RT-kNNS Unbound: Using RT Cores to Accelerate
Unrestricted Neighbor Search

Vani Nagarajan
School of Electrical and Computer
Engineering
Purdue University
West Lafayette, IN, USA
nagaral6@purdue.edu

Abstract

The problem of identifying the k-Nearest Neighbors (kNNS)
of a point has proven to be very useful both as a standalone
application and as a subroutine in larger applications. Given
its far-reaching applicability in areas such as machine learn-
ing and point clouds, extensive research has gone into lever-
aging GPU acceleration to solve this problem. Recent work
has shown that using Ray Tracing cores in recent GPUs to
accelerate kNNS is much more efficient compared to tradi-
tional acceleration using shader cores. However, the existing
translation of kKNNS to a ray tracing problem imposes a con-
straint on the search space for neighbors. Due to this, we can
only use RT cores to accelerate fixed-radius KNNS, which
requires the user to set a search radius a priori and hence
can miss neighbors. In this work, we propose TrueKNN, the
first unbounded RT-accelerated neighbor search. TrueKNN
adopts an iterative approach where we incrementally grow
the search space until all points have found their k neighbors.
We show that our approach is orders of magnitude faster
than existing approaches and can even be used to accelerate
fixed-radius neighbor searches.

CCS Concepts: - Computing methodologies — Ray trac-

ing; Graphics processors; « Information systems — Nearest-
neighbor search; « Theory of computation — Nearest

neighbor algorithms.

Keywords: Ray Tracing, k Nearest Neighbors, Neighbor
Search

ACM Reference Format:

Vani Nagarajan, Durga Mandarapu, and Milind Kulkarni. 2023. RT-
kNNS Unbound: Using RT Cores to Accelerate Unrestricted Neigh-
bor Search. In International Conference on Supercomputing (ICS °23),

This work is licensed under a Creative Commons Attribution International 4.0 License.

ICS 23, June 21-23, 2023, Orlando, FL, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0056-9/23/06.
https://doi.org/10.1145/3577193.3593738

Durga Mandarapu
Department of Computer Science
Purdue University
West Lafayette, IN, USA
dmandara@purdue.edu

289

Milind Kulkarni
School of Electrical and Computer
Engineering
Purdue University
West Lafayette, IN, USA
milind@purdue.edu

June 21-23, 2023, Orlando, FL, USA. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3577193.3593738

1 Introduction

The ability to leverage GPUs to accelerate general-purpose
workloads has resulted in unprecedented performance gains
in various applications. Re-purposing shader cores primarily
achieved this in GPUs, which accelerate arithmetic com-
putations in rendering algorithms, to accelerate other non-
rendering applications. However, re-purposing the cores was
not an easy task: non-rendering applications needed to be
rewritten as rendering algorithms to be able to use the shader
cores. As only skilled graphics programmers were able to
do this translation, researchers began to work on creating
programming models that would allow any programmer to
leverage GPU acceleration. This led to the creation of popular
programming models such as CUDA[20] and OpenCL[11].
They allowed programmers to write general-purpose code
while abstracting the translations required to run it on the
GPU. These programming models are responsible for cutting
down execution times of machine learning applications from
weeks to days and hours to seconds.

While the shader cores were ideal for performing arith-
metic computation on regular structures, they performed
poorly on irregular applications such as tree traversal. In
such cases, the user was often better off executing the applica-
tion on the CPU. The introduction of Ray Tracing (RT) cores
in recent GPUs created an opportunity to accelerate a differ-
ent class of applications: irregular applications. Ray casting
is a popular rendering algorithm where a ray is launched
through a pixel in the image plane and the interaction of
the ray with objects in the scene is used to determine the
color of the pixel. Ray tracing expands on ray casting by also
accounting for reflected and refracted rays (secondary rays)
that are generated due to the ray-object interaction and trace
the interaction of these secondary rays with the objects in
the scene. The RT cores on GPUs were designed to accelerate
the ray tracing the process by offloading certain sections of
the RT pipeline to hardware, namely the Bounding Volume
Hierarchy traversal and ray-bounding volume intersection
tests [21] (Details in Section 2.2.2).

ICS °23, June 21-23, 2023, Orlando, FL, USA

Though the RT cores were designed to accelerate ray trac-
ing applications, researchers are starting to look into exploit-
ing these cores to perform general-purpose computations.
Wald et. al. introduced the idea of using RT cores to identify
the tetrahedral mesh to which a point belongs [28]. The au-
thors re-formulate the problem as a ray tracing problem by
treating the query point as the ray origin and the tetrahedral
meshes as objects in the scene. Now, the point-in-tetrahedron
problem reduces to launching a ray from the query point
and identifying the closest intersecting mesh. Later works
by Zellman et. al. , Evangelou et. al., and Zhu et. al. looked
at re-formulating the nearest neighbor search problem as a
ray casting query [8, 32, 33]. The Nearest Neighbor Search
(NNS) problem is the task of identifying the closest points to
a query point. Its variant, k-Nearest Neighbor Search (kNNS),
restricts the task of finding the k closest neighbors.

A major downside to RT-accelerated neighbor search is
that the search space for nearest neighbors is constrained to
a fixed-radius neighborhood due to the problem translation
approach adopted by prior work (Details in Section 2.3). It is
impossible to know the required radius to identify neighbors
a priori, leading the approach to possibly find less than k
neighbors. Prior work has suggested that this problem can
be avoided by choosing a very large radius to ensure all
neighbors are found [33], but we show that this approach is
highly inefficient—trying to find all of the neighbors of query
points using the existing approaches obviates the benefits of
hardware acceleration entirely (Details in Section 5).

This paper presents an efficient solution to the problem of
RT core acceleration of unbounded kNNS—ensuring that all
query points will successfully find all k neighbors. We adopt
an iterative solution: we start with a smaller search radius
and keep track of points that have found their k nearest
neighbors in each iteration. In the subsequent iterations, we
incrementally increase the radius and only query the points
that have not found their neighbors. While this approach
seems like it should be significantly slower than choosing
a single radius, we show that it is not. Since the number of
points being queried decreases as the search radius increases,
we find that our approach is significantly fasterthan choosing
an arbitrarily large radius, and can even be faster than prior
fixed-radius approaches even for smaller radii.

To summarize, the contributions of our paper are as fol-
lows:

o This paper introduces TrueKNN, the first RT-accelerated
neighbor search algorithm that is not constrained to a
fixed-radius.

o We show that TrueKNN outperforms fixed-radius, non-
iterative approaches by large margins. This iterative
solution gradually grows the neighbor search space
while pruning query points that have already found
their neighbors, leading to significantly fewer ray-
object intersection tests

290

Vani Nagarajan, Durga Mandarapu, and Milind Kulkarni

e We further show that, unlike prior approaches that re-
quire a priori selection of a query radius, we can adapt
TrueKNN to find the appropriate radius dynamically,
outperforming prior approaches even when those ap-
proaches select their query radius a posteriori.

2 Background

In this section, we introduce the k-Nearest Neighbor Search
(kNNS) problem and explain how prior works have translated
kNNS to a ray casting problem.

2.1 k-Nearest Neighbor Search

The Nearest Neighbor Search (NNS) problem was first intro-
duced by Fix et. al. [9] and expanded by Cover et. al. [7]. It
is defined as follows:

Definition 2.1. For a dataset D and query point g € D, find
the set of k nearest points to g.

The nearest neighbors are typically identified using a dis-
tance metric, with Euclidean distance being the most popular
choice. kNNS is primarily used as a subroutine in k-Nearest
Neighbor classification and regression algorithms. The basic
idea behind these algorithms is that a property of a query
point can be determined by observing its nearest neighbors.
For example, a query point can be classified into the same
class as a majority of its neighbors in classification problems.
Similarly, the properties of a query point can be averaged
using its neighbors in regression problems.

kNN classifier and regression models are widely used in
point cloud applications to compute surface normals [26],
recommendation systems to assign recommendations based
on similar users [1], healthcare to classify patients [31] and
pattern recognition, to name a few.

2.2 Ray Tracing Hardware

As a part of NVIDIA’s Turing architecture, each Streaming
Multiprocessor (SM) has an RT core to accelerate BVH tra-
versal and perform ray-triangle intersection tests, allowing
the SM to perform other computations in the meantime. Both
the SM and RT core share the same memory, allowing us to
use both units in parallel. We direct the reader to [21] for
more details.

2.2.1 Ray Casting. The RT cores are able to accelerate
the ray casting process by reducing the number of intersec-
tion tests performed, and this is facilitated by the Bounding
Volume Hierarchy (BVH) structure used for object represen-
tation. The ray-casting process involves launching rays from
a source through each pixel in the image plane, recording
their interactions with objects in the scene, and using that
information to determine the color of the pixels. It would
seem that each ray would have to be tested for intersection
against each object to check whether an intersection could

RT-kNNS Unbound: Using RT Cores to Accelerate Unrestricted Neighbor Search

affect the color of the pixel. However, this would be very in-
efficient since rays may not intersect a large subset of objects
and intersection tests are computationally very expensive.

2.2.2 Bounding Volume Hierarchy. Bounding Volume
Hierarchies are an acceleration structure used to reduce the
number of required ray-object intersection tests. The general
idea is as follows: if we group objects that are spatially close
to each other, we can test for intersection against groups of
objects rather than individual objects, reducing the number
of intersection tests performed. The idea is to enclose objects
in bounding volumes and recursively enclose these volumes
in larger bounding volumes until we create a volume that
is large enough to enclose the entire scene. These bounding
volumes are represented hierarchically using a tree structure
called the Bounding Volume Hierarchy (BVH). Each node
in the tree represents a bounding volume that encloses all
its descendent nodes. The most commonly used bounding
volume is an Axis-Aligned Bounding Box (AABB).

Figure 1 shows how objects in a scene are used to construct
the BVH. On the left, each object A, B, C and D are enclosed in
their corresponding bounding volumes BV_A, BV_B, BV_C
and BV_D. As A and B are spatially close together, they
are combined into a larger bounding volume BV_AB that
encloses the bounding volumes of A and B. BV_CD is con-
structed similarly and BV_ABCD encloses both BV_AB and
BV_CD to capture the entire scene. The hierarchical rela-
tionship between the bounding volumes is captured on the
right. For example, BV_AB encloses BV_A and BV_B, and
this relationship is captured in the BVH with BV_AB as the
parent node and BV_A and BV_B as the children node.

It is possible to reduce the number of ray-object intersec-
tion tests by performing ray-AABB intersection tests and
only performing the ray-object intersection test if the pre-
vious test succeeds. For example, in Fig 1, if the ray does
not intersect BV_AB, it is guaranteed to not intersect BV_A
and BV_B. Since A and B are contained in these bounding
volumes, we do not have to perform the corresponding ray-
object intersection tests. This approach allows us to prune
large parts of the search space since if the ray does not inter-
sect the AABB, it is guaranteed to not intersect any of the
objects or other bounding volumes contained in the AABB.

2.2.3 Optix APIL The Optix API handles offloading Bound-
ing Volume Hierarchy build and traversal to the RT core,
while allowing the user to write custom CUDA kernels that
use the GPU’s shader cores.

Fig 2 shows the working of the Optix API. The RayGen
program is responsible for creating rays with the specified

origin (0), direction (c_i), and length (¢)
F=0+ tfz te [tmina tmax]

The ray traverses the BVH and checks for intersection with
the Axis-aligned Bounding Boxes (AABBs) in hardware (High-
lighted in yellow in Fig 2). The ray-object intersection test

291

ICS °23, June 21-23, 2023, Orlando, FL, USA

can happen in software or hardware, depending on the ob-
ject. If the object is a triangle, the test happens in hardware.
If not, the user provides a custom intersection test written
as a software CUDA Intersection program. Optix allows us
to perform the ray-AABB intersection test in hardware and
the ray-object intersection test in software/hardware.

The user can evoke the AnyHit program to record inter-
sections, decide whether to continue or terminate the BVH
traversal for a particular ray and launch subsequent rays.
After the BVH traversal completes entirely, the user can
specify a ClosestHit to record the closest intersected object
to the ray. The user can also specify what to do in case of no
intersections using the Miss program.

2.3 RT-accelerated k-Nearest Neighbor Search
(RT-kNNS)

We use the reduction proposed by Zellman et. al. to trans-
late fixed-radius nearest neighbor queries to ray tracing
queries [32]. The translation relies on a key observation:
to find neighbors within a radius r of point p, we can expand
a sphere of radius r around all points and check how many
spheres contain the point p. The centers of the k-closest
spheres are the neighboring points of p.

Algorithm 1: RT-kNNS

Input :Dataset D, radius r
Output:Neighbors within radius r
1 spheres « createSpheres(D,r)
boundedSpheres < createAABB(spheres)
constructBVH (boundedSpheres)
for Point p € D do
ray — RayGen(p, d, 0,FLOAT_MIN)
while traverseBVH(ray) do
if Intersect(ray, AABB) then
if Intersect(ray, sphere) then
p.neighbor «—
p.neighbor | J ray.center
end

- W N

© ® N @

10

11 end

12 end

13 end

RT-accelerated kNNS is outlined in Algorithm 1 and is
based on the Optix API pipeline from Section 2.2.3. In Line
1, we create spheres for all points with p € D (D is the
input dataset). The centers of the sphere are the points p
and the radius is supplied by the user. In Line 2, we specify
a BoundingBox program to create Axis-Aligned Bounding
Boxes (AABBs) to enclose the spheres. We proceed to con-
struct a Bounding Volume Hierarchy (BVH) by recursively
combining bounding volumes (See Section 2.2.2).

With the BVH constructed, we can begin to generate rays
that traverse the BVH and test for ray-AABB and ray-object

ICS °23, June 21-23, 2023, Orlando, FL, USA

BV_ABCD
BV_AB BV_D <c>
BV_B B @ BV_C
BV_A
BV_CD
A

:>

Vani Nagarajan, Durga Mandarapu, and Milind Kulkarni

BV_AB

BV_ABCD

\

Figure 1. Bounding Volume Hierarchy Construction. The scene with objects enclosed in bounding volumes is shown on the
left. On the right, the BVH corresponding to the objects and bounding volumes is shown.

BVH Traversal _—

Ray-AABB
intersection?

Post traversal
[ClosestHlt] [Miss Soﬁware Inlersectlon] Hardware Intersection
AnyHit

Figure 2. Ray Tracing Pipeline in Optix API

intersections. We create rays for all points p € D in Line 5.
The RayGen program accepts origin, direction, and ray inter-
val (tmin, tmax) s inputs. We set point p as center, (0,0,1) as
the direction (c?) and t,,4x as FLOAT_MIN. Since a ray of infin-
itesimal length is sufficient to intersect neighbors, t,,,, can
be set to a very small value. In Lines 6-12, each ray traverses
the BVH and performs intersection tests against AABBs. If
the ray intersects the AABB, ray-object intersection tests
are performed for each object contained in the intersected
AABB. If the ray intersects the sphere, we add the sphere’s
center to the list of point p’s neighbors.

3 Design

In this section, we describe how we use the fixed-radius k-
Nearest Neighbor Search (kNNS) reduction from Section 2.3

to implement our unbounded RT-accelerated kNNS algo-
rithm, TrueKNN. TrueKNN incrementally increases the search
space till we find each point’s k nearest neighbors.

3.1 TrueKNN Overview

We define TrueKNN as the task of finding the k nearest
neighbors of all points in a dataset. TrueKNN differs from
fixed-radius kNNS in that we do not constrain our neighbor
search space to a particular neighborhood. Section 2.3 shows
how to reduce fixed-radius nearest neighbor queries to ray

292

tracing queries by expanding spheres with a user-specified
radius around all points. In TrueKNN, the user does not
specify the radius.

Since the user does not have to specify the radius, we
need to figure out a radius such that each point in the input
dataset can find all its neighbors. A solution proposed by Zhu
is to use an arbitrarily large radius for the sphere expansion
phase [33]. This would guarantee that each point finds its
k nearest neighbors. However, choosing this appropriately-
large radius is difficult a priori: without performing kNNS,
to begin with, we do not know how large a radius will guar-
antee that all points will find their k nearest neighbors. The
only radius that is guaranteed to work a prior is one that en-
compasses all the points. But in such a scenario, the volumes
around each point are guaranteed to overlap as the bounding
boxes become larger when the search radius is large. As the
bounding volume hierarchy can no longer separate AABBs,
the algorithm is definitive O(n?).

So a priori radius setting cannot work. Instead, our ap-
proach is to incrementally identify the radius needed to
identify all of the neighbors. We propose a multi-round fixed-
radius kNNS approach that implements TrueKNN. We begin
by performing fixed-radius kNNS with a small radius and de-
termine the starting radius for the first round of our neighbor
search by selecting the minimum distance between points in
a subset of the input dataset (Section 3.2). Because this radius
is small, the search completes quickly, but many points may
not find their k neighbors. In each subsequent round, we
increment the radius and re-run fixed-radius kNNS on any
points that have not yet found their k neighbors until all
points find their k nearest neighbors (Section 3.3).

3.2 Determining start radius

In Algorithm 1, the user specifies the radius for sphere ex-
pansion. However, in the case of TrueKNN, there is no user
input and we need to determine an appropriate start radius
to begin the neighbor search. The selection of a start radius
is crucial to performance. If the radius is too small, we will
have many rounds where no points find any neighbors and
we will pay for the cost of a context switch between device

RT-kNNS Unbound: Using RT Cores to Accelerate Unrestricted Neighbor Search

and host, BVH refit, ray launch, and intersection tests. On
the other hand, if the radius is too large!, the number of
intersection tests performed will increase by several orders
of magnitude, leading to poor performance.

Algorithm 2: RandomSample
Input :Dataset D
Output:Radius start_radius
1 random_sample < sample(D, 100)
2 neighbors, distances «— kNearestNeighbors(D, k=4)
3 start_radius « min(distances)

It was evident that we needed to have some idea about
the input dataset to select a good start radius. Without this
information, it would be impossible to know whether our
chosen radius is too small or large. To incorporate dataset
information, we propose a random sampling approach (Al-
gorithm 2) to find the minimum distance between neighbors
of a subset of the input dataset. In Line 1, we choose 100
random points from the input dataset. We then use Python
scikit-learn’s built-in, ball-tree based k nearest neighbors
algorithm to find the 4 nearest neighbors of these randomly
sampled points. We empirically chose k = 4 as it worked well
in our experimental evaluation and had negligible execution
time (5 to 8 ms). We note that increasing k and/or sample
size could result in a better start radius. As shown in Line 3,
we then find the minimum distance between a point and its
neighbors and set that as our staring radius.

We experimented with different starting radii and found
that the cost of choosing a larger radius was much higher
than starting off with a smaller radius. When starting off
with a very small radius, we observe that some points find
few to no neighbors in the initial rounds. However, we found
that the time taken by these initial rounds was insignificant
compared to the total execution time. On the other hand,
starting off with a larger radius leads to fewer rounds but
more intersection tests, justifying our decision to use the
minimum distance as the start radius. We show that our
random sampling approach produces useful starting radii in
Section 5.4.2.

3.3 Multi-round kNNS

Now that we have a starting radius, Algorithm 3 describes
our multi-round approach for TrueKNN.

We use the random sampling approach outlined in Sec-
tion 3.2 to determine the radius for sphere expansion in the
first round of fixed-radius RT-kNNS. We use the minimum
neighbor distance returned by RandomSample as our start
radius (radius) in Line 1. In Line 3, we call RT-kNNS with
our dataset (D) and radius (radius) to find all points within
1We define the notion of small and large radius in comparison to the max-

imum distance between a point and any of its k nearest neighbors in the
input dataset.

293

ICS °23, June 21-23, 2023, Orlando, FL, USA

Algorithm 3: TruekNN

radius < RandomSample(D)
while D # {0} do
neigh, dist «— RT-KNNS(D, radius)
for p € D do
if |p.neigh| == k then
| D-={p}

end

=

end

if D # {0} then

radius <« radius * 2
REFIT_BVH(D, radius)
end

N - N - . B S VU)

=
=)

==
N =

end

[
w

a fixed neighborhood of p. We then check if the previously
chosen radius was sufficient for all points to find k neigh-
bors in Line 5. In Line 6, we remove all the points that have
found their k neighbors from our dataset so that the next
iteration will only consider points that have not found their
neighbors yet. For points that have not found all k neighbors,
we expand the neighbor search space by incrementing the
radius of spheres and re-fitting the bounding boxes around
the spheres for the BVH, as shown in Lines 10 and 11. We
continue this process till D = {0} and all points have found
their k nearest neighbors.

3.4 TrueKNN Discussion

It may seem curious that this algorithm is more efficient
than prior fixed-radius approaches—after all, each iteration
of TrueKNN performs an entire fixed-radius nearest neigh-
bor search. The key is in the interplay between radius size,
BVH-based search speed, and sorting time. When the ra-
dius is small, the spheres around the points are small and
well-separated. As a result, the BVH is extremely effective
at accelerating ray tracing, and query points very quickly
identify nearby points. By starting with a small radius, this
first iteration is faster than “normal” fixed-radius kNNS, with
the trade-off that many points are unable to find their needed
k neighbors.

In subsequent iterations, the radius is increased, but be-
cause some points in earlier iterations have already found
their needed neighbors, those points do not need to be re-
queried. So although the ray tracing process is slower, there
are fewer query points, and the overall search is faster. In
the final iterations, when the radius is quite large and BVH
acceleration is essentially useless, there are only a few query
points remaining (the outliers).

As mentioned earlier, setting a large starting radius for
fixed-radius kNNS leads to inefficient filtering, and a O(n?)
runtime. By incrementally increasing the radius, TrueKNN
avoids this problem—while outlier points have to do an O(n)

ICS °23, June 21-23, 2023, Orlando, FL, USA

search to find their candidate neighbors, most points are
resolved with smaller radii and require closer to a O(log n)
search.

There is another beneficial effect of TrueKNN’s iterative
approach. With a large starting radius (e.g., enough to find
at least k neighbors for 99% of the points), many points will
find too many candidate neighbors in their initial search,
and hence will waste time sorting those candidates to find
the k closest. By resolving those points with smaller radii,
TrueKNN also reduces sorting time. Indeed, as we show
in Section 5.5.1, TrueKNN’s benefits are not only because
outliers force large query radii for fixed-radius search. Even
in settings where we do not attempt to resolve outlier points,
TrueKNN outperforms fixed-radius kNNS.

4 Implementation Details

In this section, we discuss the implementation of TrueKNN
using the Optix API. We used the Optix Wrapper Library
(OWL) [27], which is built on top of Optix 7, to implement
TrueKNN and our baseline. OWL allows the user to define
custom shader programs to test for the ray-object intersec-
tion. Though one would typically use the AnyHit program
(Section 2.2.3) to collect multiple hits, we implemented the
TrueKNN logic in the Intersection program to avoid incurring
overhead costs associated with calling the AnyHit program.
In fact, we disable both the AnyHit and ClosestHit program
invocations to avoid performance penalties.

Since TrueKNN (Algorithm 3) increases the radius of spheres
in every iteration to expand the search space, the BVH corre-
sponding to the objects also needs to change every iteration.
One way to handle this is to re-build the BVH in every itera-
tion. However, Optix? provides the option of BVH re-fit. This
allows us to re-fit the bounding volumes to accommodate
the expanded objects without having to explicitly re-build
the BVH. We found that re-fitting was between 10-25% faster
than re-building.

5 Evaluation

In this section, we evaluate TrueKNN’s performance by ana-
lyzing the effect of varying parameters such as dataset size
and k. We also look at how outliers in the dataset affect both
TrueKNN and the baseline.

5.1 Datasets

We used a mixture of 2D and 3D real-world datasets (3DRoad,

Porto, KITTI, and 3DIono) and a 3D synthetic dataset (Uni-

formDist) to evaluate TrueKNN.

3DRoad The 3DRoad dataset captures the road network of
North Jutland, Denmark [14]. The dataset consists of
430K points. We use this as a 2D dataset, using only
the latitude and longitude parameters.

2We use OWL and Optix interchangeably as every feature in OWL is also
present in Optix

294

Vani Nagarajan, Durga Mandarapu, and Milind Kulkarni

Porto The Taxi Service Trajectory - Prediction Challenge
2015 dataset captures vehicle movement trajectory
data of 442 taxis in the city of Porto, Portugal [15].
The dataset has just over 81M points and we use Porto
as a 2D dataset, using only the latitude and longitude
parameters.

KITTI The KITTI vision benchmark dataset captures data
from the movement of an autonomous vehicle around
the city of Karlsruhe, Germany [10]. The dataset has
just over IM points and we use KITTI as a 3D dataset.

3DIono The 3D Ionosphere dataset captures the behavior
of electrons in the ionosphere [22]. The dataset has
just over IM points and we use it as a 3D dataset.

UniformDist We create a synthetic 3D dataset of 1M points
that is uniformly distributed on [0,1] to study the im-
pact of outliers on our algorithm.

5.2 Experimental Setup

We ran our experiments on an NVIDIA GeForce RTX 2060
GPU with 6 GB device memory, CUDA version 10.1, and
Optix 7.1. As Optix is a graphics rendering AP]I, it accepts
only 3D input data. As a workaround, we set the z-dimension
to 0 for 2D datasets.

5.2.1 Baseline. We use RT-kNNS (Algorithm 1) as our
baseline by setting the radius for sphere expansion as the
maximum distance (maxDist) between a point and any of
its k nearest neighbors. This way, the baseline is guaranteed
to find all k nearest neighbors of each point in the dataset.
We chose this baseline as prior work has shown that RT-
accelerated neighbor search is consistently faster than other
GPU-based implementations [8, 28, 33]. We also note that our
baseline represents the best case scenario since our neighbor
search is constrained exactly to a maxDist-neighborhood.
In practice, the user would probably select some arbitrary
d-neighborhood, where d >> maxDist.

5.3 Performance Evaluation

We compare the performance of TrueKNN against RT-kNNS
as described in Section 5.2.1. We study the performance im-
pact of dataset size by varying the dataset size between
100K and IM. For each dataset size, we chose k = 5 and
k = VDatasetSize to study the impact of varying k. We
chose k = VDatasetSize as it is the commonly used k value
for KNN classifier and regression models [18]. We only vary
dataset size up to IM since we run out of memory to store
neighbors in our GPU when k = VDatasetSize. We also per-
form an experiment where we modify the kNNS problem to
one of finding 99" percentile neighbors and evaluate our
performance against the baseline to understand the effect of
outliers in the dataset.

For different dataset sizes (d), we always used the first d
points in our experiments and averaged results over 5 runs.
The reported execution time for all our experiments includes

RT-kNNS Unbound: Using RT Cores to Accelerate Unrestricted Neighbor Search

BVH build and refit times, context switching overheads and
neighbor search time. We assume that the input is already
on the device and do not include data transfer time.

5.3.1 Impact of Dataset size. We study the effect of vary-
ing the number of query points for a fixed number of neigh-
bors (k = VDatasetSize). From Fig 3, we see that TrueKNN
outperforms the baseline on all datasets®. Table 1 also shows
the raw execution time for all datasets. A major advantage
of TrueKNN is that points that have found their k near-
est neighbors in previous rounds are no longer queried in
subsequent rounds with larger search radii. As the search ra-
dius increases, the size of the Axis-Aligned Bounding Boxes
(AABBs) enclosing the spheres also increases. This leads to
an increase in ray-AABB intersection tests, which, in turn,
leads to an increase in ray-object intersection tests. Since
TrueKNN can correctly identify the k nearest neighbors,
any additional intersection tests (compared to TrueKNN)
performed by the baseline are unnecessary. As the number
of query points increases, we see that the number of these
unnecessary intersection tests also increases.

N 100K
. 200K
[400K
. 800K
- 1M

2001
1751
1501

-

N

w
L

Speedup
=
o
o

751
501
25+

0_
3DRoad 3Dlono

Dataset

KITTI

Porto

Figure 3. TrueKNN’s speedup compared to baseline while
varying dataset size

Since the ray-AABB intersection tests are performed in
hardware, we do not have any information on the number of
tests performed. However, since the ray-object intersection
tests are performed in software, we can compare the number
of intersection tests performed by TrueKNN and the baseline.
Table 2 shows the number of ray-sphere intersection tests
performed (in billions) on the Porto dataset. We notice that
the baseline performs 9x the tests performed by TrueKNN
for 100K points and this increases to 32.1x for IM points.
As TrueKNN incrementally increases the search radius and
reduces the number of query points launched every round,
we perform far fewer intersection tests compared to the
baseline, leading to significant performance improvements.

33DRoad does not have speedup bars for 800K and 1M as it only has 400K
points in total

295

ICS °23, June 21-23, 2023, Orlando, FL, USA

Though this gives us an idea of where our speedup comes
from, speedup does not always increase proportionally to
the decrease in the number of intersection tests. For exam-
ple, the baseline performs 16.8x and 24.7x more intersection
tests compared to TrueKNN for 400K and 800K points, re-
spectively. However, our speedup falls from 99.9x to 65x.
There are possibly other RT Core-related aspects (ray-AABB
intersection tests, BVH traversal) that contribute to this*.

Comparison with RTNN. RTNN was proposed by Zhu to
optimize nearest neighbor search using RT cores [33]. RTNN
proposes two main optimizations (1) query reordering to
improve ray coherence (2) query partitioning to minimize
intersection tests. To demonstrate the effectiveness of our
approach, we compare an unoptimized TrueKNN (does not
use query sorting or partitioning optimizations) against a
fully optimized RTNN on the Porto dataset. We found that
TrueKNN was between 1.5x to 8x faster than RTNN, showing
that our ability to perform fewer computations results in
huge performance improvements.

Comparison with non-RT Baseline. We evaluate TrueKNN’s

performance against cuML’s kNNS implementation, which is
a purely CUDA-based implementation [24]. As cuML’s kNNS
ran out of memory when we set k = VDatasetSize, where
Datasetsize > 200K, we chose k = 5 for our experiment.

100K
I 200K
[400K
. 800K

3DRoad 3Dlono

Dataset

Porto KITTI

Figure 4. TrueKNN’s speedup compared to cuML’s KNNS
implementation on varying dataset size

From Fig 4, we see that TrueKNN outperforms cuML’s
kNNS across all the different datasets and dataset sizes. We
attribute this to TrueKNN’s ability to leverage hardware
acceleration while reducing the computation footprint. In
general, we found that TrueKNN’s speedup increased on
increasing the dataset size.

4 At the time of writing this paper, there were no tools available to profile
the RT Cores

ICS 23, June 21-23, 2023, Orlando, FL, USA

Vani Nagarajan, Durga Mandarapu, and Milind Kulkarni

Dataset size 3DRoad Porto 3DIono KITTI
TrueKNN Baseline TrueKNN Baseline TrueKNN Baseline TrueKNN Baseline
100K 6.28 44.71 25.27 722.93 9.48 308.16 13.8 520.01
200K 23.97 146.83 89.72 3965.7 38.16 2086.13 51.6 2769.96
400K 120.41 753.81 456.78 45639.7 149.6 11433.5 175.38 12503.4
800K - - 1128.67 73423.5 776.96 57184.7 641.96 776562.4
1M - - 1052.95 127720.1 973.3 1862527.9 892.21 121256.2

Table 1. Execution time (in seconds) for TrueKNN and baseline for all datasets

Dataset size TrueKNN Baseline

100K 1.09 9.9
200K 2.85 39.9
400K 7.16 189.1
800K 25.86 639.31
M 31.12 999.19

Table 2. Number of ray-object intersection tests performed
(in billions) for the Porto dataset

5.3.2 Impact of k. We set the k parameter as 5 and
VDatasetSize for 400K points from the 3DRoad, Porto, 3DIono,
and KITTI datasets. In both cases, we consistently outper-
form the baseline, as shown in Fig 5. We also notice that
the extent of our speedup is larger when k = 5 compared to
k = 660. We mainly attribute this to the overhead of sorting
and maintaining the list of k nearest neighbors over mul-
tiple rounds in the case of large k values, compared to the
one-time cost incurred by the baseline.

5001 B 3DRoad
I Porto
400 A [3Dlono
. KITTI
S 300+
kel
Q
[
o
N 2001
100

660

k
Figure 5. Impact of k

Additionally, we notice that as k increases, the number
of ray-object intersection tests also increases as we need to
identify more neighbors. For example, on the Porto dataset,
the baseline performs 839x the intersection tests performed
by TrueKNN when k = 5 but this number decreases to 17x
when k = 660. However, we are still over 70x faster than the
baseline for most datasets when k = 660.

296

e o <o 92
o o o o
2 O & <

o
o
@

Execution time (s)

o
o
N

°
o
far’

o
o
S

Round

(a) Time taken by each round

140000

120000

100000

80000

60000

40000

Number of query points left

20000

0

-
N
w

4 5 6 7
Round

(b) Number of points left after each round

Figure 6. Breakdown of 3DRoad execution time

5.4 Performance Analysis

In this section, we justify our design decisions by analyzing
the run time of the various rounds in our TrueKNN approach
and showing that our choice of start radius yields good re-
sults.

5.4.1 Runtime Analysis. To understand why TrueKNN
is able to largely outperform the baseline, we evaluated
TrueKNN on the first 400K points of the 3DRoad dataset,
with a start radius of 0.001 and k = 5. Fig 6a shows the

RT-kNNS Unbound: Using RT Cores to Accelerate Unrestricted Neighbor Search

time taken for each round of TrueKNN and Fig 6b shows the
number of query points that have not found their k nearest
neighbors after each round.

From Fig 6a, it is evident that rounds 7 and 8 take sig-
nificantly more time compared to the other rounds. This is
interesting, since these rounds query far fewer points com-
pared to earlier rounds, as most points have already found
their k neighbors. Indeed, from Fig 6b, we see that only 3
query points remain in these last few rounds. Though one
would expect that fewer query points would lead to faster
execution times, we find that it is not true because the search
radius is much larger in the latter rounds.

As the search radius increases in latter rounds, even if we
have only 3 query points, the BVH traversal will result in a
large number of intersection tests as the size of the bounding
volumes enclosing the spheres also increases to accommo-
date the larger sphere. As we double the radius in each round,
we see a huge uptick in the number of intersection tests. This
shows us why TrueKNN is able to outperform the baseline:
we expand fewer points to larger radii in latter rounds, al-
lowing us to drastically reduce the number of intersection
tests performed.

500

400

w
o
o

N
o
o

Execution time (s)

100

009 03 11 12 14 16 25

Start radius (x1074)

2.6 3 10

Figure 7. Impact of start radius selection

5.4.2 Start Radius. In Section 3.2, we proposed a method
to choose a useful start radius for sphere expansion in the
first stage of the TruekNN algorithm. In particular, we de-
cided to always choose the minimum distance between the
4 nearest neighbors of 100 points as our starting radius. In
this section, we show that this approach typically produces
useful start radii.

We ran Algorithm 2 multiple times to generate differ-
ent start radii for 400K points of the Porto dataset. Fig 7
shows the execution time (in seconds) of TrueKNN, where
k = VDatasetSize, for the various start radii. In most cases,
we found that there was an insignificant difference in the
execution times for the different start radii. We found similar
results on the other datasets and dataset sizes.

297

ICS ’23, June 21-23, 2023, Orlando, FL, USA

5.5 Impact of outliers

From our analysis in Section 5.4.1, we see that using larger
radii for neighbor search results in higher execution times
even for a few query points. Since our baseline uses this
large radius to query all points, it is unsurprising that it is
much slower than TrueKNN.

In this section, we perform an experiment where we only
identify neighbors upto the 99 percentile distance to elimi-
nate the influence of these outliers. We also create a synthetic
dataset of points uniformly distributed over [0,1] to study
the impact of outliers. In both experiments, we find that
TrueKNN almost always outperforms the baseline.

5.5.1 99" Percentile. We calculated the 99" percentile
search radius by computing the distance between query
points and their neighbors and selecting the 99*" percentile
distance. We perform this experiment to show that our ap-
proach does not unfairly benefit from the presence of outliers
in the dataset. As the 99" percentile radius is much smaller,
the baseline greatly benefits from performing fewer inter-
section tests.

0.
3DRoad

Porto 3Dlono

Dataset

KITTI

Figure 8. TrueKNN’s speedup compared to baseline for 99"
percentile neighbor search on different datasets

We evaluated performance on the Porto, 3DIono, and
KITTI datasets, with the dataset size varying between 100K
and 800K and k = VDatasetSize. We modified TrueKNN
to terminate the execution when we reached the 99 per-
centile radius. We note that this is only a thought experi-
ment and that it is not possible to know the 99*" percentile
without actually computing the neighbors of each query
point. From Fig 8, it is evident that TrueKNN still outper-
formed the baseline in all cases. This showed us that even
with a drastic reduction in the search radius for the baseline
(> 30x on average), our approach still manages to reduce the
number of software intersection tests. In fact, our original
TrueKNN, which identifies all neighbors, is also faster than the
99*h percentile-modified baseline in all cases!

ICS °23, June 21-23, 2023, Orlando, FL, USA

5.5.2 Uniformly Distributed Dataset. We created a syn-
thetic dataset of 1M points that are uniformly distributed on
[0,1] to see whether our approach would work well in the
absence of blatant outliers. We studied the effects of varying
dataset size and also repeated our 99" percentile experiment
on this dataset for k = VDatasetSize.

In both experiments, TrueKNN outperformed the baseline,
as shown in Table 3. This was surprising since this would
be the worst-case input to TrueKNN, due to the absence
of outliers. Though our speedup margin is not as high as
the previous experiments, we still manage to perform fewer
intersection tests, resulting in speedups of up to 4.2x on the
regular KNNS experiment and 1.7x on the 99" percentile
experiment.

Dataset size kNNS 99" percentile kNNS

100K 3.5x 1.5x
200K 3.25x 1.23x
400K 4.28x 1.7x
800K 4.15x 1.78x

Table 3. TrueKNN’s speedup over baseline on kNNS prob-
lems for UniformDist Dataset

6 Discussion

In this section, we discuss TrueKNN’s ability to accelerate
fixed-radius KNNS and look at the hardware limitations that
affect the efficiency of RT-accelerated general purpose appli-
cations.

6.1 Fixed-radius kKNNS

Fixed-radius kNNS is a variant of kNNS, where the search
space for neighbors is restricted to a particular radius. From
our experiments in Section 5, we believe that, in addition
to unbounded kNNS, our approach could also work well for
fixed-radius kNNS applications.

In the 99" percentile experiment in Section 5.5.1, which is
a fixed-radius kNNS problem, we found that we were consis-
tently faster than the fixed-radius baseline. This observation
gives us an important result: our multi-round approach can
be effectively used even for fixed radius neighbor searches,
as our approach minimizes the number of intersection tests
performed. For large datasets and large k values, TrueKNN’s
overhead costs are amortized, as we will see in Section 6.2.1.
For smaller datasets and k values, we find that TrueKNN is
sometimes slower than the baseline as these overhead costs
are not amortized. We experimented with 100K-800K points
from the Porto, 3DRoad, 3DIono and KITTI datasets and set
k = 5. Though we were consistently faster on the Porto,
3DRoad and KITTI datasets, we were upto 1.6x slower on
the 3DIono dataset, as shown in Fig 9. This is mainly due to
the overhead of switching between host and device contexts

298

Vani Nagarajan, Durga Mandarapu, and Milind Kulkarni

Speedup

100K

200K 400K
Dataset size

800K

Figure 9. TrueKNN’s speedup compared to baseline for 99"
percentile neighbor search on 3DIono dataset

and the cost is not amortized across the iterations needed to
find all neighbors.

6.2 Limitations of RT Hardware and API

The fundamental limitation of using the RT hardware is the
restriction to 3D datasets. As the hardware was created to
accelerate graphics rendering, it was designed to work only
with 3D data. We can get the hardware to work for 2D and
1D datasets by setting the corresponding dimensions to 0.
For example, we set the z-dimension to 0 for 2D datasets,
allowing the hardware to treat it as a 3D dataset.

Though it is not possible to express higher dimensional
datasets using this hardware, we can use dimensionality
reduction techniques such as Principal Component Anal-
ysis (PCA) [12], Linear Discriminant Analysis (LDA) and
Generalized Discriminant Analysis (GDA) [4] to reduce the
multi-dimensional dataset to just 3 dimensions. We also note
that there are, in fact, many important 2D and 3D datasets,
such as point clouds, geospatial data and geometries. These
datasets are widely used in applications such as clustering
and surface normal computation, both of which use kNNS
as a subroutine.

6.2.1 Optix Overhead Costs. As the OWL API was in-
tended to serve ray tracing applications, its setup is not ideal
for general-purpose computations. We notice this in particu-
lar when we implement our multi-stage TrueKNN algorithm
(Section 3.1). At the end of each round, we re-fit the bound-
ing boxes around the spheres to expand our neighbor search
space. For this operation, we need to switch the context from
the device to the host to increment the size of the bounding
boxes in the BVH. We then call the RayGen kernel (Fig 2)
to begin the ray casting process, which requires a context
switch from host to device. As the Optix API does not allow
the BVH re-fit to happen on the device side, we incur this
cost every round.

RT-kNNS Unbound: Using RT Cores to Accelerate Unrestricted Neighbor Search

7 Related Work

Leveraging RT cores for non-Ray-Tracing Applica-
tions. The idea of using RT cores to accelerate applications
other than ray tracing was first introduced by Wald et. al. [28].
They formulated the problem of identifying a point’s location
in a tetrahedral mesh as a ray tracing problem by declaring
the meshes as 3D objects in a scene and tracing rays origi-
nating at the query point. They show how leveraging both
hardware-accelerated BVH traversal and ray-triangle inter-
section tests resulted in up to 6.5x speedup over other CUDA
implementations. Morrical et. al. used RT cores to accelerate
the problem of finding a point’s location in unstructured
elements with both planar and bilinear faces [17] and render-
ing of unstructured meshes [16]. Zellmann et. al. proposed
a mapping of the fixed-radius nearest neighbor query to
ray tracing queries by expanding spheres over points in the
dataset and launching a small ray to record intersections [32].
They used the nearest neighbor query as a subroutine for
the Spring Embedders force-directed graph drawing algo-
rithm and show performance improvement between 4x to
13x over purely CUDA-based implementations. Evangelou et.
al. used the nearest neighbor mapping to solve the k-Nearest
Neighbors problem, which returns the k closest neighbors
of a point, and also perform photon mapping [8]. Zhu pro-
posed z-order sorting and query partitioning of input data
points to reduce control flow and memory divergence in
RT-accelerated neighbor searches [33].

k-Nearest Neighbor Search. The k-Nearest Neighbor Search

(kNNS) algorithm is used to find similarities within the fea-
ture space of input vectors. Researchers proposed using in-
dex structures to optimize the neighbor search, but soon
found that this approach was useful only when the dataset
had less than 10 dimensions[29]. Nagarkar et. al. provides
an overview of popular indexing techniques for lower and
higher dimensional data [19]. Some of the techniques used in
lower dimensions include M Tree [6], R/R* tree [25], and k-d
Tree [5]. Hashing and quantization algorithms were used
to find Approximate Nearest Neighbors (ANN) in higher
dimensions [2, 3].

Researchers have worked on leveraging GPU accelera-
tion for KNNS as it is often the computational bottleneck in
applications. Qui et. al. implemented kNNS on the GPU to
accelerate point cloud registration and show that it is 88x
faster than its CPU counterpart [23]. Johnson et. al. created
a suite of GPU-accelerated approximate neighbor searches
called FAISS that used quantization optimizations [13]. Wi-
eschollek et. al. also uses a quantization-based approach in
the form of Product Quantization Trees (PQT) to accelerate
ANN [30] on GPUs.

8 Conclusion

In this work, we implemented TrueKNN, the first RT-accelerated

k-Nearest Neighbor Search algorithm that does not restrict

ICS °23, June 21-23, 2023, Orlando, FL, USA

the neighbor search space to a pre-defined fixed radius. TrueKNN

uses an iterative approach where we initially sample the
input dataset to guess a good search radius, and then in-
crementally increase the search space such that each point
finds its k nearest neighbors. We found that TrueKNN was
orders of magnitude faster than existing algorithms on the
unbounded neighbor search task and significantly faster even
on the fixed-radius neighbor search task.

Acknowledgments

We thank the anonymous ICS reviewers for their valuable
feedback. We are grateful to Kirshanthan Sundararajah for
his comments that helped improve the paper. This work
was funded by NSF grants CCF-1908504, CCF-1919197 and
CCF-2216978.

References

[1] D.A. Adeniyi, Z. Wei, and Y. Yongquan. 2016. Automated web usage
data mining and recommendation system using K-Nearest Neighbor
(KNN) classification method. Applied Computing and Informatics 12, 1
(2016), 90-108. https://doi.org/10.1016/j.aci.2014.10.001

[2] Alexandr Andoni and Piotr Indyk. 2006. Near-Optimal Hashing Al-

gorithms for Approximate Nearest Neighbor in High Dimensions. In

2006 47th Annual IEEE Symposium on Foundations of Computer Science

(FOCS’06). 459-468. https://doi.org/10.1109/FOCS.2006.49

Martin Aumdiller, Erik Bernhardsson, and Alexander John Faith-

full. 2018. ANN-Benchmarks: A Benchmarking Tool for Approx-

imate Nearest Neighbor Algorithms. CoRR abs/1807.05614 (2018).

arXiv:1807.05614 http://arxiv.org/abs/1807.05614

[4] G.Baudat and F. Anouar. 2000. Generalized Discriminant Analysis
Using a Kernel Approach. Neural Comput. 12, 10 (oct 2000), 2385-2404.
https://doi.org/10.1162/089976600300014980

[5] Jon Louis Bentley. 1975. Multidimensional Binary Search Trees Used
for Associative Searching. Commun. ACM 18, 9 (sep 1975), 509-517.
https://doi.org/10.1145/361002.361007

[6] Paolo Ciaccia, Marco Patella, and Pavel Zezula. 1997. M-Tree: An

Efficient Access Method for Similarity Search in Metric Spaces. In

Proceedings of the 23rd International Conference on Very Large Data

Bases (VLDB ’97). Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 426-435.

T. Cover and P. Hart. 1967. Nearest neighbor pattern classification.

IEEE Transactions on Information Theory 13, 1 (1967), 21-27. https:

//doi.org/10.1109/TIT.1967.1053964

1. Evangelou, G. Papaioannou, K. Vardis, and A. A. Vasilakis. 2021.

Fast Radius Search Exploiting Ray Tracing Frameworks. Journal of

Computer Graphics Techniques (JCGT) 10, 1 (5 February 2021), 25-48.

http://jcgt.org/published/0010/01/02/
Evelyn Fix and Joseph L. Hodges. 1989. Discriminatory Analysis -
Nonparametric Discrimination: Consistency Properties. International
Statistical Review 57 (1989), 238.
[10] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun.
2013. Vision meets Robotics: The KITTI Dataset. International Journal
of Robotics Research (IJRR) (2013).

[11] Khronos Group. 2009. OpenCL. https://www.khronos.org/opencl/

[12] Harold Hotelling. 1933. Analysis of a complex of statistical variables
into principal components. Journal of Educational Psychology 24 (1933),
498-520.

[13] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale
similarity search with GPUs. IEEE Transactions on Big Data 7, 3 (2019),
535-547.

E

—

[7

—

8

—

[9

—

ICS

(14]

(15]

(16]

(17]

[18

—

(19]

(23]

[24

=

[25]

[26]

[27]

(28]

[29]

’23, June 21-23, 2023, Orlando, FL, USA

Manohar Kaul, Bin Yang, and Christian S. Jensen. 2013. Building
Accurate 3D Spatial Networks to Enable Next Generation Intelligent
Transportation Systems. In 2013 IEEE 14th International Conference on
Mobile Data Management, Vol. 1. 137-146. https://doi.org/10.1109/
MDM.2013.24

Luis Moreira-Matias, Joao Gama, Michel Ferreira, Joio Mendes-
Moreira, and Luis Damas. 2013. Predicting Taxi-Passenger Demand
Using Streaming Data. IEEE Transactions on Intelligent Transportation
Systems 14, 3 (2013), 1393-1402. https://doi.org/10.1109/TITS.2013.
2262376

Nate Morrical, Will Usher, Ingo Wald, and Valerio Pascucci. 2019. Effi-
cient Space Skipping and Adaptive Sampling of Unstructured Volumes
Using Hardware Accelerated Ray Tracing. 2019 IEEE Visualization
Conference (VIS) (2019), 256-260.

Nate Morrical, Ingo Wald, Will Usher, and Valerio Pascucci. 2020.
Accelerating Unstructured Mesh Point Location with RT Cores. IEEE
transactions on visualization and computer graphics (2020).

Prakash Nadkarni. 2016. Chapter 10 - Core Technologies: Data Mining
and “Big Data”. In Clinical Research Computing, Prakash Nadkarni
(Ed.). Academic Press, 187-204. https://doi.org/10.1016/B978-0-12-
803130-8.00010-5

Parth Nagarkar, Arnab Bhattacharya, and Omid Jafari. 2021. Exploring
State-of-the-Art Nearest Neighbor (NN) Search Techniques. In Proceed-
ings of the 3rd ACM India Joint International Conference on Data Science;
Management of Data (8th ACM IKDD CODS; 26th COMAD) (Bangalore,
India) (CODS-COMAD °21). Association for Computing Machinery,
New York, NY, USA, 443-446. https://doi.org/10.1145/3430984.3431968
NVIDIA. 2007. CUDA. https://developer.nvidia.com/cuda-zone
NVIDIA. 2021. NVIDIA Turing Architecture Whitepaper.
https://gpltech.com/wp-content/uploads/2018/11/NVIDIA-Turing-
Architecture-Whitepaper.pdf

Victor Pankratius, A. Coster, Juha Vierinen, Philip Erickson, and Bill
Rideout. 2015. GPS Data Processing for Scientific Studies of the Earth’s
Atmosphere and Near-Space Environment. (01 2015), 1-12. https:
//doi.org/10.1007/978-3-319-23519-6_1651-1

Deyuan Qiu, Stefan May, and Andreas Niichter. 2009. GPU-Accelerated
Nearest Neighbor Search for 3D Registration. In Computer Vision Sys-
tems, Mario Fritz, Bernt Schiele, and Justus H. Piater (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 194-203.

Sebastian Raschka, Joshua Patterson, and Corey Nolet. 2020. Machine
Learning in Python: Main developments and technology trends in data
science, machine learning, and artificial intelligence. arXiv preprint
arXiv:2002.04803 (2020).

Nick Roussopoulos, Stephen Kelley, and Frédéric Vincent. 1995. Near-
est Neighbor Queries. SIGMOD Rec. 24, 2 (may 1995), 71-79. https:
//doi.org/10.1145/568271.223794

Jagan Sankaranarayanan, Hanan Samet, and Amitabh Varshney. 2006.
A Fast k-Neighborhood Algorithm for Large Point-Clouds. In Sym-
posium on Point-Based Graphics, Mario Botsch, Baoquan Chen, Mark
Pauly, and Matthias Zwicker (Eds.). The Eurographics Association.
https://doi.org/10.2312/SPBG/SPBG06/075-084

Ingo Wald, Nathan Morrical, and Haines E. 2020. OWL-The Optix 7
Wrapper Library.

Ingo Wald, Will Usher, Nathan Morrical, Laura Lediaev, and Vale-
rio Pascucci. 2019. RTX Beyond Ray Tracing: Exploring the Use of
Hardware Ray Tracing Cores for Tet-Mesh Point Location. In High-
Performance Graphics - Short Papers, Markus Steinberger and Tim
Foley (Eds.). The Eurographics Association. https://doi.org/10.2312/
hpg.20191189

Roger Weber, Hans-Jorg Schek, and Stephen Blott. 1998. A Quantita-
tive Analysis and Performance Study for Similarity-Search Methods
in High-Dimensional Spaces. In Proceedings of the 24rd International
Conference on Very Large Data Bases (VLDB °98). Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 194-205.

300

[30]

[31]

[32]

[33]

Vani Nagarajan, Durga Mandarapu, and Milind Kulkarni

Patrick Wieschollek, Oliver Wang, Alexander Sorkine-Hornung, and
Hendrik P. A. Lensch. 2016. Efficient Large-Scale Approximate Nearest
Neighbor Search on the GPU. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2027-2035. https://doi.org/10.
1109/CVPR.2016.223

Wenchao Xing and Yilin Bei. 2020. Medical Health Big Data Classifi-
cation Based on KNN Classification Algorithm. IEEE Access 8 (2020),
28808-28819. https://doi.org/10.1109/ACCESS.2019.2955754

Stefan Zellmann, Martin Weier, and Ingo Wald. 2020. Accelerating
Force-Directed Graph Drawing with RT Cores. In 2020 IEEE Visualiza-
tion Conference (VIS). 96-100. https://doi.org/10.1109/VI1S47514.2020.
00026

Yuhao Zhu. 2022. RTNN: Accelerating Neighbor Search Using Hard-
ware Ray Tracing. In Proceedings of the 27th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (Seoul, Republic of
Korea) (PPoPP °22). Association for Computing Machinery, New York,
NY, USA, 76-89. https://doi.org/10.1145/3503221.3508409

	Abstract
	1 Introduction
	2 Background
	2.1 k-Nearest Neighbor Search
	2.2 Ray Tracing Hardware
	2.3 RT-accelerated k-Nearest Neighbor Search (RT-kNNS)

	3 Design
	3.1 TrueKNN Overview
	3.2 Determining start radius
	3.3 Multi-round kNNS
	3.4 TrueKNN Discussion

	4 Implementation Details
	5 Evaluation
	5.1 Datasets
	5.2 Experimental Setup
	5.3 Performance Evaluation
	5.4 Performance Analysis
	5.5 Impact of outliers

	6 Discussion
	6.1 Fixed-radius kNNS
	6.2 Limitations of RT Hardware and API

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

