

ICS ’23, June 21–23, 2023, Orlando, FL, USA Vani Nagarajan, Durga Mandarapu, and Milind Kulkarni

Though the RT cores were designed to accelerate ray trac-
ing applications, researchers are starting to look into exploit-
ing these cores to perform general-purpose computations.
Wald et. al. introduced the idea of using RT cores to identify
the tetrahedral mesh to which a point belongs [28]. The au-
thors re-formulate the problem as a ray tracing problem by
treating the query point as the ray origin and the tetrahedral
meshes as objects in the scene. Now, the point-in-tetrahedron
problem reduces to launching a ray from the query point
and identifying the closest intersecting mesh. Later works
by Zellman et. al. , Evangelou et. al. , and Zhu et. al. looked
at re-formulating the nearest neighbor search problem as a
ray casting query [8, 32, 33]. The Nearest Neighbor Search
(NNS) problem is the task of identifying the closest points to
a query point. Its variant, k-Nearest Neighbor Search (kNNS),
restricts the task of �nding the k closest neighbors.
A major downside to RT-accelerated neighbor search is

that the search space for nearest neighbors is constrained to
a �xed-radius neighborhood due to the problem translation
approach adopted by prior work (Details in Section 2.3). It is
impossible to know the required radius to identify neighbors
a priori, leading the approach to possibly �nd less than k
neighbors. Prior work has suggested that this problem can
be avoided by choosing a very large radius to ensure all
neighbors are found [33], but we show that this approach is
highly ine�cient—trying to �nd all of the neighbors of query
points using the existing approaches obviates the bene�ts of
hardware acceleration entirely (Details in Section 5).

This paper presents an e�cient solution to the problem of
RT core acceleration of unbounded kNNS—ensuring that all
query points will successfully �nd all : neighbors. We adopt
an iterative solution: we start with a smaller search radius
and keep track of points that have found their k nearest
neighbors in each iteration. In the subsequent iterations, we
incrementally increase the radius and only query the points
that have not found their neighbors. While this approach
seems like it should be signi�cantly slower than choosing
a single radius, we show that it is not. Since the number of
points being queried decreases as the search radius increases,
we �nd that our approach is signi�cantly faster than choosing
an arbitrarily large radius, and can even be faster than prior
�xed-radius approaches even for smaller radii.
To summarize, the contributions of our paper are as fol-

lows:
• This paper introduces TrueKNN, the �rst RT-accelerated
neighbor search algorithm that is not constrained to a
�xed-radius.
• We show that TrueKNN outperforms �xed-radius, non-
iterative approaches by large margins. This iterative
solution gradually grows the neighbor search space
while pruning query points that have already found
their neighbors, leading to signi�cantly fewer ray-
object intersection tests

• We further show that, unlike prior approaches that re-
quire a priori selection of a query radius, we can adapt
TrueKNN to �nd the appropriate radius dynamically,
outperforming prior approaches even when those ap-
proaches select their query radius a posteriori.

2 Background

In this section, we introduce the k-Nearest Neighbor Search
(kNNS) problem and explain how prior works have translated
kNNS to a ray casting problem.

2.1 k-Nearest Neighbor Search

The Nearest Neighbor Search (NNS) problem was �rst intro-
duced by Fix et. al. [9] and expanded by Cover et. al. [7]. It
is de�ned as follows:

De�nition 2.1. For a dataset � and query point @ ∈ � , �nd
the set of k nearest points to @.

The nearest neighbors are typically identi�ed using a dis-
tance metric, with Euclidean distance being the most popular
choice. kNNS is primarily used as a subroutine in k-Nearest
Neighbor classi�cation and regression algorithms. The basic
idea behind these algorithms is that a property of a query
point can be determined by observing its nearest neighbors.
For example, a query point can be classi�ed into the same
class as a majority of its neighbors in classi�cation problems.
Similarly, the properties of a query point can be averaged
using its neighbors in regression problems.
kNN classi�er and regression models are widely used in

point cloud applications to compute surface normals [26],
recommendation systems to assign recommendations based
on similar users [1], healthcare to classify patients [31] and
pattern recognition, to name a few.

2.2 Ray Tracing Hardware

As a part of NVIDIA’s Turing architecture, each Streaming
Multiprocessor (SM) has an RT core to accelerate BVH tra-
versal and perform ray-triangle intersection tests, allowing
the SM to perform other computations in the meantime. Both
the SM and RT core share the same memory, allowing us to
use both units in parallel. We direct the reader to [21] for
more details.

2.2.1 Ray Casting. The RT cores are able to accelerate
the ray casting process by reducing the number of intersec-
tion tests performed, and this is facilitated by the Bounding
Volume Hierarchy (BVH) structure used for object represen-
tation. The ray-casting process involves launching rays from
a source through each pixel in the image plane, recording
their interactions with objects in the scene, and using that
information to determine the color of the pixels. It would
seem that each ray would have to be tested for intersection
against each object to check whether an intersection could

290

RT-kNNS Unbound: Using RT Cores to Accelerate Unrestricted Neighbor Search ICS ’23, June 21–23, 2023, Orlando, FL, USA

a�ect the color of the pixel. However, this would be very in-
e�cient since rays may not intersect a large subset of objects
and intersection tests are computationally very expensive.

2.2.2 Bounding Volume Hierarchy. Bounding Volume
Hierarchies are an acceleration structure used to reduce the
number of required ray-object intersection tests. The general
idea is as follows: if we group objects that are spatially close
to each other, we can test for intersection against groups of
objects rather than individual objects, reducing the number
of intersection tests performed. The idea is to enclose objects
in bounding volumes and recursively enclose these volumes
in larger bounding volumes until we create a volume that
is large enough to enclose the entire scene. These bounding
volumes are represented hierarchically using a tree structure
called the Bounding Volume Hierarchy (BVH). Each node
in the tree represents a bounding volume that encloses all
its descendent nodes. The most commonly used bounding
volume is an Axis-Aligned Bounding Box (AABB).

Figure 1 shows how objects in a scene are used to construct
the BVH. On the left, each object A, B, C andD are enclosed in
their corresponding bounding volumes BV_A, BV_B, BV_C
and BV_D. As A and B are spatially close together, they
are combined into a larger bounding volume BV_AB that
encloses the bounding volumes of A and B. BV_CD is con-
structed similarly and BV_ABCD encloses both BV_AB and
BV_CD to capture the entire scene. The hierarchical rela-
tionship between the bounding volumes is captured on the
right. For example, BV_AB encloses BV_A and BV_B, and
this relationship is captured in the BVH with BV_AB as the
parent node and BV_A and BV_B as the children node.

It is possible to reduce the number of ray-object intersec-
tion tests by performing ray-AABB intersection tests and
only performing the ray-object intersection test if the pre-
vious test succeeds. For example, in Fig 1, if the ray does
not intersect BV_AB, it is guaranteed to not intersect BV_A
and BV_B. Since A and B are contained in these bounding
volumes, we do not have to perform the corresponding ray-
object intersection tests. This approach allows us to prune
large parts of the search space since if the ray does not inter-
sect the AABB, it is guaranteed to not intersect any of the
objects or other bounding volumes contained in the AABB.

2.2.3 Optix API. The Optix API handles o�oading Bound-
ing Volume Hierarchy build and traversal to the RT core,
while allowing the user to write custom CUDA kernels that
use the GPU’s shader cores.
Fig 2 shows the working of the Optix API. The RayGen

program is responsible for creating rays with the speci�ed

origin (®>), direction (®3), and length (C)

®A = ®> + C ®3, C ∈ [CģğĤ, CģėĮ]
The ray traverses the BVH and checks for intersection with
theAxis-aligned Bounding Boxes (AABBs) in hardware (High-
lighted in yellow in Fig 2). The ray-object intersection test

can happen in software or hardware, depending on the ob-
ject. If the object is a triangle, the test happens in hardware.
If not, the user provides a custom intersection test written
as a software CUDA Intersection program. Optix allows us
to perform the ray-AABB intersection test in hardware and
the ray-object intersection test in software/hardware.
The user can evoke the AnyHit program to record inter-

sections, decide whether to continue or terminate the BVH
traversal for a particular ray and launch subsequent rays.
After the BVH traversal completes entirely, the user can
specify a ClosestHit to record the closest intersected object
to the ray. The user can also specify what to do in case of no
intersections using the Miss program.

2.3 RT-accelerated k-Nearest Neighbor Search

(RT-kNNS)

We use the reduction proposed by Zellman et. al. to trans-
late �xed-radius nearest neighbor queries to ray tracing
queries [32]. The translation relies on a key observation:
to �nd neighbors within a radius r of point p, we can expand
a sphere of radius r around all points and check how many
spheres contain the point p. The centers of the :-closest
spheres are the neighboring points of p.

Algorithm 1: RT-kNNS

Input :Dataset D, radius r
Output :Neighbors within radius r

1 B?ℎ4A4B ← 2A40C4(?ℎ4A4B (�, A)
2 1>D=343(?ℎ4A4B ← 2A40C4����(B?ℎ4A4B)
3 2>=BCAD2C�+� (1>D=343(?ℎ4A4B)
4 for Point ? ∈ � do

5 A0~ ← '0~�4=(®?, ®3, 0,FLOAT_MIN)
6 while CA0E4AB4�+� (A0~) do
7 if �=C4AB42C (A0~,����) then
8 if �=C4AB42C (A0~, B?ℎ4A4) then
9 ?.=486ℎ1>A ←

?.=486ℎ1>A
⋃
A0~.24=C4A

10 end

11 end

12 end

13 end

RT-accelerated kNNS is outlined in Algorithm 1 and is
based on the Optix API pipeline from Section 2.2.3. In Line
1, we create spheres for all points with ? ∈ � (D is the
input dataset). The centers of the sphere are the points ?
and the radius is supplied by the user. In Line 2, we specify
a BoundingBox program to create Axis-Aligned Bounding
Boxes (AABBs) to enclose the spheres. We proceed to con-
struct a Bounding Volume Hierarchy (BVH) by recursively
combining bounding volumes (See Section 2.2.2).

With the BVH constructed, we can begin to generate rays
that traverse the BVH and test for ray-AABB and ray-object

291

RT-kNNS Unbound: Using RT Cores to Accelerate Unrestricted Neighbor Search ICS ’23, June 21–23, 2023, Orlando, FL, USA

and host, BVH re�t, ray launch, and intersection tests. On
the other hand, if the radius is too large1, the number of
intersection tests performed will increase by several orders
of magnitude, leading to poor performance.

Algorithm 2: RandomSample

Input :Dataset D
Output :Radius start_radius

1 random_sample← B0<?;4(D, 100)

2 neighbors, distances← :#40A4BC#486ℎ1>AB(D, :=4)

3 start_radius←<8=(distances)

It was evident that we needed to have some idea about
the input dataset to select a good start radius. Without this
information, it would be impossible to know whether our
chosen radius is too small or large. To incorporate dataset
information, we propose a random sampling approach (Al-
gorithm 2) to �nd the minimum distance between neighbors
of a subset of the input dataset. In Line 1, we choose 100
random points from the input dataset. We then use Python
scikit-learn’s built-in, ball-tree based : nearest neighbors
algorithm to �nd the 4 nearest neighbors of these randomly
sampled points. We empirically chose : = 4 as it worked well
in our experimental evaluation and had negligible execution
time (5 to 8 ms). We note that increasing : and/or sample
size could result in a better start radius. As shown in Line 3,
we then �nd the minimum distance between a point and its
neighbors and set that as our staring radius.
We experimented with di�erent starting radii and found

that the cost of choosing a larger radius was much higher
than starting o� with a smaller radius. When starting o�
with a very small radius, we observe that some points �nd
few to no neighbors in the initial rounds. However, we found
that the time taken by these initial rounds was insigni�cant
compared to the total execution time. On the other hand,
starting o� with a larger radius leads to fewer rounds but
more intersection tests, justifying our decision to use the
minimum distance as the start radius. We show that our
random sampling approach produces useful starting radii in
Section 5.4.2.

3.3 Multi-round kNNS

Now that we have a starting radius, Algorithm 3 describes
our multi-round approach for TrueKNN.
We use the random sampling approach outlined in Sec-

tion 3.2 to determine the radius for sphere expansion in the
�rst round of �xed-radius RT-kNNS. We use the minimum
neighbor distance returned by RandomSample as our start
radius (A038DB) in Line 1. In Line 3, we call RT-kNNS with
our dataset (D) and radius (radius) to �nd all points within

1We de�ne the notion of small and large radius in comparison to the max-

imum distance between a point and any of its ġ nearest neighbors in the

input dataset.

Algorithm 3: TrueKNN

1 A038DB ← RandomSample(D)

2 while � ≠ {∅} do
3 =486ℎ, 38BC ← RT-kNNS(�, A038DB)
4 for ? ∈ � do

5 if |?.=486ℎ | == : then

6 �− = {?}
7 end

8 end

9 if � ≠ {∅} then
10 A038DB ← A038DB ∗ 2
11 REFIT_BVH(�, A038DB)
12 end

13 end

a �xed neighborhood of p. We then check if the previously
chosen radius was su�cient for all points to �nd : neigh-
bors in Line 5. In Line 6, we remove all the points that have
found their : neighbors from our dataset so that the next
iteration will only consider points that have not found their
neighbors yet. For points that have not found all : neighbors,
we expand the neighbor search space by incrementing the
radius of spheres and re-�tting the bounding boxes around
the spheres for the BVH, as shown in Lines 10 and 11. We
continue this process till � = {∅} and all points have found
their : nearest neighbors.

3.4 TrueKNN Discussion

It may seem curious that this algorithm is more e�cient
than prior �xed-radius approaches—after all, each iteration
of TrueKNN performs an entire �xed-radius nearest neigh-
bor search. The key is in the interplay between radius size,
BVH-based search speed, and sorting time. When the ra-
dius is small, the spheres around the points are small and
well-separated. As a result, the BVH is extremely e�ective
at accelerating ray tracing, and query points very quickly
identify nearby points. By starting with a small radius, this
�rst iteration is faster than “normal” �xed-radius kNNS, with
the trade-o� that many points are unable to �nd their needed
k neighbors.
In subsequent iterations, the radius is increased, but be-

cause some points in earlier iterations have already found
their needed neighbors, those points do not need to be re-
queried. So although the ray tracing process is slower, there
are fewer query points, and the overall search is faster. In
the �nal iterations, when the radius is quite large and BVH
acceleration is essentially useless, there are only a few query
points remaining (the outliers).
As mentioned earlier, setting a large starting radius for

�xed-radius kNNS leads to ine�cient �ltering, and a $ (=2)
runtime. By incrementally increasing the radius, TrueKNN
avoids this problem—while outlier points have to do an$ (=)

293

ICS ’23, June 21–23, 2023, Orlando, FL, USA Vani Nagarajan, Durga Mandarapu, and Milind Kulkarni

search to �nd their candidate neighbors, most points are
resolved with smaller radii and require closer to a $ (log=)
search.
There is another bene�cial e�ect of TrueKNN’s iterative

approach. With a large starting radius (e.g., enough to �nd
at least k neighbors for 99% of the points), many points will
�nd too many candidate neighbors in their initial search,
and hence will waste time sorting those candidates to �nd
the k closest. By resolving those points with smaller radii,
TrueKNN also reduces sorting time. Indeed, as we show
in Section 5.5.1, TrueKNN’s bene�ts are not only because
outliers force large query radii for �xed-radius search. Even
in settings where we do not attempt to resolve outlier points,
TrueKNN outperforms �xed-radius kNNS.

4 Implementation Details

In this section, we discuss the implementation of TrueKNN
using the Optix API. We used the Optix Wrapper Library
(OWL) [27], which is built on top of Optix 7, to implement
TrueKNN and our baseline. OWL allows the user to de�ne
custom shader programs to test for the ray-object intersec-
tion. Though one would typically use the AnyHit program
(Section 2.2.3) to collect multiple hits, we implemented the
TrueKNN logic in the Intersection program to avoid incurring
overhead costs associated with calling the AnyHit program.
In fact, we disable both the AnyHit and ClosestHit program
invocations to avoid performance penalties.

Since TrueKNN (Algorithm 3) increases the radius of spheres
in every iteration to expand the search space, the BVH corre-
sponding to the objects also needs to change every iteration.
One way to handle this is to re-build the BVH in every itera-
tion. However, Optix2 provides the option of BVH re-�t. This
allows us to re-�t the bounding volumes to accommodate
the expanded objects without having to explicitly re-build
the BVH. We found that re-�tting was between 10-25% faster
than re-building.

5 Evaluation

In this section, we evaluate TrueKNN’s performance by ana-
lyzing the e�ect of varying parameters such as dataset size
and : . We also look at how outliers in the dataset a�ect both
TrueKNN and the baseline.

5.1 Datasets

We used a mixture of 2D and 3D real-world datasets (3DRoad,
Porto, KITTI, and 3DIono) and a 3D synthetic dataset (Uni-
formDist) to evaluate TrueKNN.

3DRoad The 3DRoad dataset captures the road network of
North Jutland, Denmark [14]. The dataset consists of
430K points. We use this as a 2D dataset, using only
the latitude and longitude parameters.

2We use OWL and Optix interchangeably as every feature in OWL is also

present in Optix

Porto The Taxi Service Trajectory - Prediction Challenge
2015 dataset captures vehicle movement trajectory
data of 442 taxis in the city of Porto, Portugal [15].
The dataset has just over 81M points and we use Porto
as a 2D dataset, using only the latitude and longitude
parameters.

KITTI The KITTI vision benchmark dataset captures data
from the movement of an autonomous vehicle around
the city of Karlsruhe, Germany [10]. The dataset has
just over 1M points and we use KITTI as a 3D dataset.

3DIono The 3D Ionosphere dataset captures the behavior
of electrons in the ionosphere [22]. The dataset has
just over 1M points and we use it as a 3D dataset.

UniformDist We create a synthetic 3D dataset of 1M points
that is uniformly distributed on [0,1] to study the im-
pact of outliers on our algorithm.

5.2 Experimental Setup

We ran our experiments on an NVIDIA GeForce RTX 2060
GPU with 6 GB device memory, CUDA version 10.1, and
Optix 7.1. As Optix is a graphics rendering API, it accepts
only 3D input data. As a workaround, we set the z-dimension
to 0 for 2D datasets.

5.2.1 Baseline. We use RT-kNNS (Algorithm 1) as our
baseline by setting the radius for sphere expansion as the
maximum distance (<0G�8BC) between a point and any of
its : nearest neighbors. This way, the baseline is guaranteed
to �nd all : nearest neighbors of each point in the dataset.
We chose this baseline as prior work has shown that RT-
accelerated neighbor search is consistently faster than other
GPU-based implementations [8, 28, 33].We also note that our
baseline represents the best case scenario since our neighbor
search is constrained exactly to a<0G�8BC-neighborhood.
In practice, the user would probably select some arbitrary
3-neighborhood, where 3 >> <0G�8BC .

5.3 Performance Evaluation

We compare the performance of TrueKNN against RT-kNNS
as described in Section 5.2.1. We study the performance im-
pact of dataset size by varying the dataset size between
100K and 1M. For each dataset size, we chose : = 5 and
: =

√
�0C0B4C(8I4 to study the impact of varying : . We

chose : =

√
�0C0B4C(8I4 as it is the commonly used : value

for KNN classi�er and regression models [18]. We only vary
dataset size up to 1M since we run out of memory to store

neighbors in our GPU when : =

√
�0C0B4C(8I4 . We also per-

form an experiment where we modify the kNNS problem to
one of �nding 99Īℎ percentile neighbors and evaluate our
performance against the baseline to understand the e�ect of
outliers in the dataset.
For di�erent dataset sizes (d), we always used the �rst d

points in our experiments and averaged results over 5 runs.
The reported execution time for all our experiments includes

294

RT-kNNS Unbound: Using RT Cores to Accelerate Unrestricted Neighbor Search ICS ’23, June 21–23, 2023, Orlando, FL, USA

7 Related Work

Leveraging RT cores for non-Ray-Tracing Applica-

tions. The idea of using RT cores to accelerate applications
other than ray tracingwas �rst introduced byWald et. al. [28].
They formulated the problem of identifying a point’s location
in a tetrahedral mesh as a ray tracing problem by declaring
the meshes as 3D objects in a scene and tracing rays origi-
nating at the query point. They show how leveraging both
hardware-accelerated BVH traversal and ray-triangle inter-
section tests resulted in up to 6.5x speedup over other CUDA
implementations. Morrical et. al. used RT cores to accelerate
the problem of �nding a point’s location in unstructured
elements with both planar and bilinear faces [17] and render-
ing of unstructured meshes [16]. Zellmann et. al. proposed
a mapping of the �xed-radius nearest neighbor query to
ray tracing queries by expanding spheres over points in the
dataset and launching a small ray to record intersections [32].
They used the nearest neighbor query as a subroutine for
the Spring Embedders force-directed graph drawing algo-
rithm and show performance improvement between 4x to
13x over purely CUDA-based implementations. Evangelou et.
al. used the nearest neighbor mapping to solve the k-Nearest
Neighbors problem, which returns the k closest neighbors
of a point, and also perform photon mapping [8]. Zhu pro-
posed z-order sorting and query partitioning of input data
points to reduce control �ow and memory divergence in
RT-accelerated neighbor searches [33].

:-Nearest Neighbor Search. The:-Nearest Neighbor Search
(kNNS) algorithm is used to �nd similarities within the fea-
ture space of input vectors. Researchers proposed using in-
dex structures to optimize the neighbor search, but soon
found that this approach was useful only when the dataset
had less than 10 dimensions[29]. Nagarkar et. al. provides
an overview of popular indexing techniques for lower and
higher dimensional data [19]. Some of the techniques used in
lower dimensions include M Tree [6], R/R* tree [25], and k-d
Tree [5]. Hashing and quantization algorithms were used
to �nd Approximate Nearest Neighbors (ANN) in higher
dimensions [2, 3].
Researchers have worked on leveraging GPU accelera-

tion for KNNS as it is often the computational bottleneck in
applications. Qui et. al. implemented kNNS on the GPU to
accelerate point cloud registration and show that it is 88x
faster than its CPU counterpart [23]. Johnson et. al. created
a suite of GPU-accelerated approximate neighbor searches
called FAISS that used quantization optimizations [13]. Wi-
eschollek et. al. also uses a quantization-based approach in
the form of Product Quantization Trees (PQT) to accelerate
ANN [30] on GPUs.

8 Conclusion

In this work, we implemented TrueKNN, the �rst RT-accelerated
:-Nearest Neighbor Search algorithm that does not restrict

the neighbor search space to a pre-de�ned �xed radius. TrueKNN
uses an iterative approach where we initially sample the
input dataset to guess a good search radius, and then in-
crementally increase the search space such that each point
�nds its : nearest neighbors. We found that TrueKNN was
orders of magnitude faster than existing algorithms on the
unbounded neighbor search task and signi�cantly faster even
on the �xed-radius neighbor search task.

Acknowledgments

We thank the anonymous ICS reviewers for their valuable
feedback. We are grateful to Kirshanthan Sundararajah for
his comments that helped improve the paper. This work
was funded by NSF grants CCF-1908504, CCF-1919197 and
CCF-2216978.

References
[1] D.A. Adeniyi, Z. Wei, and Y. Yongquan. 2016. Automated web usage

data mining and recommendation system using K-Nearest Neighbor

(KNN) classi�cation method. Applied Computing and Informatics 12, 1

(2016), 90–108. h�ps://doi.org/10.1016/j.aci.2014.10.001

[2] Alexandr Andoni and Piotr Indyk. 2006. Near-Optimal Hashing Al-

gorithms for Approximate Nearest Neighbor in High Dimensions. In

2006 47th Annual IEEE Symposium on Foundations of Computer Science

(FOCS’06). 459–468. h�ps://doi.org/10.1109/FOCS.2006.49

[3] Martin Aumüller, Erik Bernhardsson, and Alexander John Faith-

full. 2018. ANN-Benchmarks: A Benchmarking Tool for Approx-

imate Nearest Neighbor Algorithms. CoRR abs/1807.05614 (2018).

arXiv:1807.05614 h�p://arxiv.org/abs/1807.05614

[4] G. Baudat and F. Anouar. 2000. Generalized Discriminant Analysis

Using a Kernel Approach. Neural Comput. 12, 10 (oct 2000), 2385–2404.

h�ps://doi.org/10.1162/089976600300014980

[5] Jon Louis Bentley. 1975. Multidimensional Binary Search Trees Used

for Associative Searching. Commun. ACM 18, 9 (sep 1975), 509–517.

h�ps://doi.org/10.1145/361002.361007

[6] Paolo Ciaccia, Marco Patella, and Pavel Zezula. 1997. M-Tree: An

E�cient Access Method for Similarity Search in Metric Spaces. In

Proceedings of the 23rd International Conference on Very Large Data

Bases (VLDB ’97). Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 426–435.

[7] T. Cover and P. Hart. 1967. Nearest neighbor pattern classi�cation.

IEEE Transactions on Information Theory 13, 1 (1967), 21–27. h�ps:

//doi.org/10.1109/TIT.1967.1053964

[8] I. Evangelou, G. Papaioannou, K. Vardis, and A. A. Vasilakis. 2021.

Fast Radius Search Exploiting Ray Tracing Frameworks. Journal of

Computer Graphics Techniques (JCGT) 10, 1 (5 February 2021), 25–48.

h�p://jcgt.org/published/0010/01/02/

[9] Evelyn Fix and Joseph L. Hodges. 1989. Discriminatory Analysis -

Nonparametric Discrimination: Consistency Properties. International

Statistical Review 57 (1989), 238.

[10] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun.

2013. Vision meets Robotics: The KITTI Dataset. International Journal

of Robotics Research (IJRR) (2013).

[11] Khronos Group. 2009. OpenCL. h�ps://www.khronos.org/opencl/

[12] Harold Hotelling. 1933. Analysis of a complex of statistical variables

into principal components. Journal of Educational Psychology 24 (1933),

498–520.

[13] Je� Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale

similarity search with GPUs. IEEE Transactions on Big Data 7, 3 (2019),

535–547.

299

ICS ’23, June 21–23, 2023, Orlando, FL, USA Vani Nagarajan, Durga Mandarapu, and Milind Kulkarni

[14] Manohar Kaul, Bin Yang, and Christian S. Jensen. 2013. Building

Accurate 3D Spatial Networks to Enable Next Generation Intelligent

Transportation Systems. In 2013 IEEE 14th International Conference on

Mobile Data Management, Vol. 1. 137–146. h�ps://doi.org/10.1109/

MDM.2013.24

[15] Luis Moreira-Matias, João Gama, Michel Ferreira, João Mendes-

Moreira, and Luis Damas. 2013. Predicting Taxi–Passenger Demand

Using Streaming Data. IEEE Transactions on Intelligent Transportation

Systems 14, 3 (2013), 1393–1402. h�ps://doi.org/10.1109/TITS.2013.

2262376

[16] Nate Morrical, Will Usher, Ingo Wald, and Valerio Pascucci. 2019. E�-

cient Space Skipping and Adaptive Sampling of Unstructured Volumes

Using Hardware Accelerated Ray Tracing. 2019 IEEE Visualization

Conference (VIS) (2019), 256–260.

[17] Nate Morrical, Ingo Wald, Will Usher, and Valerio Pascucci. 2020.

Accelerating Unstructured Mesh Point Location with RT Cores. IEEE

transactions on visualization and computer graphics (2020).

[18] Prakash Nadkarni. 2016. Chapter 10 - Core Technologies: Data Mining

and “Big Data”. In Clinical Research Computing, Prakash Nadkarni

(Ed.). Academic Press, 187–204. h�ps://doi.org/10.1016/B978-0-12-

803130-8.00010-5

[19] Parth Nagarkar, Arnab Bhattacharya, and Omid Jafari. 2021. Exploring

State-of-the-Art Nearest Neighbor (NN) Search Techniques. In Proceed-

ings of the 3rd ACM India Joint International Conference on Data Science;

Management of Data (8th ACM IKDD CODS; 26th COMAD) (Bangalore,

India) (CODS-COMAD ’21). Association for Computing Machinery,

New York, NY, USA, 443–446. h�ps://doi.org/10.1145/3430984.3431968

[20] NVIDIA. 2007. CUDA. h�ps://developer.nvidia.com/cuda-zone

[21] NVIDIA. 2021. NVIDIA Turing Architecture Whitepaper.

h�ps://gpltech.com/wp-content/uploads/2018/11/NVIDIA-Turing-

Architecture-Whitepaper.pdf

[22] Victor Pankratius, A. Coster, Juha Vierinen, Philip Erickson, and Bill

Rideout. 2015. GPS Data Processing for Scienti�c Studies of the Earth’s

Atmosphere and Near-Space Environment. (01 2015), 1–12. h�ps:

//doi.org/10.1007/978-3-319-23519-6_1651-1

[23] Deyuan Qiu, StefanMay, and Andreas Nüchter. 2009. GPU-Accelerated

Nearest Neighbor Search for 3D Registration. In Computer Vision Sys-

tems, Mario Fritz, Bernt Schiele, and Justus H. Piater (Eds.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 194–203.

[24] Sebastian Raschka, Joshua Patterson, and Corey Nolet. 2020. Machine

Learning in Python: Main developments and technology trends in data

science, machine learning, and arti�cial intelligence. arXiv preprint

arXiv:2002.04803 (2020).

[25] Nick Roussopoulos, Stephen Kelley, and Frédéric Vincent. 1995. Near-

est Neighbor Queries. SIGMOD Rec. 24, 2 (may 1995), 71–79. h�ps:

//doi.org/10.1145/568271.223794

[26] Jagan Sankaranarayanan, Hanan Samet, and Amitabh Varshney. 2006.

A Fast k-Neighborhood Algorithm for Large Point-Clouds. In Sym-

posium on Point-Based Graphics, Mario Botsch, Baoquan Chen, Mark

Pauly, and Matthias Zwicker (Eds.). The Eurographics Association.

h�ps://doi.org/10.2312/SPBG/SPBG06/075-084

[27] Ingo Wald, Nathan Morrical, and Haines E. 2020. OWL-The Optix 7

Wrapper Library.

[28] Ingo Wald, Will Usher, Nathan Morrical, Laura Lediaev, and Vale-

rio Pascucci. 2019. RTX Beyond Ray Tracing: Exploring the Use of

Hardware Ray Tracing Cores for Tet-Mesh Point Location. In High-

Performance Graphics - Short Papers, Markus Steinberger and Tim

Foley (Eds.). The Eurographics Association. h�ps://doi.org/10.2312/

hpg.20191189

[29] Roger Weber, Hans-Jörg Schek, and Stephen Blott. 1998. A Quantita-

tive Analysis and Performance Study for Similarity-Search Methods

in High-Dimensional Spaces. In Proceedings of the 24rd International

Conference on Very Large Data Bases (VLDB ’98). Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 194–205.

[30] Patrick Wieschollek, Oliver Wang, Alexander Sorkine-Hornung, and

Hendrik P. A. Lensch. 2016. E�cient Large-Scale Approximate Nearest

Neighbor Search on the GPU. In 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR). 2027–2035. h�ps://doi.org/10.

1109/CVPR.2016.223

[31] Wenchao Xing and Yilin Bei. 2020. Medical Health Big Data Classi�-

cation Based on KNN Classi�cation Algorithm. IEEE Access 8 (2020),

28808–28819. h�ps://doi.org/10.1109/ACCESS.2019.2955754

[32] Stefan Zellmann, Martin Weier, and Ingo Wald. 2020. Accelerating

Force-Directed Graph Drawing with RT Cores. In 2020 IEEE Visualiza-

tion Conference (VIS). 96–100. h�ps://doi.org/10.1109/VIS47514.2020.

00026

[33] Yuhao Zhu. 2022. RTNN: Accelerating Neighbor Search Using Hard-

ware Ray Tracing. In Proceedings of the 27th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming (Seoul, Republic of

Korea) (PPoPP ’22). Association for Computing Machinery, New York,

NY, USA, 76–89. h�ps://doi.org/10.1145/3503221.3508409

300

	Abstract
	1 Introduction
	2 Background
	2.1 k-Nearest Neighbor Search
	2.2 Ray Tracing Hardware
	2.3 RT-accelerated k-Nearest Neighbor Search (RT-kNNS)

	3 Design
	3.1 TrueKNN Overview
	3.2 Determining start radius
	3.3 Multi-round kNNS
	3.4 TrueKNN Discussion

	4 Implementation Details
	5 Evaluation
	5.1 Datasets
	5.2 Experimental Setup
	5.3 Performance Evaluation
	5.4 Performance Analysis
	5.5 Impact of outliers

	6 Discussion
	6.1 Fixed-radius kNNS
	6.2 Limitations of RT Hardware and API

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

