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Abstract—General Purpose computing on Graphical Process-
ing Units (GPGPU) has resulted in unprecedented levels of
speedup over its CPU counterparts, allowing programmers to
harness the computational power of GPU shader cores to acceler-
ate other computing applications. But this style of acceleration is
best suited for regular computations (e.g., linear algebra). Recent
GPUs feature new Ray Tracing (RT) cores that instead speed
up the irregular process of ray tracing using Bounding Volume
Hierarchies. While these cores seem limited in functionality, they
can be used to accelerate n-body problems by leveraging RT cores
to accelerate the required distance computations. In this work,
we propose RT-DBSCAN, the first RT-accelerated DBSCAN
implementation. We use RT cores to accelerate Density-Based
Clustering of Applications with Noise (DBSCAN) by translating
fixed-radius nearest neighbor queries to ray tracing queries.
We show that leveraging the RT hardware results in speedups
between 1.3x to 4x over current state-of-the-art, GPU-based
DBSCAN implementations.

Index Terms—DBSCAN, clustering, ray tracing

I. INTRODUCTION

Graphics Processing Units (GPUs) were created to service

graphics applications and accelerate parts of the rasterization

pipeline. The acceleration was due to optimized floating

point arithmetic using a large number of arithmetic cores.

Researchers wanted to harness this massive computational

capability to accelerate non-rendering applications. However,

this was not straightforward as it required re-formulating

problems as 3D rendering problems. Over time, the emergence

of platforms such as CUDA [1] and OpenCL [2] provided

a programming model for general-purpose computations on

GPUs. The General-purpose GPU (GPGPU) programming

model lets users offload parallelizable and compute-intensive

components (e.g.,, training a neural network) to the GPU

by leveraging the programmable shader cores. Unfortunately,

GPGPU acceleration using shader cores remains largely the

province of regular applications that rely on dense loops over

dense structures, such as matrix operations, convolutions, etc.

a) GPU acceleration of ray tracing: Interestingly, while

GPU shader cores are well-suited for one style of graphics

rendering—rasterizing—they are not at all well suited to a
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different, more accurate, rendering algorithm, ray tracing. Ray

tracing (or, more accurately, ray casting) flips the approach of

rasterizing. Rather than considering each object and how it

affects one or more pixels on the screen (e.g., whether the

object is visible or occluded by other objects), ray tracing

considers each pixel in the scene and determines what color

it should be based on the objects and lights it interacts with

[3]. In ray tracing, a ray is cast from the source, which is

typically a pinhole camera, for every pixel in the image plane.

These primary rays pass through the image plane and their

interactions with objects in the scene determine the color of the

pixel. The ray could intersect an object in the scene, creating

new reflected, refracted and/or shadow secondary rays. This

hierarchy of rays is represented as a ray tree, with the primary

ray as the root and the spawned secondary rays as internal

nodes (secondary ray intersections can spawn tertiary rays) or

leaf nodes.

Ray-object intersection tests are the biggest bottleneck in

the ray tracing pipeline due to their computational intensity. As

each ray has to be tested for intersection against every object

in the scene, performance suffers greatly. However, it is not

always necessary to test for intersection against every object.

We can represent the objects in the scene using a Bounding

Volume Hierarchy (BVH), a type of spatial acceleration tree

[4]. A BVH, like other spatial trees, captures the relationship

of objects to each other in space by recursively subdividing the

space into smaller cells until the leaf cells contain bounding

volumes that contain single objects. Ray-object intersection

can thus be performed hierarchically: if a ray does not intersect

a bounding volume, then it cannot intersect any of the subordi-

nate bounding volumes in the tree, eliminating large numbers

of intersection tests. (Section II-A describes this process in

more detail.)

Unfortunately, BVH-based ray-tracing is highly irregular:

each ray performs a tree traversal whose extent is highly input-

dependent. While prior work has shown that tree traversals can

be performed reasonably well on GPGPUs [5], shader cores

are simply not the best-suited accelerator for BVH traversals.

Hence, recent GPUs from NVIDIA and AMD have added ray

tracing (RT) cores. These cores provide specialized hardware

for building and traversing bounding volume hierarchies, sig-

nificantly accelerating the process of ray tracing [6].

b) Re-purposing RT cores: In the same way that early

GPU programmers looked to re-purpose shader cores to
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perform non-rasterization tasks, a natural question to ask

is whether RT cores can be leveraged to accelerate non-

raytracing algorithms. Recent work has suggested the answer

might be “yes.” Wald et. al. [7] accelerate the task of locating

which tetrahedron of a solid a query point lies in by treating

the query point as the source of a ray and seeing if it intersects

a tetrahedron. While this is perhaps an obvious adaptation of

ray-tracing, as it is effectively ray tracing itself, later work

has pushed the boundaries further. Zellman et. al. [8] and

Evangelou et. al. [9] showed how to reduce the problem of

finding the set of points in a fixed-radius neighborhood of a

query point to ray tracing to build force-directed graphs and

to do photon mapping, respectively.1

These papers use this reduction to write custom ray-tracing

kernels that solve these problems. The algorithms essentially

use one-shot invocations of ray-tracing hardware to perform

the necessary distance computations and solve the problems.

However, some distance-based algorithms require integrating

repeated distance queries into larger programs, and hence

require more careful use of the reduction.

In particular, DBSCAN [10] is a clustering algorithm that

groups nearby points in space into clusters based on the

distance points within the cluster are from other points in the

cluster. Solving this problem requires repeatedly updating clus-

ter definitions by repeatedly identifying nearby points, a more

complex task than the “single shot” distance computations

of prior RT-acceleration work. In this paper, we investigate

whether RT cores can be used to accelerate this algorithm.

The contributions of our paper are as follows:

• This paper introduces RT-DBSCAN, the first RT-

accelerated clustering algorithm. As DBSCAN uses

distance-based queries to identify neighboring points, we

are able to leverage the reduction of Zellman et. al. [8]

and Evangelou et. al. [9] to accelerate neighbor searches,

which are a major computational bottleneck.

• We create a primitive RT-FindNeighbor (Details in

Section 2), allowing us to easily negotiate with the ray

tracing hardware and its associated programming model

(the Optix Wrapper Library (OWL) [11]).

• We use RT-FindNeighbor to implement a

UNION-FIND-based DBSCAN algorithm (Details

in Section 3) that minimizes memory consumption. We

proceed to show that RT-DBSCAN outperforms current

state-of-the-art DBSCAN algorithms that have been

optimized to run on GPUs.

II. BACKGROUND

A. Spatial Trees

n-body problems encompass all problems where every data

point needs to interact with all other n data points to calculate

some result. Examples of n-body problems include (1) force-

directed graph drawing algorithms such as Spring Embedders

[12], where repulsive forces between all pairs of vertices are

used to find stable graph layouts, (2) cosmology simulations,

1This reduction is described in more detail in Section III.

where the gravitational force exerted by stars in a galaxy is

modeled, and (3) k-nearest neighbors [13], where the distance

between all points in the dataset is calculated to identify the

k-nearest neighbors, to name a few. The naive approach to

solving n-body problems is to loop over the n data points and

compute the effects of interaction with the other n − 1 data

points in a doubly nested loop, leading to an algorithm with

O(n2) time complexity.

Barnes-Hut [14] improved the complexity by introducing

a tree representation of input data points called Spatial Index

Tree. They built the tree by recursively grouping nearby points

using spatial subdivision. The individual points formed the

leaves of the tree and internal nodes represented groupings that

estimated the effect of the points contained in them. With this

representation, instead of computing the effect of each point

on all other points, we compute the effect of a group of points

on other individual points. Using this spatial tree optimization,

the time complexity of n-body problems reduced from O(n2)
to O(n log n).

1) Bounding Volume Hierarchy: The grouping of points can

be done by either spatial (R-Trees, Oct-trees) or object-based

subdivision of the dataset (Bounding Volume Hierarchies).

Ray tracing applications rely on Bounding Volume Hierarchies

(BVH) to reduce the number of ray-object intersection tests

performed to determine the coloration of a pixel. Analysis

of ray tracing execution times shows that about 70% of the

total time is spent testing for intersections for simple scenes,

and upto 95% for complex scenes [15]. The authors also state

that the main reason for these percentages is the number of

intersection tests that need to be performed.

2) BVH Build: In the initial stage of the ray tracing

algorithm, all objects in the scene are enclosed in bounding

volumes. It is possible for the bounding volumes to overlap

if the objects are sufficiently close. A bounding volume is a

closed volume that completely encompasses one or more ob-

jects. We use Axis-Aligned Bounding Boxes (AABBs) as the

bounding volumes. The BVH is built bottom-up, starting with

the leaves. Bounding volumes containing individual objects in

the scene are the leaf nodes of the tree. Fig 1a shows objects

A, B, G, H, D and E enclosed in rectangular (shown in 2D)

bounding boxes and Fig 1b shows the corresponding bounding

boxes as leaves of the tree. The bounding volumes containing

individual objects are then recursively grouped together to

create larger bounding volumes, forming internal tree nodes

C, J, F and K. This process continues until a single bounding

box, M, encloses every intermediate and individual bounding

volume. In Fig 1a, intermediate bounding volume C encloses

bounding volumes A and B, and J encloses G and H. C

is combined with bounding volume J to create K, which is

further combined with F to create M, which encloses the entire

scene. The corresponding hierarchical relationship is captured

in Fig 1b, with C as the parent of A and B, J as the parent of

G and H, K as the parent of C and J, and M being the parent

of K and F.
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(a) 2D rectangular bounding boxes for the objects and interme-
diate bounding volumes

(b) Bounding Volume Hierarchy built from the bounding boxes
in (a)

Figure 1: Bounding Volume Hierarchy Construction

B. Ray Tracing Cores

The addition of Ray Tracing (RT) cores to GPUs has

enabled hardware-accelerated real-time ray tracing in gaming

applications. These accelerators co-exist with the traditional

Streaming Multi-processors (SMs), and the Optix API (Sec-

tion II-B2) allows us to write code that can leverage both RT

and shader cores of the GPU. The RT cores [6] accelerate

Bounding Volume Hierarchy traversal and ray-triangle inter-

section tests, which are crucial and expensive elements of the

ray tracing pipeline.

1) BVH Traversal: Given objects in the scene, the RT cores

intelligently2 build a Bounding Volume Hierarchy, similar to

the description in Section II-A. The reduction in the number of

intersection tests performed comes from pruning large parts of

the search space by performing intersection tests on bounding

volumes rather than individual objects. During BVH traversal,

if a ray does not intersect a bounding volume, it cannot

intersect any of the volumes contained in it and traversal does

not continue down that subtree. In Fig 1, if a ray does not

intersect bounding volume K, we need not test for intersection

against C, J, A, B, G or H.

2Details of the actual hardware internals are not publicly available

Figure 2: Optix pipeline. The components shaded in blue

are performed in hardware and are not programmable. The

unshaded components can be defined by the user. In the

case where objects are triangles, the Intersection Test is also

performed in hardware

2) Optix Programming Model: The Optix API [16] allows

users to write custom shader programs in CUDA (processed as

a single CUDA kernel), in addition to offloading BVH build

and traversal to RT cores. Both the shader and RT cores in

GPUs use the same device memory and work can be done in

parallel on the two cores. If the GPU does not have an RT

core, Optix programs can still be run, with BVH build and

traversal being performed in software.

Optix3 allows users to set up their scene by providing sup-

port for triangles, spheres and other user-defined geometries.

Once the scene is set up, the user can define a bounding vol-

ume program to enclose objects in the scene. For geometries

such as spheres, axis-aligned bounding boxes are typically

used. The bounding volumes are recursively combined by the

RT cores to build the BVH, as explained in Section II-A. With

the BVH constructed, we can now create rays and trace their

interactions with objects in the scene by traversing the BVH

and performing intersection tests.

As ray tracing is an embarrassingly parallel problem where

the color of each pixel can be computed independently, Optix

allows multiple rays to be launched in parallel as separate

CUDA threads. The components of the Optix pipeline are

shown in Fig 2 and each ray executes the various stages in

parallel. The RayGen program generates parallel rays with

the given origin (�o) and direction (�d). The user also needs

to specify the ray interval [tmin, tmax], which determines the

extent of the ray:

�r = �o+ t�d, t ∈ [tmin, tmax]

The generated rays both traverse the BVH and test for

intersection with bounding volumes in hardware (shown in

blue in Fig 2). When the ray reaches a leaf bounding vol-

ume enclosing an object, the ray-object intersection test is

performed in software or hardware, depending on the object.

If the object is a triangle, the test is performed in hardware.

3All Optix kernels are also present in OWL [11]
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Otherwise, the user specifies the Intersection program

to be used for ray-object intersection testing. The user can

optionally specify an AnyHit program to record information

about all the intersected objects and to determine whether to

continue or terminate BVH traversal. Once the BVH traversal

has completed, the user can optionally call the ClosestHit

program to identify the object closest to the ray along its

path or the Miss program to handle cases with no ray-object

intersections.

C. Density-Based Clustering of Applications with Noise

Cluster analysis is an unsupervised learning technique used

to identify patterns in a dataset. Clustering techniques are

widely used to provide targeted advertising to customers with

similar purchase histories, identify faulty machines, detect

anomalous financial transactions, and so on. k-means [17], a

popular clustering technique due to its simplicity and scalabil-

ity, picks k centroids and forms clusters based on whether other

points in the dataset are within a permissible distance to the

centroids. However, it requires that the user specify the number

of clusters (k) to be formed and performs poorly when the

dataset is noisy. Density-Based Clustering of Applications with

Noise (DBSCAN) addresses the disadvantages of k-means, as

it does not require the user to specify the number of clusters

to be formed [10]. It has the added advantages of being able

to form clusters of varying shapes and being unperturbed by

noisy datasets.

The DBSCAN algorithm takes two parameters as inputs:

ε and minPts, where ε is the maximum permissible distance

between any two points in a cluster and minPts is the minimum

number of points within the ε-neighborhood required to form

a cluster. A point is said to be a Core Point if it has minPts

neighbors within ε distance. A Border Point is not a core point

but is reachable from a core point and is a part of a cluster.

Reachability comes in two forms: (1) directly reachable, where

point y is within a distance ε from core point x, and (2)

reachable, where y is connected to core point x through one

or more core points. A Noise Point is neither a core nor a

border point.

Algorithm 1 shows the original DBSCAN algorithm. Ini-

tially, all points are considered UNASSIGNED as they have

not been assigned to a cluster yet. The FindNeighbors(p)

function in Line 2 identifies all points within ε distance of p. In

lines 3-6, we classify the point as a Core point or a Noise point

based on whether the ε neighborhood of p has minPts points. If

the point is a Core point, we examine each neighbor and assign

it the same Cluster ID as the core point, as shown in Lines

9-11. If the neighbor has already been assigned a Cluster ID,

we ignore the point and move on to the next neighbor. In lines

13-16, we call the FindNeighbors function on the neighbors

of point p. If the neighbor is a Core point, we add it to the

set of neighbors and repeat the process until all points have

either been assigned to a cluster or classified as noise.

Algorithm 1: Original DBSCAN

1 for UNASSIGNED point p do

2 Neighbors ← FindNeighbors(p)
3 if Neighbors.length < minPts then

4 p ← NOISE

5 else

6 p ← CLUSTER ID

7 NeighborSet ← Neighbors− {p}
8 for neighbor ∈ NeighborSet do

9 if neighbor == UNASSIGNED ‖
10 neighbor == NOISE then

11 neighbor ← CLUSTER ID

NewNeighbors ←
FindNeighbors(neighbor)

12 if NewNeighbors.length ≥ minPts

then

13 NeighborSet ←
NeighborSet

⋃
NewNeighbors

14 end

15 end

16 end

17 end

18 end

III. DESIGN

A. Neighbor Search

In Section II-C, we introduced an algorithm that performed

density-based clustering. Algorithm 1 includes two references

to a FindNeighbors() function that identifies all points within

ε distance of a point. We generalize the query as follows:

Definition III.1. findNeighborhood(p, S, ε): Given a dataset

S, point p and distance ε, find all points {x ∈
S | distance(p, x) ≤ ε}

The distance(x , y) function calculates the Euclidean dis-

tance between points x and y. The answer to this question

is used to establish the ε-neighborhood to detect core points

in DBSCAN. In Section II-B, we discussed how RT cores

are used to determine the color of a pixel by answering the

ray-object intersection query:

Definition III.2. intersect(�r, S) Given a set of objects S in

a scene and ray, �r, find all objects {o ∈ S | �r intersects o}

The key question, then, is to find a way to implement

findNeighborhood in terms of intersect . If we can do this,

then algorithms such as DBSCAN can be readily written in

terms of intersect and can use the RT cores to accelerate their

execution. We describe this process next, adapting a reduction

proposed by prior work [8], [9].

B. Input Transformation

The key insight to the transformation is that points within

a distance ε of a query point p (within p’s ε-neighborhood)

are the same points that would be contained inside a sphere
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Figure 3: We expand spheres of radius (ε) around all points.

We launch an infinitesimally small ray originating at query

point q and see that it intersects Cp, Cq and Cr, since the

origin is contained within all 3 spheres. Hence, p, q and r are

q’s neighbors

with origin p and radius ε. This intuitively makes sense for 3D

datasets, since expanding a sphere over the query point would

span across the three dimensions and accumulate all points

within a particular query radius. However, Zellmann et. al. [8]

propose an alternate approach where, instead of expanding a

sphere only around the query point p, they expand spheres of

radius ε around all points in the dataset. Fig 3 shows how

spheres Cp, Cq and Cr are expanded over points p, q and r.

We notice that the spheres overlap if their centers are in each

other’s ε neighborhood.

C. Putting it all together: RT-accelerated findNeighborhood

Now that we have a way of representing our points as

spheres in a scene, we need to formulate our ray tracing query

such that we can identify all neighbors of a point. Algorithm 2

presents a high-level overview of the process.

The algorithm takes a query point q, query radius ε and the

dataset D as inputs. In lines 1-3, for each point pi, we add a

sphere primitive with origin pi and radius ε to the scene. This

is the input transformation process described in Section III-B

and shown in Fig 3.

Using the user-specified axis-aligned bounding box pro-

gram, a Bounding Volume Hierarchy is constructed in hard-

ware to create the scene. In Line 4, we launch an infinitesi-

mally small ray �r with origin �q, direction �d and [tmin, tmax]
as [0, 1e−16] to find all the spheres that are intersected by the

ray. For example, from Fig 3, we see that such a ray launched

from origin �q intersects Cp, Cq and Cr. Recall that these are

solid 3D spheres and a ray of infinitesimal length is sufficient

to find intersections with overlapping spheres. The overlap of

spheres in Fig 3 indicates that the centers of the spheres Cp

and Cr are within ε distance of �q.

In Lines 5-9, we record all the spheres intersected by the

ray and pass it through a filter to remove self-intersections (Cq

in this case). When the ray traverses the BVH in hardware, it

returns all the intersected bounding volumes in the BVH tree.

As the hardware tests for intersection with bounding volumes

and not objects, it is possible that the intersection test results

are incorrect. Though bounding volumes completely enclose

objects, they are not an exact fit. It is possible for the ray to

intersect the bounding volume but completely miss the object

contained in it. In Line 6, we perform an additional check to

confirm that we intersect the object. Since it is also possible

for bounding volumes to overlap if the dataset is dense, this

filter removes any erroneous bounding volume intersections.

The filtered list of intersected spheres (NeighborList) contains

the nearest neighbors of point q.

Algorithm 2: RT-FindNeighborhood

Input : Query point q, Query radius ε, Dataset D

Output: NeighborList

1 for p ∈ D do

2 S ← S
⋃

createSphere(p, ε)
3 end

4 traceRay(�q, �d, [tmin, tmax])
5 if Intersect(q, s ∈ S) then

6 if (dist(q, s) ≤ ε) ∧ (q �= s) then

7 NeighborList ← NeighborList
⋃
s

8 end

9 end

Algorithm 3: RT-DBSCAN

1 for point p do

2 neighborCount ← RT -

FindNeighbors(p).length
3 if neighborCount ≥ minPts then

4 p ← CORE POINT

5 end

6 end

7 for point p do

8 for n: RT-FindNeighbors(p) do

9 if n == CORE POINT then

10 Union(p,n)

11 else

12 if n == UNCLASSIFIED then

13 critical section:

14 UNION(p,n)

15 end

16 end

17 end

18 end

D. RT-DBSCAN

We base our RT-DBSCAN algorithm on the parallel Union-

Find FDBSCAN algorithm proposed by Prokopenko et. al.

[18]. Algorithm 3 has two stages: (1) identifying Core points,

and (2) updating cluster information using union-find. For

the first stage, we use Algorithm 2 to identify each point’s

neighbors. For each point in the dataset, we launch a ray

tracing query to check if the ray intersects more than minPts

spheres. If the ray does intersect more than minPts spheres,

the query point is marked as a Core point as shown in Lines

3-5.
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In the second stage, we begin to form the clusters. As we did

not save information about the neighbors of each point, we re-

compute the Euclidean distance between points in the dataset

using Algorithm 2. Though this computation is redundant and

may seem inefficient, the hardware-accelerated BVH traversal

prevents performance degradation. In fact, Prokopenko et. al.

show that performance does not suffer even without hardware

acceleration [18]. Additionally, this approach scales well to

larger datasets as we do not run out of memory.

In Lines 7-9, we check whether the point and its neighbor

are core points. If both are core points, they can be merged

to form a larger cluster using the UNION operation. If the

neighbor is not a core point, it must be a border point and

we merge the border point into the core point’s cluster. It is

necessary to perform Line 14 atomically as border points can

belong to more than one cluster. If not, the border point could

be incorrectly assigned to two clusters, causing the erroneous

merging of two different clusters. We use a DisjointSet [19]

structure to store the rank and parent of the point. At the end

of the second stage, all points that share the same parent are

a part of the same cluster and all other points are noise.

IV. IMPLEMENTATION

We implemented RT-DBSCAN using the Optix Wrapper

Library (OWL), which is built on top of Optix 7. The tests

were run on an NVIDIA GeForce RTX 2060 GPU (with RT

cores) with 6 GB device memory, CUDA version 10.1 and

Optix 7.1.

OWL has separate programs for different components of the

ray tracing pipeline: bounding box construction, intersection

test, closest hit and any hit. We implemented the fixed-radius

nearest neighbors search and the DBSCAN clustering phases

within the Intersection program, saving the cost of calling the

AnyHit or ClosestHit program.

As Optix only accepts 3D inputs, we set the z-dimension

to 0 for 2D datasets and set the z-dimension of the ray

direction as 1. We also explicitly disabled the AnyHit and

ClosestHit programs to avoid overhead costs.

V. EVALUATION

A. Datasets

We use four real-world datasets to evaluate RT-DBSCAN.

As RT cores can only handle datasets with at most 3 dimen-

sions, we chose these 2D and 3D datasets that have been

widely used to evaluate DBSCAN performance( [18], [20],

[21]).

3DRoad The 3DRoad dataset was constructed using the road

network information of North Jutland, Denmark [22].

The dataset consists of 435K points and we use it as

a 2D dataset, considering only the latitude and longitude

coordinates.

NGSIM The Next Generation Simulation (NGSIM) Vehicle

Trajectories dataset provides precise vehicle locations

along three US highways [23]. The dataset has more than

11M points and we use the local coordinates to construct

a 2D dataset.

Porto The Taxi Service Trajectory-Prediction Challenge

dataset collected trajectory data of 442 taxis in the city of

Porto, Portugal [24]. The dataset has just over 1M points

and we use the 2D GPS coordinates to identify clusters.

3DIono The 3D Ionosphere dataset describes the behavior of

weather in the ionosphere [25]. The dataset has just over

1M points and we construct the 3D dataset using latitude,

longitude and total electron count parameters.

B. Performance Evaluation

We compare RT-DBSCAN against three GPU-based DB-

SCAN implementations (though none of these use RT cores).

FDBSCAN FDBSCAN uses a parallel DisjointSet algorithm

to compute clusters [18]. It has minimal memory footprint

and uses Bounding Volume Hierarchies to minimize the

number of distance computations.

G-DBSCAN G-DBSCAN stores ε-neighborhood information

for all points in a graph and uses BFS to find connected

components [26].

CUDA-DClust+ CUDA-DClust+ [27] uses the idea of incre-

mentally growing clusters in parallel using chains from

CUDA-DClust [20] but reduces memory footprint and

index structure build time. As CUDA-DClust+ is strictly

better than CUDA-DClust, we only evaluate the former.

For all cases, we used the authors’ original source code,

with the only modifications being those necessary to get the

code to run on our GPU system and to handle our inputs (with

the exception of FDBSCAN, which uses an early traversal

termination optimization to improve execution time for single

runs. In this work, we focus on typical DBSCAN use cases

where the user is expected to run DBSCAN multiple times

with different parameter values. We go into more detail in

Section VI-B).

We do not compare against Densebox approaches such as

FDBSCAN-Densebox [18], HDBSCAN-Densebox algorithms

[28], [29], as they are specialized to improve performance in

datasets with very high density regions. In the absence of such

regions, performance remains the same or is worse. We also

do not compare our performance with Mr.Scan [30] and BPS-

HDBSCAN [28] as they are designed to cluster very large

datasets (billion-point scale) and the incurred overhead is not

amortized for smaller (thousand/million-point scale) datasets.

We also do not report results against cuML’s DBSCAN

implementation as we were more than 3 orders of magnitude

faster in all cases.

We vary the ε parameter (defined in Section II-C) and

dataset size such that we include a wide range of clusters:

a few large clusters, and many small clusters. We also look

at a case where no clusters are formed in a dense dataset

in Section V-C. We do not report results from varying minPts

(defined in Section II-C) as it did not provide any new insights.

We report execution times averaged over 10 runs.

Overall, we find that RT-DBSCAN is consistently faster

in almost all cases. In particular, RT-DBSCAN is more than

2.5x faster on larger datasets. For smaller dataset sizes (Sec-

tion V-B1), the performance difference between RT-DBSCAN

968

Authorized licensed use limited to: Purdue University. Downloaded on October 03,2023 at 11:17:53 UTC from IEEE Xplore.  Restrictions apply. 



Figure 4: Speedup over CUDA-DClust+ on varying search

radius (ε) for 16K 3DRoad points

and FDBSCAN is not as pronounced due to the non-negligible

BVH build time of RT-DBSCAN. We elaborate on the impact

of BVH build time in Section V-D.

1) RT-DBSCAN Performance on Small Dataset Sizes: This

section evaluates the four DBSCAN implementations on a

small dataset (16K points). We found that both G-DBSCAN

and CUDA-DClust+ ran out of memory on our GPU for more

than 100K points. For this reason, subsequent sections will

only compare against FDBSCAN.

Overall, we found that RT-DBSCAN outperformed other

approaches in most cases for 16K points. As we kept decreas-

ing the number of points in the dataset, we found that RT-

DBSCAN was between 1.5x and 2x slower than FDBSCAN

when the dataset size was less than 500.

We used 16K points from the 3DRoad dataset and set

minPts as 100. In Fig 4, we compare the speedup of different

approaches over CUDA-DClust+. It is evident that though

RT-DBSCAN is faster in most cases, speedup is minimal

compared to FDBSCAN, as the overhead of setting up the ray

tracing framework was not amortized by the computations.

We found that the poor performance of G-DBSCAN and

CUDA-DClust+4 was due to the time taken to traverse the

adjacency list and the time needed to build and traverse the

index structure, respectively.

2) Impact of ε: We now turn to larger datasets, on which

only FDBSCAN and RT-DBSCAN can run. We investigate

clustering performance for different ε values. We vary ε while

fixing minPts as 100 and dataset size as 1M. We chose the

first 1M points in the datasets for clustering and averaged our

results over 10 runs.

We observe from Fig 5 that RT-DBSCAN outperforms

FDBSCAN in all cases. We attribute the speedup entirely to

our ability to leverage hardware acceleration of BVH traversal,

as FDBSCAN is also a BVH-based DBSCAN implementation,

though it does not utilize RT cores.

We see a maximum speedup of 1.5x on the 3DRoad dataset

as shown in Fig 5a. As we will see in Section V-D, DBSCAN

4We found that CUDA-DClust+ ran into memory issues on our 6GB GPU
and also showed variability in clustering results between runs

execution time for small dataset sizes and small search radii

is dominated by BVH build time.

In the cases of Porto and 3DIono, BVH build time of RT-

DBSCAN was only 2.5x slower than FDBSCAN, allowing us

to leverage the speedup in BVH traversal for fast clustering.

For the Porto dataset in Fig 5b, we see a maximum speedup

of 2.3x and our speedup tended to increase with increasing ε

values.

For the 3DIono dataset in Fig 5c, we achieve a maximum

speedup of 3.6x. As the neighborhood search radius ε becomes

larger, the number of BVH traversals and intersection tests

performed also increases, allowing us to realize the full

potential of RT acceleration.

3) Impact of Dataset Size: Fig 6 shows how performance of

RT-DBSCAN and FDBSCAN varies with the size of the input

dataset. We fix the (ε,minPts) values as (0.05,100), (0.5,10)

and (0.5,1000) for the 3DRoad, 3DIono and Porto datasets

respectively. For different dataset sizes (n), we choose the first

n points for clustering.

We find that RT-DBSCAN outperforms FDBSCAN on all

datasets and the performance disparity is especially evident

for larger dataset sizes. For the 3DRoad dataset, we see from

Fig 6a that our maximum speedup is 1.37x. As 3DRoad is

relatively small with a maximum of 400K points, it is not

surprising that we face issues similar to those discussed in

Section V-B2, where BVH build time is not amortized by

the time taken to complete the two stages of the DBSCAN

algorithm.

For the Porto (Fig 6b) and 3DIono (Fig 6c) datasets, we

find that we achieve maximum speedups of 2.9x and 4.1x,

respectively for the maximum dataset sizes. We report the raw

execution time for Porto, the largest dataset we examined, in

Table I. We examine the growth rate of the execution times of

Dataset size FDBSCAN(s) RT-DBSCAN(s)

500K 539.85 200.82
1M 2868.1 1347.2
2M 14859.02 6264.6
4M 65935.14 23486.15
8M 282047.12 96333.7

Table I: Execution time (in seconds) for Porto dataset on

varying dataset size

RT-DBSCAN and FDBSCAN on the 3DIono dataset in Fig 7.

We find that the growth rate of RT-DBSCAN’s execution time

is significantly slower than that of FDBSCAN as we are able

to leverage hardware acceleration, showing that our approach

is scalable. In general, increasing the dataset size widens the

performance gap between RT-DBSCAN and FDBSCAN, as

the RT hardware is designed to handle a large number of rays.

C. RT-DBSCAN Performance on a Dense Dataset

Finally, we evaluated RT-DBSCAN on NGSIM, a very

dense dataset where the number of clusters formed is 0, using

the same criteria as in Sections V-B2 and V-B3.

When we varied the dataset size, we found that RT-

DBSCAN outperformed FDBSCAN by large margins, with
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(a) 3DRoad (b) Porto (c) 3DIono

Figure 5: Speedup over FDBSCAN on varying search radius (ε)

(a) 3DRoad (b) Porto (c) 3DIono

Figure 6: Speedup over FDBSCAN on varying dataset size

Figure 7: Scalability of execution time for 3DIono dataset

a maximum of 5500x, as shown in Fig 8b. Table III shows

the raw execution times.

Search radius (ε) FDBSCAN(s) RT-DBSCAN(s)

0.0001 64.72 0.0257
0.00025 64.77 0.0259
0.0005 64.74 0.0259
0.00075 64.71 0.026
0.001 64.74 0.0259

Table II: Execution time (in seconds) for NGSIM dataset on

varying search radius (ε)

On varying ε with minPts as 100 and dataset size as 1M,

we found that RT-DBSCAN was nearly 2500x faster than

FDBSCAN, as shown in Fig 8a. Table II shows raw execution

times for different ε values. The execution times of both

FDBSCAN and RT-DBSCAN did not significantly change for

different ε as the dataset was still dense for these different

radii.

Dataset size FDBSCAN(s) RT-DBSCAN(s)

500K 12.7 0.03
1M 72.8 0.06
2M 364.6 0.13
4M 1631.4 0.3
8M 6964.1 1.26

Table III: Execution time (in seconds) for NGSIM dataset on

varying dataset size

On analyzing the output, we found that the RT hardware

made relatively few calls to the intersection program. As the

specifics of BVH construction and traversal in RT hardware are

unclear, we speculate that the hardware was able to construct

the BVH such that we were able to prune large parts of the

search space and minimize the number of intersection tests

required. As we will discuss in Section VI-C, having access

to the workings of the hardware internals would help explain

our results a lot better.

D. Runtime Analysis of RT-DBSCAN

In Section III-B, we discussed how data points are converted

to spheres so that RT cores can build and traverse the BVH in

hardware. Though this helps attain our objective of converting

the nearest neighbor problem to a ray tracing query, it comes

at a cost. Building a BVH from spheres for a ray tracing
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(a) Speedup on varying search radius (ε) (b) Speedup on varying dataset size

Figure 8: Speedup over FDBSCAN on varying ε and dataset size for NGSIM

application is much more complex and time-consuming than

building a spatial tree for data points. The Optix builder

performs memory compaction, invokes bounding box routines

and other ray-tracing-specific operations that add to the BVH

build time.

The general trend we observed was that BVH build time

dominated the total execution time for smaller datasets and

cases where ε was small, as fewer BVH traversals and

intersection tests needed to be performed. For example, we

consider the first 1 million points from 3DIono dataset with ε

= 0.25, and minPts = 100, similar to Section V-B2. We found

that RT-DBSCAN was 3.6x faster than FDBSCAN overall.

Breaking down the execution time, we found that the time

taken by RT-DBSCAN to perform clustering operations after

BVH build was 6.4 ms for the Core point identification phase

and 6.6 ms for the cluster formation phase. In total, RT-

DBSCAN only spent 48% of total execution time) on actual

clustering operations. On the other hand, FDBSCAN spent

0.118 seconds (94% of total execution time) on clustering

operations. This shows us that, on average, RT-DBSCAN is

more than 9x faster than FDBSCAN in performing the actual

clustering operations!

VI. DISCUSSION

A. Hardware Limitations

A major disadvantage of using RT cores to accelerate dis-

tance computations is that the dimensionality of the dataset can

be at most three. Indeed, the RT cores themselves expect the

dataset to be exactly three dimensions. Despite this limitation,

we note that there are many important real-world 2D and 3D

datasets such as Geospatial data, point clouds, and object ge-

ometries, and important distance algorithms such as DBSCAN,

computing normals, and filtering point cloud noise that use

distance searches over these datasets. Indeed, we note that

most of the prior DBSCAN works evaluate their approaches on

2D geospatial datasets [18], [20], [21]. It is possible to reduce

the number of dimensions in the dataset using dimensional-

ity reduction techniques such Principal Component Analysis,

though this introduces approximation.

B. Impact of early traversal termination

FDBSCAN uses an optimization where it stops BVH traver-

sal when minPts neighbors are found in the FindNeighbors

function [18]. However, the Optix API, based on which OWL

is built, does not allow BVH traversal termination unless

the Intersection kernel makes an additional call to the

AnyHit kernel. As this can incur significant overhead, RT-

DBSCAN does not attempt to perform early traversal termi-

nation.

Though the early exit optimization works very well for cases

where the user is only expected to run DBSCAN once, it is,

in practice, more useful to record the number of neighbors of

every point by allowing the BVH traversal to run its course.

By saving the number of neighbors of each point, we do

not have to re-run core point identification phase (Stage-1 of

Algorithm 3) for any subsequent DBSCAN runs where the

user changes the minPts parameter.

In Figs 9, we compare RT-DBSCAN to FDBSCAN with

early termination, as well as FDBSCAN without while varying

dataset size for fixed (minPts, ε) values. As expected, using

early termination guarantees better performance as it often

performs orders of magnitude fewer distance computations.

This is especially true when minPts is very small and BVH

traversal can stop very early. From our experiments, it is

evident from Fig 9a that for the Porto dataset, using early

exit improves performance of FDBSCAN-EarlyExit by 3x

compared to FDBSCAN without and by 1.5x compared to

RT-DBSCAN for larger dataset sizes.

However, in other cases, even the early-exit optimization is

not enough to overcome RT-DBSCAN’s superior performance.

For example, note that RT-DBSCAN outperforms FDBSCAN-

EarlyExit on the 3DRoad dataset (Fig 9b) and vastly out-

performs it on the NGSIM dataset (Fig 9c). We explain our

findings by noting that the cost of additional intersection tests

is hidden by the acceleration from RT cores. We especially

note that even though the early exit optimization is able

to leverage the density of the NGSIM dataset to improve

performance substantially, RT-DBSCAN’s ability to massively

prune the search space is even more useful.
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(a) 3DRoad (b) Porto (c) NGSIM

Figure 9: Impact of early traversal termination on execution time

C. Extensions to the Ray Tracing API

We believe that it would be advantageous to have a certain

degree of control over the hardware BVH traversal. For

applications such as Barnes-Hut [14], it is necessary to access

and update the intermediate nodes of the BVH to estimate the

effect of the enclosed volumes and this is not possible with

the current setup of the Optix API. We leave the Barnes Hut

implementation as future work.

In this work, we leveraged the acceleration from the

hardware BVH build and traversal. However, from Sec-

tion II-B, we know that the RT cores can also accelerate

ray-triangle intersection tests. Indeed, Wald et. al. find that

using hardware-accelerated intersection tests in addition to

hardware-accelerated BVH traversal can produce substantial

performance gains [7].

In our nearest neighbors algorithm (Algorithm 2), we ex-

pand spheres around the points in the dataset and designate all

points that fall within the sphere as neighbors of that point. We

performed some experiments to see if we could approximate

the spheres using triangles to leverage the hardware accel-

eration. As the ray-triangle intersection tests were done in

hardware, we had to call the AnyHit kernel to collect the

intersected points. We found that using triangles resulted in

2x to 5x performance degradation due to the overhead cost

associated with calls to the AnyHit kernel. If there was an

extension to the hardware such that the intersected points can

be returned without using the costly AnyHit kernel, there is

massive potential for performance improvement from leverag-

ing hardware-accelerated ray-triangle intersection testing.

VII. RELATED WORK

a) Using RT cores for non-Ray-Tracing Applications:

Wald et. al. first used RT cores to accelerate non-ray-tracing

programs [7]. They formulated the problem of identifying

a point’s location in a tetrahedral mesh as a ray tracing

problem by declaring the meshes as 3D objects in a scene

and tracing rays originating at the query point. They show

how leveraging both hardware BVH traversal and ray-triangle

intersections resulted in upto 6.5x speedup over other CUDA

implementations. Morrical et. al. used RT cores to successfully

accelerate the unstructured mesh point location problem [31].

Zellmann et. al. proposed a mapping of the fixed-radius nearest

neighbor query to a ray tracing query for the Spring Embed-

ders force-directed graph drawing algorithm [8]. Evangelou et.

al. used the nearest neighbor mapping to solve the k-nearest

neighbors problem [9]. Zhu proposed query re-ordering and

partitioning algorithms to improve ray coherence and minimize

the number of intersection tests performed [32]. We note

that adding these optimizations to RT-DBSCAN would further

improve performance.

b) DBSCAN: Ester et. al. introduced the DBSCAN al-

gorithm in 1996 to identify clusters of arbitrary shapes based

on dense regions in the dataset [10]. Although DBSCAN is an

inherently sequential algorithm (Algorithm1), researchers have

exploited GPU parallelism to accelerate DBSCAN. Thapa et.

al. exploited parallelism by having multiple CPU threads

perform ε-neighbor distance computations in parallel [33].

Andrade et. al. proposed G-DBSCAN, where they built a

graph over the dataset and performed parallel Breadth First

Searches to mark reachable points as belonging to the same

cluster [26]. However, the memory required to store and main-

tain the graph structure affects the scalability of G-DBSCAN.

Böhm et. al. introduced CUDA-DClust, which used a spatial

index structure to incrementally grow clusters in parallel [20].

Poudel et. al. proposed CUDA-DClust+ which improved on

CUDA-DClust by building the index structure on the GPU

instead of CPU and reducing communication overhead [27].

However, CUDA-DClust+ requires a significant amount of

time for index construction and suffers when the size of GPU

memory is small. Prokopenko et. al. proposed FDBSCAN and

FDBSCAN-DenseBox that use Bounding Volume Hierarchy

with UNION-FIND for clustering [18]. Both FDBSCAN and

FDBSCAN-DenseBox avoid memory issues as they do not

store any neighbor information. FDBSCAN-DenseBox, similar

to [28], [30], superimposes a Cartesian grid-based indexing

to identify dense regions and reduce the number of distance

computations in dense boxes.

VIII. CONCLUSION

In this work, we implemented RT-DBSCAN, where we ac-

celerated the nearest neighbor searches in DBSCAN using Ray

Tracing cores. We found that the hardware acceleration led to

performance improvements by as much as 4.5x over current

state-of-the-art GPU-based DBSCAN implementations. Future

work entails removing the fixed-radius constraint for neighbor
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searches to accelerate a wider range of applications. It would

also be interesting to see if RT cores can be used to accelerate

more general tree traversal algorithms.
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