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Abstract

P4Cub is a new intermediate representation (IR) for the P4
programming language that is designed to facilitate the de-
velopment of certified tools. It is organized around a small
set of core constructs that avoid complexities found in the
surface language such as side effects in expressions, mutual
recursion between the expressions and statements, and so on.
Still, P4Cub retains the essential domain-specific features of
P4 itself. P4Cub has a front-end based on Petr4, and has been
fully mechanized in Coq including big-step and small-step
semantics and a type system. We have built several certi-
fied tools using P4Cub including a type soundness proof, a
compiler pass, and an automated verification tool.

Keywords: Coq, P4, formal semantics, formal verification,
intermediate representations, domain-specific languages.
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1 Introduction

Well-designed intermediate representations (IR) underpin
some of the most successful compiler frameworks including
LLVM [Lattner and Adve 2004] and CompCert [Leroy et al.
2016]. IRs enforce abstraction boundaries between source
and target languages and they also influence the design of
compiler passes that translate between them. In the con-
text of mechanized compilers like CompCert, IRs affect the
structure and complexity of correctness proofs. However,
existing mechanized IRs are ill-suited for reasoning about
domain-specific languages because they are based on general-
purpose programming constructs.
This paper presents a new mechanized IR for P4 called

P4Cub. P4 is a domain-specific language for network data
planes that is seeing growing use both as a language for
specifying functionality on programmable devices (switches,
NICs, end-hosts, etc.) and as a language for modeling the
behavior of conventional, fixed-function devices (e.g., Google
uses P4 to model their data center switches for differential
testing [Albab et al. 2022]).

Existing formalizations of P4 are based on the language’s
surface syntax, which is complex and unwieldy to work
with [Doenges et al. 2021]. Where a P4 programmer sees
flexible syntax and expressive abstractions, proof engineers
see convoluted semantics and knotty inductive proofs. Of
course, similar challenges arise in other languages, but they
are particularly egregious in the case of P4, as the language
has very little essential complexity. Fortunately, as it turns
out, there is an elegant language embedded within P4Ðit
just needs to be pulled out into a łlittle languagež of its own.

At a high level, our design for P4Cub is based on two main
considerations. First, we exploit P4’s essential simplicityÐit
has no loops, recursion, memory management, dynamic al-
location, or higher-order featuresÐto design a core language
organized around a set of simple and orthogonal constructs.
We demonstrate how to compile P4’s surface language into
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P4Cub, and we highlight how our static and dynamic seman-
tics eliminate redundant rules.

Second, we embed P4Cub into Coq in a manner that seeks
to streamline the development of formal proofs. For exam-
ple, although P4’s surface syntax is presented using named
variables, P4Cub uses a nameless representation of terms.
As has been shown in prior work, nameless representations
can simplify mechanized proofs, since 𝛼-equivalence comes
for free. Similarly, while P4 allows side effects like function
calls and match-action table invocations to appear in both
expressions and statements, P4Cub requires all side effects
to occur at the statement level, which eliminates a tricky
mutual recursion between the two. We provide a compiler
pass to lift all side effects occurring in expressions up to the
statement level.
At the same time, P4Cub does not distill P4 down to its

absolute essence. Instead, it strives to retain the central fea-
tures of P4 such as header types, parsers, and match-action
tables. This approach allows P4 experts to carry out proofs
in terms of familiar, relatively high-level, domain-specific
constructs. As we show using case studies, P4Cub can be
readily applied to a variety of problems including proofs of
type soundness, verification of compilers, and construction
of tools for verifying P4 programs themselves.
The rest of the paper is organized as follows. First, we

give a brief overview to P4 and P4Cub (Section 2). Next, we
define P4Cub’s syntax (Section 3) and semantics (Section 4).
After that, we present our Coq implementation (Section 5)
and case studies (Section 6). Finally, we discuss related work
(Section 7) and conclude with a brief discussion of possible
directions for future work (Section 8).

2 Overview

P4 is a domain-specific language based on a collection of
relatively high-level abstractions for specifying network data
planes. The core of P4 is based on a relatively simple imper-
ative language, extended with a few domain-specific con-
structs such as header types, parser state machines, and
match-action tables. We briefly review these constructs for
readers unfamiliar with the language, before highlighting a
few representative aspects of our design for P4Cub.

P4’s header types and parser state machines convert packets
into typed representations that can be manipulated in the
rest of the program.

header ethernet_t { bit <48> dstAddr;

bit <48> srcAddr;

bit <16> ethTyp; }

parser MyParser(packet_in packet ,

out headers hdr , inout metadata meta ,

inout standard_metadata_t standard_metadata) {

state start {

packet.extract(hdr.ethernet);

transition select(hdr.ethernet.ethTyp) {

0x8100: reject;

default: accept;

} } }

In this example, the header type captures the standard format
for Ethernet packets with 112 bits. The parser extracts 112
bits from the packet and performs a simple form of validation,
checking that the Ethernet type field is not 0x8100 (i.e., that
the packet does not carry a VLAN tag).

P4’s match-action tables describe configurable procedures
that can be managed by the control-plane at runtimeÐeither
a traditional distributed routing protocol or a
software-defined networking controller.

control MyIngress(inout headers hdr , inout metadata meta ,

inout standard_metadata_t standard_metadata) {

action drop() {

mark_to_drop(standard_metadata);

}

action fwd(bit <9> port) {

standard_metadata.egress_spec = port;

}

table sw {

key = { hdr.ethernet.dstAddr: exact; }

actions = { fwd; drop; }

}

apply { sw.apply(); }

}

Here, the control block consists of a single match-action
table sw that looks up the destination address in the Ethernet
header in the table and either forwards the packet or drops
it. Note that the semantics of the table is not specified by
the P4 program itselfÐto understand whether and how it
forwards packets, we need to know the values of the keys
and actions of the entries in the table.

In addition to these domain-specific features, P4 provides
a number of other constructs. As features have been added
over time, the language has grown in size and complexity,
which makes it harder to build implementations. In the rest
of this section, we highlight a few of the complexities that
arise in P4’s surface syntax, and briefly discuss how they are
streamlined in P4Cub.

Example 1. P4’s type system provides domain-specific con-
structs for modeling the structure of packets, as well as stan-
dard constructs for organizing other program data, often
leading to redundancy. For instance, P4 includes header and
struct types, both of which describe record-like structures
whose values can be accessed using łdotž notation. Follow-
ing is a struct that could be used to encode the headers
found in a standard TCP/IP packet.

struct headers {

ethernet_t ethernet;

ipv4_t ipv4;

tcp_t tcp;

}

Despite the differences between header and struct typesÐ
e.g., values of the former type have a validity bit that tracks
initialization and the fields are serialized in declaration order,
whereas values of the latter do not have a validity bit and
have unordered fieldsÐwe chose to combine the two into a
single type in P4Cub, using a boolean flag to distinguish the
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minor differences in their semantics. Similarly, P4’s header
stacks, which can be used to capture the structure of MPLS
packets among others, are encoded in P4Cub using standard
arrays, which eliminates another form of redundancy at the
type system level.

Example 2. P4’s original design lacked functions,1 but it has
always allowed parser and control declarations to be used
as macros, factoring out common functionality into reusable
blocks of code that can be instantiated many times. For
instance, the control declaration below models a generic
access-control table that forwards or drops the packet based
on a single byte:

control acl(inout bit <8> k)() {

table t {

key = { k : exact }

actions = { drop; forward }

}

apply { t.apply() }

}

This control can be instantiated and invoked multiple times
in the łmainž control on different arguments:

control c(...) {

acl() c1;

acl() c2;

apply {

c1.apply(x);

c2.apply(y);

}

}

P4 imposes restrictions to ensure that a control used in
this way can always be flattened and inlined into a single
top-level control:

control c(...) {

table t1 {

key = { x : exact; }

action = { drop; forward; }

}

table t2 {

key = { y : exact; }

action = { drop; forward; }

}

apply {

t1.apply ();

t2.apply ();

}

}

In contrast, P4Cub disallows nested parser and control

instantiations and instead requires them to be instantiated
at the top levelÐnested instantiations do not increase the ex-
pressiveness of the language, and they can always be inlined
as in the example.

Example 3. As a final example, P4 allows match-action
tables to be invoked from expressions, and also supports
branching on the results of table invocation:

1Top-level functions were added to the language in version 1.1.0, but with a

number of restrictions [P4 Language Consortium 2022].

switch (sw.apply ().action_run) {

fwd: { f.count(); }

drop: { r.count(); }

}

For simplicity, P4Cub only allows table invocations at the
statement level, and requires branching on the results to be
implemented using standard conditionals. The front-end pro-
vides translations to convert programs written in the surface
syntax into IR programs that satisfy these restrictions.

3 Syntax

With this background, we are now ready to introduce P4Cub
itself. The syntax of P4Cub has many elements of a standard
imperative language, including arithmetic, structs, arrays,
and assignment. It also retains the domain-specific features
of P4 meant to reflect common idioms found in network
programs, even though it would be possible to encode them
in terms of other constructsÐe.g., tables could become con-
ditionals. This design choice ensures that programs can be
configured by the control-plane and readily compiled to a
variety of targets.

As discussed in the introduction, the primary goal of our
design for P4Cub is to streamline formal, mechanized rea-
soning about P4 programs. Toward this goal, P4Cub’s syntax
is based on three primary ideas. First, we eliminate many
P4 features including strings, enums, header-unions (C-style
unions of header-types in P4), and header-stacks (arrays of
headers) by compiling them into simpler constructs. Second,
we adopt de Bruijn indices for type and term variables in the
mechanization, to ease reasoning about compiler transfor-
mations, especially ones that introduce new variable decla-
rations. Third, we limit side effects to statements. In other
words, similar to Clight, side effects may not be arbitrarily
nested deep in expressions. Instead, they must appear at the
statement level. This restriction makes P4Cub’s semantics
simpler and eliminates mutual induction between statements
and expressions in proofs.
Formally, P4Cub’s syntax is divided into types, expres-

sions, parser-transition expressions, statements, declarations
within controls, and top-level declarations, as shown in Fig-
ure 1 through Figure 3 (see the appendix for declarations). A
reference to the metavariables used throughout the paper is
provided in Table 1.
P4Cub expression types, shown in Figure 1, include base

types such as bit-strings bit⟨𝑛⟩, type variables, arrays, head-
ers, and structs. Type variables are encoded with de Bruijn
indices. Conceptually, P4 headers are struct-like datatypes
that represent packet headers in the networking sense, e.g.,
an IP header or an Ethernet header. These headers are seg-
mented into fields which specify addresses, flags, and the
likeśdata that often varies in size and may not even be byte-
aligned. To accommodate this, numeric datatypes in P4 have
the form bit⟨𝑛⟩ and int⟨𝑝⟩, with widths of 𝑛 and 𝑝 bits re-
spectively. Unlike P4, widths do not need to be multiples of
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Table 1. Metavariables.

Symbol Name Symbol Name

𝜏 type 𝑏 bool

𝑧 integer 𝑛 natural number

𝑝 positive number 𝑥 string

arg argument prm parameter

e expression pat select pattern

𝑙 parser state label pt parser transition

s statement cd control declaration

td top declaration 𝑣 value

𝑙𝑣 left-value arg𝑣 evaluated argument

ctx syntactic context Γ typing environment

𝜖 value environment sig typing signals

signal evaluation signals 𝜓 extern state

fnst function types fns functions

instt instance type instst instance types

inst instance insts instances

8. Since headers are similar to structs we represent both by
struct𝑏 𝜏 , where 𝑏 is true for headers and false for stan-
dard structs and 𝜏 is a list of types that corresponds to fields
since field names are natural numbers instead of identifiers.
It is important to distinguish the two because there are some
differences between header and struct typesÐe.g., values
of the former type have a validity bit that tracks initialization
and the fields are serialized in declaration order, whereas the
latter do not have a validity bit and have unordered fields.

Example 4. The following code snippet shows the P4Cub
encoding of the headers struct and ethernet_t header, which
were used in Example 1.

struct false {

struct true {

bit <48> ;

bit <48> ;

bit <16> ; } ;

...

}

Note that fields do not have names and that type declara-
tions must be inlined. P4Cub also requires type synonyms
and constants to be inlined. For better optimization, P4Cub
flattens declarations and hoists instantiations to the top level.

P4Cub expressions, shown in Figure 1, share primitive P4
operations such as bit-slicing, casts, arithmetic, and struct
membership. Term variables also use de Bruijn indices. List
literals including structs, headers, and arrays are collapsed
into one Coq constructor. Squishing multiple constructs into
one reduces case analyses in proofsÐit prevents having to
prove similar cases for all three variants. Structs and head-
ers are accessed by a natural number whereas arrays are
indexed by an arbitrary numeric expression, modulo restric-
tions set by the type system. Like P4, P4Cub separates parser
transition expressions from expressions and distinguishes
declarations within controls from top-level declarations.

Types:

𝜏 F bool booleans

| bit⟨𝑛⟩ unsigned integers

| int⟨𝑝⟩ signed integers

| 𝜏 [𝑛] arrays

| struct𝑏 𝜏 structs/headers

| 𝑛 type variables

Operators:

⊖ F ! | ∼ | −

⊕ F + | − | ∗ | ÷ | mod

| == | ! = | && | | | | | + | | | − |

| & | | | ˆ | ∼ | ++ | ≪ | ≫

| < | ≤ | > | ≥

Expressions:

e F 𝑏 boolean

| 𝑧⟨𝑛⟩ unsigned integer

| 𝑧⟨𝑝⟩ signed integer

| 𝜏 𝑛 variable

| e[𝑝 : 𝑝] bit-slicing

| (𝜏) e cast

| ⊖ e unary operation

| e ⊕ e binary operation

| {e} list literal

| e[e] array indexing

| e.𝑛 struct member

Select Patterns:

pat F _ wild pattern

| 𝑧⟨𝑛⟩ unsigned integer

| 𝑧⟨𝑝⟩ signed integer

| pat &&& pat bit-mask

| pat .. pat range

| pat list/struct pattern

Parser State Labels:

𝑙 F start start label

| accept accept label

| reject reject label

| 𝑛 user-defined label

Parser Transition Expressions:

pt F direct 𝑙 direct state transition

| select e 𝑙 {pat ⇒ 𝑙} select transition

Figure 1. P4Cub expression syntax.

Arguments and parameters do not have names, defined in
Figure 2, as they use de Bruijn indices. There are three kinds
of parameters:
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Arguments:

arg F in e in-arguments

| out e out-arguments

| inout e inout-arguments

Parameters:

prm F in 𝜏 in-parameters

| out 𝜏 out-parameters

| inout 𝜏 inout-parameters

Figure 2. P4Cub arguments and parameters.

Statements:

s F skip skip

| return e return

| exit exit

| goto pt parser transition

| e := e assignment

| e 𝑥 ⟨𝜏⟩(arg) function call

| 𝑥 (e, arg) action call

| e 𝑥 𝑥 ⟨𝜏⟩(arg) method call

| invoke 𝑥 table invocation

| apply 𝑥 (arg) apply statements

| let e in s let binding

| s; s sequencing

| if e then s else s conditional

Figure 3. P4Cub statement syntax.

• in parameters are read-only and are initialized by copy-
ing the value of the corresponding argument when the
invocation is executed;

• out parameters are uninitialized; an argument passed
as an out parameter must be accompanied with a stor-
age reference (an l-value), and after the execution of
the call, the value of the parameter is copied to the
corresponding storage location; and

• inout parameters are both in and out.

Statements in P4Cub, shown in Figure 3, can be divided
into atomic statements, such as skip, return e, parser transi-
tion statements; and compound statements that determine
the program’s control flow, such as conditionals and sequenc-
ing. Atomic statements end statement blocks and do not
introduce new variables (de Bruijn identifiers) into scope.
Variable declarations let e in s shift the de Bruijn context up
by binding e to de Bruijn index 0 in block s, thus, it does
not escape the scope of s. P4Cub only allows side effects at
the statement level. Thus, function calls, invocation of ta-
bles, applications of parsers and controls, and extern method
calls must be statements. For instance, the P4 code shown in
Example 3 would be written as Example 5 in P4Cub.

Example 5. Note that since action_run is the third field
of the apply_result struct for table sw it has been trans-
formed to field 2. The invoke must occur at the statement
level, no longer embedded in the field projection. Further-
more the enum members for action_run are compiled to
unsigned integers, where the width represents the number
of members and the value the position in the member list.
There are no switch statements in P4Cub so it becomes a
nested conditional where each guard checks equality to a
member of the enum.

var sw.invoke ();

if 0.2 = 2W0 {

f.count();

} else if 0.2 = 2W1 {

r.count();

} else {

skip

}

Like P4, P4Cub distinguishes between different kinds of
procedure calls. P4Cub programs can call functions, actions,
tables, external methods, parsers, and controls. Each kind of
call behaves differently and represents a different component
of a packet-processing pipeline.

Example 6. We show the MyIngress control illustrated in
Section 2 in P4Cub.

control MyIngress ()

(out struct false { header true { bit <48> ; bit <48> ;

bit <16> } },

inout struct false { },

inout struct false { ... }) {

action drop()() { mark_to_drop (2); }

action fwd(bit <9>)() { 3.1 = 0; }

table sw {

key = { 0.0.0: exact; }

actions = { fwd; drop; } }

apply { sw.invoke; }

}

The code for fwd illustrates the de Bruijn indices in play.
The input structs are respectively headers, metadata, and
standard_metadata_t. The original variable for the latter
has de Bruijn index 2 which becomes 3 because of fwd’s
argument. Controls also have separate extern arguments.

4 Static and Dynamic Semantics

Figure 4 defines the environments, stores, and contexts used
in P4Cub’s type system. Figure 5 defines such for P4Cub’s
operational semantics. Environments Γ and stores 𝜖 are lists
of types and values, respectively, that associate de Bruijn
indices (the list’s indices) to types or values, respectively.
Thus, looking up a variable 𝑛’s type from the environment
Γ returns the type at the 𝑛’s index in the environment, de-
noted Γ 𝑛. The same notation is used to look up a variable
in the store. We write 𝜏 :: Γ to indicate appending 𝜏 to the
łbeginningž of the environment.

The function fnst maps a function’s name to the number
of type parameters, expression parameters, and return type.

5
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Expression Typing Environment:

Γ F 𝜏 A list of types

Typing Function Environment:

fnst F ∅ Empty

| fnst, 𝑥 ↦→ (𝑛, 𝜏, 𝜏) Signature

Instance Types:

instt F 𝜏, 𝜏 Action signature

| (𝑥, 𝑛, 𝜏, 𝜏) Extern type

| Prsr 𝜏 Parser type

| Ctrl 𝜏 Control type

| Table Table

Typing Environment:

instst F ∅

| instst, 𝑥 ↦→ instt

Typing Syntactic Contexts:

ctx F Prsr 𝑛 instst Parser

| Ctrl instst Control

| Fn 𝜏 Function

Typing Signal:

sig F Cont continue

| Exit exit

| Return 𝜏 return a type

| Trans transition

Figure 4. Typing environment, context, and signal syntax.

P4Cub stores instance informationÐsuch as a parser instance
or a control instanceÐin an łinstancež type and supports in-
stance types for actions, externs, parsers, controls, and tables.
Action types contain the signature of control-plane parame-
ters and that of data-plane parameters. Extern instance types
include the name of each method with its signature, much
like a function’s signature. Parser and control instances each
contain the types of runtime parameters. Tables do not need
a signature as they are only invoked with their name. In the
paper all instance types are kept in one environment instst
which maps names to instance types. In the implementation
they are kept in separate namespaces.

The function fns maps a function’s name to the available
functions in scope and its body. The instance types instt
have corresponding instances inst for evaluation. Action
closures have the local expression and instance environment
and the action’s body. Control instances include the local
function and instance environment and the control’s apply
block. Parser instances also include the local function and
instance environment as well as the parser’s start and user-
defined states. Table declarations are paired with the number
of term variables declared in the control before it. As will

Expression Evaluation Store:

𝜖 F 𝑣 A list of values

Evaluation Function Environment:

fns F ∅ Empty

| fns, 𝑥 ↦→ (fns, s) Closure

Evaluation Instances:

inst F 𝜖, insts, s Action closure

| fns, insts, s Control

| fns, insts, s, s Parser

| 𝑛, e, (𝑥, arg)) Table

Evaluation Environment:

insts F ∅

| insts, 𝑥 ↦→ inst

Evaluation Syntactic Contexts:

ctx F Prsr 𝑛 s s insts Parser

| Ctrl insts Control

| Function Function

Evaluation Signal:

signal F Cont continue

| Exit exit

| Return 𝑣 return a value

| Accept accept

| Reject reject

Figure 5. Eval. environment, context, and signal syntax.

be shown in the evaluation rule for tables, this is used to
split the store to evaluate the match-action table. Instances
for externs are not included here because they are handled
internally by the target-dependent extern environment 𝜓 .
Again for expository simplicity, all łinstancesž are in the
same environment but in the implementation have separate
namespaces.

The typing syntactic context ctx defines the syntactic con-
text where a statement is placed and it contains different
scope information of the statement for each kind of context.
For example, theCtrl instst is used when inside a control dec-
laration, such as an action declaration or a control’s apply
block. It has information such as the tables defined within
the current control, the actions declared, and other control
instances in scope. This information is not needed when
typing or evaluating a parser state. The Prsr 𝑛 instst contains
information only needed for parsers, such as the number of
states of the current parser-state machine and other parser
instances in scope. These two contexts also contain available
extern type signatures. The Fn 𝜏 is used when inside of a
top-level defined function with the return type 𝜏 . Unlike
other contexts, it does not provide any information about

6
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parser, control, nor extern instances because functions in P4
are not allowed to invoke any of these.

Evaluation syntactic contexts are used in the dynamic se-
mantics to provide environments and information about the
enclosing syntactic context. Similarly to the typing syntactic
contexts the evaluation version includes information par-
ticular to different blocks of a program. The parser context
includes the number of parameters, start state, and user-
defined states of the enclosing parser, as well as the available
parser instances in scope. The control context includes the
tables and actions of the enclosing control, as well as the
available control instances in scope.

A typing or evaluation signal, sig and signal, respectively,
indicates whether control flow continues. They are also used
to check that a statement is properly formed within its con-
text. Signals such as Cont and Return are essentially the
same as in other imperative languages. An Exit signal indi-
cates that the entire program should stop evaluating. Indeed,
Exit halts execution all the way up to the packet-processing
pipeline level, whereas Return only interrupts the enclosing
statement block. The Return 𝜏 typing signal returns a type
while the evaluation Return 𝑣 signal returns a value. Trans
is similar to return but for the parser-state machine and it
helps to verify that a parser-state terminates with a transi-
tion statement. In our implementation, more specific signals
are used to embody if the packet was accepted or rejected in
parsing: Accept and Reject.

4.1 Type System

Figure 6 shows the expression typing rules, most of which
are straightforward. As just mentioned, the environment
Γ is a list of types where the index of a type is de Bruijn
term identifier and Γ 𝑛 denotes looking up the 𝑛th variable
in the environment. We use the same notation for look up in
any list. For example, the T-Member rule states that the 𝑛’s
member of expression e has the type 𝜏 if expression e has a
struct type where its𝑛’s field has the type 𝜏 , which is denoted
by the look up function 𝜏 𝑛. In T-BinOp, the helper function
bop_type ⊕ 𝜏1 𝜏2 determines the type of the expression based
on the binary operator and its operands. As an example,
bop_type + bit⟨𝑛⟩ bit⟨𝑛⟩ = bit⟨𝑛⟩. We also take advantage
of P4’s numeric data types such as bit⟨𝑛⟩, which permit one
to specify unsigned integers bound by 2𝑛 . As an example,
T-Index allows any term of type bit⟨𝑛⟩ to index into an array,
because the length of the array is the upper-bound on values
of such terms. This ensures that evaluating a well-typed
array index expression cannot cause an out of bounds error.
Typing a list expression {e} just types its elements, that is,
Γ ⊢ e : 𝜏 .
Figure 6 also shows statement typing rules. Note that by

using de Bruijn indices we eliminate the need to update the
environmentÐnew variables are only introduced in a local
scope by let e in s. Thus, the T-LetIn is the only place where

the environment is locally extended. Additionally, no bind-
ings łleak,ž so there is no need to produce an environment
with the declared variable bound.

Terminal statements such as exits, returns, and transitions
produce a unique signal. Some rules such as T-ActCall, T-
ApplyCtrl, and T-Invoke look up signatures of the invokee
in the syntactic context rather than Γ. This is due to the fact
that some P4 constructs can only be called in certain places
which is captured by the context. For instance, transitioning
to a different parser state, shown in T-Transition rule, is
only reasonable in a parser context.

The statement typing rules use multiple helper judgments,
provided in Appendix A, which use a subscript under their
inference symbolÐe.g., 𝑛, Γ ⊢𝑝 pt represents the judgment
form of parser transition typing. The rules use some helper
functions and predicates. The T-FunCall rule states that
calling the function 𝑥 with the return expression e𝑟 , type
arguments 𝜏arg , and arguments arg results in a Cont signal if
𝑥 exists in the context and it has |𝜏arg | type parameters, the
return type 𝜏𝑟 , and parameters 𝜏 ; the return expression e𝑟
can be evaluated to an l-value (denoted by helper predicate
lvalue_ok e𝑟 ), and e𝑟 and arg type check. To type check e𝑟
and arg type substitutions must be performed using the
type arguments 𝜏arg. e𝑟 is typed as return type 𝜏𝑟 substituted
with type arguments 𝜏arg (denoted by the helper function
tsub 𝜏arg 𝜏𝑟 ). The arguments arg are typed as the parameters
𝜏 substituted with type arguments 𝜏arg (again, denoted by
the helper tsub 𝜏arg 𝜏). tsub 𝜏 𝜏 substitutes de Bruijn type
variables in 𝜏 with 𝜏 : the first type argument is substituted
for 0, the second for 1, and so on. Note that we take advantage
of the list notation when a judgment or function is being
mapped to a list. For example, in T-ApplyCtrl, Γ ⊢arg arg : 𝜏

states that arguments arg have the type 𝜏 .

4.2 Evaluation

Figure 7 shows the big-step semantics of expressions. Expres-
sions evaluate to values, defined in Figure 8. Additionally,
sometimes expressions are partially evaluated to l-values,
also defined in Figure 8. L-values represent assignable loca-
tions, such as an array index, a struct field, or a variable.
De Bruijn stores 𝜖 are a list of values. Expressions do

not introduce new variables so no de Bruijn shifts are re-
quired. The rules are self-explanatory. Similar to typing of a
list expression, the evaluation of it is also just mapping the
judgment onto the list, that is, ⟨𝜖, e⟩ ⇓ 𝑣 .
Figure 9 shows the big-step semantics of statements. For

evaluating statements we need a store 𝜖 , a context ctx, and
an extern state𝜓 .𝜓 represents the state of external objects
(also known as externs). P4Cub takes advantage of direct
Coq definitions of targets and externs. Thus, in our formal-
ization here, we leave the definition mostly opaque. This
detail is hidden in helper functions such as exec_extern. For
instance, E-MtdCall is the only rule that changes the extern

7
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P4Cub’s expression typing rules:

Γ ⊢ e : 𝜏 Γ ⊢ 𝑏 : bool
T-Bool

0 ≤ 𝑧 < 2𝑛

Γ ⊢ 𝑧⟨𝑛⟩ : bit⟨𝑛⟩
T-Bit

−2𝑝−1 ≤ 𝑧 < 2𝑝−1

Γ ⊢ 𝑧⟨𝑝⟩ : int⟨𝑝⟩
T-Int

Γ 𝑛 = 𝜏

Γ ⊢ 𝜏 𝑛 : 𝜏
T-Var

Γ ⊢ e : struct𝑏 𝜏

𝜏 𝑛 = 𝜏

Γ ⊢ e.𝑛 : 𝜏
T-Mem

Γ ⊢ e : 𝜏 numeric_width 𝑛 𝜏

𝑝1 ≤ 𝑝2 < 𝑛

Γ ⊢ e[𝑝2 : 𝑝1] : bit⟨𝑝2 − 𝑝1 + 1⟩
T-Slice

Γ ⊢ e : 𝜏 ′

proper_cast 𝜏 ′ 𝜏

Γ ⊢ (𝜏) e : 𝜏
T-Cst

Γ ⊢ e : 𝜏

uop_type ⊖ 𝜏 𝜏 ′

Γ ⊢ ⊖ e : 𝜏 ′
T-Un

Γ ⊢ e1 : 𝜏1 Γ ⊢ e2 : 𝜏2
bop_type ⊕ 𝜏1 𝜏2 = 𝜏

Γ ⊢ e1 ⊕ e2 : 𝜏
T-Bi

Γ ⊢ e1 : 𝜏 [2
𝑛]

Γ ⊢ e2 : bit⟨𝑛⟩

Γ ⊢ e1 [e2] : 𝜏
T-Idx

Γ ⊢ e : 𝜏

Γ ⊢ {e} : {𝜏}
T-Lists

P4Cub’s statement typing rules:

Γ, fnst, ctx ⊢ s ⊣ sig Γ, fnst, ctx ⊢ skip ⊣ Cont
T-Skip

Γ ⊢ e : 𝜏

Γ, fnst, Fn 𝜏 ⊢ return e ⊣ Return
T-Rtrn

exit_ok ctx

Γ, fnst, ctx ⊢ exit ⊣ Exit
T-Exit

𝑛, Γ ⊢𝑝 pt

Γ, fnst, Prsr 𝑛 instst ⊢ goto pt ⊣ Trans
T-Trans

lvalue_ok e1 Γ ⊢ e1 : 𝜏

Γ ⊢ e2 : 𝜏

Γ, fnst, ctx ⊢ e1 := e2 ⊣ Cont
T-Asgn

instst 𝑥 = (𝜏𝑐 , 𝜏𝑑 ) Γ ⊢ e : 𝜏𝑐
Γ ⊢arg arg : 𝜏𝑑

Γ, fnst,Ctrl instst ⊢ 𝑥 (e, arg) ⊣ Cont
T-ActCall

fnst 𝑥 = |𝜏arg |, 𝜏, 𝜏𝑟 lvalue_ok e𝑟
Γ ⊢ e𝑟 : tsub 𝜏arg 𝜏𝑟 Γ ⊢arg arg : tsub 𝜏arg 𝜏

Γ, fnst, ctx ⊢ e𝑟 𝑥 ⟨𝜏arg⟩(arg) ⊣ Cont
T-FunCall

ctx 𝑥 𝑥𝑚 = ( |𝜏arg |, 𝜏, 𝜏𝑟 ) lvalue_ok e𝑟

Γ ⊢ e𝑟 : tsub 𝜏arg 𝜏𝑟 Γ ⊢arg arg : tsub 𝜏arg 𝜏

Γ, fnst, ctx ⊢ e𝑟 𝑥 𝑥𝑚 ⟨𝜏arg⟩(arg) ⊣ Cont
T-MtdCall

instst 𝑥 = Ctrl 𝜏 Γ ⊢arg arg : 𝜏

Γ, fnst,Ctrl instst ⊢ apply 𝑥 (arg) ⊣ Cont
T-ApplyCtrl

instst 𝑥 = Prsr 𝜏 Γ ⊢arg arg : 𝜏

Γ, fnst, Prsr 𝑛 instst ⊢ apply 𝑥 (arg) ⊣ Cont
T-ApplyPrsr

instst 𝑥 = Table

Γ, fnst,Ctrl instst ⊢ invoke 𝑥 ⊣ Cont
T-Invoke

Γ ⊢ e : 𝜏 𝜏 :: Γ, fnst, ctx ⊢ s ⊣ sig

Γ, fnst, ctx ⊢ let e in s ⊣ sig
T-LetIn

Γ, fnst, ctx ⊢ s1 ⊣ Cont

Γ, fnst, ctx ⊢ s2 ⊣ sig

Γ, fnst, ctx ⊢ s1; s2 ⊣ sig
T-Seq

Γ ⊢ e : bool Γ, fnst, ctx ⊢ s1 ⊣ sig1
Γ, fnst, ctx ⊢ s2 ⊣ sig2

Γ, fnst, ctx ⊢ if e then s1 else s2 ⊣ lub sig1 sig2
T-Condi

Figure 6. P4Cub expression and statement typing.

environment𝜓 , all other statement evaluation rules simply
propagate such a change.

The left-hand side of an assignment in the E-Assign rule
and some arguments in function calls in the E-FunCall rule
are partially evaluated to l-values. This is because we want
to get a location they represent in the environment 𝜖 that

can be used to update a value in 𝜖 which is provided by l-
values. The evaluation of expressions to l-values is given in
Figure 14, Appendix A. The helper lv_set assigns the l-value’s
underlying variable (a de Bruin identifier) the new composite
value at that location. For instance, lv_set (𝑏 5[0]) true 𝜖

updates the first element of the array to be true which is

8
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⟨𝜖, e⟩ ⇓ 𝑣 ⟨𝜖, 𝑏⟩ ⇓ 𝑏
E-Bool

⟨𝜖, 𝑧⟨𝑛⟩⟩ ⇓ 𝑧⟨𝑛⟩
E-Bit

⟨𝜖, 𝑧⟨𝑝⟩⟩ ⇓ 𝑧⟨𝑝⟩
E-Int

𝜖 𝑛 = 𝑣

⟨𝜖, 𝜏 𝑛⟩ ⇓ 𝑣
E-Var

⟨𝜖, e⟩ ⇓ 𝑣

⟨𝜖, ⊖ e⟩ ⇓ ⊖ 𝑣
E-Un

⟨𝜖, e⟩ ⇓ 𝑣 eval_slice 𝑝1 𝑝2 𝑣 = 𝑣 ′

⟨𝜖, e[𝑝1 : 𝑝2]⟩ ⇓ 𝑣 ′
E-Slice

⟨𝜖, e⟩ ⇓ 𝑣 eval_cast 𝜏 𝑣 = 𝑣 ′

⟨𝜖, (𝜏) e⟩ ⇓ 𝑣 ′
E-Cast

⟨𝜖, e1⟩ ⇓ 𝑣1 ⟨𝜖, e2⟩ ⇓ 𝑣2

⟨𝜖, e1 ⊕ e2⟩ ⇓ 𝑣1 ⊕ 𝑣2
E-Bin

⟨𝜖, e⟩ ⇓ 𝑣 𝑛 𝑣 = 𝑣

⟨𝜖, e.𝑛⟩ ⇓ 𝑣
E-Mem

⟨𝜖, e⟩ ⇓ 𝑣

⟨𝜖, {e}⟩ ⇓ {𝑣}
E-Lists

⟨𝜖, e1⟩ ⇓ 𝑣 ⟨𝜖, e2⟩ ⇓ 𝑧⟨𝑛⟩ 𝑧 𝑣 = 𝑣

⟨𝜖, e1 [e2]⟩ ⇓ 𝑣
E-Index

Figure 7. P4Cub expression evaluation.

Values:

𝑣 F 𝑏 boolean

| 𝑧⟨𝑛⟩ unsigned integer

| 𝑧⟨𝑝⟩ signed integer

| {𝑣} list

L-values:

𝑙𝑣 F 𝜏 𝑛 variable

| 𝑙𝑣 [𝑝 : 𝑝] bit-slicing

| 𝑙𝑣 [𝑧] array indexing

| 𝑙𝑣 .𝑛 struct member

Evaluated Arguments:

arg𝑣 F in 𝑣 evaluated in-argument

| out 𝑙𝑣 evaluated out-argument

| inout 𝑙𝑣 evaluated inout-argument

Figure 8. P4Cub value syntax.

sitting at the fifth position in 𝜖 , all other elements of the
array remain the same. The E-Assign rule states that after e2
is fully evaluated to 𝑣 and e1 is evaluated to an l-value 𝑙𝑣 , the
location represented by 𝑙𝑣 in 𝜖 is updated with a new value,
the difference being the component is now represented by 𝑣 .

As mentioned in Section 3, arguments are specified by
in, out, or inout. This matters in evaluating call statements.
Arguments specified as in are simply input to the procedure,
a standard notion of function arguments. Those specified as
out are evaluated to l-values. Any out parameters in function
bodies are assigned a value during their evaluation. As in
E-FunCall, when copy_out is performed, the value from the
function’s evaluation environment 𝜖 ′ is used to update the
call environment 𝜖 at the location represented by the l-value.
For example, suppose some function 𝑓 has a parameter out 𝑏
at index 0 and is being applied with an argument out 𝑏 1,
where 1 is a de Bruijn variable index. The de Bruijn variable
is evaluated to the (identical) l-value 𝑏 1 by E-LVar. Suppose
in the body of 𝑓 , parameter 0 is assigned to false. When the
evaluation of 𝑓 concludes, copy_out looks up that 0 is false
in 𝜖 ′, and assigns 1 to false in 𝜖 . Arguments specified as
inout serve as both in and out. E-MtdCall also uses copy_in
and copy_out. Because extern methods are externally de-
fined, not in the program syntax, E-MtdCall must make
use of𝜓 and exec_extern to resolve the extern.
Every parser state is a statement block terminated by a

well-typed transition pt which evaluates to a label. If the
label indicates an intermediate state, either the start state or
a user-defined state, then the appropriate state is looked up
and evaluated, conducted by the E-TransI rule. If the label
indicates a final state, such as accept (meaning the packet
was successfully parsed) or reject (meaning an error in ex-
tracting the packet’s bits occurred), then the state-machine
has concluded evaluating, conducted by the E-TransFinal
rule, and control flow goes back to the application of the
parser. Both E-TransFinal and E-TransI use the parser tran-
sition helper judgment provided in Figure 14, Appendix A.
The application of the parser is shown in the E-ApplyP rule
and it states that parsers may be applied by other parsers
given arguments. As in E-FunCall copy_in and copy_out
are used for the arguments to the state-machine.

P4 adopts non-standard scoping conventions. For example,
action calls use lexical scope, evident by the E-ActCall rule
which looks up both the action’s body and a closure environ-
ment, that is, insts 𝑥 = (𝜖cl, insts

′, s). On the other hand, table
invocation and parser transitions use a scheme similar to
dynamic scope, evident by the E-Invoke and E-TransI rules
that do not use a closure environment. Specifically, E-TransI
begins with environment 𝜖1 ++𝜖2, and the next parser state is
then evaluated using 𝜖2 rather than a closure environment,
as done in the E-ActCall rule. This evaluation occurs within
that of the whole state-machine of a parser with |𝜖2 | parame-
ters/arguments. Thus when transitioning states in E-TransI

only the last |𝜖2 | values in the environment 𝜖1 ++ 𝜖2 should
be used when evaluating the next state: 𝜖1 represents vari-
ables introduced within the current parser block before the
transition takes place. Similarly, in E-Invoke a list append
𝜖1++𝜖2 is used to separate the values in the environment. 𝜖2 is
the part of the environment with de Bruijn indices in scope

9
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⟨𝜓, fns, 𝜖, ctx, s⟩ ⇓ ⟨𝜖 ′, signal,𝜓 ′⟩ ⟨𝜓, fns, 𝜖, ctx, skip⟩ ⇓ ⟨𝜖,Cont,𝜓 ⟩
E-Skip

⟨𝜓, fns, 𝜖, ctx, exit⟩ ⇓ ⟨𝜖, Exit,𝜓 ⟩
E-Exit

⟨𝜖, e⟩ ⇓ 𝑣

⟨𝜓, fns, 𝜖, ctx, return e⟩ ⇓ ⟨𝜖,Return 𝑣,𝜓 ⟩
E-Rtrn

final 𝑙 signal ⟨𝜖, pt⟩ ⇓𝑝 𝑙

⟨𝜓, fns, 𝜖, Prsr 𝑛 s s insts, goto pt⟩ ⇓ ⟨𝜖, signal,𝜓 ⟩
E-TransF

get_state_block s s 𝑙 = s′ intermediate 𝑙 ⟨𝜖1 ++ 𝜖2, pt⟩ ⇓𝑝 𝑙

⟨𝜓, fns, 𝜖2, Prsr |𝜖2 | s s insts, s
′⟩ ⇓ ⟨𝜖3, signal,𝜓

′⟩

⟨𝜓, fns, 𝜖1 ++ 𝜖2, Prsr |𝜖2 | s s insts, goto 𝑝⟩ ⇓ ⟨𝜖1 ++ 𝜖3, signal,𝜓
′⟩

E-TransI

𝑙 ⟨𝜖, e1⟩ ⇓𝑙𝑣 𝑙𝑣 ⟨𝜖, e2⟩ ⇓ 𝑣

⟨𝜓, fns, 𝜖, ctx, e1 := e2⟩ ⇓ ⟨lv_set 𝑙𝑣 𝑣 𝜖,Cont,𝜓 ⟩
E-Assign

fns 𝑥 = fns′, s 𝑙 ⟨𝜖, e⟩ ⇓𝑙𝑣 𝑙𝑣 ⟨𝜖, arg⟩ ⇓arg arg𝑣
⟨𝜓, fns′, copy_in arg𝑣 𝜖, Function, s⟩ ⇓ ⟨𝜖 ′,Return 𝑣,𝜓 ′⟩

⟨𝜓, fns, 𝜖, ctx, e 𝑥 ⟨𝜏⟩(arg)⟩ ⇓ ⟨lv_set 𝑙𝑣 𝑣 (copy_out arg𝑣 𝜖
′ 𝜖),Cont,𝜓 ′⟩

E-FunCall

insts 𝑥 = (𝜖cl, insts
′, s) ⟨𝜖, e⟩ ⇓ 𝑣 ⟨𝜖, arg⟩ ⇓arg arg𝑣

⟨𝜓, fns, 𝑣 ++ copy_in arg𝑣 𝜖cl,Ctrl insts′, s⟩ ⇓ ⟨𝜖 ′,Return,𝜓 ′⟩

⟨𝜓, fns, 𝜖,Ctrl insts, 𝑥 (e, arg)⟩ ⇓ ⟨copy_out arg𝑣 𝜖
′ 𝜖,Cont,𝜓 ′⟩

E-ActCall

𝑙 ⟨𝜖, e⟩ ⇓𝑙𝑣 𝑙𝑣 ⟨𝜖, arg⟩ ⇓arg arg𝑣 exec_extern𝜓 𝑥 𝑥𝑚 𝜏 arg𝑣 = (𝑣, arg𝑣
′,𝜓 ′)

⟨𝜓, fns, 𝜖, ctx, e 𝑥 𝑥𝑚 ⟨𝜏⟩(arg)⟩ ⇓ ⟨lv_set 𝑙𝑣 𝑣 (copy_out arg𝑣
′ 𝜖),Cont,𝜓 ′⟩

E-MtdCall

insts 𝑥𝑡 = ( |𝜖2 |, e𝑘 , (𝑥, arg)) match_actions𝜓 e𝑘 (𝑥, arg) = 𝑥𝑎, e, arg

⟨𝜓, fns, 𝜖2,Ctrl insts, 𝑥𝑎 (e, arg)⟩ ⇓ ⟨𝜖 ′,Cont,𝜓 ′⟩

⟨𝜓, fns, 𝜖1 ++ 𝜖2,Ctrl insts, invoke 𝑥𝑡 ⟩ ⇓ ⟨𝜖1 ++ 𝜖 ′,Cont,𝜓 ′⟩
E-Invoke

insts 𝑥 = fns′, insts′, s ⟨𝜖, arg⟩ ⇓arg arg𝑣
⟨𝜓, fns′, copy_in arg𝑣 𝜖,Ctrl insts′, s⟩ ⇓ ⟨𝜖 ′, signal,𝜓 ′⟩

⟨𝜓, fns, 𝜖,Ctrl insts, apply 𝑥 (arg)⟩ ⇓ ⟨copy_out arg𝑣 𝜖
′ 𝜖,Cont,𝜓 ′⟩

E-ApplyC

insts 𝑥 = fns′, insts′, s′, s′

⟨𝜓, fns′, copy_in arg𝑣 𝜖, Prsr |arg | s
′ s′ insts′, s′⟩ ⇓ ⟨𝜖 ′, signal,𝜓 ′⟩

⟨𝜓, fns, 𝜖, Prsr 𝑛 s s insts, apply 𝑥 (arg)⟩ ⇓ ⟨copy_out arg𝑣 𝜖
′ 𝜖,Cont,𝜓 ′⟩

E-ApplyP

⟨𝜖, e⟩ ⇓ 𝑣 ⟨𝜓, fns, 𝑣 :: 𝜖, ctx, s⟩ ⇓ ⟨𝑣 ′ :: 𝜖 ′, signal,𝜓 ′⟩

⟨𝜓, fns, 𝜖, ctx, let e in s⟩ ⇓ ⟨𝜖 ′, signal,𝜓 ′⟩
E-LetIn

interrupt signal

⟨𝜓, fns, 𝜖, ctx, s1⟩ ⇓ ⟨𝜖 ′, signal,𝜓 ′⟩

⟨𝜓, fns, 𝜖, ctx, s1; s2⟩ ⇓ ⟨𝜖 ′, signal,𝜓 ′⟩
E-SeqI

⟨𝜓, fns, 𝜖, ctx, s1⟩ ⇓ ⟨𝜖 ′,Cont,𝜓 ′⟩

⟨𝜓 ′, fns, 𝜖 ′, ctx, s2⟩ ⇓ ⟨𝜖 ′′, signal,𝜓 ′′⟩

⟨𝜓, fns, 𝜖, ctx, s1; s2⟩ ⇓ ⟨𝜖 ′′, signal,𝜓 ′′⟩
E-SeqC

⟨𝜖, e⟩ ⇓ true

⟨𝜓, fns, 𝜖, ctx, s1⟩ ⇓ ⟨𝜖 ′, signal,𝜓 ′⟩

⟨𝜓, fns, 𝜖, ctx, if e then s1 else s2⟩ ⇓ ⟨𝜖 ′, signal,𝜓 ′⟩
E-CondT

⟨𝜖, e⟩ ⇓ false ⟨𝜓, fns, 𝜖, ctx, s2⟩ ⇓ ⟨𝜖 ′, signal,𝜓 ′⟩

⟨𝜓, fns, 𝜖, ctx, if e then s1 else s2⟩ ⇓ ⟨𝜖 ′, signal,𝜓 ′⟩
E-CondF

Figure 9. P4Cub statement evaluation.
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at the table’s definition. 𝜖1 represents variables introduced
after the table declaration. To ensure any de Bruijn indices
in the data plane arguments look up the correct values in the
environment 𝜖1 ++ 𝜖2, a suffix 𝜖2 of the environment is used,
whose length is equal to the number of variables in scope at
the syntactic place of the table. Since the table’s declaration,
we have that |𝜖1 | variables have been declared in the control.

5 Implementation

P4Cub’s Coq implementation itself runs to roughly 7,400
lines of code and uses Petr4 [Doenges et al. 2021] as a front-
end for the lexer, parser, and type checker. P4Cub is divided
into modules for syntax, semantics, and program transforma-
tions. P4Cub syntax and semantics are essentially complete
but do have a few relatively minor limitations. These limita-
tions do not preclude using P4Cub for real-world programs
and we expect addressing them will be straightforward. In
the future, we hope to prove many properties for statements
such as type soundness and semantic preservation for differ-
ent stages of the compiler.

6 Case Studies

To evaluate our design for P4Cub, we present a series of case
studies using the language to perform a variety of tasks. In
Section 6.1 and Section 6.2 we study how de Bruijn indices
improve both proof and code quality, by exploring type sys-
tem metatheory and a compiler pass respectively. Finally,
in Section 6.3, we describe a prototype verifier, and observe
how the streamlined P4Cub syntax simplifes the effort.

6.1 Metatheory

We have proven preservation and progress of the big-step
evaluation of expressions.

Theorem 7. Expression evaluation preserves typing.

∀ 𝜖 e 𝑣 Γ 𝜏,

⟨𝜖, e⟩ ⇓ 𝑣 → ⊢𝑣 𝜖 : Γ → Γ ⊢ e : 𝜏 →⊢𝑣 𝑣 : 𝜏

Theorem 8. A well-typed expression will evaluate.

∀ Γ e 𝜏 𝜖, ⊢𝑣 𝜖 : Γ → Γ ⊢ e : 𝜏 → ∃ 𝑣, ⟨𝜖, e⟩ ⇓ 𝑣

Furthermore we have shown preservation and progress
hold for l-expression evaluation. Here we can see the divi-
dends of our choice to use de Bruijn indicesÐeach of these

theorems has a premise ⊢𝑣 𝜖 : Γ, which indicates that all of
the values in the store 𝜖 have type Γ at the same de Bruijn
index. This ensures that when evaluating a variable, its cor-
responding value in the store preserves its type. We have
found this to be a much easier way to relate the typing Γ and
evaluation 𝜖 as opposed to having mappings from strings to

types or values. ⊢𝑣 𝜖 : Γ succinctly indicates both that Γ and
𝜖 have the same domain of (de Bruijn) variable names and
that their elements type correspondingly.
Expression evaluation is also deterministic:

Theorem 9. Determinism.

∀ 𝜖 𝑒 𝑣1 𝑣2, ⟨𝜖, 𝑒⟩ ⇓ 𝑣1 → ⟨𝜖, 𝑒⟩ ⇓ 𝑣2 → 𝑣1 = 𝑣2

In Coq it looks like:

Theorem expr_deterministic : forall 𝜖 e v1 v2,

⟨ 𝜖, e ⟩ ⇓ v1 ->

⟨ 𝜖, e ⟩ ⇓ v2 -> v1 = v2.

Proof.

intros eps e v1 v2 Hv1; generalize dependent v2;

induction Hv1 using custom_expr_big_step_ind;

intros V2 HV2; inv HV2; f_equal; auto 4.

pose proof Forall2_forall_impl_Forall2

_ _ _ _ _ _ _ H0 _ H4 as h.

rewrite Forall2_eq in h; assumption.

Qed.

In the future, we plan to prove analogous properties for
statement evaluation, completing type soundness proofs for
the full big-step semantics. We have verified a few auxiliary
properties for statement evaluation, such as the following.

Theorem 10. The de Bruijn store’s length is preserved by

statement evaluation.

∀ fns 𝜓 𝜓 ′ 𝜖 𝜖 ′ ctx s signal,

⟨𝜓, fns, 𝜖, ctx, s⟩ ⇓ ⟨𝜖 ′, signal,𝜓 ′⟩ → |𝜖 | = |𝜖 ′ |

This property ensures that de Bruijn indices have the same
meaning before and after a statement is evaluated. For our
full theorem of statement preservation we will hope to show
that input and output stores type as the same Γ. This proof
has been automated in Coq.

Lemma sbs_length : forall Ψ 𝜖 𝜖′ c s sig 𝜓 ,

⟨ Ψ, 𝜖, c, s ⟩ ⇓ ⟨ 𝜖′, sig , 𝜓 ⟩

-> length 𝜖 = length 𝜖′.

Proof using.

intros ? ? ? ? ? ? ? h;

induction h; autorewrite with core in *; auto; lia.

Qed.

Proving progress of statement big-step evaluation will
require reasoning about program termination. Parser state
machines in particular may prove difficult. We hope to build
on work such as Leapfrog [Doenges et al. 2022], which is
implementing powerful tools to reason about packet-parsing
state machines, and perhaps adopt their methods to formally
verify properties of P4Cub parsers. Nevertheless, even this
initial case study, mechanized in Coq, demonstrates the util-
ity of the P4Cub IR for formal reasoning.

6.2 Compiler Passes

We are currently building a compiler from P4Cub to Clight.
We hope to be able to verify semantics-preservation for each
translation between IRs. P4Cub and Clight both require func-
tion calls to take place at the statement level. However, C
does not have numeric data-types such as P4’s bit⟨𝑛⟩ and
int⟨𝑝⟩ for arbitrary bit-length 𝑛 or 𝑝 respectively. C only
supports specific sizes for unsigned and signed integers. To
translate to C we must use a bit-vector library that generates
P4 integer literals as function calls in Clight. This means
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literals such as 𝑧⟨𝑛⟩ must be moved to the statement level
in-order to be compiled to Clight.
We have implemented a pass from P4Cub to P4Cub to

lift such terms to the top-level of expressions. This pass has
been verified to produce actually łlifted" terms, and has been
shown to preserve both expression typing and evaluation.
The implementation and correctness specifications for this
pass influenced our decision to adopt a de Bruijn convention
for term variables. We found the specification to be much
more elegant and the proofs more tractable than those of a
standard naming convention.
The lifting pass for expressions, represented by the judg-

ment (e ⇑ e, e′), works by generating both a new łliftedž
term, e′, as well as list of terms that will become variable
declarations, e. This pass performs any necessary de Bruijn
shifts on resultant and intermediate terms. If a term needs
to be entirely lifted to the statement level it is replaced with
a variable of index 0, and the lifted term is pushed to the
stack of lifted terms to become variable declarations. This un-
winding of lifted term variables occurs at the statement-level,
where all of the variable declarations envelope the block for
which these variables will be in scope.

The specification of the correctness theorem uses a re-
lation between the right-hand-side terms-to-be and their
values. The statement uses the relation eval_decl_list 𝜖 e 𝑣 ,
which says that in context 𝜖 , e evaluates to 𝑣 .

Theorem 11.

∀ 𝜖 e e′ e 𝑣, ⟨𝜖, e⟩ ⇓ 𝑣 → e ⇑ e, e′ →

∃ 𝑣, eval_decl_list 𝜖 e 𝑣

∧⟨𝑣 ++ 𝜖, e′⟩ ⇓ 𝑣

In English, this theorem shows that lifted terms evaluate
to the same value as the original. However, when a term is
lifted it produces a sequence of other terms. This sequence of
terms will become a series of embedded variable declarations
let e1 in let e2 in ...e′..., where e′ is the lifted version of the
original term. Therefore the environment to evaluate e′ will
also depend upon the series of variable declarations. This
unwinding of the list e in the specification is expressed as
eval_decl_list 𝜖 e 𝑣 , and it gives us the appropriate environ-
ment to evaluate the lifted term. We have further proven
that evaluation is preserved after lifted terms are unwound
in the corresponding statement.
We are working to show that the lifting pass correctly

preserves such properties for other levels of P4Cub syntax.
Statements have proved to be particularly challenging but we
hope to soon fully prove the lifting pass preserves statement
evaluation. Subgoals for cases such as variable declarations
are promising but there is still work to be done.

6.3 A Program Verifier

We have prototyped a program verifier for P4Cub pro-
grams à la p4v [Liu et al. 2018], Aquila [Tian et al. 2021],
and Vera [Stoenescu et al. 2018]. The core of this verifier is a

compiler from P4Cub to Dijkstra’s Guarded Command Logic
(GCL) [Dijkstra 1975]. Targeting a well-understood calculus
allows us to use standard verification algorithms instead of
having to reimplement them from scratch for P4Cub.
The design of the compiler is shown in Figure 10. It is a

two-pass compiler from P4Cub to GCL via another IR called
Inline. The Inline IR is like P4Cub in every way except
that all invocations of abstractions (extern methods, parser
transitions, tables, actions, and applications) are replaced
with their definitions.

Implementing this pass required navigating with Coq’s no-
toriously conservative termination checker. Replacing func-
tion names with substituted function bodies, for instance,
could certainly run forever if P4Cub programs contained re-
cursive calls. Rather than prove this, we add a gas parameter
to the inlining function to temporarily bypass the termina-
tion checker. Using a separate AST lets us quarantine this
termination bypass in our code.
The only place where recursion may truly exist is in the

parserÐa common design pattern for parsing header stacks
is to use a state with a self-loop. Fortunately, the P4 language
specification [P4 Language Consortium 2022] requires parser
loops to be finitely unrollable. So we can get away with
providing an additional unroll parameter that specifies how
many times to unroll the parser. There’s a subtle difference
between the unroll and gas parametersÐrunning gas to 0

triggers a compilation failure, prompting the user to try again
with more, while running unroll to 0 causes the parser-
inliner to stop unrolling.

One advantage of keeping the core parser logic in P4Cub
is that verifiers can choose different representation strategies
for parsers. In certain domains (e.g. verification), we’ve found
it advantageous to use Aquila’s encoding optimization [Tian
et al. 2021], however in others (e.g., certain synthesis tasks),
the preponderance of new variables it introduces can be
costly. Leaving the parser in the IR lets us choose our en-
coding based on the task at hand. In the verifier we use
Aquila’s encoding trick, which avoids the potential blowup
of naively inlining each state [Tian et al. 2021]. Each state
𝑠 (including accept and reject) is given a 1-bit ghost vari-
able _state$𝑠$next, which is 1when 𝑠 is the next state to be
executed. Then transitions amount to setting the appropriate
bits and the unrolled states can be printed sequentially.

After inlining, we perform a few elimination passes, which
is where the streamlined nature of P4Cub really shines. For
example, rather than writing separate elimination logic for
lists, structs, headers, and arrays, we can handle them all with
a single case. Once the program has been reduced to solely
use bitvector expressions, we can compile the statements to
GCL directly as done in p4v [Liu et al. 2018].

Retaining tables in P4Cub leaves verifiers freedom in mod-
eling tables. Tables can be compiled away using ghost vari-
ables [Liu et al. 2018]. However, different ghost variable mod-
els are appropriate for different verification tasks [Campbell
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P4Cub.v Inline.v GCL.v

SMTLibZ3

✓

×

parser MyParser(packet_in packet ,

out headers hdr , inout metadata meta ,

inout standard_metadata_t standard_metadata) {

state start {

packet.extract(hdr.ethernet);

transition accept; } }

control MyIngress(inout headers hdr , inout metadata meta ,

inout standard_metadata_t standard_metadata) {

action drop() { mark_to_drop(standard_metadata); }

action fwd(bit <9> port) {

standard_metadata.egress_spec = port;}

table sw {

key = { hdr.ethernet.dstAddr: exact; }

actions = { fwd; drop; } }

apply { sw.apply(); }}

_state$accept$next := (_ bv0 1);

_state$reject$next := (_ bv0 1);

_state$start$next := (_ bv1 1);

{ assume (not (= _state$start$next (_ bv1 1)))

} [] { assume (= _state$start$next (_ bv1 1));

_state$start$next := (_ bv0 1);

hdr.ethernet.is_valid := (_ bv1 1);

_state$accept$next := (_ bv1 1)

};

{ assume (not (= _state$accept$next (_ bv1 1))) } [] {

assume (= _state$accept$next (_ bv1 1));

assert (= hdr.ethernet.is_valid (_ bv1 1));

assume (= _symb$sw$match_0 hdr.ethernet.dstAddr);

{ assume (= _symb$sw$action (_ bv0 1));

_return$sw.action_run := (_ bv0 1);

standard_metadata.egress_spec := (_ bv511 9)

} [] {

assume (= _symb$sw$action (_ bv1 1));

_return$sw.action_run := (_ bv1 1);

standard_metadata.egress_spec :=

_symb$sw$fwd$arg$port

}

}

Figure 10. Compilation from P4 surface syntax (bottom left) to GCL (right). Top left shows the compiler design; modules
above the dotted line are extracted to OCaml, modules below the line are written in OCaml.

et al. 2021; Eichholz et al. 2022; Stoenescu et al. 2018]. The
choice of table model affects compilation and verification
condition generation. To allow for these various backend ap-
proaches we parameterize the compiler module with a func-
tion Variable called instr, which maps table data (name,
keys, and actions) to an implementation. This allows users
of the verification tool to plug in the table model most fitting
for their analysis.

For example, Figure 10 shows a particular implementation
choice for a single table sw. We use ghost variables to sym-
bolically represent the runtime contents of the table. The
variable _symb$sw$action symbolically represents the con-
troller’s action choice, _symb$sw$fwd$arg$port represents
the port action data variable for the fwd action in table sw,
and _symb$sw$match_0 represents the 0th match key in ta-
ble sw. We then assume that these are equal to the relevant
values, leveraging nondeterminism to capture the full range
of possible table states.

Finally, we extract all of the modules and tie them together
in OCaml to build our program verifier. In OCaml, we convert
our GCL program into an SMT-LIB term using a standard
verification condition generation algorithm [Dijkstra 1975;
Flanagan and Saxe 2001], and pass that term to Z3, which

determines whether it is valid ( ✓ ) or invalid ( × ).
Figure 10 shows an example verification problemwemight

pose to a verifier. We’ll highlight a few aspects of the transla-
tion. Here, we’re checking that the undefined value triggered

by accessing invalid headers never arises.2 In the source
P4 program, the only header-data read occurs in the key

clause of the table sw, where we read the dstAddr field
of the hdr.ethernet header. In the compiled GCL code
on the right of the figure, this read is translated into two

statements (highlighted in blue ): the first asserts that the
hdr.ethernet header is valid (which crashes rather than
producing an undefined value), and the second assumes that
the header field hdr.ethernet.dstAddr is equivalent to
_symb$sw$match_0, which symbolically represents the ta-
ble’s match values. Note that GCL does not have structured
data or headers: each dot in hdr.ethernet.is_valid is not
an operator, it is just part of the identifier.
To manually prove that this assertion is never violated,

we can examine the translation of the parser. Observe that
hdr.ethernet is extracted in the start state, which is
always executed. In corresponding the GCL code, we set the
validity bit for the Ethernet header to 1, which will prove
the assertion. To prove this automatically, we compute a
standard quadratic-size verification condition [Flanagan and
Saxe 2001] in SMT-LIB, and check its validity using Z3.

7 Related Work

We briefly survey the most relevant related work to P4Cub,
focusing on IRs, certified frameworks, and P4 verification.

2This so-called header validity problem is akin to the pointer nullability

problem in Java or C, and has been heavily studied [Banerjee et al. 2019;

Eichholz et al. 2019, 2022; Liu et al. 2018; Stoenescu et al. 2018].
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Intermediate Representations. LLVM [Lattner andAdve
2004] is perhaps the most well-known modern compiler IRÐ
its SSA abstraction allows for efficient compilation of many
languages. One of the more notable success stories is the
Clang compiler [Lattner 2008] for C/C++ and Objective-C.
The MLIR project [Lattner et al. 2020] evolved from LLVM
as a general purpose IR targeting domain-specific languages,
including in machine learning, with built-in abstractions for
domain-specific customization. ILA [Huang et al. 2018], like
P4Cub, is meant to be a low-level IR for special-purpose hard-
ware targets but, unlike P4Cub, is meant for heterogeneous
hardware accelerators rather than network programs.

Certified Frameworks. P4Cub also draws inspiration
from Coq frameworks like CompCert [Leroy et al. 2016],
a C compiler with a fully mechanized semantics preserva-
tion proof for a subset of the C language. In the future, we
plan to prove similar correctness theorems for P4Cub’s vari-
ous backends. The Vellvm project [Zhao et al. 2012] provides
a formal semantics for a subset of LLVM, to facilitate the
development of certified LLVM compilers. Finally, the Veri-
fied Software Toolchain [Appel 2011] is an ongoing project
developing static analyzers, program verifiers, and compilers
for the C programming language, including program logics
like Verifiable C [Appel et al. 2016].

P4 Verification. Petr4 [Doenges et al. 2021] and
P4K [Kheradmand and Rosu 2018] have both defined formal
semantics for the P4 language, while Petr4 realized P4’s type
system and proved it sound. Other type systems and for-
mal models for P4 have been explored [Eichholz et al. 2019,
2022], though none suffice as compiler IRs, being themselves
highly idealized versions of the language. P4v [Liu et al. 2018],
Aquila [Tian et al. 2021], Vera [Stoenescu et al. 2018], and
Assert-P4 [Freire et al. 2018] are P4 program verifiers that
translate P4 to GCL to compute verification conditions. The
closest lines of work to P4Cub are Verifiable P4 [Wang et al.
2022] and HOL-P4 [Alshnakat et al. 2022]. Verifiable P4 is a
program logic for proving properties of P4 programs in Coq.
It operates on a slightly higher-level IR, P4light, which re-
sembles P4 surface syntax more closely than P4Cub. P4light
is a good fit for a program logic meant to verify programs
as they are written, but this fidelity to surface P4 makes it
more awkward than P4Cub for compilation and automated
verification. HOL-P4 is a contemporaneous mechanization of
P4 using the HOL4 theorem prover. Like P4Cub, it uses Petr4
as a front-end, but adopts a different approach to modeling
the semanticsÐe.g., it uses a stack rather than a heap.

8 Conclusion and Future Work

P4Cub is a new mechanized IR for P4 that provides a clean
foundation for building certified tools. It is available as an
open source project on GitHub under the Apache2 license,
and is intended to be a resource for the entire community. In

the future, we plan to continue building on P4Cub, including
developing an verified compiler that uses CompCert as a
backend. We plan to explore formalizing various standard
protocols in P4, using P4Cub to obtain a fully-verified refer-
ence implementation. Finally, we hope to work with the P4
Language Design Working Group to get P4Cub’s semantics
adopted as a companion to the official language specification.
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A Supporting Judgments

Control declarations:

cd F var e local

| action 𝑥 (𝜏) (prm) {s} action

| table 𝑥 {key = e; actions = (𝑥, arg)} table

Figure 11. P4Cub declarations within controls.

Top-level declarations:

td F instance 𝑥 of 𝑥 (𝜏) instantiate

| extrn 𝑥 ⟨𝑛⟩{𝜏 𝑥 ⟨𝑛⟩(prm)} extern

| ctrl 𝑥 (prm){cd} apply s controls

| prsr 𝑥 (prm) start = s {s} parsers

| 𝜏 𝑥 ⟨𝑛⟩(prm){s} functions

Figure 12. P4Cub top-level program declarations.

B Declaration Syntax

As shown in Figure 11 and Figure 12, P4Cub distinguishes
between declarations that may occur within control blocks,
denoted by cd, and those that occur at the top-level of a
program, denoted by td. P4Cub control declarations include
(de Bruijn) local variable declarations, and actions and tables
which represent the eponymous constructs of match-action
tables. Actions interface with the control-plane of switches,
and as such have parameters for the control-plane and those
for the data plane. Control-plane parameters are given as
𝜏 , and data plane parameters are given as prm. P4Cub table
declarations include a key provided by e, which is used by
the control-plane as input to determine which action to call.
They are also used to determine control-plane arguments.

The actions field (𝑥, arg) names actions to call. Each action
name is paired with data plane arguments provided by the
programmer.
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Parser transition typing:

𝑛, Γ ⊢𝑝 pt

valid_state 𝑛 𝑙

𝑛, Γ ⊢𝑝 direct 𝑙
T-DirectTrans

Γ ⊢ e : 𝜏 valid_state 𝑛 𝑙

pat : 𝜏 valid_state 𝑛 𝑙

𝑛, Γ ⊢𝑝 select e 𝑙 {pat ⇒ 𝑙}
T-SelectTrans

Pattern typing:

pat : 𝜏

_ : 𝜏
T-Wild

𝑧⟨𝑛⟩ : bit⟨𝑛⟩
T-BitPat

𝑧⟨𝑝⟩ : int⟨𝑝⟩
T-IntPat

pat1 : bit⟨𝑛⟩

pat2 : bit⟨𝑛⟩

pat1 &&& pat2 : bit⟨𝑛⟩
T-Mask

pat1 : bit⟨𝑛⟩

pat2 : bit⟨𝑛⟩

pat1 .. pat2 : bit⟨𝑛⟩
T-Range

pat : 𝜏

pat : 𝜏
T-ListPat

Argument typing:

Γ ⊢arg arg : 𝜏

Γ ⊢ e : 𝜏

Γ ⊢arg in e : 𝜏
T-In

Γ ⊢ e : 𝜏

Γ ⊢arg out e : 𝜏
T-Out

Γ ⊢ e : 𝜏

Γ ⊢arg out e : 𝜏
T-Inout

Figure 13. Helper judgments for P4Cub statement typing.

The top-level instantiates are controls, parsers, externs,
and the łmainž pipeline itself. Notice that unlike P4, P4Cub
disallows nested parser and control instantiations and in-
stead requires them to be instantiated at the top levelÐnested
instantiations do not increase the expressiveness of the lan-
guage, and they can always be inlined. For example, P4Cub
only allows the second control c definition in Example 2.

These instances are those applied in apply statements, as
well as the externs used in method calls. Like P4, P4Cub
extern declarations are merely a signature of the functional-
ity provided by the underlying target architecture. Extern

Parser transition expression evaluation:

⟨𝜖, pt⟩ ⇓𝑝 𝑙

⟨𝜖, direct 𝑙⟩ ⇓𝑝 𝑙
E-DirTrns

⟨𝜖, e⟩ ⇓ 𝑣 𝑣 matches pat ⇒ 𝑙 ′ ∈ pat ⇒ 𝑙

⟨𝜖, select e 𝑙 {pat ⇒ 𝑙}⟩ ⇓𝑝 𝑙 ′
E-TrnsMtch

⟨𝜖, e⟩ ⇓ 𝑣 𝑣 has no matches in pat ⇒ 𝑙

⟨𝜖, select e 𝑙 {pat ⇒ 𝑙}⟩ ⇓𝑝 𝑙
E-TrnsDflt

Argument evaluation:

⟨𝜖, arg⟩ ⇓arg arg𝑣

⟨𝜖, e⟩ ⇓ 𝑣

⟨𝜖, in e⟩ ⇓arg in 𝑣
E-In

𝑙 ⟨𝜖, e⟩ ⇓𝑙𝑣 𝑙𝑣

⟨𝜖, out e⟩ ⇓arg out 𝑙𝑣
E-Out

𝑙 ⟨𝜖, e⟩ ⇓𝑙𝑣 𝑙𝑣

⟨𝜖, inout e⟩ ⇓arg inout 𝑙𝑣
E-Inout

L-value evaluation:

𝑙 ⟨𝜖, e⟩ ⇓𝑙𝑣 𝑙𝑣

𝑙 ⟨𝜖, 𝜏 𝑛⟩ ⇓𝑙𝑣 𝜏 𝑛
E-LVar

𝑙 ⟨𝜖, e⟩ ⇓𝑙𝑣 𝑙𝑣

𝑙 ⟨𝜖, e[𝑝1 : 𝑝2]⟩ ⇓𝑙𝑣 𝑙𝑣 [𝑝1 : 𝑝2]
E-LSlice

𝑙 ⟨𝜖, e⟩ ⇓𝑙𝑣 𝑙𝑣

𝑙 ⟨𝜖, e.𝑛⟩ ⇓𝑙𝑣 𝑙𝑣 .𝑛
E-LMem

𝑙 ⟨𝜖, e1⟩ ⇓𝑙𝑣 𝑙𝑣 ⟨𝜖, e2⟩ ⇓ 𝑧⟨𝑛⟩

𝑙 ⟨𝜖, e1 [e2]⟩ ⇓𝑙𝑣 𝑙𝑣 [𝑧]
E-LIdx

Figure 14. Helper judgments for statement evaluation.

declarations provide the methods’ signatures that are avail-
able for the programmer to call. Declarations of controls are
composed of a list of cd (actions and tables), with a final s
representing the apply block of the control. This apply block
is a main of the control: when a control is applied this is
the statement that is executed. Parsers specify a start state,
as well as a list of user-defined states. The list of states are
labeled by a natural number, and each statement is expected
to conclude with a transition statement. A P4Cub program
is a list of declarations td.
Figure 13 provides the auxiliary judgments used in typ-

ing of statements, shown in Figure 6. The parser transition
typing judgment determines if the transition pt in a parser
with 𝑛 number of states is valid under the environment Γ.
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e ⇑ e, e′

𝜏 𝑛 ⇑ [], 𝜏 𝑛
L-Variable

err 𝑥 ⇑ [], err 𝑥
L-Error

𝑏 ⇑ [], 𝑏
L-Bool

e ⇑ e, e′

e.𝑛 ⇑ e, e′.𝑛
L-Mem

𝑧⟨𝑛⟩ ⇑ [𝑧⟨𝑛⟩], bit⟨𝑛⟩ 0
L-Bit

𝑧⟨𝑝⟩ ⇑ [𝑧⟨𝑝⟩], int⟨𝑝⟩ 0
L-Int

e ⇑ e, e′

e[𝑝1 : 𝑝2] ⇑ e[𝑝1 : 𝑝2] :: e, (bit⟨𝑝1 − 𝑝2 + 1⟩) 0
L-Slice

e ⇑ e, e′

(𝜏) e ⇑ (𝜏) e :: e, 𝜏 0
L-Cst

e ⇑ e, e′ [] ⊢ e : 𝜏

⊖ e ⇑ ⊖ e :: e, 𝜏 0
L-Un

e ⇑ e1, e
′
1 e ⇑ e2, e

′
2

[] ⊢ e1 ⊕ e2 : 𝜏 ↑0
|e1 |

e2 ++ e1 = e

↑0
|e2 |

e′1 ⊕ ↑
|e2 |

|e1 |
e′2 = e′

e1 ⊕ e2 ⇑ e′ :: e, 𝜏 0
L-Bin

e ⇑ e1, e
′
1 e ⇑ e2, e

′
2

e1 [e2] ⇑ ↑0
|e1 |

e2 ++ e1, ↑
0
|e2 |

e′1 [↑
|e2 |

|e1 |
e′2]

L-Idx

e ⇑ e′, e′′

shift_pairs e′ e′′ = (e′′′, e′′′′) [] ⊢ {e} : 𝜏

{e} ⇑ {e′′′} :: e′′′′, 𝜏 0
L-List

Figure 15. The lifting pass of expressions.

The pattern typing judgment states that the pattern pat has
the type 𝜏 . The helper function valid_state 𝑛 𝑙 determines if
the state 𝑙 is valid or not given the total states 𝑛 of a parser.
The start, accept, and reject states are valid. Additionally,
in P4Cub, user-defined parser-states are labeled with nat-
ural numbers, thus, a valid reference to such a state must
be less than the parser’s total number of states 𝑛. Finally,
the argument typing judgment determines the type of an
argument.

Figure 14 provides the auxiliary judgments used in evalu-
ating statements, shown in Figure 9. The parser transition
evaluation simply evaluates the parser transition expression.
Note that in P4Cub, as in P4, the actual work of extracting

eval_decl_list 𝜖 e 𝑣

eval_decl_list 𝜖 [] []
E-DclNil

⟨𝑣 ++ 𝜖, e⟩ ⇓ 𝑣 eval_decl_list 𝜖 e 𝑣

eval_decl_list 𝜖 (e :: e) (𝑣 :: 𝑣)
E-DclCns

Figure 16. Evaluation of lifted list.

metadata from headers is done by externs, and is opaque in
our definitions here. The argument evaluation determines
whether to evaluate an argument to a value or a l-value.
This is needed because inter-procedural calls in P4 such as
those to functions and actions have a copy-in and copy-out
semantics. Lastly, some expressions are partially evaluated
to l-values instead of values. The l-value evaluation provides
such rules.

C Lifting Compiler Pass

Figure 15 describes the compiler pass for lifting out com-
plex expressions. Figure 16 describes how to evaluate the
declaration lists.
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