
Constraint Based Compiler Optimization for1

Energy Harvesting Applications2

Yannan Li1
#3

University of Southern California, USA4

Chao Wang #5

University of Southern California, USA6

Abstract7

We propose a method for optimizing the energy efficiency of software code running on small computing8

devices in the Internet of Things (IoT) that are powered exclusively by electricity harvested from9

ambient energy in the environment. Due to the weak and unstable nature of the energy source,10

it is challenging for developers to manually optimize the software code to deal with mismatch11

between the intermittent power supply and the computation demand. Our method overcomes the12

challenge by using a combination of three techniques. First, we use static program analysis to13

automatically identify opportunities for precomputation, i.e., computation that may be performed14

ahead of time as opposed to just in time. Second, we optimize the precomputation policy, i.e., a way15

to split and reorder steps of a computation task in the original software to match the intermittent16

power supply while satisfying a variety of system requirements; this is accomplished by formulating17

energy optimization as a constraint satisfiability problem and then solving the problem using an18

off-the-shelf SMT solver. Third, we use a state-of-the-art compiler platform (LLVM) to automate19

the program transformation to ensure that the optimized software code is correct by construction.20

We have evaluated our method on a large number of benchmark programs, which are C programs21

implementing secure communication protocols that are popular for energy-harvesting IoT devices.22

Our experimental results show that the method is efficient in optimizing all benchmark programs.23

Furthermore, the optimized programs significantly outperform the original programs in terms of24

energy efficiency and latency, and the overall improvement ranges from 2.3X to 36.7X.25

2012 ACM Subject Classification Software and its engineering → Compilers; Theory of computation26

→ Constraint and logic programming27

Keywords and phrases Compiler, energy optimization, constraint solving, cryptography, IoT28

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.1829

Funding This work was partially funded by the U.S. NSF grants CNS-1702824 and CCF-2220345.30

1 Introduction31

Energy harvesting is an environment-friendly technology that converts ambient energy in the32

environment such as sunlight, RF emission, and vibration into electricity [40, 37, 7, 32, 34,33

31, 47]. When being used to power small computing devices in the Internet of Things (IoT),34

it avoids a main problem in the deployment of IoT at scale, which is the need to frequently35

change batteries [12]. Due to this reason, energy harvesting has been increasingly used in36

real-world deployment of IoT devices [43, 26]. However, due to the weak and unstable nature37

of the energy source, it is often challenging for developers to manually optimize the software38

code running on these IoT devices, to deal with problems caused by mismatch between the39

intermittent power supply and the often unpredictable computation demand.40

Consider an IoT device powered by electricity harvested from sunlight as an example.41

During the day time, there may be significantly more harvested electricity than the combined42

1 Corresponding author

© Yannan Li and Chao Wang;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 18; pp. 18:1–18:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

Y. Li and C. Wang 18:3

Original

Program

LLVM

Bitcode

MSP430

Emulation

LLVM

Bitcode

Dependency

Analysis

Identifying

preSet

Static Analysis

Constraint

Solving

Optimizing

preSet

Optimization

Equivalence

Analysis

Refactoring

Code

Transformation

Figure 2 The overall flow of our constraint based method for energy optimization.

There are two main benefits. The first one is reduction in latency for the online computa-74

tion part, since a significant portion of the computation task has been completed ahead of75

time. The second one is increase in the number of computation tasks that can be completed76

by the device. As a concrete example, Suslowicz et al. [46] show that, for a popular secure77

communication protocol based on one-time pad (OTP) [44], using precomputed OTPs for78

sensor data encryption reduces the energy cost of the online computation to 5% of the79

original energy cost needed for AES-OFB. Since the energy used to precompute OTPs is80

free, the overall energy reduction is close to 18 times (18X). To understand what this means,81

consider an IoT device that must complete 20 tasks during the day time and 20 tasks during82

the night time, but the electricity stored in the supercapacitor is only enough to support83

the completion of 2 tasks during the night time. Without precomputation, the device may84

be able to complete 20 tasks during the day time and only 2 tasks during the night time.85

By leveraging the coupons precomputed during the day time, the same device is able to86

complete 20 tasks and 20 partial tasks during the day time and finish off these 20 partial87

tasks during the night time.88

However, to obtain the aforementioned benefits of precomputation, the current state of89

the art [4, 5, 46] requires a domain expert to optimize the software code manually, which90

is not only labor intensive but also error prone. Furthermore, the domain expert must be91

familiar with both the functionality of the software code and the energy characteristics of92

the hardware platform. The domain expert must also consider all of the system requirements93

while making the trade-off between energy reduction and increase in storage cost. In addition,94

manual optimization does not respond well to frequent software updates in practice: if the95

original software code is updated due to a bug fix or a security patch, there will be no easy96

way to update the manually-optimized software code.97

To solve these problems, we propose a fully automated method for optimizing the energy98

efficiency of software running on energy-harvesting IoT devices. Toward this end, we must99

overcome three technical challenges. The first challenge is to identify the precomputation100

opportunities from the original software code automatically. The second challenge is to101

optimize the precomputation policy by exploiting the energy–storage trade-off and deciding102

which part of the computation task should be precomputed and which part of the computation103

task should be computed just in time. The third challenge is to automatically transform the104

software code to implement the energy optimization policy.105

Figure 2 shows the overall flow of our method, which builds upon the state-of-the-art106

LLVM compiler platform [29]. Given the original program, our method takes three steps107

to produce the optimized program. In the first step, our method conducts a static analysis108

of the original program to identify precomputation opportunities, which are captured by109

preSet — the set of instructions in the program that may be computed ahead of time. In the110

second step, our method computes an optimal subset of preSet based on a variety of system111

ECOOP 2023

18:4 Constraint Based Compiler Optimization for Energy Harvesting Applications

requirements, to minimize the energy cost while satisfying all requirements, including the112

storage limit of non-volatile memory used to save precomputation results. In the third step,113

our method leverages the LLVM compiler to generate the optimized program that has the114

ability to load the precomputation results from non-volatile memory and leverage them to115

speed up the just-in-time (online) computation part of the task. Finally, we evaluate the116

performance of the optimized programs on a popular hardware platform (MSP430 [24]) for117

energy-harvesting applications.118

At the center of our method is a constraint based technique for optimizing the precom-119

putation policy. The policy captures a solution to the complex optimization problem. The120

optimization problem is complex for several reasons. First, just because an instruction may121

be precomputed does not mean it is beneficial to precompute it, since precomputing does122

not always reduce energy cost; there is a trade-off between the cost of storing a precomputed123

coupon and the benefit of avoiding computing it directly. Second, decisions on which in-124

structions to precompute cannot be made in isolation, since many of these instructions are125

dependent on each other; the precomputation policy has to consider all of the intra- and126

inter-procedural control- and data-flow dependencies in the program. Third, the size of the127

non-volatile memory used to store the precomputed coupons may not grow monotonically128

with the number of precomputed instructions, and furthermore, not all intermediate compu-129

tation results in the program need to be stored as coupons in non-volatile memory. We will130

use concrete examples in Section 2 to illustrate these challenges and our proposed solution131

to overcome these challenges.132

To demonstrate the effectiveness of our method, we have implemented and evaluated it133

on a large number of benchmark programs. Our implementation builds upon the LLVM134

compiler [29] and the Z3 SMT solver [11]. Specifically, we use LLVM to parse the original135

software code (written in the C language), conduct static program analysis, and generate the136

optimized software code; we use Z3 to solve the constraint satisfiability problems formulated137

by our method. Our tool was evaluated on 26 benchmark programs, which are C programs138

implementing popular secure communication protocols for IoT devices; in total, they have139

31,113 lines of C code (LoC). The LoC of each program ranges from 339 to 1,572. Our target140

hardware platform is MSP430 [24], a family of ultra-low-power microcontroller units (MCUs)141

popular for energy-harvesting IoT applications.142

Our experimental results are promising. In terms of the efficiency of our method, the143

experimental evaluation shows that all of the benchmark programs can be optimized by our144

tool quickly, and the optimization time is always limited to a few seconds. In terms of the145

effectiveness of our method, the experimental evaluation shows that all of the optimized146

programs significantly outperform the original programs in terms of energy efficiency and147

latency. Specifically, reduction in the overall energy cost ranges from 2.3X to 36.7X.148

To summarize, this paper makes the following contributions:149

We propose a compiler based technique for automatically identifying precomputation150

opportunities in the software code using static analysis and then exploiting these oppor-151

tunities using a semantic-preserving program transformation.152

We formulate energy optimization as a constraint satisfiability problem and solve the153

problem using an off-the-shelf SMT solver; this approach is not only flexible but also154

efficient in minimizing the energy cost while satisfying a variety of system requirements.155

We implement the method using a state-of-the-art compiler (LLVM) and a popular156

hardware platform (MSP430) for energy-harvesting applications, and demonstrate the157

effectiveness on a large number of benchmark programs.158

Y. Li and C. Wang 18:5

2 Background159

We review the technical background, including the characteristics of the hardware platform160

(MSP430) and an example software program to motivate our approach.161

2.1 The Hardware Platform162

MSP430 is a family of microcontroller units (MCUs) based on a 16-bit RISC instruction set163

architecture. Due to our focus on energy-harvesting applications, we are concerned with a164

subset of MSP430 MCUs that have the main memory partitioned into the volatile part and165

the non-volatile part. Depending on the application, data may be stored either in volatile166

memory or in non-volatile memory. These MCUs have a large number of configuration167

parameters, including sixteen nominal frequencies in the range 0.06 MHz to 16 MHz. For168

example, they may run in a low-power mode at the clock frequency of 1 MHz and the supply169

voltage of 1.8V, or in a high-performance mode at the clock frequency of 16 MHz and the170

supply voltage of 2.9V.171

Since MSP430 MCUs are designed for low-power applications, they have no instruction172

cache or data cache. Unlike high-end CPUs widely used in servers and desktops, which173

routinely use advanced frequency or voltage scaling techniques, low-power MCUs such as174

MSP430 have significantly simpler energy models: fluctuations in power consumption are175

primarily due to the dynamics in supply voltage and clock speed. In fact, power consumption176

may be modeled using a non-linear function derived by empirically measuring the impact of177

varying voltage supplies and clock speeds on the power consumption of real hardware for all178

possible MCU configurations [2].179

Accurate compile-time analysis for energy prediction [10, 3] is well studied topic for180

transiently powered computing systems [2], where software developers need to know the181

worst-case energy cost of a computation task, to maximize the software’s utilization of the182

electricity harvested from the environment and to ensure timely checkpointing of the program183

state before loss of power. The accuracy of such compile-time analysis techniques have come184

close to direct hardware emulation. While direct hardware emulation [20, 8] offers the highest185

possible accuracy due to the direct measurement on target hardware, it does not offer the186

level of convenience and automation desired at the early stages of software development.187

In this work, we evaluate our proposed method using MSPSim [15, 38], which is a188

popular compile-time analysis tool for MSP430, Specifically, we use MSPSim to compute and189

then compare the latency and energy cost of all benchmark programs, before and after our190

constraint-based optimization. MSPSim allows the developer to tag a piece of the software191

code for which energy consumption will be estimated. It does this by first generating the192

assembly code for MSP430, and then analyzing the assembly code to compute the number of193

MCU cycles needed to execute each basic block. Then, it estimates the energy consumption194

of each basic block based on the empirically derived energy model, the supply voltage, and195

the clock speed of the device.196

At a high level, the energy consumption depends on the supply voltage as well as the197

electrical current for a given resistance of the MCU, the latter of which in turn depends on198

the supply voltage and the clock speed. For more details on the energy model used in such199

compile-time analysis tools, refer to Ahmed et al. [2].200

ECOOP 2023

18:6 Constraint Based Compiler Optimization for Energy Harvesting Applications

1 __interrupt void ISR(void) {
2 if (msg_ready) {
3 wots(msg, pub_key, sig);
4 //Send the pair <pub_key,sig> to verifier;
5 }
6 }
7 void wots(MSG msg, KEY pub_key, SIG sig) {
8 gen_key(priv_key, pub_key);
9 sign(msg, priv_key, sig);

10 }

Figure 3 An example program that invokes the W-OTS routine when msg is ready. Here,
msg_ready and msg are global variables updated by other functions not presented in this figure. For
wots(), msg is the input while pub_key and sig are the output. For gen_key(), both priv_key and
pub_key are the output. For sign(), msg and priv_key are the input while sig is the output.

2.2 The Software Program201

Figure 3 shows the program, where ISR stands for the interrupt service routine. Assume that202

the routine is triggered periodically by a timer. Whenever the input data stored in msg is203

ready, the subroutine wots() is invoked (Line 3). It implements a hash-based cryptographic204

primitive called the Winternitz one-time signature (W-OTS [39]). Here, msg is the input,205

while pub_key and sig are the output. After generating the output, the device sends the206

pair (pub_key,sig) to a verifier on a remote server (Line 4).207

Let us take a closer look at the routine wots() defined in Lines 7-10, which consists of208

two subroutines. The subroutine gen_key() is invoked first, which returns a fresh pair of the209

private key priv_key and the public key pub_key as output. Then, the subroutine sign()210

is invoked, which takes msg and priv_key as input and returns the signature sig as output.211

Since the input msg may be sensor data generated just in time, in the context of our212

work, it is called an online input. Furthermore, any output or intermediate variable that is213

control- or data-dependent on the online input must be computed just in time. In contrast,214

results that do not depend on the online input may be computed ahead of time.215

2.2.1 The Original Program216

Figure 4 shows the definitions of the two subroutines invoked by wots(). The subroutine217

sign() in Line 7 takes msg and priv_key as input and returns sig as output. While msg is218

an online input, priv_key is computed by the subroutine gen_key(). In this sense, sign()219

depends on gen_key().220

The subroutine gen_key() does not have any input, and thus does not depend on221

any other subroutine. More importantly, it does not depend on any online input. Thus,222

gen_key() may be executed ahead of time, e.g., whenever ambient energy is available to223

the harvester. It means that both priv_key and pub_key may be computed ahead of time.224

These precomputed keys may be saved to non-volatile memory as coupons, and later used by225

sign() to encrypt the online input msg.226

Although the subroutine sign() partially depends on the online input msg, and thus227

cannot be executed ahead of time in its entirety, a significant part of the function body can228

still be executed ahead of time. Specifically, the subroutine gen_random() does not depend229

on the online input at all, and the subroutine memcpy() depends only on rand computed by230

gen_random(); thus, both subroutines can be computed ahead of time.231

If we continue this analysis by going down the chain of function calls, we may identify232

Y. Li and C. Wang 18:7

1 gen_key(priv_key, pub_key) {
2 gen_random(priv_key, PRIV_KEY_SIZE);
3 sha256_init(&keyHash);
4 sha256_update(&keyHash, priv_key, PRIV_KEY_SIZE);
5 sha256_final(&keyHash, pub_key);
6 }
7 sign(msg, priv_key, sig) {
8 gen_random(rand, SHA_BLK_SIZE);
9 memcpy(sig, rand, SHA_BLK_SIZE);

10 message_digest(digest_bits, sig, msg);
11 gen_sig(sig, priv_key, digest_bits);
12 }

Figure 4 Definitions of the subroutines used by the W-OTS routine.

1 wots_precom(msg, pub_key, sig) {
2 gen_key(priv_key, pub_key);
3 //NVM-Store <priv_key, pub_key> to coupon pool;
4 sign_precom(msg, priv_key, sig);
5 }
6 wots_online(msg, pub_key, sig) {
7 //NVM-Load <priv_key, pub_key> from coupon pool;
8 sign_online(msg, priv_key, sig);
9 }

10 gen_key(priv_key, pub_key) {
11 gen_random(priv_key, PRIV_KEY_SIZE);
12 sha256_init(&keyHash);
13 sha256_update(&keyHash, priv_key, PRIV_KEY_SIZE);
14 sha256_final(&keyHash, pub_key);
15 }
16 sign_precom(msg, priv_key, sig) {
17 gen_random(rand, SHA_BLK_SIZE);
18 memcpy(sig, rand, SHA_BLK_SIZE);
19 //NVM-Store <sig> to coupon pool;
20 }
21 sign_online(msg, priv_key, sig) {
22 //NVM-Load <sig> from coupon pool;
23 message_digest(digest_bits, sig, msg);
24 gen_sig(sig, priv_key, digest_bits);
25 }

Figure 5 Conceptually, the program may be divided into two parts (precom and online).

more precomputation opportunities, e.g., instructions inside subroutines message_digest()233

and gen_sig(). In our proposed method, this process of systematically identifying these234

precomputation opportunities is automated, based on static program analysis techniques.235

2.2.2 Dividing into Two Parts236

Based on the precomputation opportunities identified by static program analysis, the original237

program may be divided into two parts: the precomputation (precom) part and the online238

computation (online) part, as shown by Figure 5.239

Specifically, top-level routine wots() is divided into wots_precom() and wots_online().240

The subroutine wots_precom() may be invoked ahead of time, since it does not depend on241

the online input msg at all. After invoking gen_key() to compute the public and private242

keys, denoted priv_key and pub_key, it stores them in non-volatile memory (Line 3). Then,243

it invokes sign_precom() defined in Line 16, to compute the signature sig, before storing it244

ECOOP 2023

18:8 Constraint Based Compiler Optimization for Energy Harvesting Applications

in non-volatile memory (Line 19).245

The subroutine wots_online() must be invoked just in time, since it depends on the246

online input msg. This subroutine first loads the precomputed keys priv_key and pub_key247

from non-volatile memory (Line 7) and then invokes sign_online() defined in Line 21.248

Inside sign_online(), the precomputed signature sig is loaded from non-volatile memory249

(Line 22) and then used together with msg and priv_key to compute the final version of the250

signature sig (Lines 23-24).251

According to our experimental evaluation (presented in Section 7), on low-power devices252

such as MSP430, this kind of precomputation can reduce the energy cost of running W-OTS253

to 42.89% of the original cost. In other words, it is more than 2.3X reduction. Thus, with254

the same amount of electricity used to run the original W-OTS program once, now, we can255

run the optimized W-OTS program 2.3 times.256

2.2.3 Challenges in Optimization257

Just because an instruction may be precomputed (i.e., it does not depend on any online258

input) does not mean that it is beneficial to do so, since precomputation does not always259

reduce the energy cost. Depending on the hardware platform, it is possible for the cost of260

storing and retrieving the precomputed result to outweigh the benefit.261

For example, in Line 18 of Figure 5, if we choose to precompute memcpy() inside the262

subroutine sign(), the energy cost of loading the precomputed coupon sig from non-volatile263

memory may be slightly higher than the energy needed to execute memcpy() directly. If that264

is the case, precomputation should be avoided.265

In general, whether precomputation is beneficial or not depends on both the software266

and the hardware. Consider the characteristics of volatile and non-volatile memory used267

in MSP430FR5969 [24] as an example. According to the hardware data-sheet, at the clock268

frequency of 8 MHz, the energy per clock cycle is 0.33 nJ for volatile memory, but is 0.42 nJ269

for non-volatile memory. This kind of information must be considered during optimization.270

Furthermore, decisions on which instructions to precompute cannot be made in isolation,271

since many of these instructions are dependent on each other according to the control and272

data flows of the program. Therefore, we must consider all of the intra- and inter-procedural273

control- and data-flow dependencies in the program while performing the optimization.274

These are the reasons why we propose the constraint based method. By first formulating275

it as a constraint satisfiability problem and then solving the problem using an off-the-shelf276

SMT solver, we are able to optimally partition the program into the precomputation part277

and the online computation part, while satisfying a variety of requirements coming from the278

hardware platform as well as the software program.279

2.2.4 The Optimized Program280

To keep the size of the optimized program small, we do not actually divide the program into281

two parts as shown by Figure 5. Instead, we keep the two parts in a single program, and try282

to retain the original control and data flows of the program as much as possible.283

Figure 6 illustrates our method by showing the optimized program for the original program284

in Figure 4. Our method adds two parameters, precom_flag and online_flag, to represent285

the following three use cases:286

When ⟨ precom_flag,online_flag ⟩ = ⟨ true,false ⟩, it does precomputation.287

When ⟨ precom_flag,online_flag ⟩ = ⟨ false,true ⟩, it does online computation.288

When ⟨ precom_flag,online_flag ⟩ = ⟨ true,true ⟩, it acts as the original program.289

Y. Li and C. Wang 18:9

1 wots_trans(msg, pub_key, sig, precom_flag, online_flag) {
2 if (precom_flag == true)
3 gen_key(priv_key, pub_key);
4 if (!online_flag)
5 //NVM-Store <priv_key, pub_key> to coupon pool;
6 if (!precom_flag)
7 //NVM-Load <priv_key, pub_key> from coupon pool;
8 sign_trans(msg, priv_key, sig, precom_flag, online_flag);
9 }

10 sign_trans(msg, priv_key, sig, precom_flag, online_flag) {
11 if (precom_flag == true) {
12 gen_random(rand, SHA_BLK_SIZE);
13 memcpy(sig, rand, SHA_BLK_SIZE);
14 }
15 if (!online_flag)
16 //NVM-Store <sig> to coupon pool;
17 if (!precom_flag)
18 //NVM-Load <sig> from coupon pool;
19 if (online_flag == true) {
20 message_digest(digest_bits, sig, msg);
21 gen_sig(sig, priv_key, digest_bits);
22 }
23 }

Figure 6 Merging the two parts into a single optimized W-OTS routine.

1 __interrupt void ISR(void) {
2 if(!msg_ready) {
3 if (ambient_energy_available)
4 wots_trans(NULL, pub_key, sig, true, false); //precom (part 1)
5 }
6 else {
7 if (!ambient_energy_available)
8 wots_trans(msg, pub_key, sig, false, true); //online (part 2)
9 else

10 wots_trans(msg, pub_key, sig, true, true); //combined (part 1 + part 2)
11 //Send the pair <pub_key,sig> to verifier;
12 }
13 }

Figure 7 Different scenarios for invoking the optimized W-OTS routine.

Compared to the original program in Figure 4, the only difference in Figure 6 is the290

addition of two flags as input parameters of some of the subroutines, together with the if-291

conditions that indicate whether a code block should be executed during the precomputation292

step or during the online computation step.293

Figure 7 shows how the optimized program may be invoked by the interrupt service294

routine. Unlike what is shown in Figure 3, here, precomputation is performed when msg is295

not available but ambient energy is available (Line 4). When msg is available, it depends296

on whether ambient energy is still available. If ambient energy is not available, then online297

computation is performed (Line 8). However, if ambient energy is available, operations that298

access non-volatile memory will be skipped, which makes wots_trans() behaves exactly the299

same as the original program (Line 10).300

ECOOP 2023

18:10 Constraint Based Compiler Optimization for Energy Harvesting Applications

3 Overview of Our Method301

We first present our top-level procedure and then outline the main technical challenges.302

3.1 The Top-Level Procedure303

Algorithm 1 shows our top-level procedure. The input consists of the original program (P),304

the online input (OI) of the program, and the system constraint (C). The output is the305

optimized program (P ′).306

Algorithm 1 The top-level procedure of our method.

input : original program P , online input OI, system constraint C

output : optimized program P ′

1 PDG← ConstructPDG (P);

2 preSet← IdentifyPreSet (P , PDG, OI);

3 preSet∗ ← OptimizePreSet (preSet, PDG, C);

4 P ′ ← Transform (P , PDG, preSet∗);

5 return P ′

For the running example in Figure 3, where the entry function is wots(), the online input307

is OI = ¶msg♢, since msg is the only input value that must be ready at run time. C consists308

of a set of platform-dependent requirements, e.g., the size of non-volatile memory used to309

store coupons must be limited to ≤256 KB.310

In Algorithm 1, our method first constructs a program dependency graph (PDG) for the311

program P . Then, our method uses the PDG and the set of variables in the online input OI312

to compute preSet, which is the set of instructions in P that may be precomputed. Next, it313

computes preSet∗, which is a subset of preSet that represents the optimal solution to the314

constraint satisfiability problem. Finally, our method transforms the program P to a new315

program P ′ based on the information stored in both PDG and preSet∗.316

Before presenting the detailed algorithms inside the subroutines IdentifyPreSet(),317

OptimizePreSet() and Transform(), we point out the main technical challenges.318

3.2 The Technical Challenges319

The first challenge, related to the subroutine IdentifyPreSet(), is the complex nature of320

the program dependency analysis. In Figures 3 and 4, for example, we observe that the321

subroutine sign() depends on gen_key(); furthermore, the subroutine gen_sig() invoked322

by sign() depends on gen_key(). It means that we must consider not only dependencies of323

instructions within each subroutine, but also dependencies between subroutines.324

Moreover, since we aim to transform individual functions of the original program without325

changing the overall function call structure, each function must be analyzed in all of its326

calling contexts, to figure out how the function body should be optimized. In Figure 4, for327

example, it means that since gen_random() is called by both gen_key() and sign(), we328

must consider both calling contexts.329

The second challenge, related to the subroutine OptimizePreSet(), is optimizing the330

precomputation policy while satisfying a variety of system constraints. Given preSet (which331

is the set of instructions that may be computed), we need to identify a proper subset. For the332

MSP430 family of microcontroller units, a limiting factor may be the capacity of non-volatile333

memory, only part of which may be dedicated to coupon storage. In general, this is a334

Y. Li and C. Wang 18:11

non-linear optimization problem, e.g., the storage cost may not increase linearly, or even335

monotonically, as more instructions are added to the precomputation set.336

In Figure 4, for example, the cost of precomputing only Lines 2-4 is size(priv_key) +337

size(keyHash), where size() denotes the size of non-volatile memory for storing the value.338

However, the cost of precomputing Lines 2-5 is size(priv_key) + size(pub_key), because339

keyHash no longer needs to be stored in non-volatile memory. Since size(pub_key) is much340

smaller than size(keyHash) in the W-OTS example, this means that precomputing one more341

line actually decreases the overall storage cost.342

The third challenge, related to the subroutine Transform(), is the difficulty in preserving343

functional equivalence while allowing the program to change its execution order and data344

flow. For example, if we want to precompute Line 2 and Line 8 in Figure 4, we must modify345

the program to ensure that the original execution order (Line l3 executed before Line l8)346

changes to the new execution order (l8 executed before l3); at the same time, we must ensure347

that the original data flow priv_key(l2)− l3, l4, l5− l8 changes to priv_key(l2)− l8− l3, l4, l5.348

While doing so for this particular example may seem easy, in general, maintaining functional349

equivalence during such program transformation can be challenging.350

4 Identifying the Precomputation Set351

In this section, we present our method for computing preSet, as shown in Algorithm 2. It352

takes the program P , the program dependency graph PDG, and the online input OI as353

parameters, and return preSet as output.354

Algorithm 2 The subroutine IdentifyPreSet (P, P DG, OI).

1 Let pred(inst) be a predecessor node of instruction inst in the PDG

2 preSet← ¶elementary instructions in P♢ ∪ (¶input parameters of P♢ \OI)

3 while ∃inst ∈ preSet and pred(inst) ̸∈ preSet do

4 remove inst from preSet

5 end

6 return preSet

Recall that preSet is the set of instructions in P that may be computed ahead of time.355

Internally, our method computes preSet in two steps. The first step is identifying the inter-356

procedural dependencies related to the online input OI. These dependencies will be captured357

by function such as pred(inst), preds(inst), and succs(inst), which returns the predecessor,358

set of predecessors, and set of successors of an instruction inst, respectively. The second step359

is leveraging these dependencies to compute the instructions in preSet.360

In Algorithm 2, initially, preSet consists of all the elementary instructions and input361

parameters of P , except for the ones in OI. Variables in OI are excluded because they are362

the online variables. Here, an elementary instruction means that during our analysis the363

instruction will be treated as a whole. First, non-function-call instructions are elementary364

instructions. Second, when an instruction invokes a function call, whether it is elementary365

depends on how many times the function is called. If the function is called only once, it is not366

treated as an elementary instruction; instead, we enter the function body to try to identify367

more precomputation opportunities. But if the function is called from multiple sites, we368

treat each call as an elementary instruction, meaning that we do not enter the function body369

to explore further. This is a reasonable compromise since, when a function is called from370

ECOOP 2023

18:12 Constraint Based Compiler Optimization for Energy Harvesting Applications

8 2: msg_ready

9

4

(a) The PDG for Figure 3

2

msg_ready

5

10

9

11

8

3 4

(b) The PDG for Figure 4

Figure 8 The program dependency graphs (PDGs) of the example W-OTS program. Here, each
node represents an instruction, and the number is the instruction’s line number in the program.

multiple sites, the function body often implements some basic computation, e.g., generating371

a random number, and there is no need to split it further.372

4.1 Inter-Procedural Dependencies373

To identify the maximum set of instructions in PreSet using Algorithm 2, we need the374

dependencies associated with the online input OI. These dependencies are more complex375

than what are typically available in the compiler. For example, by default, LLVM provides376

the control- and data-dependencies between instructions only within each function. However,377

we need to know dependencies not only within each function, but also between functions.378

To identify inter-procedural dependencies, we first compute a PDG for each function,379

together with a call graph that represents the caller-callee relations of all functions in the380

program. We also extend LLVM to add the ability to determine whether a function call381

may change the content of a function parameter passed by reference or the value of a global382

variable. This is accomplished by traversing paths in the call graph and analyzing all of the383

functions involved in the path.384

Next, we analyze the inter-procedural dependencies in a bottom-up fashion, according to385

the function call graph. Consider the example of the following two functions: fun1(arg1)386

and fun2(arg2,arg3), where the input parameter arg1 of fun1() depends on the output387

parameter arg2 of fun2(). Assume that arg3 is also an output parameter of fun2().388

Assume that inside the function fun2() there is an instruction I that computes the value389

of arg2. Furthermore, inside fun1() there is an instruction I ′ that computes the value390

of arg1. While all intra-procedural dependencies may be computed in isolation, we must391

combine them to identify the inter-procedural dependencies, such as the dependency between392

I ′ of fun1() and I of fun2().393

Figure 8 shows a more concrete example, where the PDGs are constructed for the code394

snippets in Figures 3 and 4. Consider the edge 2→ 11 in Figure 8 (b), which represents the395

dependency between the instruction at Line 2 and the instruction at Line 11 of the program396

in Figure 4. It means the input parameter priv_key used by sign() at Line 11 comes from397

the output parameter priv_key of gen_key() at Line 2.398

With the inter-procedural dependencies, we can define the notion of a predecessor, denoted399

by pred(). For example, in Figure 8 (b), due to the edge 2→ 11, we say that the instruction400

at Line 2 is a predecessor of the instruction at Line 11 inside the program shown by Figure 4.401

Y. Li and C. Wang 18:13

4.2 Iteratively Computing preSet402

Using the notion of a predecessor of an instruction inst, denoted pred(inst), our method403

computes the preSet according to the while-loop in Algorithm 2.404

It starts with all elementary instructions and input parameters that are not in OI. Then,405

it removes any instruction (inst) that has a predecessor pred(inst) not in preSet. There are406

two possible reasons why pred(inst) is not in preSet: either it is in OI, or during the previous407

iteration, it has been removed from preSet. Thus, it is a fixed-point computation.408

The correctness of the fixed-point computation can be understood as follows: By definition,409

the instruction inst depends on its predecessor pred(inst). If pred(inst) ̸∈ preSet, meaning410

the predecessor instruction cannot be precomputed, then the instruction inst itself cannot411

be precomputed either.412

As an example, consider the instructions of W-OTS in Figure 4. For ease of presentation,413

we use li to represent the instruction at Line i, and we treat all instructions in this program414

as elementary instructions. Initially, we have preSet = ¶l2 − l5, l8 − l11♢.415

Next, we check if any of these instructions should be removed, based on the predecessor416

relation shown in Figure 8. The instruction l10 should be removed, since its predecessor417

(msg_ready) is not in preSet. Thus, we remove l10 from preSet.418

The removal of l10 leads to the removal of l11 during the next iteration, since l10 is the419

predecessor of l10. If l11 cannot be precomputed, then l10 cannot be precomputed either.420

Thus, in the end, we have preSet = ¶l2 − l5, l8 − l9♢.421

▶ Theorem 1. Our method for computing preSet is sound in that, for all inst ∈ preSet,422

there is guarantee that the instruction (inst) can indeed be computed ahead of time.423

Proof: An instruction inst remains in preSet only if all of its predecessors are also in preSet. As424

long as the inter-procedural dependencies represented by the PDGs are an over-approximation425

of the actual dependencies, the preSet is guaranteed to be an under-approximation of the set426

of instructions that may be computed ahead of time.427

The reason why it is an under-approximation because pred(inst) is an over-approximation428

of the predecessors. Whenever pred(inst) ̸∈ preSet, Algorithm 2 removes inst from preSet.429

The reason why pred(inst) is an over-approximation is due to the nature of PDG-based430

analysis techniques. Refer to Horwitz et al. [22] and Reps et al. [41] for more information.431

◀432

4.2.1 Handling Loops433

Similar to all other PDG-based analysis techniques [22, 41], our method has no problem in434

handling software code with loops. In most of the practical cases, computing the predecessor435

is straightforward. For example, the function call sign() at Line 9 in Figure 3 requires msg436

and priv_key to be available. These dependencies are due to data flow represented by the437

definition-use correspondence.438

However, there are cases where definitions and uses do not have one-to-one mapping. For439

example, in Figure 9, the variable i used at Line 7 may be defined at either Line 2 or Line 5.440

In the context of data-flow analysis, the definition at Line 5 does not kill the definition441

at Line 2. Therefore, it may or may not be necessary to precompute Line 3-6 in order to442

precompute Line 7, for example, if CNT[len-1]!=0xff.443

Since our method is designed to be sound, to ensure that the optimized program is correct444

for all input values, it is allowed to first over-approximate the predecessor relation, and then445

conservatively assume that an instruction can be precomputed only if all of its predecessors446

can be precomputed.447

ECOOP 2023

18:14 Constraint Based Compiler Optimization for Energy Harvesting Applications

1 void increment_CNT(BYTE *CNT, int len){
2 int i = len;
3 while ((i > 0) && (CNT[i-1] == 0xff)){
4 CNT[i-1] = 0;
5 i--;
6 }
7 if (i) {
8 CNT[i-1]++;
9 }

10 }

Figure 9 Code snippet taken from the benchmark program named AES-CTR.

5 Optimizing the Precomputation Set448

While all instructions in preSet have been identified at this moment, it may not be beneficial449

to compute all of them ahead of time. In this section, we present our method for computing an450

optimal subset preSet∗ ⊆ preSet. This is implemented in OptimizePreSet(preSet, PDG, C),451

where C is the system constraint. Besides the characteristics of the hardware platform, such452

as the size of non-volatile memory, it also includes the characteristics of the software program,453

such as how often the encrypted sensor data must be transmitted to the remote server.454

5.1 The Motivation455

We use an example to illustrate the complex nature of the optimization problem, which in456

turn motivates our development of the constraint based solution.457

Consider the W-OTS program in Figure 4 and its PDGs in Figure 8 (b). According to458

Algorithm 2, preSet = ¶l2− l5, l8− l9♢. Since these instructions do not depend on the online459

input msg, in theory, they may be precomputed as many times as possible. However, due to460

the storage capacity, in practice, the number has to be bounded.461

Let Si be a subset of preSet, called a precomputation choice, and mi be the maximum462

number of times that Si may be precomputed. Since each time Si produces an intermediate463

result, or coupon, we also call mi the coupon count (number of copies of this particular464

coupon). Let NVM(Si) be the storage cost for this coupon, and maxNVM be the storage465

capacity of the entire device. We use the maximal allowed NVM size to avoid the potential risk466

of running out of NVM. One precomputation choice for the running example is represented467

by S1 = ¶l2♢, where m1 ≤ maxNVM/NVM(S1). That is, the coupon count m1 is bounded468

only by the storage capacity.469

Below are some other precomputation choices:470

S2 = ¶l2 − l5, l8♢, where m2 ≤ maxNVM/NVM(S2)

S3 = ¶l2 − l5, l8 − l9♢, where m3 ≤ maxNVM/NVM(S3)

. . .

471

Let n = ♣preSet♣, the number of precomputation choices is Σn
i=1

(

n
i

)

. Since it causes combin-472

atorial explosion, we cannot afford to enumerate them to decide which one is optimal.473

The number of precomputation choices can be even higher than Σn
i=1

(

n
i

)

. For example,474

when S4a = ¶l2 − l5♢ and S4b = ¶l2 − l5, l8 − l9♢, if we allow the coupon counts m4a and m4b475

to have different values, they would be bounded only by the constraint m4a × NVM(S4a) +476

m4b × NVM(S4b) ≤ maxNVM. This leads to another combinatorial explosion.477

While making a precomputation choice, we cannot consider instructions in isolation, since478

they may be dependent on each other. For example, precomputing one instruction may479

Y. Li and C. Wang 18:15

require precomputing another instruction. Recall that in the example program shown in480

Figure 4, we cannot precompute l5 without precomputing l4, because there is dependency481

from l4 to l5. In other words, l4 = pred(l5).482

All these challenges motivate us to define the constraint satisfiability problem, which483

allows us to consider all of the selected instructions as a whole, together with a variety of484

system constraints. Specifically, it allows us to consider the coupon count (mi) and the485

coupon size NVM(Si) for each subset Si ⊆ preSet, together with system constraints such as486

the capacity of non-volatile memory used to store coupons computed by different instructions,487

and the inter-procedural dependencies between these chosen instructions.488

5.2 The Problem Statement489

Our goal is to compute the optimal subset, denoted S∗ ⊆ preSet, that satisfies the system490

constraint. For ease of presentation, assume that S represents a precomputation choice,491

while V (S) represents the value (or benefit) of precomputing S, and C(S) represents the492

cost of precomputing S. The optimization problem is defined formally as follows:493

S∗ = argmax
S⊆preSet

V (S) subject to C(S) ≤ maxNVM (5.2)

In other words, the optimal subset is the subset S that maximize the value V (S) while494

keeping the cost C(S) under control. Recall that explicitly enumerating solutions would495

lead to combinatorial explosion. Thus, we encode them symbolically using a set of logical496

constraints and solve these constraints using an off-the-shelf SMT solver.497

One advantage of the constraint based approach is flexibility in modeling various tradeoffs.498

While it is easy to compute the coupon size or the coupon count individually, finding the499

right combination may be hard due to the fact that they are inter-dependent.500

Another advantage of our approach is flexibility in modeling the chain of influence; that501

is, precomputing one instruction (e.g., l4 of gen_key in Figure 4) may require precomputing502

another instruction (e.g., l3).503

Yet another advantage is the ability to bound the total cost of storing coupons from504

different instructions. As mentioned earlier, precomputing more instructions may not always505

increase the storage cost. In Figure 4, if we precompute l3 − l4 but not l5, we need to store506

both pub_key and keyHash, the latter of which is an array of 108 bytes; but if we precompute507

l3 − l5, we only need to store pub_key, which is an array of 32 bytes.508

5.3 Defining the Value and Cost Functions509

First, we define the energy saving (value) and storage overhead (cost).510

5.3.1 Value511

Since the value of precomputing one instruction may depend on which other instructions are512

precomputed, we can only define it based on which other instructions are chosen. Since an513

instruction inst may be precomputed only if all its predecessors are precomputed, we define514

the value of precomputing inst based on the predecessor relation.515

Let S be the set of chosen instructions, and v(inst ♣ S) be the value of precomputing516

inst in the presence of S. We have517

v(inst ♣ S) =

{

E(inst) if preds(inst) ⊆ S

−∞ otherwise

ECOOP 2023

18:16 Constraint Based Compiler Optimization for Energy Harvesting Applications

Here, E(inst) is the energy saved by precomputing inst, and preds(inst) is the set of all518

predecessors of inst in the PDG. We use the large value −∞ to avoid precomputing inst519

before all of its predecessors in preds(inst) are precomputed.520

With the values of precomputing individual instructions, we define the value of precom-521

puting the entire set S as follows:522

V (S) =
∑

inst∈S

v(inst ♣ S).

For the example in Figures 4 and 8 (b), we have V (¶l2♢) = E(l2). We also have V (¶l2, l5♢) =523

−∞ since l5 cannot be selected when its predecessors l3 − l4 are not selected.524

5.3.2 Cost525

Unlike the value v(inst), which depends only on the predecessors of inst, the cost of precom-526

puting inst depends also on its successors in the PDG.527

Let S be the set of chosen instructions, and c(inst ♣ S) be the cost of precomputing inst528

in the presence of S. In Figure 4, for instance, we have529

c(l3 ♣ S) =

{

0 if l4, l5 ∈ S

NVM(keyHash) otherwise

and

c(l4 ♣ S) =

{

0 if l2, l3 ∈ S

+∞ otherwise

That is, if l3− l5 are selected, we do not need to store keyHash; but if l4− l5 are not selected,530

we need to store keyHash. Thus, the cost of precomputing l3 depends on if (l4 − l5) are531

selected. Here, the large value +∞ is used to avoid selecting instructions whose predecessors532

in the PDG are not selected.533

With the costs of precomputing individual instructions, we define the cost of precomputing534

the entire set S as follows:535

C(S) =
∑

inst∈S

c(inst ♣ S).

5.4 Symbolic Encoding of the Constraints536

We construct an SMT formula Ψ = ΦDep ∧ ΦValue ∧ ΦCost, where the subformula ΦDep537

captures the dependencies that we have computed in the previous section, ΦValue captures538

the value constraint, and ΦCost captures the cost constraint. Thus, a satisfying assignment539

to Ψ corresponds to S∗ ⊆ preSet.540

5.4.1 Dependency Constraint541

ΦDep encodes the dependency relations captured by edges of the inter-procedural PDG.542

Specifically, for each dependency edge (n1, n2), we add a Boolean constraint (¬n2 ∨ n1),543

where n1 and n2 are Boolean variables indicating whether these nodes are precomputed,544

and the constraint means that, if n2 is true, then n1 must also be true. Therefore, n2 being545

precomputed implies that n1 is also precomputed. Then, all these individual constraints are546

conjoined to form ΦDep. As an example, consider the PDG in Figure 8 (b): the dependency547

constraints include (¬l4 ∨ l3) ∧ (¬l4 ∨ l2) ∧ (¬l5 ∨ l4) ∧ (¬l9 ∨ l8).548

Y. Li and C. Wang 18:17

5.4.2 Value Constraint549

ΦValue encodes the value of precomputing each instruction. Since ΦDep already guarantees550

that an instruction is precomputed only if all its predecessors (as in the PDG) are precomputed,551

the encoding becomes straightforward. That is, if inst is selected, then v(inst) = E(inst);552

otherwise v(inst) = 0. The total value of precomputing the set of instructions in preSet is553

simply the sum of all the individual values. In Figure 4, the value of precomputing each554

instruction li, where i = 2, 3, . . . , 5, 8, 9, would be v(li) = (li ? E(li) : 0) and the total would555

be V (S) =
∑

v(li).556

5.4.3 Cost Constraint557

ΦCost encodes the cost of precomputing the chosen instructions. Recall that the cost of558

precomputing inst depends on not only if its predecessors are precomputed but also if its559

successors are precomputed. Since ΦDep guarantees to select the predecessors whenever inst560

is selected, here we only need to deal with the set of successors, denoted succs(inst).561

In general, precomputing inst increases storage cost only when its result (coupon) is used562

by some of the successors in the online computation step; otherwise, there is no need to save563

the coupon. For example, the cost of precomputing l3 in Figure 4 is zero if instructions in564

succs(l3) ={l4, l5} are also precomputed.565

For the entire program shown in Figure 4, the cost constraint would be566

(c(l2) = (¬l2 ∨ l3 ∧ l4 ∧ l5 ∧ lsend) ? 0 : NVM[priv_key]) ∧

(c(l3) = (¬l3 ∨ l4) ? 0 : NVM[keyHash]) ∧

(c(l4) = (¬l4 ∨ l5) ? 0 : NVM[keyHash]) ∧

(c(l5) = ¬l5 ? 0 : NVM[pub_key]) ∧

(c(l8) = (¬l8 ∨ l9) ? 0 : NVM[rand]) ∧

(c(l9) = ¬l9 ? 0 : NVM[sig])

(C(S) = c(l2) + c(l3) + c(l4) + c(l5) + c(l8) + c(l9)) ∧

(C(S) ≤ maxNVM)

567

With proper definitions of the cost and value functions, our constraint based method can568

also handle other optimization metrics.569

5.5 Solving the Constraints570

After constructing the entire SMT formula Ψ, we solve it using the Z3 SMT solver [11].571

Specifically, we use Z3’s optimize interface iteratively to search for the optimal solution.572

This is done by insisting that the total value V (S) shown in Equation (5.2) is greater than a573

given constant value; then, we find the maximum constant by gradually increasing the value574

of the constant as long as Z3 can still find a satisfying solution.575

6 Transforming the Program576

We now explain the subroutine Transform(P, PDG, preSet∗), which transforms the original577

program P to a new program P ′ to implement preSet∗. Recall that in Figure 6, we gave an578

example of such a transformed program for W-OTS. There are two important properties of579

the program P ′: (1) it retains the overall function call structure in P and (2) it changes the580

body of each function to implement both the precomputation and online computation steps.581

ECOOP 2023

18:18 Constraint Based Compiler Optimization for Energy Harvesting Applications

6.1 The Terminology582

For each function f in the program P , we must separate the precomputation instructions from583

the online computation instructions. This leads to a partition of the program to segments,584

¶S1, S̃2, S3, S̃4, ...♢, where Si represents a precomputation segment and S̃j represents an585

online computation segment. A segment is a maximal set of instructions that may execute586

continuously during precomputation or online computation.587

Consider an example program P = ¶S1, S̃2, S3, S̃4♢ whose original execution order is588

S1 → S̃2 → S3 → S̃4. In the transformed program P ′, however, the execution order must be589

changed to S1 → S3 → S̃2 → S̃4. In general, changes in the execution order lead to changes590

in the data flow.591

Before discussing changes in the data flow, we define the terminology.592

Let def (x) be an instruction that defines the value of variable x, and use(x) be an593

instruction that uses the value. The two instructions may form a def-use pair.594

Given two segments Si and S̃j , where def (x) ∈ Si and use(x) ∈ S̃j , we represent the595

data-flow edge (or def-use pair) as ⟨Si, S̃j⟩(x).596

Let Val[x, Si] denote the value of x at the end of executing the segment Si.597

A variable x is live at a program location p if its value is used before it is defined again598

along some path from p to the program exit.599

6.2 The Problem600

Now, we show an example where changes in the execution order bring unexpected changes of601

the data flow.602

▶ Example 6.1. In program P = ¶S1, S̃2, S3, S̃4♢, assume that def 1(x) ∈ S1, def 2(x) ∈ S̃2,603

use(x) ∈ S̃4. Due to the execution order, the def-use chain contains only def 2(x) and use(x),604

meaning the value of x used in S̃4 should be from def 2(x).605

In the original execution order S1 → S̃2 → S3 → S̃4, the value Val[x, S3] comes from606

def 2(x), and the variable x is live in S3, since Val[x, S3] will be used in S̃4.607

In the new program, however, since the execution order is changed to S1 → S3 → S̃2 → S̃4,608

without our intervention, the value Val[x, S3] would come from def 1(x), and the variable x609

would no longer be live in S3. Such unexpected changes of the data flow may change the610

semantics of the program. This is illustrated by Figure 10.611

In general, it can be challenging to preserve the data flow while allowing change of612

the execution order. While the technique of checkpointing has been used in intermittent613

computing systems [31, 47, 34], it cannot solve our problem because checkpointing does not614

involve splitting a program into two parts and then executing the two parts in an interleaved615

order. For the program in Example 6.1, specifically, checkpointing techniques would have616

failed to preserve the data flow.617

To understand why checkpointing would fail, consider the fact that variable x is live618

at the end of S̃2, at the end of S3, and at the start of S̃4. Checkpointing would insert619

nvm_ST(Val[x, S̃2]) at the end of S̃2 and insert nvm_ST(Val[x, S3]) at the end of S3. It would620

also insert nvm_LD(Val[x, S̃2]) and nvm_LD(Val[x, S3]) at the start of S̃4.621

When executing P ′ (S1 → S3 → S̃2 → S̃4), nvm_LD(Val[x, S3]) would over-write622

nvm_LD(Val[x, S̃2]); thus, the value of x used in S̃4 would be V al(x, S3) = def 1(x). However,623

in the original program, the value of x used in S̃4 is def 2(x).624

The fundamental reason why checkpointing techniques are ill-suited for our project is625

that the liveness property of a program variable, which forms the theoretical foundation of626

Y. Li and C. Wang 18:19

Precomuting
Section 𝑆1
Online

Section 𝑆2

Online

Section 𝑆4

Precomputing

Section 𝑆3

∼

∼
(a) Execution order of P

Precomputing
Section 𝑆1 Online

Section 𝑆2
Online

Section 𝑆4Precomputing

Section 𝑆3

~

∼

(b) Execution order of new program P ′

Figure 10 Difference in execution order means P and P ′ are no longer functionally equivalent.

checkpointing techniques, is not preserved by the split of a program into the precomputation627

and online computation parts. Thus, instead of relying on the liveness property, our method628

relies on the def-use relations.629

6.3 The Baseline Method630

We first present the baseline method using the def-use relations, and then present the631

optimized method in the next subsection.632

Since we treat each segment as an atomic unit during transformation, we only need to633

consider the def-use relations between segments. Thus, whenever two segments have def-use634

relations, there can only be three scenarios:635

(I) ⟨Si, Sj⟩, meaning both are precomputation segments;636

(II) ⟨Si, S̃j⟩, meaning Si is a precomputation and S̃j is an online computation; and637

(III) ⟨S̃i, S̃j⟩, meaning both are online computation segments.638

The fourth scenario, ⟨S̃i, Sj⟩, is impossible due to our method for computing preSet.639

In other words, a use in a precomputation segment always comes from a definition in a640

precomputation segment, whereas a use in an online computation segment may come from a641

definition in a precomputation or an online computation segment.642

Furthermore, it suffices to handle only type (II) case ⟨Si, S̃j⟩, because for the other two643

cases, the value can be propagated directly between the two segments of the same type.644

To maintain the def-use chains between precomputation and online computation segments645

in the type (II) case, we must insert nvm_LD and nvm_ST instructions at the proper def and646

use locations.647

Thus, our baseline method can be summarized as follows: For each data-flow edge648

⟨Si, S̃j⟩(x), we insert nvm_ST(Val[x, Si]) at the end of Si, and insert nvm_LD(Val[x, Si]) at649

the start of S̃j .650

Recall the scenario shown in Example 6.1, where the def-use chain contains only def 2(x)651

and use(x). According to our baseline method, no NVM operation needs to be added, since652

the def-use is of the type (III). The value of x used in S̃4 comes directly from def 2(x).653

ECOOP 2023

18:20 Constraint Based Compiler Optimization for Energy Harvesting Applications

6.4 The Optimized Method654

Now, we present an optimization to avoid redundant NVM operations inserted by the baseline655

method. To understand why some of the NVM operations inserted by our baseline method656

may be redundant, consider the following example.657

▶ Example 6.2. In ¶S1, S̃2, S3, S̃4♢, assume that def (x) ∈ S1, use1(x) ∈ S̃2, use2(x) ∈ S̃4,658

and the def-use chain contains both def (x)–use1(x) and def (x)–use2(x). Our baseline method659

would insert660

nvm_ST(Val[x, S1]) after S1 (twice);661

nvm_LD(Val[x, S1]) before S̃2;662

nvm_LD(Val[x, S1]) before S̃4.663

However, executing nvm_LD(Val[x, S1]) before S̃4 is redundant because the value of x can be664

propagated directly from S̃2.665

To avoid the redundant operations, we should insert nvm_LD of a def (x) at the start666

of the earliest online computation segment where def (x) is available. For the program in667

Example 6.2, the earliest segment is S̃2, which means we should insert nvm_LD(Val[x, S1])668

right before S̃2.669

Thus, our optimized method can be summarized as follows: For each data-flow edge670

⟨Si, S̃j⟩(x) that we have not inserted nvm_ST(Val[x, Si]) after Si, insert nvm_ST(Val[x, Si])671

after Si and insert nvm_LD(Val[x, Si]) before S̃i+1.672

To understand the benefit of this optimization, let us compare the data flows of the673

following two programs. If, for example, in the original program, Val[x, Si] is available (and674

not killed) in the range675

end[Si]→ S̃i+1 → Si+2 → S̃i+3 → · · · (1)676

and in the transformed program, Val[x, Si] is available (and not killed) in the range677

end[Si]→ Si+2 → Si+4 → Si+6 → · · · (2)678

and nvm_LD Val[x, Si] has been inserted before S̃i+1 in the transformed program, the loaded679

value will also be available in the entire range680

S̃i+1 → S̃i+3 → S̃i+5 → S̃i+7 → · · · (3)681

Therefore, we can avoid the other (redundant) nvm_LD operations before S̃i+3 . . . S̃i+7.682

6.5 The Transformation Algorithm683

To sum up, our optimized method for transforming each function f of the original program684

based on preSet∗ is presented in Algorithm 3.685

Our method first partitions the instructions in function f to precomputation segments686

¶Si♢ and online computation segments ¶S̃j♢. Next, it inserts if-condition to each segment687

using the two flags, to differentiate the three use cases. Finally, for each data-flow edge688

⟨Si, S̃j⟩(x), it insert NVM operations to store the value of variable x computed in Si (the689

coupon) at the end of segment Si.690

While in the baseline method, the coupon is loaded from NVM at the start of S̃j , in the691

optimized method, it is loaded at the start of the online computation segment S̃i+1. Loading692

the coupon earlier provides the opportunity to eliminate many redundant NVM operations.693

Y. Li and C. Wang 18:21

Algorithm 3 Transforming a function f in program P based on preSet∗.

1 Partition f into segments ¶Si♢ and segments ¶S̃j♢;

2 Add if-condition to each segment using precom_flag and online_flag;

3 foreach data-flow edge denoted ⟨Si, S̃j⟩(x) do

4 if there is no nvm_ST(Val[x, Si]) after segment Si then

5 Add nvm_ST(Val[x, Si]) after Si;

6 Add nvm_LD(Val[x, Si]) before S̃i+1;

7 end

8 end

7 Experiments694

We have implemented our method in a software tool, named CouponMaker, which builds695

upon the LLVM compiler platform [29] and the Z3 SMT solver [11]. We leverage LLVM696

to parse the C code of the original program, conduct inter-procedural dependency analysis697

and implement the semantic-preserving transformation. We use Z3 to solve the constraint698

satisfiability subproblems. In total, our implementation adds 1,852 lines of C++ code.699

Our tool generates the LLVM bit-code of the optimized program as output, which in700

turn is compiled to machine code for the MSP430 MCU. To evaluate the performance of the701

optimized program, we use the cycle-accurate emulator MSPSim [38]. Specifically, we use702

MSPSim to compute the latency and energy consumption of the optimized program, and703

compare them with the latency and energy consumption of the original program.704

7.1 Benchmarks705

We evaluated CouponMaker on 26 benchmark programs, which are C programs imple-706

menting lightweight cryptographic protocols. In total, they have 31,113 lines of C code.707

Table 1 shows the statistics, where Columns 1-3 show the name, category, and source of each708

program, and Column 4 shows the number of lines of code (LoC).709

The benchmark programs fall into two groups. The first group consists of programs710

that compute one-time signatures (W-OTS and Lamport) and the second group consists711

of programs that implement block-ciphers (e.g., AES and Camellia). A one-time signature712

scheme allows a message to be signed using a fresh key pair. Since any fresh key pair may713

work for any message, it is possible to precompute many key pairs and store them as coupons714

for future use. A block cipher divides a message into fixed-size blocks and then encrypts each715

block. For example, AES-CTR encrypts each block by first encrypting a counter value and716

then XOR-ing it with the plaintext to generate the ciphertext. The precomputing function717

is responsible for encrypting the counter value. Since there are multiple blocks, different718

counter values need to be encrypted. For each of the eight block-cipher programs, we also719

configure it in three different modes, marked by suffixes -OFB, -CFB, and -CTR, respectively.720

Our experiments were conducted on a computer with 2 GHz Intel Core i5 CPU and 16721

GB memory. These experiments were designed to answer the following questions:722

Is CouponMaker efficient in optimizing the benchmark programs?723

Are the optimized programs better than the original programs in terms of both energy724

efficiency and latency?725

ECOOP 2023

18:22 Constraint Based Compiler Optimization for Energy Harvesting Applications

Table 1 Statistics of the benchmark programs.

Name Category Source LoC

W-OTS One-time signature Merkle signature [39] 1,062

Lamport One-time signature Lamport signature[28] 339

AES Block cipher OpenSSL[36] 1,572

Camellia Block cipher OpenSSL[36] 708

DES Block cipher avr-crypto-lib[6] 1,277

Blowfish Block cipher OpenSSL[30] 1,112

skipjack Block cipher avr-crypto-lib[6] 475

GOST Block cipher OpenSSL[36] 357

SEED Block cipher OpenSSL[30] 476

CAST128 Block cipher OpenSSL[?] 963

7.2 Performance of the Optimization Tool726

Table 2 shows the results of evaluating the optimization tool. Column 1 shows the benchmark727

name. Column 2 shows the total running time in seconds. Column 3 shows the size of preSet,728

which is the set of instructions that may be precomputed. Columns 4-5 compare the size729

of the original and optimized programs, where the size is measured in the number of bytes730

of the LLVM bit-code. Columns 6-8 show the details of the coupons stored in non-volatile731

memory, including the number of coupons, and the total bytes, and whether the coupons732

may be precomputed multiple times (copies).733

Specifically, ∞ in the last column means the coupons may be precomputed an unlimited734

number of times, while 1 means they may be precomputed only once.735

For programs that compute one-time signatures (W-OTS and Lamport), a theoretically736

unbounded number of signatures (coupons) may be precomputed. For block-cipher programs737

in the -OFB mode, the ciphertext of the first block may also be precomputed as many times738

as possible (after the first block becomes available), and in the -CNT mode, the counter739

CNT may be incremented as many times as possible and then pre-encrypted for future use.740

For block-cipher programs in the -CFB mode, however, precomputation can only be done741

once per block, i.e., after the current block arrives.742

The results show that our method is able to analyze, optimize, and transform all benchmark743

programs quickly. The total running time is limited to a few seconds. Moreover, the size of744

the program before and after optimization changes moderately. Furthermore, the number745

and size of precomputed coupons are significant for all programs.746

7.3 Performance of the Optimized Programs747

Table 3 shows the result of evaluating the performance of the optimized programs. These748

results were obtained using the MSPSim tool for MSP430FR599x [24]. Since MSPSim749

requires the programs to be executed under concrete test inputs, for one-time signature750

programs (W-OTS and Lamport), we obtain the test inputs by signing a fixed-length message;751

for block-cipher programs, we obtain the test inputs by encrypting sensor data that represent752

a sequence of temperature measurements.753

In the result table, Column 1 shows the benchmark name. Column 2 shows the energy754

(µJ) consumed by the original program. Columns 3-4 show the energy (µJ) consumed by the755

optimized program, which is divided into the precomputing and online steps. Recall that in756

energy-harvesting applications, energy reported in the E(pre) column is considered to be757

free. Thus, the ratio in Column 5 represents the actual performance improvement.758

Y. Li and C. Wang 18:23

Table 2 Performance of the analysis tool CouponMaker.

Name Time PreSet Program Size Coupon Size
(s) Size orig. opti. num bytes copies

W-OTS 5.26 1,632 16,116 21,704 3 1,152 ∞

Lamport 4.08 1,000 14,268 19,116 2 512 ∞

AES-OFB 3.35 3,964 52,636 57,984 1 16 ∞

AES-CFB 3.62 3,964 56,162 56,168 1 16 1

AES-CTR 3.73 4,064 53,164 58,584 1 16 ∞

Camellia-OFB 3.37 1,412 20,228 25,276 1 16 ∞

Camellia-CFB 3.30 1,412 20,696 25,788 1 16 1

Camellia-CTR 3.89 1,460 24,964 29,984 1 16 ∞

DES-OFB 3.11 2,072 26,384 26,496 1 8 ∞

DES-CFB 3.14 2,072 26,432 26,644 1 8 1

DES-CTR 3.05 2,112 26,896 27,556 1 8 ∞

Blowfish-OFB 3.38 1,196 16,200 21,308 1 8 ∞

Blowfish-CFB 3.27 1,196 16,180 21,288 1 8 1

Blowfish-CTR 3.70 1,242 16,636 21,724 1 8 ∞

skipjack-OFB 3.09 1,896 34,452 39,552 1 8 ∞

skipjack-CFB 3.26 1,896 34,404 39,536 1 8 1

skipjack-CTR 3.32 1,940 34,864 40,008 1 8 ∞

GOST-OFB 2.79 596 12,508 17,504 1 8 ∞

GOST-CFB 3.16 596 12,492 17,484 1 8 1

GOST-CTR 3.01 844 12,952 17,984 1 8 ∞

SEED-OFB 2.67 196 31,120 36,384 1 8 ∞

SEED-CFB 2.68 196 31,100 36,368 1 8 1

SEED-CTR 3.11 340 31,564 36,852 1 8 ∞

CAST128-OFB 2.49 352 46,628 51,748 1 8 ∞

CAST128-CFB 2.74 352 46,608 51,732 1 8 1

CAST128-CTR 3.00 396 47,064 52,228 1 8 ∞

The results show that the optimized programs significantly outperform the original759

programs in terms of energy efficiency. The improvement ranges from 2.3X to 36.7X. We760

also compared the latency of the original and optimized programs and observed a similar761

improvement; we omit the result table due to space limit. Overall, these results show that762

our method is effective in reducing the latency and energy cost.763

7.4 Impact of the Precomputation Policy764

Finally, we evaluate the impact of precomputation policy by computing the energy saving per765

unit use of non-volatile memory storage, measured by qf = (E(ori)−E(on))/Size(coupon),766

where qf stands for quality factor. The results are shown in Figure 11, where the x-axis767

is the index of the array of benchmark programs and the y-axis is the quality factors (qf)768

achieved by the baseline and optimized methods for program transformation (Section 6).769

In this figure, blue bars (optimal) correspond to the optimized precomputation policy770

(preSet∗), while orange bars (baseline) corresponds to the initial precomputation policy771

(preSet). Here, a higher qf value corresponds to a better result. Overall, the optimized772

precomputation policy leads to significantly better results.773

For W-OTS, qf(optimal) is also significantly higher than qf(baseline). However, the qf774

values for W-OTS are not included in the figure, to avoid making the rest of the bar chart775

less readable. This is because W-OTS takes several orders-of-magnitude more clock cycles776

than the other programs, and thus has a much higher qf value.777

ECOOP 2023

18:24 Constraint Based Compiler Optimization for Energy Harvesting Applications

Table 3 Evaluating reduction in energy cost on MSP430.

Name Original Program Optimized Program Improvement
E(ori) free E(pre) E(on) E(ori)/E(on)

W-OTS 115565.43 56114.99 49576.70 2.3X

Lamport 355.91 287.31 82.71 4.3X

AES-OFB 89.06 87.96 4.85 18.4X

AES-CFB 90.67 87.96 6.46 14.0X

AES-CTR 89.23 88.15 3.36 26.5X

Camellia-OFB 28.66 27.56 4.85 5.9X

Camellia-CFB 30.27 27.56 6.46 4.7X

Camellia-CTR 28.84 27.75 4.87 5.9X

DES-OFB 198.84 197.87 5.42 36.7X

DES-CFB 200.56 197.88 7.14 28.1X

DES-CTR 199.18 198.25 5.45 36.6X

Blowfish-OFB 15.63 14.66 5.43 2.9X

Blowfish-CFB 17.35 14.66 7.14 2.4X

Blowfish-CTR 15.97 12.64 4.01 4.0X

skipjack-OFB 26.16 25.20 5.42 4.8X

skipjack-CFB 29.33 25.20 8.58 3.4X

skipjack-CTR 26.73 26.06 5.71 4.7X

GOST-OFB 29.10 29.01 2.59 11.3X

GOST-CFB 29.83 29.01 3.32 9.0X

GOST-CTR 29.65 29.61 2.62 11.3X

SEED-OFB 20.32 19.21 4.85 4.2X

SEED-CFB 21.92 19.21 6.45 3.4X

SEED-CTR 20.49 17.64 3.22 6.4X

CAST128-OFB 164.89 161.86 16.89 9.8X

CAST128-CFB 170.24 161.86 22.24 7.7X

CAST128-CTR 165.95 163.05 16.99 9.8X

8 Related Work778

While prior work has shown the feasibility of optimizing energy-harvesting applications using779

precomputation [46], optimization is performed manually; to the best of our knowledge, this is780

the first automated optimization method. Compared to Suslowicz et al. [46], in particular, our781

method can complete all of the optimization work with comparable performance. Moreover,782

our method can support additional constraints for optimization, which the manual method783

cannot deal with easily. Since our method is designed to preserve the original program784

semantics, it is not meant for scenarios where the underlying algorithms are intended to be785

rewritten according to some mathematical rules [4, 5] – automation for such transformation786

is beyond the scope of this work.787

Our method differs from the large number of intermittent computing techniques aimed788

to improve general-purpose systems with a strong and yet unstable power supply; these789

techniques [42, 34, 31, 47] focus on recovering from power loss using checkpointing, avoiding790

the costly register accesses, or reducing the cost for loop-heavy programs [18, 17]. There are791

also techniques for robustly supporting peripherals [45, 35]. However, none of them considers792

the scenario where ambient energy source is ample but the computing device is idle, let alone793

leveraging precomputation to reduce the energy cost.794

There are also techniques for programming transiently-powered computers with both795

volatile and non-volatile memory, for example, by leveraging the application’s memory access796

patterns to manually optimize data placement [9, 31, 33], or mapping of code sections to797

either volatile or non-volatile memory [25] based on where the optimal energy consumption798

Y. Li and C. Wang 18:25

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

La
m
po
rt

AE
S-
O
FB

AE
S-
CF
B

AE
S-
CT
R

Ca
m
el
lia
-O
FB

Ca
m
el
lia
-C
FB

Ca
m
el
lia
-C
TR

DE
S-
O
FB

DE
S-
CF
B

DE
S-
CT
R

Bl
ow
fis
h-
O
FB

Bl
ow
fis
h-
CF
B

Bl
ow
fis
h-
CT
R

sk
ip
ja
ck
-O
FB

sk
ip
ja
ck
-C
FB

sk
ip
ja
ck
-C
TR

G
OS
T-
O
FB

G
OS
T-
CF
B

G
OS
T-
CT
R

RC
5-
O
FB

RC
5-
CF
B

RC
5-
CT
R

XT
EA
-O
FB

XT
EA
-C
FB

XT
EA
-C
TR

qf(optimal)

Figure 11 The impact of the precomputation policy on performance improvement. Here, baseline
corresponds to preSet and optimal corresponds to preSet∗.

could be achieved. There are also efficient checkpointing techniques [21, 1] for CPUs with799

fully non-volatile main memory. However, none of them focuses on automated program800

optimization based on precomputation.801

Constraint solving based techniques are widely used for program verification, repair and802

optimization. For example, they have been used to debug concurrent software [27, 23] and803

optimize the quality of embedded software [13]. They have also been used to mitigate side-804

channel vulnerabilities [48, 19, 51, 49], including power side-channel leaks [53, 50]. However,805

power side-channel mitigation focuses on eliminating tiny fluctuations in power consumption806

that are also secret-dependent [14], instead of reducing the power consumption itself.807

While our focus in this work is on optimizing software for energy-harvesting applications,808

the underlying ideas may be applied to other applications of similar nature, e.g., precompu-809

tation for Trusted Authority (TA) in the context of multi-party computation (multi-party810

learning and predicting[52, 16]). Since the application domain is significantly different, to811

deal with software used in such applications, our LLVM based implementation may need to812

be updated accordingly – we leave this for future work.813

9 Conclusion814

We have presented a constraint based method for optimizing the energy efficiency of software815

code running on devices powered by electricity harvested from the environment. Our method816

is sound and fully automated. It relies on static program analysis to identify instructions817

that may be precomputed, constraint solving to compute an optimal subset, and compiler818

transformation to generate the new software code. Our experimental evaluation on a large819

number of benchmark programs shows that the proposed method can handle all of the820

benchmark programs quickly, and the optimized programs significantly outperform the821

original programs in terms of both energy efficiency and latency.822

ECOOP 2023

18:26 Constraint Based Compiler Optimization for Energy Harvesting Applications

References823

1 Saad Ahmed, Naveed Anwar Bhatti, Muhammad Hamad Alizai, Junaid Haroon Siddiqui, and824

Luca Mottola. Efficient intermittent computing with differential checkpointing. In Jian-Jia825

Chen and Aviral Shrivastava, editors, ACM SIGPLAN/SIGBED International Conference on826

Languages, Compilers, and Tools for Embedded Systems, pages 70–81. ACM, 2019.827

2 Saad Ahmed, Muhammad Nawaz, Abu Bakar, Naveed Anwar Bhatti, Muhammad Hamad828

Alizai, Junaid Haroon Siddiqui, and Luca Mottola. Demystifying energy consumption dynamics829

in transiently powered computers. ACM Trans. Embed. Comput. Syst., 19(6):47:1–47:25, 2020.830

3 James Allen, Matthew Forshaw, and Nigel Thomas. Towards an extensible and scalable831

energy harvesting wireless sensor network simulation framework. In Walter Binder, Vittorio832

Cortellessa, Anne Koziolek, Evgenia Smirni, and Meikel Poess, editors, Companion Proceedings833

of the 8th ACM/SPEC on International Conference on Performance Engineering, ICPE 2017,834

L’Aquila, Italy, April 22-26, 2017, pages 39–42. ACM, 2017.835

4 Giuseppe Ateniese, Giuseppe Bianchi, Angelo Capossele, and Chiara Petrioli. Low-cost836

standard signatures in wireless sensor networks: a case for reviving pre-computation techniques?837

In Network and Distributed System Security Symposium, 2013.838

5 Giuseppe Ateniese, Giuseppe Bianchi, Angelo T Capossele, Chiara Petrioli, and Dora Spenza.839

Low-cost standard signatures for energy-harvesting wireless sensor networks. ACM Transactions840

on Embedded Computing Systems, 16(3):64, 2017.841

6 The avr-crypto-lib software package. https://github.com/cantora/avr-crypto-lib. Ac-842

cessed: 2019-09-26.843

7 Domenico Balsamo, Alex S Weddell, Geoff V Merrett, Bashir M Al-Hashimi, Davide Brunelli,844

and Luca Benini. Hibernus: Sustaining computation during intermittent supply for energy-845

harvesting systems. IEEE Embedded Systems Letters, 7(1):15–18, 2015.846

8 Alexei Colin, Graham Harvey, Brandon Lucia, and Alanson P. Sample. An energy-interference-847

free hardware-software debugger for intermittent energy-harvesting systems. In Tom Conte and848

Yuanyuan Zhou, editors, International Conference on Architectural Support for Programming849

Languages and Operating Systems, pages 577–589. ACM, 2016.850

9 Alexei Colin and Brandon Lucia. Chain: tasks and channels for reliable intermittent programs.851

In Eelco Visser and Yannis Smaragdakis, editors, ACM SIGPLAN International Conference852

on Object-Oriented Programming, Systems, Languages, and Applications, pages 514–530. ACM,853

2016.854

10 Riccardo Dall’Ora, Usman Raza, Davide Brunelli, and Gian Pietro Picco. SensEH: From855

simulation to deployment of energy harvesting wireless sensor networks. In IEEE 39th856

Conference on Local Computer Networks, Edmonton, AB, Canada, 8-11 September, 2014 -857

Workshop Proceedings, pages 566–573. IEEE Computer Society, 2014.858

11 Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In International859

conference on Tools and Algorithms for the Construction and Analysis of Systems, pages860

337–340. Springer, 2008.861

12 The tiny Dutch startup solving the IoT industry’s battery problem. https://sifted.eu/862

articles/nowi-dutch-startup-solving-iot-battery-problem/. Accessed: 2020-08-04.863

13 Hassan Eldib and Chao Wang. An SMT based method for optimizing arithmetic computations864

in embedded software code. In International Conference on Formal Methods in Computer-Aided865

Design, pages 129–136. IEEE, 2013.866

14 Hassan Eldib, Chao Wang, Mostafa M. I. Taha, and Patrick Schaumont. Quantitative masking867

strength: Quantifying the power side-channel resistance of software code. IEEE Trans. Comput.868

Aided Des. Integr. Circuits Syst., 34(10):1558–1568, 2015.869

15 Joakim Eriksson, Fredrik Österlind, Thiemo Voigt, Niclas Finne, Shahid Raza, Nicolas Tsiftes,870

and Adam Dunkels. Accurate power profiling of sensornets with the COOJA/MSPSim871

simulator. In IEEE 6th International Conference on Mobile Adhoc and Sensor Systems, pages872

1060–1061, 2009.873

Y. Li and C. Wang 18:27

16 Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and John874

Wernsing. Cryptonets: Applying neural networks to encrypted data with high throughput875

and accuracy. In International Conference on Machine Learning, pages 201–210, 2016.876

17 Graham Gobieski, Brandon Lucia, and Nathan Beckmann. Intelligence beyond the edge:877

Inference on intermittent embedded systems. In International Conference on Architectural878

Support for Programming Languages and Operating Systems, pages 199–213. ACM, 2019.879

18 Graham Gobieski, Amolak Nagi, Nathan Serafin, Mehmet Meric Isgenc, Nathan Beckmann,880

and Brandon Lucia. MANIC: A vector-dataflow architecture for ultra-low-power embedded881

systems. In IEEE/ACM International Symposium on Microarchitecture, pages 670–684, 2019.882

19 Shengjian Guo, Meng Wu, and Chao Wang. Adversarial symbolic execution for detecting883

concurrency-related cache timing leaks. In ACM Joint Meeting on European Software Engin-884

eering Conference and Symposium on the Foundations of Software Engineering, pages 377–388.885

ACM, 2018.886

20 Josiah D. Hester, Timothy Scott, and Jacob Sorber. Ekho: realistic and repeatable experi-887

mentation for tiny energy-harvesting sensors. In Ákos Lédeczi, Prabal Dutta, and Chenyang888

Lu, editors, ACM Conference on Embedded Network Sensor Systems, pages 1–15. ACM, 2014.889

21 Matthew Hicks. Clank: Architectural support for intermittent computation. In International890

Symposium on Computer Architecture, pages 228–240. ACM, 2017.891

22 Susan Horwitz and Thomas W. Reps. The use of program dependence graphs in software892

engineering. In Tony Montgomery, Lori A. Clarke, and Carlo Ghezzi, editors, International893

Conference on Software Engineering, Melbourne, Australia, May 11-15, 1992, pages 392–411,894

1992.895

23 Zunchen Huang and Chao Wang. Symbolic predictive cache analysis for out-of-order execution.896

In International Conference on Fundamental Approaches to Software Engineering, pages897

163–183. Springer, 2022.898

24 Texas Instrument. MSP430FR599x Technical Documentation. ht-899

tps://www.ti.com/product/MSP430FR5994.900

25 Hrishikesh Jayakumar, Arnab Raha, Jacob R. Stevens, and Vijay Raghunathan. Energy-aware901

memory mapping for hybrid FRAM-SRAM mcus in intermittently-powered iot devices. ACM902

Trans. Embed. Comput. Syst., 16(3):65:1–65:23, 2017.903

26 Mustafa Emre Karagozler, Ivan Poupyrev, Gary K Fedder, and Yuri Suzuki. Paper generators:904

harvesting energy from touching, rubbing and sliding. In ACM symposium on User interface905

software and technology, pages 23–30, 2013.906

27 Sepideh Khoshnood, Markus Kusano, and Chao Wang. ConcBugAssist: constraint solving for907

diagnosis and repair of concurrency bugs. In International Symposium on Software Testing908

and Analysis, pages 165–176. ACM, 2015.909

28 The lamport_signature software package. https://github.com/detomastah/lamport_910

signature. Accessed: 2019-09-26.911

29 Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong program912

analysis & transformation. In International Symposium on Code Generation and Optimization:913

feedback-directed and runtime optimization, page 75, 2004.914

30 The Libgcrypt software package. https://gnupg.org/software/libgcrypt/index.html. Ac-915

cessed: 2019-09-26.916

31 The Libmcrypt software package. https://github.com/tugrul/libmcrypt-gyp/tree/917

master. Accessed: 2019-09-26.918

32 Brandon Lucia and Benjamin Ransford. A simpler, safer programming and execution model919

for intermittent systems. ACM SIGPLAN Notices, 50(6):575–585, 2015.920

33 Kaisheng Ma, Yang Zheng, Shuangchen Li, Karthik Swaminathan, Xueqing Li, Yongpan921

Liu, Jack Sampson, Yuan Xie, and Vijaykrishnan Narayanan. Architecture exploration for922

ambient energy harvesting nonvolatile processors. In IEEE International Symposium on High923

Performance Computer Architecture, pages 526–537, 2015.924

ECOOP 2023

18:28 Constraint Based Compiler Optimization for Energy Harvesting Applications

34 Kiwan Maeng, Alexei Colin, and Brandon Lucia. Alpaca: intermittent execution without925

checkpoints. Proc. ACM Program. Lang., 1(OOPSLA):96:1–96:30, 2017.926

35 Kiwan Maeng and Brandon Lucia. Adaptive dynamic checkpointing for safe efficient intermit-927

tent computing. In USENIX Symposium on Operating Systems Design and Implementation,928

pages 129–144, 2018.929

36 Kiwan Maeng and Brandon Lucia. Supporting peripherals in intermittent systems with930

just-in-time checkpoints. In ACM SIGPLAN Conference on Programming Language Design931

and Implementation, pages 1101–1116, 2019.932

37 Shorter Merkle Signatures. https://www.openssl.org. Accessed: 2019-09-26.933

38 Azalia Mirhoseini, Ebrahim M Songhori, and Farinaz Koushanfar. Idetic: A high-level synthesis934

approach for enabling long computations on transiently-powered ASICs. In IEEE International935

Conference on Pervasive Computing and Communications, pages 216–224, 2013.936

39 The MSP430 emulator. https://github.com/contiki-ng/mspsim.937

40 OpenSSL. https://www.openssl.org. Accessed: 2019-09-26.938

41 Benjamin Ransford, Jacob Sorber, and Kevin Fu. Mementos: System support for long-running939

computation on RFID-scale devices. In ACM SIGARCH Computer Architecture News, pages940

159–170, 2011.941

42 Thomas W. Reps, Susan Horwitz, and Shmuel Sagiv. Precise interprocedural dataflow analysis942

via graph reachability. In Ron K. Cytron and Peter Lee, editors, ACM SIGPLAN-SIGACT943

Symposium on Principles of Programming Languages, San Francisco, California, USA, January944

23-25, 1995, pages 49–61, 1995.945

43 Emily Ruppel and Brandon Lucia. Transactional concurrency control for intermittent, energy-946

harvesting computing systems. In ACM SIGPLAN Conference on Programming Language947

Design and Implementation, pages 1085–1100, 2019.948

44 Alanson P Sample, Daniel J Yeager, Pauline S Powledge, Alexander V Mamishev, and Joshua R949

Smith. Design of an rfid-based battery-free programmable sensing platform. IEEE transactions950

on instrumentation and measurement, 57(11):2608–2615, 2008.951

45 Claude E. Shannon. Communication theory of secrecy systems. Bell Syst. Tech. J., 28(4):656–952

715, 1949.953

46 Milijana Surbatovich, Limin Jia, and Brandon Lucia. I/O dependent idempotence bugs in954

intermittent systems. Proceedings of the ACM on Programming Languages, 3(OOPSLA):183,955

2019.956

47 Charles Suslowicz, Archanaa S Krishnan, and Patrick Schaumont. Optimizing cryptography957

in energy harvesting applications. In Proceedings of the Workshop on Attacks and Solutions in958

Hardware Security, pages 17–26. ACM, 2017.959

48 Joel Van Der Woude and Matthew Hicks. Intermittent computation without hardware support960

or programmer intervention. In USENIX Symposium on Operating Systems Design and961

Implementation, pages 17–32, 2016.962

49 Chao Wang and Patrick Schaumont. Security by compilation: an automated approach to963

comprehensive side-channel resistance. ACM SIGLOG News, 4(2):76–89, 2017.964

50 Jingbo Wang, Chungha Sung, Mukund Raghothaman, and Chao Wang. Data-driven synthesis965

of provably sound side channel analyses. In International Conference on Software Engineering,966

pages 810–822. IEEE, 2021.967

51 Jingbo Wang, Chungha Sung, and Chao Wang. Mitigating power side channels during968

compilation. In ACM Joint Meeting on European Software Engineering Conference and969

Symposium on the Foundations of Software Engineering, pages 590–601. ACM, 2019.970

52 Meng Wu, Shengjian Guo, Patrick Schaumont, and Chao Wang. Eliminating timing side-971

channel leaks using program repair. In Frank Tip and Eric Bodden, editors, ACM SIGSOFT972

International Symposium on Software Testing and Analysis, pages 15–26. ACM, 2018.973

53 Jiawei Yuan and Shucheng Yu. Privacy preserving back-propagation neural network learning974

made practical with cloud computing. IEEE Transactions on Parallel and Distributed Systems,975

25(1):212–221, 2013.976

Y. Li and C. Wang 18:29

54 Jun Zhang, Pengfei Gao, Fu Song, and Chao Wang. SCInfer: Refinement-based verification977

of software countermeasures against side-channel attacks. In International Conference on978

Computer Aided Verification, pages 157–177. Springer, 2018.979

ECOOP 2023

	1 Introduction
	2 Background
	2.1 The Hardware Platform
	2.2 The Software Program
	2.2.1 The Original Program
	2.2.2 Dividing into Two Parts
	2.2.3 Challenges in Optimization
	2.2.4 The Optimized Program

	3 Overview of Our Method
	3.1 The Top-Level Procedure
	3.2 The Technical Challenges

	4 Identifying the Precomputation Set
	4.1 Inter-Procedural Dependencies
	4.2 Iteratively Computing preSet
	4.2.1 Handling Loops

	5 Optimizing the Precomputation Set
	5.1 The Motivation
	5.2 The Problem Statement
	5.3 Defining the Value and Cost Functions
	5.3.1 Value
	5.3.2 Cost

	5.4 Symbolic Encoding of the Constraints
	5.4.1 Dependency Constraint
	5.4.2 Value Constraint
	5.4.3 Cost Constraint

	5.5 Solving the Constraints

	6 Transforming the Program
	6.1 The Terminology
	6.2 The Problem
	6.3 The Baseline Method
	6.4 The Optimized Method
	6.5 The Transformation Algorithm

	7 Experiments
	7.1 Benchmarks
	7.2 Performance of the Optimization Tool
	7.3 Performance of the Optimized Programs
	7.4 Impact of the Precomputation Policy

	8 Related Work
	9 Conclusion

