sign()
is invoked, which takes msg and priv_key as input and returns the signature sig as output.

Since the input msg may be sensor data generated just in time, in the context of our
work, it is called an online input. Furthermore, any output or intermediate variable that is
control- or data-dependent on the online input must be computed just in time. In contrast,
results that do not depend on the online input may be computed ahead of time.

2.2.1 The Original Program

Figure 4 shows the definitions of the two subroutines invoked by wots(). The subroutine
sign() in Line 7 takes msg and priv_key as input and returns sig as output. While msg is
an online input, priv_key is computed by the subroutine gen_key (). In this sense, sign()
depends on gen_key ().

The subroutine gen_key() does not have any input, and thus does not depend on
any other subroutine. More importantly, it does not depend on any online input. Thus,
gen_key () may be executed ahead of time, e.g., whenever ambient energy is available to
the harvester. It means that both priv_key and pub_key may be computed ahead of time.
These precomputed keys may be saved to non-volatile memory as coupons, and later used by
sign() to encrypt the online input msg.

Although the subroutine sign() partially depends on the online input msg, and thus
cannot be executed ahead of time in its entirety, a significant part of the function body can
still be executed ahead of time. Specifically, the subroutine gen_random() does not depend
on the online input at all, and the subroutine memcpy () depends only on rand computed by
gen_random(); thus, both subroutines can be computed ahead of time.

If we continue this analysis by going down the chain of function calls, we may identify

233

234

235

236

237

238

239

240

241

242

243

244

Y. Li and C. Wang

gen_key(priv_key, pub_key) {
gen_random(priv_key, PRIV_KEY_SIZE);
sha256_init (&keyHash) ;
sha256_update (&keyHash, priv_key, PRIV_KEY_SIZE);
sha256_final (§keyHash, pub_key);

¥

sign(msg, priv_key, sig) {
gen_random(rand, SHA_BLK_SIZE);
memcpy (sig, rand, SHA_BLK_SIZE);
message_digest(digest_bits, sig, msg);
gen_sig(sig, priv_key, digest_bits);

© 00O Ui W=

— =
NN = O
[

Figure 4 Definitions of the subroutines used by the W-OTS routine.

wots_precom(msg, pub_key, sig) {
gen_key(priv_key, pub_key);
//NVM-Store <priv_key, pub_key> to coupon pool;
sign_precom(msg, priv_key, sig);

wots_online(msg, pub_key, sig) {
//NVM-Load <priv_key, pub_key> from coupon pool;
sign_online(msg, priv_key, sig);
¥
gen_key(priv_key, pub_key) {
gen_random(priv_key, PRIV_KEY_SIZE);
sha256_init (&keyHash) ;
sha256_update (&keyHash, priv_key, PRIV_KEY_SIZE);
sha256_final (§keyHash, pub_key);
¥
sign_precom(msg, priv_key, sig) {
gen_random(rand, SHA_BLK_SIZE);
memcpy (sig, rand, SHA_BLK_SIZE);
//NVM-Store <sig> to coupon pool;

[e el e e el e e el el
SOOI URE WNHFE OO0 Utk W~

¥
21 sign_online(msg, priv_key, sig) {
22 //NVM-Load <sig> from coupon pool;
23 message_digest(digest_bits, sig, msg);
24 gen_sig(sig, priv_key, digest_bits);
25 }

Figure 5 Conceptually, the program may be divided into two parts (precom and online).

more precomputation opportunities, e.g., instructions inside subroutines message_digest ()
and gen_sig(). In our proposed method, this process of systematically identifying these
precomputation opportunities is automated, based on static program analysis techniques.

2.2.2 Dividing into Two Parts

Based on the precomputation opportunities identified by static program analysis, the original
program may be divided into two parts: the precomputation (precom) part and the online
computation (online) part, as shown by Figure 5.

Specifically, top-level routine wots () is divided into wots_precom() and wots_online().

The subroutine wots_precom() may be invoked ahead of time, since it does not depend on
the online input msg at all. After invoking gen_key () to compute the public and private
keys, denoted priv_key and pub_key, it stores them in non-volatile memory (Line 3). Then,
it invokes sign_precom() defined in Line 16, to compute the signature sig, before storing it

18:7

ECOOP 2023

18:8

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

Constraint Based Compiler Optimization for Energy Harvesting Applications

in non-volatile memory (Line 19).

The subroutine wots_online () must be invoked just in time, since it depends on the
online input msg. This subroutine first loads the precomputed keys priv_key and pub_key
from non-volatile memory (Line 7) and then invokes sign_online() defined in Line 21.
Inside sign_online(), the precomputed signature sig is loaded from non-volatile memory
(Line 22) and then used together with msg and priv_key to compute the final version of the
signature sig (Lines 23-24).

According to our experimental evaluation (presented in Section 7), on low-power devices
such as MSP430, this kind of precomputation can reduce the energy cost of running W-OTS
to 42.89% of the original cost. In other words, it is more than 2.3X reduction. Thus, with
the same amount of electricity used to run the original W-OTS program once, now, we can
run the optimized W-OTS program 2.3 times.

2.2.3 Challenges in Optimization

Just because an instruction may be precomputed (i.e., it does not depend on any online
input) does not mean that it is beneficial to do so, since precomputation does not always
reduce the energy cost. Depending on the hardware platform, it is possible for the cost of
storing and retrieving the precomputed result to outweigh the benefit.

For example, in Line 18 of Figure 5, if we choose to precompute memcpy () inside the
subroutine sign(), the energy cost of loading the precomputed coupon sig from non-volatile
memory may be slightly higher than the energy needed to execute memcpy () directly. If that
is the case, precomputation should be avoided.

In general, whether precomputation is beneficial or not depends on both the software
and the hardware. Consider the characteristics of volatile and non-volatile memory used
in MSP430FR5969 [24] as an example. According to the hardware data-sheet, at the clock
frequency of 8 MHz, the energy per clock cycle is 0.33 nJ for volatile memory, but is 0.42 nJ
for non-volatile memory. This kind of information must be considered during optimization.

Furthermore, decisions on which instructions to precompute cannot be made in isolation,
since many of these instructions are dependent on each other according to the control and
data flows of the program. Therefore, we must consider all of the intra- and inter-procedural
control- and data-flow dependencies in the program while performing the optimization.

These are the reasons why we propose the constraint based method. By first formulating
it as a constraint satisfiability problem and then solving the problem using an off-the-shelf
SMT solver, we are able to optimally partition the program into the precomputation part
and the online computation part, while satisfying a variety of requirements coming from the
hardware platform as well as the software program.

2.2.4 The Optimized Program

To keep the size of the optimized program small, we do not actually divide the program into
two parts as shown by Figure 5. Instead, we keep the two parts in a single program, and try
to retain the original control and data flows of the program as much as possible.

Figure 6 illustrates our method by showing the optimized program for the original program
in Figure 4. Our method adds two parameters, precom_flag and online_flag, to represent
the following three use cases:

When (precom_flag,online_flag) = (true,false), it does precomputation.

When (precom_flag,online_flag) = (false,true), it does online computation.

When (precom_flag,online_flag) = (true,true), it acts as the original program.

290

291

292

293

294

295

296

297

298

299

300

Y. Li and C. Wang

1 wots_trans(msg, pub_key, sig, precom_flag, online_flag) {
2 if (precom_flag == true)

3 gen_key(priv_key, pub_key);

4 if (lonline_flag)

5 //NVM-Store <priv_key, pub_key> to coupon pool;

6 if (!precom_flag)

7 //NVM-Load <priv_key, pub_key> from coupon pool;

8 sign_trans(msg, priv_key, sig, precom_flag, online_flag);
9 }

10 sign_trans(msg, priv_key, sig, precom_flag, online_flag) {
11 if (precom_flag == true) {

12 gen_random(rand, SHA_BLK_SIZE);

13 memcpy(sig, rand, SHA_BLK_SIZE);

14

15 if (lonline_flag)

16 //NVM-Store <sig> to coupon pool;

17 if (!precom_flag)

18 //NVM-Load <sig> from coupon pool;

19 if (online_flag == true) {
20 message_digest(digest_bits, sig, msg);
21 gen_sig(sig, priv_key, digest_bits);
22 }
23 }

Figure 6 Merging the two parts into a single optimized W-OTS routine.

1 __interrupt void ISR(void) {

2 if (Imsg_ready) {

3 if (ambient_energy_available)

4 wots_trans(NULL, pub_key, sig, true, false); //precom (part 1)
5 }

6 else {

7 if (lambient_energy_available)

8 wots_trans(msg, pub_key, sig, false, true); //online (part 2)
9 else

10 wots_trans(msg, pub_key, sig, true, true); //combined (part 1 + part 2)
11 //Send the pair <pub_key,sig> to verifier;

12 }

13 }

Figure 7 Different scenarios for invoking the optimized W-OTS routine.

Compared to the original program in Figure 4, the only difference in Figure 6 is the
addition of two flags as input parameters of some of the subroutines, together with the if-
conditions that indicate whether a code block should be executed during the precomputation
step or during the online computation step.

Figure 7 shows how the optimized program may be invoked by the interrupt service
routine. Unlike what is shown in Figure 3, here, precomputation is performed when msg is
not available but ambient energy is available (Line 4). When msg is available, it depends
on whether ambient energy is still available. If ambient energy is not available, then online
computation is performed (Line 8). However, if ambient energy is available, operations that
access non-volatile memory will be skipped, which makes wots_trans() behaves exactly the
same as the original program (Line 10).

18:9

ECOOP 2023

18:10

301

302

303

304
305

306

307
308
309
310
311
312
313
314
315
316
317

318

319

320
321
322
323
324
325
326
327
328
329
330
331
332
333

334

Constraint Based Compiler Optimization for Energy Harvesting Applications

3 Overview of Our Method
We first present our top-level procedure and then outline the main technical challenges.

3.1 The Top-Level Procedure

Algorithm 1 shows our top-level procedure. The input consists of the original program (P),
the online input (OI) of the program, and the system constraint (C'). The output is the
optimized program (P’).

Algorithm 1 The top-level procedure of our method.

input :original program P, online input OI, system constraint C
output : optimized program P’

PDG + ConstructPDG (P);

preSet « IdentifyPreSet (P, PDG, OI);

preSet* < OptimizePreSet (preSet, PDG, C);

P’ < Transform (P, PDG, preSet*);

return P’

[S N VN

For the running example in Figure 3, where the entry function is wots (), the online input
is OI = {msg}, since msg is the only input value that must be ready at run time. C' consists
of a set of platform-dependent requirements, e.g., the size of non-volatile memory used to
store coupons must be limited to <256 KB.

In Algorithm 1, our method first constructs a program dependency graph (PDG) for the
program P. Then, our method uses the PDG and the set of variables in the online input Of
to compute preSet, which is the set of instructions in P that may be precomputed. Next, it
computes preSet*, which is a subset of preSet that represents the optimal solution to the
constraint satisfiability problem. Finally, our method transforms the program P to a new
program P’ based on the information stored in both PDG and preSet*.

Before presenting the detailed algorithms inside the subroutines IdentifyPreSet(),
OptimizePreSet () and Transform(), we point out the main technical challenges.

3.2 The Technical Challenges

The first challenge, related to the subroutine IdentifyPreSet (), is the complex nature of
the program dependency analysis. In Figures 3 and 4, for example, we observe that the
subroutine sign() depends on gen_key(); furthermore, the subroutine gen_sig() invoked
by sign() depends on gen_key (). It means that we must consider not only dependencies of
instructions within each subroutine, but also dependencies between subroutines.

Moreover, since we aim to transform individual functions of the original program without
changing the overall function call structure, each function must be analyzed in all of its
calling contexts, to figure out how the function body should be optimized. In Figure 4, for
example, it means that since gen_random() is called by both gen_key() and sign(), we
must consider both calling contexts.

The second challenge, related to the subroutine OptimizePreSet (), is optimizing the
precomputation policy while satisfying a variety of system constraints. Given preSet (which
is the set of instructions that may be computed), we need to identify a proper subset. For the
MSP430 family of microcontroller units, a limiting factor may be the capacity of non-volatile
memory, only part of which may be dedicated to coupon storage. In general, this is a

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

Y. Li and C. Wang

non-linear optimization problem, e.g., the storage cost may not increase linearly, or even
monotonically, as more instructions are added to the precomputation set.

In Figure 4, for example, the cost of precomputing only Lines 2-4 is size(priv_key) +
size(keyHash), where size() denotes the size of non-volatile memory for storing the value.
However, the cost of precomputing Lines 2-5 is size(priv_key) + size(pub_key), because
keyHash no longer needs to be stored in non-volatile memory. Since size(pub_key) is much
smaller than size(keyHash) in the W-OTS example, this means that precomputing one more
line actually decreases the overall storage cost.

The third challenge, related to the subroutine Transform(), is the difficulty in preserving
functional equivalence while allowing the program to change its execution order and data
flow. For example, if we want to precompute Line 2 and Line 8 in Figure 4, we must modify
the program to ensure that the original execution order (Line I3 executed before Line lg)
changes to the new execution order (Ig executed before [3); at the same time, we must ensure
that the original data flow priv_key(la) — I3, 14,15 — s changes to priv_key(l2) —ls — I3, 14, 5.
While doing so for this particular example may seem easy, in general, maintaining functional
equivalence during such program transformation can be challenging.

4 Identifying the Precomputation Set
In this section, we present our method for computing preSet, as shown in Algorithm 2. Tt

takes the program P, the program dependency graph PDG, and the online input OI as
parameters, and return preSet as output.

Algorithm 2 The subroutine IdentifyPreSet (P, PDG,OI).

Let pred(inst) be a predecessor node of instruction inst in the PDG
preSet < {elementary instructions in P} U ({input parameters of P} \ OI)
while Jinst € preSet and pred(inst) & preSet do

‘ remove inst from preSet
end
return preSet

(<IN S N U VI

Recall that preSet is the set of instructions in P that may be computed ahead of time.
Internally, our method computes preSet in two steps. The first step is identifying the inter-
procedural dependencies related to the online input OI. These dependencies will be captured
by function such as pred(inst), preds(inst), and succs(inst), which returns the predecessor,
set of predecessors, and set of successors of an instruction inst, respectively. The second step
is leveraging these dependencies to compute the instructions in preSet.

In Algorithm 2, initially, preSet consists of all the elementary instructions and input
parameters of P, except for the ones in OI. Variables in OI are excluded because they are
the online variables. Here, an elementary instruction means that during our analysis the
instruction will be treated as a whole. First, non-function-call instructions are elementary
instructions. Second, when an instruction invokes a function call, whether it is elementary
depends on how many times the function is called. If the function is called only once, it is not
treated as an elementary instruction; instead, we enter the function body to try to identify
more precomputation opportunities. But if the function is called from multiple sites, we
treat each call as an elementary instruction, meaning that we do not enter the function body
to explore further. This is a reasonable compromise since, when a function is called from

18:11

ECOOP 2023

18:12

371

372

373

374
375
376
377

378

379
380
381
382
383

384

385
386
387

388

389
390
391
392

393

394
395
396
397
398
399
400

401

Constraint Based Compiler Optimization for Energy Harvesting Applications

2: msg_ready

(a) The PDG for Figure 3 (b) The PDG for Figure 4

Figure 8 The program dependency graphs (PDGs) of the example W-OTS program. Here, each
node represents an instruction, and the number is the instruction’s line number in the program.

multiple sites, the function body often implements some basic computation, e.g., generating
a random number, and there is no need to split it further.

4.1 Inter-Procedural Dependencies

To identify the maximum set of instructions in PreSet using Algorithm 2, we need the
dependencies associated with the online input OI. These dependencies are more complex
than what are typically available in the compiler. For example, by default, LLVM provides
the control- and data-dependencies between instructions only within each function. However,
we need to know dependencies not only within each function, but also between functions.

To identify inter-procedural dependencies, we first compute a PDG for each function,
together with a call graph that represents the caller-callee relations of all functions in the
program. We also extend LLVM to add the ability to determine whether a function call
may change the content of a function parameter passed by reference or the value of a global
variable. This is accomplished by traversing paths in the call graph and analyzing all of the
functions involved in the path.

Next, we analyze the inter-procedural dependencies in a bottom-up fashion, according to
the function call graph. Consider the example of the following two functions: funi(arg;)
and fun2(args,args), where the input parameter arg; of fun1() depends on the output
parameter args of fun2(). Assume that args is also an output parameter of fun2().

Assume that inside the function fun2() there is an instruction I that computes the value
of argy. Furthermore, inside fun1() there is an instruction I’ that computes the value
of arg;. While all intra-procedural dependencies may be computed in isolation, we must
combine them to identify the inter-procedural dependencies, such as the dependency between
I’ of fun1() and I of fun2(Q).

Figure 8 shows a more concrete example, where the PDGs are constructed for the code
snippets in Figures 3 and 4. Consider the edge 2 — 11 in Figure 8 (b), which represents the
dependency between the instruction at Line 2 and the instruction at Line 11 of the program
in Figure 4. It means the input parameter priv_key used by sign() at Line 11 comes from
the output parameter priv_key of gen_key() at Line 2.

With the inter-procedural dependencies, we can define the notion of a predecessor, denoted
by pred(). For example, in Figure 8 (b), due to the edge 2 — 11, we say that the instruction
at Line 2 is a predecessor of the instruction at Line 11 inside the program shown by Figure 4.

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

Y. Li and C. Wang

4.2 lteratively Computing preSet

Using the notion of a predecessor of an instruction inst, denoted pred(inst), our method
computes the preSet according to the while-loop in Algorithm 2.

It starts with all elementary instructions and input parameters that are not in OI. Then,
it removes any instruction (inst) that has a predecessor pred(inst) not in preSet. There are
two possible reasons why pred(inst) is not in preSet: either it is in OI, or during the previous
iteration, it has been removed from preSet. Thus, it is a fixed-point computation.

The correctness of the fixed-point computation can be understood as follows: By definition,
the instruction inst depends on its predecessor pred(inst). If pred(inst) ¢ preSet, meaning
the predecessor instruction cannot be precomputed, then the instruction inst itself cannot
be precomputed either.

As an example, consider the instructions of W-OTS in Figure 4. For ease of presentation,
we use [; to represent the instruction at Line 4, and we treat all instructions in this program
as elementary instructions. Initially, we have preSet = {lo — l5,1ls — 111 }.

Next, we check if any of these instructions should be removed, based on the predecessor
relation shown in Figure 8. The instruction ;9 should be removed, since its predecessor
(msg_ready) is not in preSet. Thus, we remove ;o from preSet.

The removal of [y leads to the removal of I1; during the next iteration, since lyq is the
predecessor of l1g. If [cannot be precomputed, then [y cannot be precomputed either.

Thus, in the end, we have preSet = {lo — I5,ls — lg}.

» Theorem 1. Our method for computing preSet is sound in that, for all inst € preSet,
there is guarantee that the instruction (inst) can indeed be computed ahead of time.

Proof: An instruction inst remains in preSet only if all of its predecessors are also in preSet. As
long as the inter-procedural dependencies represented by the PDGs are an over-approximation
of the actual dependencies, the preSet is guaranteed to be an under-approximation of the set
of instructions that may be computed ahead of time.
The reason why it is an under-approximation because pred(inst) is an over-approximation
of the predecessors. Whenever pred(inst) ¢ preSet, Algorithm 2 removes inst from preSet.
The reason why pred(inst) is an over-approximation is due to the nature of PDG-based

analysis techniques. Refer to Horwitz et al. [22] and Reps et al. [41] for more information.

<

4.2.1 Handling Loops

Similar to all other PDG-based analysis techniques [22, 41], our method has no problem in
handling software code with loops. In most of the practical cases, computing the predecessor
is straightforward. For example, the function call sign() at Line 9 in Figure 3 requires msg
and priv_key to be available. These dependencies are due to data flow represented by the
definition-use correspondence.

However, there are cases where definitions and uses do not have one-to-one mapping. For

example, in Figure 9, the variable i used at Line 7 may be defined at either Line 2 or Line 5.

In the context of data-flow analysis, the definition at Line 5 does not kill the definition
at Line 2. Therefore, it may or may not be necessary to precompute Line 3-6 in order to
precompute Line 7, for example, if CNT [1en-1] !=0xff.

Since our method is designed to be sound, to ensure that the optimized program is correct
for all input values, it is allowed to first over-approximate the predecessor relation, and then
conservatively assume that an instruction can be precomputed only if all of its predecessors
can be precomputed.

18:13

ECOOP 2023

18:14

448

449
450
451
452
453

454

455

456
457
458
459
460
461
462
463
464
465
466
467
468
469

470

471

472
473
474
475
476
477
478

479

Constraint Based Compiler Optimization for Energy Harvesting Applications

void increment_CNT(BYTE *CNT, int len){
int i = len;

while ((i > 0) && (CNT[i-1] == Oxff)){
CNT[i-1] = 0;

i--;

if (1) {

CNT[i—1]++;

1
2
3
4
5
6 }
7
8
9 ¥
0

10 }

Figure 9 Code snippet taken from the benchmark program named AES-CTR.

5 Optimizing the Precomputation Set

While all instructions in preSet have been identified at this moment, it may not be beneficial
to compute all of them ahead of time. In this section, we present our method for computing an
optimal subset preSet* C preSet. This is implemented in OptimizePreSet(preSet, PDG, (),
where C' is the system constraint. Besides the characteristics of the hardware platform, such
as the size of non-volatile memory, it also includes the characteristics of the software program,
such as how often the encrypted sensor data must be transmitted to the remote server.

5.1 The Motivation

We use an example to illustrate the complex nature of the optimization problem, which in
turn motivates our development of the constraint based solution.

Counsider the W-OTS program in Figure 4 and its PDGs in Figure 8 (b). According to
Algorithm 2, preSet = {ly —l5,ls — lg}. Since these instructions do not depend on the online
input msg, in theory, they may be precomputed as many times as possible. However, due to
the storage capacity, in practice, the number has to be bounded.

Let S; be a subset of preSet, called a precomputation choice, and m; be the maximum
number of times that S; may be precomputed. Since each time S; produces an intermediate
result, or coupon, we also call m; the coupon count (number of copies of this particular
coupon). Let NVM(S;) be the storage cost for this coupon, and maxNVM be the storage
capacity of the entire device. We use the maximal allowed NVM size to avoid the potential risk
of running out of NVM. One precomputation choice for the running example is represented
by &1 = {l2}, where m; < maxNVM/NVM(S;). That is, the coupon count m; is bounded
only by the storage capacity.

Below are some other precomputation choices:

52 = {lg — 15, ls},where mo < maxNVM/NVM(Sg)
83 = {lg — 15, ls — lg},where ms < maxNVM/NVM(Sg)

Let n = |preSet|, the number of precomputation choices is X7 ; (7;) Since it causes combin-
atorial explosion, we cannot afford to enumerate them to decide which one is optimal.

The number of precomputation choices can be even higher than X7 ; (:‘) For example,
when Sy, = {lo — 5} and Sy = {l2 — I5,1ls — lg}, if we allow the coupon counts my, and myp
to have different values, they would be bounded only by the constraint my, x NVM(S4,) +
map X NVM(Syp) < maxNVM. This leads to another combinatorial explosion.

While making a precomputation choice, we cannot consider instructions in isolation, since
they may be dependent on each other. For example, precomputing one instruction may

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

Y. Li and C. Wang

require precomputing another instruction. Recall that in the example program shown in
Figure 4, we cannot precompute l5 without precomputing l4, because there is dependency
from l4 to l5. In other words, Iy = pred(ls).

All these challenges motivate us to define the constraint satisfiability problem, which
allows us to consider all of the selected instructions as a whole, together with a variety of
system constraints. Specifically, it allows us to consider the coupon count (m;) and the
coupon size NVM(S;) for each subset S; C preSet, together with system constraints such as
the capacity of non-volatile memory used to store coupons computed by different instructions,
and the inter-procedural dependencies between these chosen instructions.

5.2 The Problem Statement

Our goal is to compute the optimal subset, denoted S* C preSet, that satisfies the system
constraint. For ease of presentation, assume that S represents a precomputation choice,
while V(S) represents the value (or benefit) of precomputing S, and C(S) represents the
cost of precomputing S. The optimization problem is defined formally as follows:

S* = argmax V(S) subject to C(S) < maxNVM (5.2)
SCpreSet
In other words, the optimal subset is the subset S that maximize the value V(S) while
keeping the cost C'(S) under control. Recall that explicitly enumerating solutions would
lead to combinatorial explosion. Thus, we encode them symbolically using a set of logical
constraints and solve these constraints using an off-the-shelf SMT solver.

One advantage of the constraint based approach is flexibility in modeling various tradeoffs.

While it is easy to compute the coupon size or the coupon count individually, finding the
right combination may be hard due to the fact that they are inter-dependent.

Another advantage of our approach is flexibility in modeling the chain of influence; that
is, precomputing one instruction (e.g., l4 of gen_key in Figure 4) may require precomputing
another instruction (e.g., l3).

Yet another advantage is the ability to bound the total cost of storing coupons from
different instructions. As mentioned earlier, precomputing more instructions may not always
increase the storage cost. In Figure 4, if we precompute I3 — l4 but not 5, we need to store
both pub_key and keyHash, the latter of which is an array of 108 bytes; but if we precompute
l3 — I5, we only need to store pub_key, which is an array of 32 bytes.

5.3 Defining the Value and Cost Functions

First, we define the energy saving (value) and storage overhead (cost).

5.3.1 Value

Since the value of precomputing one instruction may depend on which other instructions are
precomputed, we can only define it based on which other instructions are chosen. Since an
instruction inst may be precomputed only if all its predecessors are precomputed, we define
the value of precomputing inst based on the predecessor relation.

Let S be the set of chosen instructions, and v(inst | S) be the value of precomputing
inst in the presence of S. We have

E(inst) if preds(inst) C S

—00 otherwise

v(inst | S) = {

18:15

ECOOP 2023

18:16

518
519
520
521

522

523

524

525

526
527
528

529

530
531
532
533
534

535

536

537
538
539

540

541

542
543
544
545
546
547

548

Constraint Based Compiler Optimization for Energy Harvesting Applications

Here, E(inst) is the energy saved by precomputing inst, and preds(inst) is the set of all
predecessors of inst in the PDG. We use the large value —oco to avoid precomputing inst
before all of its predecessors in preds(inst) are precomputed.

With the values of precomputing individual instructions, we define the value of precom-
puting the entire set S as follows:

V(S) = Z v(inst | S).

insteS

For the example in Figures 4 and 8 (b), we have V({l2}) = E(l2). We also have V ({l2,1l5}) =
—o00 since [5 cannot be selected when its predecessors I3 — l4 are not selected.

5.3.2 Cost

Unlike the value v(inst), which depends only on the predecessors of inst, the cost of precom-
puting inst depends also on its successors in the PDG.

Let S be the set of chosen instructions, and c(inst | S) be the cost of precomputing inst
in the presence of S. In Figure 4, for instance, we have

0 ifly,ls €8
C(l3 | S) = .
NVM(keyHash) otherwise

0 if [,l3€ S
c<z4|s>={ n

+00 otherwise

and

That is, if I3 — [5 are selected, we do not need to store keyHash; but if l4 — 5 are not selected,
we need to store keyHash. Thus, the cost of precomputing I3 depends on if (I4 — I5) are
selected. Here, the large value +oo is used to avoid selecting instructions whose predecessors
in the PDG are not selected.

With the costs of precomputing individual instructions, we define the cost of precomputing
the entire set S as follows:

C(S)= > clinst|S).

insteS

5.4 Symbolic Encoding of the Constraints

We construct an SMT formula ¥ = ®pgp A Pygiue A Peost, where the subformula @ pg,
captures the dependencies that we have computed in the previous section, ® v, captures
the value constraint, and ® s captures the cost constraint. Thus, a satisfying assignment
to W corresponds to S* C preSet.

5.4.1 Dependency Constraint

®pep encodes the dependency relations captured by edges of the inter-procedural PDG.
Specifically, for each dependency edge (ni,n2), we add a Boolean constraint (—ng V nq),
where n; and ns are Boolean variables indicating whether these nodes are precomputed,
and the constraint means that, if no is true, then n; must also be true. Therefore, ny being
precomputed implies that n; is also precomputed. Then, all these individual constraints are
conjoined to form ®pe,. As an example, consider the PDG in Figure 8 (b): the dependency
constraints include (—\l4 \ l3) A (—|l4 vV lg) A (_‘l5 vV l4) A (—\lg V lg)

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

Y. Li and C. Wang

5.4.2 Value Constraint

® yyue encodes the value of precomputing each instruction. Since ®p,, already guarantees
that an instruction is precomputed only if all its predecessors (as in the PDG) are precomputed,
the encoding becomes straightforward. That is, if inst is selected, then v(inst) = E(inst);
otherwise v(inst) = 0. The total value of precomputing the set of instructions in preSet is
simply the sum of all the individual values. In Figure 4, the value of precomputing each
instruction l;, where i = 2,3,...,5,8,9, would be v(l;) = (I; ? E(l;) : 0) and the total would
be V(S) = > v(ly).

5.4.3 Cost Constraint

D st encodes the cost of precomputing the chosen instructions. Recall that the cost of
precomputing inst depends on not only if its predecessors are precomputed but also if its
successors are precomputed. Since ® p., guarantees to select the predecessors whenever inst
is selected, here we only need to deal with the set of successors, denoted succs(inst).

In general, precomputing inst increases storage cost only when its result (coupon) is used
by some of the successors in the online computation step; otherwise, there is no need to save
the coupon. For example, the cost of precomputing I3 in Figure 4 is zero if instructions in
suces(lz) ={l4, l5} are also precomputed.

For the entire program shown in Figure 4, the cost constraint would be

) =l VI3 Al Als Alseng) 7 0: NVMpriv_key]) A
)= (=l3 Vi) 7 0: NVM[keyHash]) A

ly) = (0ly VI5) 7 0: NVM[keyHash]) A
)
)
)

o~~~ o~ o~~~
N N N N N N

o~

V] no

—~

QQGQGQQQ

With proper definitions of the cost and value functions, our constraint based method can
also handle other optimization metrics.

5.5 Solving the Constraints

After constructing the entire SMT formula ¥, we solve it using the Z3 SMT solver [11].
Specifically, we use Z3’s optimize interface iteratively to search for the optimal solution.
This is done by insisting that the total value V'(S) shown in Equation (5.2) is greater than a
given constant value; then, we find the maximum constant by gradually increasing the value
of the constant as long as Z3 can still find a satisfying solution.

6 Transforming the Program

We now explain the subroutine Transform(P, PDG, preSet*), which transforms the original
program P to a new program P’ to implement preSet*. Recall that in Figure 6, we gave an
example of such a transformed program for W-OTS. There are two important properties of
the program P’: (1) it retains the overall function call structure in P and (2) it changes the
body of each function to implement both the precomputation and online computation steps.

18:17

ECOOP 2023

18:18

582

583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598

599

600

601

602

603
604

605

606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625

626

Constraint Based Compiler Optimization for Energy Harvesting Applications

6.1 The Terminology

For each function f in the program P, we must separate the precomputation instructions from
the online computation instructions. This leads to a partition of the program to segments,
{Sl,§2,53,§4, ...}, where S; represents a precomputation segment and SNj represents an
online computation segment. A segment is a maximal set of instructions that may execute
continuously during precomputation or online computation.

Consider an example program P = {5, S5, S5, 54} whose original execution order is
ST — 52 — S35 — 54. In the transformed program P’, however, the execution order must be
changed to S; — S3 — Sy — Sy. In general, changes in the execution order lead to changes
in the data flow.

Before discussing changes in the data flow, we define the terminology.

Let def(z) be an instruction that defines the value of variable z, and use(x) be an

instruction that uses the value. The two instructions may form a def-use pair.

Given two segments S; and S;, where def(x) € S; and use(x) € S}, we represent the

data-flow edge (or def-use pair) as (S;, S;)(x).

Let Val[z, S;] denote the value of z at the end of executing the segment S;.

A variable z is live at a program location p if its value is used before it is defined again

along some path from p to the program exit.

6.2 The Problem

Now, we show an example where changes in the execution order bring unexpected changes of
the data flow.

» Example 6.1. In program P = {S1, So, S5, 54}, assume that def,(x) € S1, defy(z) € S,
use(z) € Sy. Due to the execution order, the def-use chain contains only defy(x) and use(x),
meaning the value of x used in Sy should be from defy(x).

In the original execution order S; — S — S3 — Sy, the value Val[z, S3] comes from
def4(x), and the variable z is live in S, since Val[z, S3] will be used in Sj.

In the new program, however, since the execution order is changed to S; — S3 — 52 — 54,
without our intervention, the value Val[z, S3] would come from def,(z), and the variable =
would no longer be live in S3. Such unexpected changes of the data flow may change the
semantics of the program. This is illustrated by Figure 10.

In general, it can be challenging to preserve the data flow while allowing change of
the execution order. While the technique of checkpointing has been used in intermittent
computing systems [31, 47, 34], it cannot solve our problem because checkpointing does not
involve splitting a program into two parts and then executing the two parts in an interleaved
order. For the program in Example 6.1, specifically, checkpointing techniques would have
failed to preserve the data flow.

To understand why checkpointing would fail, consider the fact that variable x is live
at the end of Sy, at the end of S3, and at the start of S;. Checkpointing would insert
nvm_ST(Val[z, S]) at the end of Sy and insert nvm_ST(Val[z, S3]) at the end of Ss. It would
also insert nvm_LD(Val[z, S5]) and nvm_LD(Val[z, S3]) at the start of Sy.

When executing P’ (S; — S3 — Sy — S4), nvm_LD(Val[z, S3]) would over-write
nvm_LD(Val[z, S]); thus, the value of x used in S; would be Val(z, S3) = def,(z). However,
in the original program, the value of z used in Sy is def,(z).

The fundamental reason why checkpointing techniques are ill-suited for our project is
that the liveness property of a program variable, which forms the theoretical foundation of

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

Y. Li and C. Wang

Precomuting

18:19

Section S
+ = \\
Online
Section §2 Precomputing Online
+ Section §; Section S,
Precomputing * *
Section S5
+ Precomputing Online
Section S, Section S,
Online~ \
Section S, Saoo
(a) Execution order of P (b) Execution order of new program P’

Figure 10 Difference in execution order means P and P’ are no longer functionally equivalent.

checkpointing techniques, is not preserved by the split of a program into the precomputation

and online computation parts. Thus, instead of relying on the liveness property, our method

relies on the def-use relations.

6.3 The Baseline Method

We first present the baseline method using the def-use relations, and then present the

optimized method in the next subsection.

Since we treat each segment as an atomic unit during transformation, we only need to
consider the def-use relations between segments. Thus, whenever two segments have def-use

relations, there can only be three scenarios:

(I) (Si,S;), meaning both are precomputation segments;

(IT) (S;, 5']->, meaning S; is a precomputation and S~j is an online computation; and

(IT1) (S;, S;), meaning both are online computation segments.

The fourth scenario, (S;, S;), is impossible due to our method for computing preSet.

In other words, a use in a precomputation segment always comes from a definition in a
precomputation segment, whereas a use in an online computation segment may come from a

definition in a precomputation or an online computation segment.

Furthermore, it suffices to handle only type (IT) case (S;,S;), because for the other two
cases, the value can be propagated directly between the two segments of the same type.

To maintain the def-use chains between precomputation and online computation segments
in the type (II) case, we must insert nvm_LD and nvm_ST instructions at the proper def and

use locations.

Thus, our baseline method can be summarized as follows: For each data-flow edge
(S:,8;)(x), we insert nvm_ST(Val[x, S;]) at the end of S;, and insert nvm_LD(Val[z, S;]) at

the start of \S;.

Recall the scenario shown in Example 6.1, where the def-use chain contains only defs(x)
and use(x). According to our baseline method, no NVM operation needs to be added, since
the def-use is of the type (III). The value of x used in Sy comes directly from def,(x).

ECOOP 2023

18:20

654

655
656

657

658
659
660
661
662
663
664

665

666
667
668
669
670
671
672
673
674

675

676

677

678

679

680

681

682

683

684
685
686
687
688
689
690
691
692

693

Constraint Based Compiler Optimization for Energy Harvesting Applications

6.4 The Optimized Method

Now, we present an optimization to avoid redundant NVM operations inserted by the baseline
method. To understand why some of the NVM operations inserted by our baseline method
may be redundant, consider the following example.

» Example 6.2. In {Sl,§2753,§4}, assume that def(x) € S1, usey(x) € S, uses(x) € Sy,
and the def-use chain contains both def (x)-usei(x) and def (x)-uses(x). Our baseline method
would insert

nvm_ ST(Val[z, S1]) after S1 (twice);

nvm_LD(Val[z, S1]) before So;

nvm_LD(Val[z, S1]) before Sy.
However, executing nvm_LD(Val[x, S1]) before S, is redundant because the value of x can be
propagated directly from So.

To avoid the redundant operations, we should insert nvm_LD of a def(z) at the start
of the earliest online computation segment where def(x) is available. For the program in
Example 6.2, the earliest segment is Sy, which means we should insert nvm_LD(Val[z, S1])
right before S.

Thus, our optimized method can be summarized as follows: For each data-flow edge
(Si,S;)(x) that we have not inserted nvm_ST(Val[z, S;]) after S;, insert nvm_ST(Val[z, S;])
after S; and insert nvm_LD(Val[z, S;]) before S, 1.

To understand the benefit of this optimization, let us compare the data flows of the
following two programs. If, for example, in the original program, Val[z, S;] is available (and
not killed) in the range

end[sl] - §i+1 — Sip2 = Si+3 — e (1)
and in the transformed program, Val[z,S;] is available (and not killed) in the range
end[S;] = Siy2 = Siya = Sige = - (2)

and nvm_LD Val[z, S;] has been inserted before S;;; in the transformed program, the loaded
value will also be available in the entire range

Si+1 = Siys = Sigs — Siqpr — -+ (3)

Therefore, we can avoid the other (redundant) nvm_LD operations before gi+3 . §i+7.

6.5 The Transformation Algorithm

To sum up, our optimized method for transforming each function f of the original program
based on preSet* is presented in Algorithm 3.

Our method first partitions the instructions in function f to precomputation segments
{S,;} and online computation segments {S;}. Next, it inserts if-condition to each segment
using the two flags, to differentiate the three use cases. Finally, for each data-flow edge
(Si,8;)(z), it insert NVM operations to store the value of variable z computed in S; (the
coupon) at the end of segment S;.

While in the baseline method, the coupon is loaded from NVM at the start of S’j, in the
optimized method, it is loaded at the start of the online computation segment §i+1. Loading
the coupon earlier provides the opportunity to eliminate many redundant NVM operations.

694

695

696

697

698

699

700

701

702

703

705

706

707

708

709

710

711

712

713

714

715

716

77

718

719

720

721

722

723

724

725

Y. Li and C. Wang

Algorithm 3 Transforming a function f in program P based on preSet*.

Partition f into segments {S;} and segments {S;};
Add if-condition to each segment using precom_flag and online_flag;
foreach data-flow edge denoted (S;, S;)(z) do
if there is no nvm_ST(Vallz, S;]) after segment S; then
Add nvm_ST(Val[z, S;]) after Sy;
Add nvm_LD(Val[z, S;]) before S, 1;
end

® NI o oA W N -

end

7 Experiments

We have implemented our method in a software tool, named COUPONMAKER, which builds
upon the LLVM compiler platform [29] and the Z3 SMT solver [11]. We leverage LLVM
to parse the C code of the original program, conduct inter-procedural dependency analysis
and implement the semantic-preserving transformation. We use Z3 to solve the constraint
satisfiability subproblems. In total, our implementation adds 1,852 lines of C++ code.

Our tool generates the LLVM bit-code of the optimized program as output, which in
turn is compiled to machine code for the MSP430 MCU. To evaluate the performance of the
optimized program, we use the cycle-accurate emulator MSPSim [38]. Specifically, we use
MSPSim to compute the latency and energy consumption of the optimized program, and
compare them with the latency and energy consumption of the original program.

7.1 Benchmarks

We evaluated COUPONMAKER on 26 benchmark programs, which are C programs imple-
menting lightweight cryptographic protocols. In total, they have 31,113 lines of C code.
Table 1 shows the statistics, where Columns 1-3 show the name, category, and source of each
program, and Column 4 shows the number of lines of code (LoC).

The benchmark programs fall into two groups. The first group consists of programs
that compute one-time signatures (W-OTS and Lamport) and the second group consists
of programs that implement block-ciphers (e.g., AES and Camellia). A one-time signature
scheme allows a message to be signed using a fresh key pair. Since any fresh key pair may
work for any message, it is possible to precompute many key pairs and store them as coupons
for future use. A block cipher divides a message into fixed-size blocks and then encrypts each
block. For example, AES-CTR encrypts each block by first encrypting a counter value and
then XOR-ing it with the plaintext to generate the ciphertext. The precomputing function
is responsible for encrypting the counter value. Since there are multiple blocks, different
counter values need to be encrypted. For each of the eight block-cipher programs, we also
configure it in three different modes, marked by suffixes -OFB, -CFB, and -CTR, respectively.

Our experiments were conducted on a computer with 2 GHz Intel Core i5 CPU and 16
GB memory. These experiments were designed to answer the following questions:

Is COouPONMAKER efficient in optimizing the benchmark programs?

Are the optimized programs better than the original programs in terms of both energy
efficiency and latency?

18:21

ECOOP 2023

18:22

726

727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745

746

747

748
749
750
751
752
753
754
755
756
757

758

Constraint Based Compiler Optimization for Energy Harvesting Applications

Table 1 Statistics of the benchmark programs.

‘ Name ‘ Category Source ‘ LoC
W-0TS One-time signature | Merkle signature [39] 1,062
Lamport One-time signature | Lamport signature[28] 339
AES Block cipher OpenSSL[36] 1,572
Camellia Block cipher OpenSSL[36] 708
DES Block cipher avr-crypto-lib[6] 1,277
Blowfish Block cipher OpenSSL[30] 1,112
skipjack Block cipher avr-crypto-lib[6] 475
GOST Block cipher OpenSSL[36] 357
SEED Block cipher OpenSSL[30] 476
CAST128 Block cipher OpenSSL[?] 963

7.2 Performance of the Optimization Tool

Table 2 shows the results of evaluating the optimization tool. Column 1 shows the benchmark
name. Column 2 shows the total running time in seconds. Column 3 shows the size of preSet,
which is the set of instructions that may be precomputed. Columns 4-5 compare the size
of the original and optimized programs, where the size is measured in the number of bytes
of the LLVM bit-code. Columns 6-8 show the details of the coupons stored in non-volatile
memory, including the number of coupons, and the total bytes, and whether the coupons
may be precomputed multiple times (copies).

Specifically, co in the last column means the coupons may be precomputed an unlimited
number of times, while 1 means they may be precomputed only once.

For programs that compute one-time signatures (W-OTS and Lamport), a theoretically
unbounded number of signatures (coupons) may be precomputed. For block-cipher programs
in the -OFB mode, the ciphertext of the first block may also be precomputed as many times
as possible (after the first block becomes available), and in the -CNT mode, the counter
CNT may be incremented as many times as possible and then pre-encrypted for future use.

For block-cipher programs in the -CFB mode, however, precomputation can only be done
once per block, i.e., after the current block arrives.

The results show that our method is able to analyze, optimize, and transform all benchmark
programs quickly. The total running time is limited to a few seconds. Moreover, the size of
the program before and after optimization changes moderately. Furthermore, the number
and size of precomputed coupons are significant for all programs.

7.3 Performance of the Optimized Programs

Table 3 shows the result of evaluating the performance of the optimized programs. These
results were obtained using the MSPSim tool for MSP430FR599x [24]. Since MSPSim
requires the programs to be executed under concrete test inputs, for one-time signature
programs (W-OTS and Lamport), we obtain the test inputs by signing a fixed-length message;
for block-cipher programs, we obtain the test inputs by encrypting sensor data that represent
a sequence of temperature measurements.

In the result table, Column 1 shows the benchmark name. Column 2 shows the energy
(1J) consumed by the original program. Columns 3-4 show the energy (uJ) consumed by the
optimized program, which is divided into the precomputing and online steps. Recall that in
energy-harvesting applications, energy reported in the F(pre) column is considered to be
free. Thus, the ratio in Column 5 represents the actual performance improvement.

759

760

761

762

763

765

766

767

768

769

770

771

772

773

774

775

776

777

Y. Li and C. Wang

Table 2 Performance of the analysis tool COUPONMAKER.

Name Time | PreSet Program Size Coupon Size
(s) Size orig. ‘ opti. | num ‘ bytes ‘ copies

W-OTS 5.26 1,632 16,116 | 21,704 3 1,152 o0
Lamport 4.08 1,000 14,268 | 19,116 2 512 00
AES-OFB 3.35 | 3,964 | 52,636 | 57,984 | 1 16| oo
AES-CFB 3.62 3,964 | 56,162 | 56,168 1 16 1
AES-CTR 373 | 4,064 | 53,164 | 58,584 | 1 16| oo
Camellia-OFB 3.37 1,412 20,228 | 25,276 1 16 00
Camellia-CFB 3.30 1,412 20,696 | 25,788 1 16 1
Camellia-CTR 3.89 1,460 24,964 | 29,984 1 16 00
DES-OFB 3.11 2,072 26,384 | 26,496 1 8 o0
DES-CFB 3.14 2,072 26,432 | 26,644 1 8 1
DES-CTR 3.05 | 2,112 | 26,896 | 27,556 | 1 8| oo
Blowfish-OFB 3.38 1,196 | 16,200 | 21,308 1 8 9]
Blowfish-CFB 3.27 1,196 16,180 | 21,288 1 8 1
Blowfish-CTR 3.70 1,242 16,636 | 21,724 1 8 00
skipjack-OFB 3.09 1,896 34,452 | 39,552 1 8 00
skipjack-CFB 3.26 1,896 | 34,404 | 39,536 1 8 1
skipjack-CTR | 3.32 | 1,040 | 34,864 | 40,008 | 1 8| oo
GOST-OFB 2.79 596 12,508 | 17,504 1 8 0
GOST-CFB 3.16 596 12,492 | 17,484 1 8 1
GOST-CTR 3.01 844 12,952 | 17,984 1 8 00
SEED-OFB 2.67 196 31,120 | 36,384 1 8 o0
SEED-CFB 2.68 196 31,100 | 36,368 1 8 1
SEED-CTR 3.11 340 31,564 | 36,852 1 8 o0
CAST128-OFB 2.49 352 46,628 | 51,748 1 8 00
CAST128-CFB 2.74 352 46,608 | 51,732 1 8 1
CAST128-CTR | 3.00 396 47,064 | 52,228 1 8 9]

The results show that the optimized programs significantly outperform the original
programs in terms of energy efficiency. The improvement ranges from 2.3X to 36.7X. We
also compared the latency of the original and optimized programs and observed a similar
improvement; we omit the result table due to space limit. Overall, these results show that
our method is effective in reducing the latency and energy cost.

7.4 Impact of the Precomputation Policy

Finally, we evaluate the impact of precomputation policy by computing the energy saving per
unit use of non-volatile memory storage, measured by qf = (E(ori) — E(on))/Size(coupon),
where ¢f stands for quality factor. The results are shown in Figure 11, where the z-axis
is the index of the array of benchmark programs and the y-axis is the quality factors (¢f)
achieved by the baseline and optimized methods for program transformation (Section 6).

In this figure, blue bars (optimal) correspond to the optimized precomputation policy
(preSet*), while orange bars (baseline) corresponds to the initial precomputation policy
(preSet). Here, a higher ¢f value corresponds to a better result. Overall, the optimized
precomputation policy leads to significantly better results.

For W-OTS, ¢f(optimal) is also significantly higher than ¢f(baseline). However, the ¢ f
values for W-OTS are not included in the figure, to avoid making the rest of the bar chart
less readable. This is because W-OTS takes several orders-of-magnitude more clock cycles
than the other programs, and thus has a much higher ¢f value.

18:23

ECOOP 2023

18:24

778

779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797

798

Constraint Based Compiler Optimization for Energy Harvesting Applications

Table 3 Evaluating reduction in energy cost on MSP430.

Name Original Program Optimized Program Improvement

E(ori) | free E(pre) ‘ E(on) | E(ori)/E(on)
W-0OTS 115565.43 56114.99 | 49576.70 2.3X
Lamport 355.91 287.31 82.71 4.3X
AES-OFB 89.06 87.96 4.85 18.4X
AES-CFB 90.67 87.96 6.46 14.0X
AES-CTR 89.23 88.15 3.36 26.5X
Camellia-OFB 28.66 27.56 4.85 5.9X
Camellia-CFB 30.27 27.56 6.46 4.7X
Camellia-CTR 28.84 27.75 4.87 5.9X
DES-OFB 198.84 197.87 5.42 36.7X
DES-CFB 200.56 197.88 7.14 28.1X
DES-CTR 199.18 198.25 5.45 36.6X
Blowfish-OFB 15.63 14.66 5.43 2.9X
Blowfish-CFB 17.35 14.66 7.14 24X
Blowfish-CTR 15.97 12.64 4.01 4.0X
skipjack-OFB 26.16 25.20 5.42 4.8X
skipjack-CFB 29.33 25.20 8.58 3.4X
skipjack-CTR 26.73 26.06 5.71 4.7X
GOST-OFB 29.10 29.01 2.59 11.3X
GOST-CFB 29.83 29.01 3.32 9.0X
GOST-CTR 29.65 29.61 2.62 11.3X
SEED-OFB 20.32 19.21 4.85 4.2X
SEED-CFB 21.92 19.21 6.45 3.4X
SEED-CTR 20.49 17.64 3.22 6.4X
CAST128-OFB 164.89 161.86 16.89 9.8X
CAST128-CFB 170.24 161.86 22.24 7.7X
CAST128-CTR 165.95 163.05 16.99 9.8X

8 Related Work

While prior work has shown the feasibility of optimizing energy-harvesting applications using
precomputation [46], optimization is performed manually; to the best of our knowledge, this is
the first automated optimization method. Compared to Suslowicz et al. [46], in particular, our
method can complete all of the optimization work with comparable performance. Moreover,
our method can support additional constraints for optimization, which the manual method
cannot deal with easily. Since our method is designed to preserve the original program
semantics, it is not meant for scenarios where the underlying algorithms are intended to be
rewritten according to some mathematical rules [4, 5] — automation for such transformation
is beyond the scope of this work.

Our method differs from the large number of intermittent computing techniques aimed
to improve general-purpose systems with a strong and yet unstable power supply; these
techniques [42, 34, 31, 47] focus on recovering from power loss using checkpointing, avoiding
the costly register accesses, or reducing the cost for loop-heavy programs [18, 17]. There are
also techniques for robustly supporting peripherals [45, 35]. However, none of them considers
the scenario where ambient energy source is ample but the computing device is idle, let alone
leveraging precomputation to reduce the energy cost.

There are also techniques for programming transiently-powered computers with both
volatile and non-volatile memory, for example, by leveraging the application’s memory access
patterns to manually optimize data placement [9, 31, 33], or mapping of code sections to
either volatile or non-volatile memory [25] based on where the optimal energy consumption

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

Y. Li and C. Wang

0.14

B gf(optimal)

0.12

0.08
0.06
0.
; 11 LLL snnhhhhhhnnn

R Q& & L & Q& & R > > L D R Q& K&
ooQéoQ%&o«é‘«éo‘*é“’sé‘*&&«é&’«éQ&

o

o
B

o
o

]
& ¢ € s \@ L “&\c,v g\\‘*\ S _\%&_,\%& & 00‘7 boé\ &G & &v WL@» &v
& & S S 8 & ©

Figure 11 The impact of the precomputation policy on performance improvement. Here, baseline
corresponds to preSet and optimal corresponds to preSet™*.

could be achieved. There are also efficient checkpointing techniques [21, 1] for CPUs with
fully non-volatile main memory. However, none of them focuses on automated program
optimization based on precomputation.

Constraint solving based techniques are widely used for program verification, repair and
optimization. For example, they have been used to debug concurrent software [27, 23] and
optimize the quality of embedded software [13]. They have also been used to mitigate side-
channel vulnerabilities [48, 19, 51, 49], including power side-channel leaks [53, 50]. However,
power side-channel mitigation focuses on eliminating tiny fluctuations in power consumption
that are also secret-dependent [14], instead of reducing the power consumption itself.

While our focus in this work is on optimizing software for energy-harvesting applications,
the underlying ideas may be applied to other applications of similar nature, e.g., precompu-
tation for Trusted Authority (TA) in the context of multi-party computation (multi-party
learning and predicting[52, 16]). Since the application domain is significantly different, to
deal with software used in such applications, our LLVM based implementation may need to
be updated accordingly — we leave this for future work.

9 Conclusion

We have presented a constraint based method for optimizing the energy efficiency of software
code running on devices powered by electricity harvested from the environment. Our method
is sound and fully automated. It relies on static program analysis to identify instructions
that may be precomputed, constraint solving to compute an optimal subset, and compiler
transformation to generate the new software code. Our experimental evaluation on a large
number of benchmark programs shows that the proposed method can handle all of the
benchmark programs quickly, and the optimized programs significantly outperform the
original programs in terms of both energy efficiency and latency.

18:25

ECOOP 2023

18:26

824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872

873

Constraint Based Compiler Optimization for Energy Harvesting Applications

—— References

1

10

11

12

13

14

15

Saad Ahmed, Naveed Anwar Bhatti, Muhammad Hamad Alizai, Junaid Haroon Siddiqui, and
Luca Mottola. Efficient intermittent computing with differential checkpointing. In Jian-Jia
Chen and Aviral Shrivastava, editors, ACM SIGPLAN/SIGBED International Conference on
Languages, Compilers, and Tools for Embedded Systems, pages 70-81. ACM, 2019.

Saad Ahmed, Muhammad Nawaz, Abu Bakar, Naveed Anwar Bhatti, Muhammad Hamad
Alizai, Junaid Haroon Siddiqui, and Luca Mottola. Demystifying energy consumption dynamics
in transiently powered computers. ACM Trans. Embed. Comput. Syst., 19(6):47:1-47:25, 2020.
James Allen, Matthew Forshaw, and Nigel Thomas. Towards an extensible and scalable
energy harvesting wireless sensor network simulation framework. In Walter Binder, Vittorio
Cortellessa, Anne Koziolek, Evgenia Smirni, and Meikel Poess, editors, Companion Proceedings
of the 8th ACM/SPEC on International Conference on Performance Engineering, ICPE 2017,
L’Aquila, Italy, April 22-26, 2017, pages 39—42. ACM, 2017.

Giuseppe Ateniese, Giuseppe Bianchi, Angelo Capossele, and Chiara Petrioli. Low-cost
standard signatures in wireless sensor networks: a case for reviving pre-computation techniques?
In Network and Distributed System Security Symposium, 2013.

Giuseppe Ateniese, Giuseppe Bianchi, Angelo T Capossele, Chiara Petrioli, and Dora Spenza.
Low-cost standard signatures for energy-harvesting wireless sensor networks. ACM Transactions
on Embedded Computing Systems, 16(3):64, 2017.

The avr-crypto-lib software package. https://github.com/cantora/avr-crypto-1lib. Ac-
cessed: 2019-09-26.

Domenico Balsamo, Alex S Weddell, Geoff V Merrett, Bashir M Al-Hashimi, Davide Brunelli,
and Luca Benini. Hibernus: Sustaining computation during intermittent supply for energy-
harvesting systems. IEEE Embedded Systems Letters, 7(1):15-18, 2015.

Alexei Colin, Graham Harvey, Brandon Lucia, and Alanson P. Sample. An energy-interference-
free hardware-software debugger for intermittent energy-harvesting systems. In Tom Conte and
Yuanyuan Zhou, editors, International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 577-589. ACM, 2016.

Alexei Colin and Brandon Lucia. Chain: tasks and channels for reliable intermittent programs.
In Eelco Visser and Yannis Smaragdakis, editors, ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Applications, pages 514-530. ACM,
2016.

Riccardo Dall’Ora, Usman Raza, Davide Brunelli, and Gian Pietro Picco. SensEH: From
simulation to deployment of energy harvesting wireless sensor networks. In IEEE 39th
Conference on Local Computer Networks, Edmonton, AB, Canada, 8-11 September, 2014 -
Workshop Proceedings, pages 566-573. IEEE Computer Society, 2014.

Leonardo De Moura and Nikolaj Bjgrner. Z3: An efficient SMT solver. In International
conference on Tools and Algorithms for the Construction and Analysis of Systems, pages
337-340. Springer, 2008.

The tiny Dutch startup solving the IoT industry’s battery problem. https://sifted.eu/
articles/nowi-dutch-startup-solving-iot-battery-problem/. Accessed: 2020-08-04.
Hassan Eldib and Chao Wang. An SMT based method for optimizing arithmetic computations
in embedded software code. In International Conference on Formal Methods in Computer-Aided
Design, pages 129-136. IEEE, 2013.

Hassan Eldib, Chao Wang, Mostafa M. I. Taha, and Patrick Schaumont. Quantitative masking
strength: Quantifying the power side-channel resistance of software code. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst., 34(10):1558-1568, 2015.

Joakim Eriksson, Fredrik Osterlind, Thiemo Voigt, Niclas Finne, Shahid Raza, Nicolas Tsiftes,
and Adam Dunkels. Accurate power profiling of sensornets with the COOJA/MSPSim
simulator. In IEEFE 6th International Conference on Mobile Adhoc and Sensor Systems, pages
1060-1061, 2009.

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

Y. Li and C. Wang

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and John
Wernsing. Cryptonets: Applying neural networks to encrypted data with high throughput
and accuracy. In International Conference on Machine Learning, pages 201-210, 2016.
Graham Gobieski, Brandon Lucia, and Nathan Beckmann. Intelligence beyond the edge:
Inference on intermittent embedded systems. In International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 199-213. ACM, 2019.
Graham Gobieski, Amolak Nagi, Nathan Serafin, Mehmet Meric Isgenc, Nathan Beckmann,
and Brandon Lucia. MANIC: A vector-dataflow architecture for ultra-low-power embedded
systems. In IEEE/ACM International Symposium on Microarchitecture, pages 670-684, 2019.
Shengjian Guo, Meng Wu, and Chao Wang. Adversarial symbolic execution for detecting
concurrency-related cache timing leaks. In ACM Joint Meeting on European Software Engin-
eering Conference and Symposium on the Foundations of Software Engineering, pages 377-388.
ACM, 2018.

Josiah D. Hester, Timothy Scott, and Jacob Sorber. Ekho: realistic and repeatable experi-
mentation for tiny energy-harvesting sensors. In Akos Lédeczi, Prabal Dutta, and Chenyang
Lu, editors, ACM Conference on Embedded Network Sensor Systems, pages 1-15. ACM, 2014.
Matthew Hicks. Clank: Architectural support for intermittent computation. In International
Symposium on Computer Architecture, pages 228-240. ACM, 2017.

Susan Horwitz and Thomas W. Reps. The use of program dependence graphs in software
engineering. In Tony Montgomery, Lori A. Clarke, and Carlo Ghezzi, editors, International
Conference on Software Engineering, Melbourne, Australia, May 11-15, 1992, pages 392—411,
1992.

Zunchen Huang and Chao Wang. Symbolic predictive cache analysis for out-of-order execution.
In International Conference on Fundamental Approaches to Software Engineering, pages
163-183. Springer, 2022.

Texas Instrument. MSP430FR599x Technical Documentation. ht-
tps://www.ti.com/product/ MSP430FR5994.

Hrishikesh Jayakumar, Arnab Raha, Jacob R. Stevens, and Vijay Raghunathan. Energy-aware
memory mapping for hybrid FRAM-SRAM mcus in intermittently-powered iot devices. ACM
Trans. Embed. Comput. Syst., 16(3):65:1-65:23, 2017.

Mustafa Emre Karagozler, Ivan Poupyrev, Gary K Fedder, and Yuri Suzuki. Paper generators:
harvesting energy from touching, rubbing and sliding. In ACM symposium on User interface
software and technology, pages 23-30, 2013.

Sepideh Khoshnood, Markus Kusano, and Chao Wang. ConcBugAssist: constraint solving for
diagnosis and repair of concurrency bugs. In International Symposium on Software Testing
and Analysis, pages 165-176. ACM, 2015.

The lamport_signature software package. https://github.com/detomastah/lamport_
signature. Accessed: 2019-09-26.

Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong program
analysis & transformation. In International Symposium on Code Generation and Optimization:
feedback-directed and runtime optimization, page 75, 2004.

The Libgcrypt software package. https://gnupg.org/software/libgcrypt/index.html. Ac-
cessed: 2019-09-26.

The Libmerypt software package. https://github.com/tugrul/libmcrypt-gyp/tree/
master. Accessed: 2019-09-26.

Brandon Lucia and Benjamin Ransford. A simpler, safer programming and execution model
for intermittent systems. ACM SIGPLAN Notices, 50(6):575-585, 2015.

Kaisheng Ma, Yang Zheng, Shuangchen Li, Karthik Swaminathan, Xueqing Li, Yongpan
Liu, Jack Sampson, Yuan Xie, and Vijaykrishnan Narayanan. Architecture exploration for
ambient energy harvesting nonvolatile processors. In IEEFE International Symposium on High
Performance Computer Architecture, pages 526-537, 2015.

18:27

ECOOP 2023

18:28

925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975

976

Constraint Based Compiler Optimization for Energy Harvesting Applications

34

35

36

37
38

39
40
41

42

43

44

45

46

47

48

49

50

51

52

53

Kiwan Maeng, Alexei Colin, and Brandon Lucia. Alpaca: intermittent execution without
checkpoints. Proc. ACM Program. Lang., 1(OOPSLA):96:1-96:30, 2017.

Kiwan Maeng and Brandon Lucia. Adaptive dynamic checkpointing for safe efficient intermit-
tent computing. In USENIX Symposium on Operating Systems Design and Implementation,
pages 129-144, 2018.

Kiwan Maeng and Brandon Lucia. Supporting peripherals in intermittent systems with
just-in-time checkpoints. In ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 1101-1116, 2019.

Shorter Merkle Signatures. https://www.openssl.org. Accessed: 2019-09-26.

Azalia Mirhoseini, Ebrahim M Songhori, and Farinaz Koushanfar. Idetic: A high-level synthesis
approach for enabling long computations on transiently-powered ASICs. In IEEE International
Conference on Pervasive Computing and Communications, pages 216-224, 2013.

The MSP430 emulator. https://github.com/contiki-ng/mspsim.

OpenSSL. https://www.openssl.org. Accessed: 2019-09-26.

Benjamin Ransford, Jacob Sorber, and Kevin Fu. Mementos: System support for long-running
computation on RFID-scale devices. In ACM SIGARCH Computer Architecture News, pages
159-170, 2011.

Thomas W. Reps, Susan Horwitz, and Shmuel Sagiv. Precise interprocedural dataflow analysis
via graph reachability. In Ron K. Cytron and Peter Lee, editors, ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, San Francisco, California, USA, January
28-25, 1995, pages 4961, 1995.

Emily Ruppel and Brandon Lucia. Transactional concurrency control for intermittent, energy-
harvesting computing systems. In ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 1085-1100, 2019.

Alanson P Sample, Daniel J Yeager, Pauline S Powledge, Alexander V Mamishev, and Joshua R
Smith. Design of an rfid-based battery-free programmable sensing platform. IEEFE transactions
on instrumentation and measurement, 57(11):2608-2615, 2008.

Claude E. Shannon. Communication theory of secrecy systems. Bell Syst. Tech. J., 28(4):656—
715, 1949.

Milijana Surbatovich, Limin Jia, and Brandon Lucia. I/O dependent idempotence bugs in
intermittent systems. Proceedings of the ACM on Programming Languages, 3(OOPSLA):183,
2019.

Charles Suslowicz, Archanaa S Krishnan, and Patrick Schaumont. Optimizing cryptography
in energy harvesting applications. In Proceedings of the Workshop on Attacks and Solutions in
Hardware Security, pages 17-26. ACM, 2017.

Joel Van Der Woude and Matthew Hicks. Intermittent computation without hardware support
or programmer intervention. In USENIX Symposium on Operating Systems Design and
Implementation, pages 17-32, 2016.

Chao Wang and Patrick Schaumont. Security by compilation: an automated approach to
comprehensive side-channel resistance. ACM SIGLOG News, 4(2):76-89, 2017.

Jingbo Wang, Chungha Sung, Mukund Raghothaman, and Chao Wang. Data-driven synthesis
of provably sound side channel analyses. In International Conference on Software Engineering,
pages 810-822. IEEE, 2021.

Jingbo Wang, Chungha Sung, and Chao Wang. Mitigating power side channels during
compilation. In ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pages 590-601. ACM, 2019.

Meng Wu, Shengjian Guo, Patrick Schaumont, and Chao Wang. Eliminating timing side-
channel leaks using program repair. In Frank Tip and Eric Bodden, editors, ACM SIGSOFT
International Symposium on Software Testing and Analysis, pages 15-26. ACM, 2018.

Jiawei Yuan and Shucheng Yu. Privacy preserving back-propagation neural network learning
made practical with cloud computing. IEEE Transactions on Parallel and Distributed Systems,
25(1):212-221, 2013.

Y. Li and C. Wang 18:29

o7 54 Jun Zhang, Pengfei Gao, Fu Song, and Chao Wang. SClInfer: Refinement-based verification
978 of software countermeasures against side-channel attacks. In International Conference on
979 Computer Aided Verification, pages 157-177. Springer, 2018.

ECOOP 2023

	1 Introduction
	2 Background
	2.1 The Hardware Platform
	2.2 The Software Program
	2.2.1 The Original Program
	2.2.2 Dividing into Two Parts
	2.2.3 Challenges in Optimization
	2.2.4 The Optimized Program

	3 Overview of Our Method
	3.1 The Top-Level Procedure
	3.2 The Technical Challenges

	4 Identifying the Precomputation Set
	4.1 Inter-Procedural Dependencies
	4.2 Iteratively Computing preSet
	4.2.1 Handling Loops

	5 Optimizing the Precomputation Set
	5.1 The Motivation
	5.2 The Problem Statement
	5.3 Defining the Value and Cost Functions
	5.3.1 Value
	5.3.2 Cost

	5.4 Symbolic Encoding of the Constraints
	5.4.1 Dependency Constraint
	5.4.2 Value Constraint
	5.4.3 Cost Constraint

	5.5 Solving the Constraints

	6 Transforming the Program
	6.1 The Terminology
	6.2 The Problem
	6.3 The Baseline Method
	6.4 The Optimized Method
	6.5 The Transformation Algorithm

	7 Experiments
	7.1 Benchmarks
	7.2 Performance of the Optimization Tool
	7.3 Performance of the Optimized Programs
	7.4 Impact of the Precomputation Policy

	8 Related Work
	9 Conclusion

