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The speci�c contributions we make are:

(1) An algorithm for simultaneously searching the space of data

layouts and the space of vector packings to �nd an e�cient

combination.

(2) A lightweight Python embedded DSL called Coyote, with a

compiler that uses this algorithm to generate e�cient FHE

code for arbitrary programs

We tested Coyote by using it to compile six computational ker-

nels (matrix multiply, point cloud distances, 1D convolution, dot

product, sorting a list, and �nding the maximum element of a list),

and compared the performance of the vectorized code to to the

original unvectorized code. We also randomly generated several

irregular polynomial-evaluation programs to measure the e�ect

of things like operation density on Coyote’s ability to vectorize.

We �nd that Coyote very e�ectively vectorizes programs, yielding

e�cient vector schedules with optimized rotations.

2 BACKGROUND

2.1 Fully Homomorphic Encryption

Fully Homomorphic Encryption (FHE) refers to any encryption

scheme with the property that encrypting inputs, computing over

them, then decrypting the result is equivalent to computing over

the un-encrypted inputs. [11] FHE is hence useful for computing

on encrypted data, improving privacy in situations such as compu-

tation o�oading. Since addition and multiplication are complete,

FHE can be used to realize arbitrary functions on encrypted data.

The Brakerski/Fan-Vercauteren (BFV) [10] cryptosystem, which

is the particular FHE scheme that we use in this paper, is based

on the Ring Learning With Errors (RLWE) problem. Ciphertexts

in BFV are represented as high degree polynomials with an “error

term”, which is a small amount of noise added to the polynomial to

make the scheme “CPA-secure” (in other words, the same plaintext

will not encrypt to the same ciphertext each time).

2.1.1 Limitations. While FHE is an attractive approach to perform-

ing privacy-preserving computation, it presents a few challenges.

First, the polynomial encoding of ciphertexts incurs a huge over-

head for any secure computation. To achieve a reasonable degree

of security, the polynomials need to be quite large, so a single prim-

itive ciphertext operation like an add or a multiply gets translated

into very expensive polynomial math. This means that all but the

smallest FHE applications are often too slow to be practically run.

A second challenge for FHE computation is related to the noise

added to ciphertexts. When setting up an FHE computation, the

encryption parameters are used to determine a safe noise margin for

ciphertexts, which describes the level of noise above which cipher-

texts can no longer be decrypted. Freshly encrypted ciphertexts are

well below this margin, but multiplying two ciphertexts increases

the amount of noise present in the result. BFV does support boot-

strapping, which is a technique for homomorphically computing

a fresh encryption of a ciphertext to “reset” its noise level; how-

ever, bootstrapping is an expensive procedure. When designing

an FHE computation, therefore, it becomes important to limit its

multiplicative depth to avoid bootstrapping as much as possible.

Finally, because of the nature of secure computation, FHE does

not support branching over ciphertexts—conditionals cannot de-

pend on the values of encrypted data, otherwise the path taken

through the computation leaks information about the data. In par-

ticular, this precludes FHE computations from having any kind of

control �ow structures, including conditionals and loops, that are

control-dependent on ciphertexts.

2.1.2 Arithmetic Circuits. Since FHE does not support loops or

conditionals, computations have to be represented as combinatorial

arithmetic circuits. In particular, these arithmetic circuits we work

with closely resemble expression forests, where some of the trees

may in fact be DAGs (directed acyclic graphs) if any inputs are used

in multiple places. For the rest of this paper, we assume that the

programs we are compiling are already expressed in this way, and

talk about how to map the computations encoded as arithmetic

circuits to vectors. In practice, this is not too restrictive, since any

loop with known (plaintext) bounds can be fully unrolled, and any

conditional branching on a ciphertext can be converted into a “mux”

by evaluating both branches and only selecting the correct output.

The frontend DSL of Coyote does exactly that by staging python

programs, producing arithmetic circuits it can compile.

2.2 Vectorization

Single instruction, multiple data, or SIMD, is a way of amortizing

the run-time complexity of a program by vectorizing it, or lifting

its scalar computation to one that operates over packed vectors. To

vectorize, we need to �rst �nd sets of isomorphic scalar instructions

and then decide how to pack the scalar operands of those instruc-

tions into vectors before replacing all of them with a single vector

instruction. In traditional SIMD, this process relies heavily on the

presence of data-parallel loops in the original program. Unrolling

the loop by a few iterations (usually four or eight) produces a set

of isomorphic instructions, one for each unrolled iteration. These

are then packed into vectors, with one iteration per vector slot,

and lifted into vector instructions. Thus, a loop that performs a

scalar computation # times can be lifted into one that performs a

semantically equivalent vector computation # /4 times.

Superword-Level Parallelism (SLP) is a more general technique

that does not rely on the presence of loop-based control structures

in the program to �nd vectorizable instructions. SLP analyzes a

whole sequence of scalar instructions at once, looking for sets of

available instructions (instructions whose operands have already

been scheduled) that are all isomorphic to each other. At each step,

it picks such a set and packs its instructions together into a vector,

scheduling them together.

Vectorization in FHE. The way BFV encodes ciphertexts allows ab-

stractly representing large vectors of values as being encrypted into

a single ciphertext. In particular, homomorphic operations on such

ciphertexts correspond to element-wise operations on the underly-

ing packed vectors [2]. These polynomial rings also have speci�c

automorphisms that cyclically permute the “slots” into which ele-

ments are packed (hereafter called vector lanes). In other words,

ciphertext packing allows us to turn FHE into an abstract SIMD

architecture with instructions for (ciphertext) vector addition and
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multiplication, as well as vector rotation. This style of vectorization

has a few peculiarities that distinguish it from normal vectorization:

(1) The vectors are much larger than traditional hardware vector

registers (e.g. several thousand slots wide, compared to the

usual 4 or 8 slots). Utilizing this much space poses unique

challenges.

(2) Unlike with physical vector registers, there is no indexing

primitive that can directly access a value in a particular slot

of a ciphertext vector.

(3) In general, the only way to move data between vector slots

is by rotating the entire vector. This makes it much more

important to assign vector lanes to packed instructions opti-

mally, since realizing arbitrary permutations by composing

several rotations quickly gets computationally expensive.

The challenges posed by points (2) and (3) in particular preclude

us from simply using SLP-style vectorization, since its local rea-

soning means it does not su�ciently consider the high cost of data

movement between lanes when deciding what instructions to pack

together. We discuss the speci�c drawbacks of applying the SLP

approach to FHE in Section 7.

3 COYOTE OVERVIEW

Coyote provides an embedded DSL (eDSL) that allows programmers

to use a high level language to express computations in FHE. This

computation is translated into an arithmetic circuit representing

the computation, which is then compiled into vectorized FHE code.

The process of compiling a circuit into vectorized code is as follows:

3.1 Compilation Steps

This section gives an overview of how Coyote vectorizes an arbi-

trary arithmetic circuit using the process laid out in Figure 3. We

will use the circuit in Figure 1 as a running example. Compilation

proceeds as follows:

(1) Coyote quotients an input circuit (collapses subcircuits into

single vertices) and assigns lanes to resulting vertices to pro-

duce a pre-schedule that can be realized into a more e�cient

vector program. The result is a graph whose vertices corre-

spond to connected subgraphs of the original circuit, such

that no two vertices at the same height have the same lane

(and hence are eligible to be vectorized together). Coyote

collapses a subcircuit when it determines that the overhead

of internally vectorizing it is not worth the gain from vector-

ization, so this step essentially forces certain operations to

happen in scalar on a single lane. Section 4.2 describes how

Coyote makes this decision.

In the example in Figure 4a, the circled pairs of vertices are

collapsed, yielding the quotient circuit in Figure 4b. The lane

assignment for this pre-schedule puts each un-quotiented ad-

dition on the same lane as its quotiented parent, and chooses

one of these lanes on which to place the root of the tree.

(2) The (collapsed) vertices at each height are aligned to pack

together isomorphic nodes, producing a vector schedule from

the pre-schedule. In the example, the two adds at height 1

get trivially aligned, and the two “supernodes” at height 2

get aligned by packing together the two adds and the two

multiplies. No alignment is needed for the single vertex at

height 3. The details of the alignment procedure are given

in Section 4.4. Figure 4c shows the result of this alignment.

(3) Coyote compiles the schedule into a vector IR. The crux of

this compilation step is �guring out when to blend and rotate.

When a vector operand requires values from several di�er-

ent instructions, Coyote emits code to “blend” the results

together into a single vector. When the lane an operand is

used in is di�erent from the lane it was produced in, Coyote

emits a rotation instruction to move the operand into the cor-

rect lane. Notice that each arc in the pre-schedule connecting

vertices of di�erent lanes corresponds to a rotation in the

generated vector IR. Figure 4d shows the vector code Coyote

generates for our running example. Notice that the gener-

ated code contains two blends and one rotate. The blends

are necessary3 because on line 3 of the schedule, %0 and %3

are used in the same vector despite being produced in two

separate vectors. Since none of the operands need to shift

lanes, the vector instruction t0 = blend(v0@10, v1@01) takes

[%0, %4] and [%1, %3] and blends them together to produce

[%0, %3], which is exactly the operand used on line 3. Coyote

emits a rotation because%5 gets used on a di�erent lane than

it is produced. The vector instruction s0 = v2k 1 takes [%2,

%5] in v2 and produces [%5, %2] in s0. Section 5.2 describes

the speci�cs of code generation.

3.2 Using Coyote

A programmer can use Coyote’s DSL (shown in Figure 5) to

specify a computation and generate an arithmetic circuit. The DSL

exposes a number of ways to annotate inputs to the computa-

tion:replication, packing, and �xing alayout. Annotating an input

with “replicate” indicates that a copy of the input should be passed

to the circuit for each place it is used (ensuring that each copy gets

used exactly once). By default, inputs are unreplicated, meaning

that an input that gets used in multiple places will have a fan-out

corresponding to its usage frequency.

Specifying a “packing” constraint for a set of inputs requires that

they be packed into a single input vector in the �nal circuit (note

that inputs in the same vector are necessarily in di�erent lanes).

For example, a packing constraint might require that each entry of

a matrix be placed in the same input vector.

After Coyote vectorizes the circuit as described above, it auto-

matically packs the circuit inputs into vectors (while satisfying

any provided packing constraints) and chooses the data layouts

within these vectors. Alternatively, the programmer can choose to

override this and manually provide an input layout. This is useful,

for example, when composing multiple circuits, as the output lay-

out of one determines the input layout of the next. The details of

how these choices are made are discussed in Section 4.5, and the

tradeo�s these annotations provide are discussed in Section 5.1.

3In this particular example, exchanging the positions of %3 and %4 produces se-
mantically equivalent code that does not require the blends. However, automatically
performing arithmetic rewrites such as this one is outside the scope of this work.
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Algorithm 1: Lane placement

Algorithm PlaceLanes(graph)

;0=4B ← InitialPlacement(graph);

) ← )0;

2>BC ← Cost(lanes, graph);

for 8 = 1 : # do

) ← ) /(1 + V) );

20=3830C4 ← GenerateCandidate(lanes, graph);

2>BC ′ ← Cost(candidate, graph);

if Accept(cost, cost’, T) then

;0=4B ← 20=3830C4;

2>BC ← 2>BC ′;

return lanes, cost

Procedure Cost(lanes, graph)

A>C0C8>=B [∗] ← ∅;

foreach (D → E) ∈ 6A0?ℎ do

if ;0=4B [D] ≠ ;0=4B [E] then
A>C0C8>=B [D.4?>2ℎ] ←

A>C0C8>=B [D.4?>2ℎ] ∪ {;0=4B [E] − ;0=4B [D]};

8=BCAB [∗] ← 0;

foreach 4?>2ℎ ∈ 6A0?ℎ do

foreach >?2>34 do
8=BCA [>?2>34] ←

8=BCA [>?2>34] +max
ęĥĢ

2>D=C (4?>2ℎ, 2>;, >?2>34);

returnFĎ ×
∑

ěĦ
A>C0C8>=B [4?] +

∑

ĥĦ
FĥĦ × 8=BCAB [>?]

discrete graph of its connected components and assign each vertex

an arbitrary lane; this graph has no edges and requires no rotations,

but also precludes any vectorization within connected components.

Finding a good pre-schedule then requires us to �rst compute

a “good” quotient that trades o� between these extremes, together

with a lane assignment that somehow maximizes our ability to

vectorize without incurring too many rotations. This is expressed

in the search procedure Coyote uses when �nding a vector schedule:

an outer loop performs a best-�rst search over possible quotient

graphs, and an inner loop uses simulated annealing on each quotient

to �nd a good lane placement. The result of the search procedure

is a quotient of the circuit and a lane placement for the quotient,

which together minimize6 the cost of the resulting vector schedule.

The next section discusses this search procedure in more detail.

4.2 Schedule Search

Given a cost model, we use a two-layer optimization strategy to pro-

duce a schedule that has good packing properties without incurring

too much data movement overhead.

Determining lane placement (Algorithm 1). The inner layer uses sim-

ulated annealing to �nd an optimal lane assignment for a given

quotient graph. The initial assignment is the naive one given by

simply enumerating the vertices at each epoch. At each step of the

6relative to the other quotients and lane placements visited in the search

Algorithm 2: Computing a good circuit quotient

Algorithm ComputeQuotient(graph)

;0=4B, 2>BC ← PlaceLanes(graph);

14BC ← ;0=4B, 6A0?ℎ;

14BC2>BC ← 2>BC ;

?@D4D4 ← [];

Enqueue(pqueue, (graph, lanes), cost);

for 8 = 1 : # do

6A0?ℎ, ;0=4B ← Dequeue(?@D4D4);

if 0A2 {CrossArcs(graph) then
20=3830C4 ←

Condensation(ContractEdge(graph, arc));

;0=4B′, 2>BC ′ ← PlaceLanes(candidate);

Enqueue(pqueue, (candidate, lanes’), cost’);

if 2>BC ′ < 14BC2>BC then

14BC ← ;0=4B′, 20=3830C4;

Enqueue(pqueue, (graph, lanes), cost);

return best

algorithm, we generate a candidate solution by randomly choosing

two columns and a subset of the epochs in them to swap, maintain-

ing the uniqueness condition of the schedule. If the overall cost (as

described in Section 4.3) of the candidate solution is lower than the

original cost, it is accepted, and used as the starting point for the

next round. If the candidate solution cost is higher than the original

cost, it is accepted with a probability that varies negatively with

the di�erence in cost, and is generally smaller in later rounds than

in earlier rounds7. After a �xed number of rounds have elapsed

(see footnote), this algorithm returns the best solution found so far.

Computing optimal circuit quotient (Algorithm 2). The outer layer

searches the space of quotients for a graph that admits a good

lane placement without giving up too much vectorizability. Here,

we use a priority queue to implement a simple best-�rst search.

Each graph in the queue is assumed to already be equipped with

an optimal lane placement, via the algorithm described above. At

each step, a graph is dequeued, and a new candidate solution is

generated by looking at its set of cross-lane arcs and choosing

one to contract (removing the edge and identifying its endpoints

into a single vertex). The contracted graph may not be acyclic, so

we continue contracting cycles until it is (in e�ect computing the

condensation). The candidate solution is then enqueued with its

cost from the annealed lane placement. If there are more available

arcs to contract, the original graph is enqueued again.

After a �xed number of rounds have elapsed, or once the queue

is empty, the algorithm terminates and returns the best graph.

Since each step of this algorithm involves an expensive call to

the lane placement procedure, this runs for a much smaller number

of rounds, usually between 150 and 200. In practice, this is enough

to �nd highly e�cient schedules.

7We use a slow cooling schedule with initial temperatureĐ0 = 50 and cooling param-

eter ă = 10−3 . The probability of accepting a move that increases the cost by �ę is

ě−�ę /Đ . The annealing is run for 20k rounds.
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The next section discusses what makes one graph quotient or

lane assigment “better” than another, and how these tradeo�s are

quanti�ed in Coyote’s cost model.

4.3 Cost Model

The cost of a particular pre-schedule comes from two places: the

number of rotations we have to perform, and the amount we have

“given up” on vectorizing.

Rotations. Given a vector schedule, each cross-lane arc in the graph

(an arc connecting vertices of di�erent lanes) represents a rotation

that must be performed to align an output from the tail of the arc to

where it gets used at the head. However, determining the rotation

overhead is not as simple as counting these arcs. Consider the case

where instructions � and � are operands to instructions �′ and

�′, respectively. If � and � are assigned lanes = and<, �′ and �′

are assigned = + : and< + : , and � and � end up packed together

in the same vector instruction, the two separate data movement

operations required for the�→ �′ arc and the � → �′ can actually

be performed by a single rotation by : (in fact, taking advantage of

this fact is the main way Coyote optimizes data layout to require

fewer total rotates). To compute the actual number of required

rotations, we instead proceed epoch-by-epoch. For each epoch, we

look at all cross-lane arcs with tails in that epoch, and compute the

number of columns each spans (i.e. the required rotation amount) by

subtracting the lane at the tail from the lane at the head. The rotation

cost for that epoch is then just the number of distinct rotation

amounts. For example, if a particular epoch has �ve cross-lane

arcs, of which three represent a rotation of −1 and two represent a

rotation of 6, its rotation cost is 2. It follows that the total rotation

cost of a schedule is the sum of the rotation costs of each epoch.

Vectorizability. Taking successive quotients of the circuit reduces

the total number of edges, and by extension, reduces the number

of rotates that might be required; however, it also precludes any

vectorization within the collapsed subcircuits. To account for this,

we need a way of quantifying the amount of vectorization we are

“giving up” with each quotient.

Unfortunately, directly computing the opportunity cost is very

messy: the amount of vectorization we give up by identifying a set

of vertices is not a property local to the vertices, but rather requires

us to look globally at all possible vertices in those epochs, to see

which vectorization opportunities are no longer available after the

identi�cation. Instead, we use an estimated schedule height as a

proxy, with the justi�cation being that giving up a lot of vectoriza-

tion generally results in taller, less e�cient �nal schedules.

The schedule height computation also proceeds epoch-by-epoch.

For each epoch, we estimate the minimum number of vector instruc-

tions after packing by taking the maximum number of each type of

operation across all the subcircuits associated to the vertices in that

epoch. For example, the estimated height of an epoch containing

one vertex with 3 adds and 2 multiplies and another vertex with 2

adds and 4 multiplies would be 3 adds and 4 multiplies.

Overall Cost. The analysis presented above estimates the number

of each type of instruction in the generated vector program. The

�nal cost used a linear combination of all of these, with weights

determined empirically by how expensive each instruction type

is relative to the rest. In our implementation, we scale rotates and

multiplies by 1, and addition and subtraction by 0.1.

4.4 Instruction Alignment

We align the instructions corresponding to the subcircuits in each

epoch to produce a �nal vector schedule. It may seem like the so-

lution to this is just sequence alignment, but aligning circuits is

actually more complicated. At each step, the number of available

children to align roughly doubles, meaning that the total number

of subproblems to solve is exponential in the depth instead of lin-

ear. This causes the dynamic programming strategy of sequence

alignment to quickly blow up.

Instead of wrangling so many subproblems, we can formulate

this as an ILP. We create a variable for each scalar instruction

representing its schedule slot, or the time at which it executes. We

add constraints to require that each instruction be scheduled after

all of its dependences, and also that two instructions with di�erent

operations never be scheduled at the same time. Finally, to speed

up the search for a solution, we place a bound on the total length of

the schedule which is iteratively tightened until the solver returns

“unsatis�able”, meaning no shorter schedule could be found.

4.5 Data Layout

The circuit obtained after vectorization necessarily operates on

inputs that have been “packed” into vectors. Choosing a good layout

within these vectors is crucial, since a poor choice could incur

many additional rotations to line operands up with where they are

used. Coyote can automatically select a good layout as part of the

vectorization process. An input that is only used once is placed on

the lane within its vector corresponding to the unique lane where

it is used, and any two inputs that are placed on the same lane by

this rule are packed into separate input vectors to avoid collisions.

For inputs that are used multiple times (or inputs that are re-

quired to be packed into the same vector, e.g. elements of the same

matrix), Coyote places a no-op “load” gate in the scalar circuit (so

that the input is only used once, by the load gate). Two load gates

are placed in the same epoch in the circuit if and only if their corre-

sponding inputs are required to be packed together (thus ensuring

that they are given di�erent lanes). The layout for these inputs is

then determined by the lanes chosen for their corresponding load

gates. This determines the data layout, as each input is placed on

the same lane as its corresponding load gate (Section 3.2).

5 IMPLEMENTATION

This section discusses how programmers write Coyote programs,

and how the code is generated.

5.1 An eDSL and Compiler for FHE Programs

Coyote consists of an embedded DSL (eDSL) in Python that can be

used to write FHE programs, shown in Figure 5. The DSL allows for

arbitrary arithmetic computation over encrypted variables, and sup-

ports conditionals and loops over plaintext values. All conditionals

and loops are fully evaluated and unrolled, and all function calls

are fully inlined before generating the arithmetic circuit. The gen-

erated circuit is then passed to Coyote’s back end, which vectorizes

the computation as described in the previous sections, yielding a
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sequence of primitive vector operations that can be further lowered

into C++ code targeting Microsoft SEAL’s backend for BFV [19].

Coyote currently supports datatypes for encrypted inputs: scalar(),

vector(size), and matrix(rows, cols). Inputs annotated with scalar()

are free to be placed anywhere in the vector schedule; by contrast,

matrix and vector inputs are always grouped together into vectors.

The arithmetic circuits Coyote takes are directed acyclic graphs

(DAGs) that fail to be trees exactly when values are used as inputs

to multiple computations (e.g. the value 0 in 01 + 02). Any such

DAG can be turned into a tree by replicating inputs (Section 3.2) in

a “reverse-CSE” process (for example, 01 + 02 → 011 + 022 , where

the value of 0 is supplied to both 01 and 02). This results in circuits

with better rotation characteristics at the cost of extra computation.

By default, Coyote automatically replicates all scalar inputs, and

leaves all vector and matrix inputs unreplicated, but this behavior

can be overridden by the programmer (note that replicating a vector

or matrix input results in multiple copies of each variable all being

grouped into the same vector).

Automatically choosing a data layout. While specifying a set of

inputs as a vector(n) or matrix(m, n), Coyote restricts the space of

available schedules to the ones that group these inputs together.

However, it is still free to choose a particular layout within the

vector (i.e., 0[0] and 0[1] need not be placed in adjacent lanes8).

In practice, this allows Coyote to choose a layout that minimizes

the rotations required to align inputs with where they are used. We

evaluate the e�ectiveness of this choice in Section 6.7.

5.2 Code Generation

The algorithm in Section 4 produces a vector schedule (i.e. a lane

and schedule slot for each scalar, where the schedule slot determines

the order in which instructions get executed). Coyote compiles this

schedule to a simple vector IR by scheduling vector instructions

according to a topological sort, inserting rotations as needed. The

vector ISA supports vector addition, subtraction, multiplication,

and rotation, as well as a constant load instruction and a blend

instruction. The semantics of the blend instruction are a bit subtle:

it mixes lanes from multiple vector registers into the same register

while keeping all data on its original lane. For example:

1;4=3 (G1G2G3G4@1010, ~1~2~3~4@0101) → [G1~2G3~4]

In the backend, the blend is implemented as a series of plaintext

bitmasks followed by ciphertext adds.

6 EVALUATION

In this evaluation, we aim to answer the following questions:

(1) How e�ective is Coyote’s vectorization? To answer this,

we count the number of instructions generated in the vector

code compared to the scalar code. (Section 6.2)

(2) How much speedup does compiling with Coyote get

us? To address this, we compile several realistic benchmarks

and measure the speedup of the vectorized code over scalar

execution. (Section 6.3)

8Note that a noncanonical input layout potentially means that two kernels compiled
by Coyote may not be composable. We overcome this by allowing the programmer to
manually provide their own layout (Section 3.2).

(3) How well does Coyote scale up to larger kernel sizes?

To measure this, we compile a much larger circuit by vector-

izing and composing its components. (Section 6.4)

(4) How well do Coyote’s schedules compare to hand op-

timized code?We compare the run times of various hand-

optimized benchmarks to the run time of the vector code

that Coyote generates for them. (Section 6.6)

(5) To what extent does the data layout chosen by the

programmer a�ect Coyote’s ability to vectorize? We

conduct a case study exploring various data layout schemes

for a 3 × 3 matrix multiply, and measure the vectorization

speedup for each layout. (Section 6.7)

(6) How e�ective is the layout/schedule co-optimization

strategy? We track the progress of the schedule-search pro-

cedure over time for various levels of data layout optimiza-

tion. (Section 6.8)

(7) How much optimality do we sacri�ce by setting syn-

thesis timeouts? We turn o� the synthesis timeouts to

guarantee optimal schedule alignments and compare the

results. (Section 6.9)

6.1 Computational Kernels

To assess Coyote’s ability to vectorize general applications, we use

it to compile a suite of benchmarks and measure the speedup from

vectorization. While there is not currently a standard benchmark

suite on which to evaluate FHE-based compilers, we choose a set of

benchmarks similar9 to those used by Porcupine [5], representing

a spectrum of both regular and irregular computations, as well as

ones that are both sparse and dense in terms of data reuse.

The benchmarks are as follows:

1. Multiplying two matrices. We do this with 2 × 2 matrices

(regular, little data reuse) and 3 × 3 matrices (regular, some

substantial data reuse).

2. Vector dot product, with vector sizes of 3, 6, and 10 (all of

these are regular with no data reuse).

3. 1D convolution. We do this with a vector of size 4 and a

kernel of size 2, and with a vector of size 5 and a kernel of

size 3. Both of these are regular and have little data reuse.

4. Point cloud distances (Given a set of points, compute the

square of every pairwise Euclidean distance). We do this

for 3, 4, and 5 points. These are all regular but have some

substantial data reuse, especially in the 5-point case.

5. Sorting a list of size 3. This benchmark implements the sort

as a “decision tree”, taking as input three ciphertexts rep-

resenting pairwise comparison results and six ciphertext

“labels” representing possible arrangements of the sorted list.

In particular, each of the three comparison results gets used

in multiple branches of the tree. “grouped” here means the

data layout groups the three comparisons into one vector

and the six labels into another. This is irregular, and the

grouped versions have data reuse.

9While we do not have access to Porcupine’s actual benchmarks for a direct comparison,
their polynomial regression corresponds to our matrix multiply, their L2 distance
correpsonds to our point cloud distance, and most of their image processing kernels are
speci�c convolutions (i.e. plaintext kernels), while we evaluate on generic convolutions.
The input sizes of our benchmarks are comparable to those of Porcupine’s.
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Table 1: Compilation time in seconds, as well as instruction counts in the scalar (SAdd, SSub, SMul) and vector (VAdd, VSub,

VMul, Rot, Blend) code, and the ideal speedup (work/span). Note that ideal speedup considers rotates and blends to be free.

Benchmark Time (s) SAdd + SSub SMul VAdd + VSub VMul Rot Blend Ideal Speedup

conv.4.2.un 97 3 6 2 1 4 4 5.73

conv.4.2.partially 80 3 6 2 1 2 1 5.73

conv.4.2.fully 71 3 6 2 1 1 2 5.73

conv.5.3.un 206 6 9 3 1 7 5 8.0

conv.5.3.partially 211 6 9 4 1 4 3 8.0

conv.5.3.fully 208 6 9 4 1 2 3 8.0

dist.3.un 228 18 9 1 1 4 6 9.82

dist.3.partially 233 18 9 1 1 4 6 9.82

dist.3.fully 226 18 9 2 2 2 7 9.82

dist.4.un 425 32 16 2 2 6 8 17.45

dist.4.partially 432 32 16 2 2 6 8 17.45

dist.4.fully 463 32 16 2 2 4 8 17.45

dist.5.un 619 50 25 2 2 13 10 27.27

dist.5.partially 629 50 25 2 2 13 10 27.27

dist.5.fully 609 50 25 2 2 9 10 27.27

dot.3.un 10 2 3 3 1 2 0 2.67

dot.3.partially 10 2 3 3 1 2 0 2.67

dot.3.fully 10 2 3 3 1 2 0 2.67

dot.6.un 159 5 6 4 1 3 2 5.0

dot.6.partially 154 5 6 4 1 3 2 5.0

dot.6.fully 156 5 6 4 1 3 2 5.0

dot.10.un 254 9 10 6 1 5 4 7.79

dot.10.partially 257 9 10 6 1 5 4 7.79

dot.10.fully 251 9 10 6 1 5 4 7.79

mm.2.un 176 4 8 2 1 3 2 7.64

mm.2.partially 171 4 8 2 1 2 1 7.64

mm.2.fully 170 4 8 2 1 1 2 7.64

mm.3.un 573 18 27 5 2 20 10 24.0

mm.3.partially 610 18 27 4 1 18 6 24.0

mm.3.fully 607 18 27 4 2 9 3 24.0

sort[3].grouped.un 238 10 10 8 4 8 6 3.24

sort[3].grouped.partially 233 10 10 8 4 4 3 3.24

sort[3].grouped.fully 231 10 10 8 4 4 3 3.24

sort[3] 139 10 10 11 5 1 1 3.24

max[5].grouped.un 880 30 30 15 11 30 18 7.33

max[5].grouped.partially 905 30 30 12 9 27 15 7.33

max[5].grouped.fully 902 30 30 19 9 24 23 7.33

max[5] 537 30 30 17 6 15 13 7.33

mm.16.blocked 7139 3840 4096 414 128 4446 872 3200

the time to compile the 4 × 4 block as well as the reduction circuit).

After vectorizing, the blocked 16 × 16 matrix multiply takes 3433

seconds, compared to 4541 seconds before vectorizing, for a total

32% speedup. This shows that by composing smaller kernels, Coyote

is able to scale up to vectorizing much larger circuits and still see

relatively signi�cant speedups over unvectorized code. Note that

this understates Coyote’s potential speedup as it does not currently

attempt to vectorize separate, identical kernels together (which is a

regular process so could use standard vectorization techniques).

6.5 Randomly Generated Irregular Kernels

To further investigate Coyote’s ability to vectorize, even in the

absence of a regular structure on the computation, we randomly
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7.1 Compilation and Vectorization for FHE

Prior work has been done on building vectorizing compilers for

FHE applications [5, 8]. CHET [8] is a vectorizing compiler for ho-

momorphic tensor programs that automatically selects encryption

parameters, and chooses optimal data layout strategies. CHET is

speci�cally targeted towards optimizing the dense tensor computa-

tions in neural network inference, and does not apply to a broader

class of programs, especially those with irregular computations

that are not so easily vectorized. Coyote makes no assumptions

about the domain of the program, and can vectorize even highly

irregular computations.

Porcupine [5] is a vectorizing compiler that uses a sketch-based

synthesis approach to generate vectorized kernels given a reference

implementation. While Porcupine is more general than CHET, it

relies on programmers providing partial implementations in the

form of sketches, making it less automatic than Coyote. Further-

more, Porcupine relies on the sketches to constrain the search space

of rotations, while Coyote is speci�cally designed to reduce the

number of rotations.

Gazelle [13] is a framework for secure neural network inference

in FHE. While it is very optimized for a particular use case, Gazelle

is not general: it consists of a library of highly e�cient vectorized

kernels that are useful in neural network applications. By contrast,

Coyote can take arbitrary kernels and generate e�cient vectorized

code on the �y.

Lee, et. al [15] describe a general method for automatically rewrit-

ing arithmetic and boolean FHE circuits according to a cost model

by learning semantically sound rewrite rules. This approach ex-

plores the space of scalar rewrites but does not directly deal with

vectorization, making it orthogonal to ours: a technique like this

could �rst be applied to an arbitrary computation to transform it

into one more amenable to vectorization before applying Coyote.

One class of related work consists of compilers [1, 3, 6, 7] that au-

tomatically lift programs written in a high level DSL into optimized

FHE circuits that perform the same computation. Unlike Coyote,

these circuit optimizations do not include automatic vectorization.

Although ACLHEMY [6] and EVA [7] do support ciphertext packing,

they require the programmer to perform the vectorization.

7.2 General Purpose Vectorization in non-FHE
Settings

Superword-Level Parallelism is a technique for automatically vec-

torizing programs [14]. SLP iterates over a sequence of scalar in-

structions and computes “vector packs,” or sets of isomorphic in-

structions that can be packed together into vectors. Because SLP

does not rely on the presence of data-parallel structures like loops,

it works well even for irregular programs. When computing vector

packs, SLP does not account for how expensive rotations are in

FHE, leading to schedules with very high data shu�ing costs.

VeGen [4] is a recent variant of SLP, introducing a notion of lane

level parallelism that encodes which lanes are performing which

computations, allowing it to reason about rotation costs when

building vector packs. For example, VeGen can reason about the

rotation costs to pack together operands for an instruction into a

temporary vector, and can use this to decide whether or not packing

those instructions is worth it. However, this reasoning only happens

locally, and VeGen does not incorporate information about how

instruction packing might a�ect later rotations.

goSLP [16] reasons about globally optimal packing, and �nds

lane placements that minimize data shu�ing costs. However, there

are assumptions baked into its cost model that make it fundamen-

tally unsuitable for the FHE setting. goSLP frames vectorization

overhead in terms of the number of pack and unpack operations

incurred. For example, permuting the slots of a single vector incurs

one unpack, whereas blending the contents of N vectors (without

any permutation) incurs N unpacks. This cost model implicitly

requires wide blends to be more expensive than arbitrary permuta-

tions, almost the opposite of FHE’s cost model. In FHE, blends are

almost free (instantiated as cheap plaintext multiplies and cipher-

text adds) whereas a “bad” permutation can require O(n) rotates to

realize. In other words, goSLP will often forego a highly pro�table

schedule with many blends and few rotates, and instead opt for a

more conservative one. Additionally, goSLP does lane placement

(permutation selection) after �nding vector packs, creating situa-

tions like the one described in Section 1 in which the ostensibly

pro�table packing does not admit a good data layout. By contrast,

Coyote’s cooperative scheduling strategy precludes this.

There is a class of work that deals speci�cally with optimizing

permutations in vectorized code [9, 17, 18]. Ren, et. al [18] present

an algebra for reasoning about the permutation workload in SIMD

programs. Eichenberger, et. al [9] develop a technique to e�ciently

realign memory accesses produced as a result of vectorizing a loop.

Finally, Swizzle Inventor [17] automatically synthesizes e�cient

data movement kernels for vectorized GPU code. The primary

obstacle Coyote faces in directly applying these approaches is that

they tackle the data movement problem after the kernel has been

vectorized. As we discussed earler, in the world of FHE, packing and

data movemnt are problems that must be reasoned about together.

There are two additional drawbacks: Eichenberger, et. al focus on

aligning memory accesses in regular, data-dense loops, but this is

not the setting in which Coyote operates. In the case of Swizzle

Inventor, the sketches it uses to guide synthesis rely on e�ciently

accessing arbitrary slots of a packed vector, which is not possible

in FHE without incurring signi�cant rotation overheads.

Diospyros [22] is an equality saturation–based vectorization

strategy that constructs an e-graph [21, 23] of programs that are

semantically equivalent to a given speci�cation, and then uses a cus-

tom cost model to extract an e�cient vector program, together with

necessary shu�es. The simplicity of the cost model it associates to

various shu�es makes it unsuitable to deal with the peculiarities

and in�exibility of FHE rotations.

8 CONCLUSION

This paper presented Coyote, the �rst vectorizing compiler for

arbitrary FHE programs that considers FHE’s unique cost model for

data movement when vectorizing. Coyote operates at a coarser level

than most vectorizers, allowing it to minimize the data movement

overhead of vectorizing by only packing together su�ciently similar

subexpressions. Coyote can also �nd optimal lane placement and

data layouts that encourage more e�cient rotation patterns. Coyote

can automatically vectorize a large class of useful kernels, showing

speedups of up to 3.5× over scalar code.
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A ARTIFACT APPENDIX

A.1 Abstract

The artifact contains everything necessary to replicate the results

of this paper, including:

• An implementation of the compiler described in the paper

• A backend test harness for pro�ling the vectorized code

Coyote generates

• Implementations of all the benchmarks used in the evalua-

tion

• Various scripts necessary to automate the process of compil-

ing, running, and collecting data from the benchmarks.

Note that there are two experiments omitted from the artifact,

as they require nontrivial manual e�ort to set up and run. These

are the mm.16.blocked benchmark described in Section 6.4, and

Figure 9

A.2 Artifact Check-List (Meta-Information)
• Compilation: Translates a python program into an arithmetic

circuit, vectorizes it, and generates C++ FHE code

• Transformations: Loop unrolling, function inlining, circuit vec-

torization

• Experiments: Compiling real-world benchmarks, compiling ran-

domly generated polynomial programs, experimenting with data

layouts

• How much disk space required (approximately)?: 200MB

• How much time is needed to complete experiments (approxi-

mately)?: 45 minutes - 1 hour for the small version, up to several

hours for running all the benchmarks

• Publicly available?: Yes

• Code licenses (if publicly available)?: MIT

• Archived: 10.5281/zenodo.7591603

A.3 Description

A.3.1 How to access. The Coyote compiler can be accessed at

https://github.com/raghav198/coyote

A.3.2 Hardware Dependencies. No specialized hardware is required

to use Coyote, beyond whatever may be necessary to e�ciently

run z3 and SEAL.

A.3.3 So�ware Dependencies.

• The coyote compiler is implemented in Python 3.10 and

uses the networkx and z3 modules for its analysis

• The test harness backend is written in C++ and uses version

3.7 of the Microsoft SEAL library for its FHE implementation

• The test harness uses cmake for its build system

A.4 Installation

The Docker�le provided with the artifact automatically builds and

installs all dependencies of Coyote. To build and run the Docker

image, run the following commands from the directory containing

the Docker�le:

$ docker build -t coyote .

$ docker run -it coyote bash

A.5 Experiment Work�ow

This section describes a work�ow to reproduce a subset of the

results in the paper. We’ve recorded the approximate time it takes to

complete each step inside the Docker image on a 2020 M1 MacBook

Air. Lets start by building all the small benchmarks (all replication

sorts for conv.4.2, mm.2, dot.3, dot.6, and dot.10, as well as the

ungrouped sort[3]).

$ python3 compile_benchmarks.py --preset small

We can also build the data layout case study from Section 4.5 of the

paper, although note that these circuits are considerably larger, so

compiling them will take some time:

$ python3 compile_benchmarks.py --preset layout

Lets also build some of the polynomial trees; in particular, we’ll

build two of the depth 5 trees in each of the three regimes.

$ python3 polynomial_benchmarks.py -d 5 -r \

"100-100" "100-50" "50-50" -i 2

We can see, for example, some of the Coyote vector IR:

$ cat sort_3/vec

and the corresponding generated vector C++ code:

$ cat bfv_backend/coyote_out/sort_3/vector.cpp

To build all the benchmarks from the paper (small, medium, and

large, as well as the layouts and the random polynomials), run the

following instead of following the above steps:

$ python3 coyote_compile.py benchmarks.py -c "*"

$ python3 polynomial_benchmarks.py -d 5 10 -r \

"100-100" "100-50" "50-50" -i 5

However, this is not recommended and will take several hours to

complete, as several of the circuits being compiled are quite large.

Now, we need to compile all the C++ code and collect data.

Although we used 50 runs and 50 iterations in the paper, lets only

use 10 of each to make this go faster:

$ python3 build_and_run_all.py \

--runs 10 --iters 10

You should see some CMake output followed by the encryption and

run times for both scalar and vector versions of each circuit. Note

that this script will not re-run benchmarks that already have corre-

sponding CSV �les in bfv_backend/csvs/. Once this is �nished

running, we can look at one of the generated CSV �les:

$ cat bfv_backend/csvs/sort/sort_3.csv

Now that we’ve collected all the data for these benchmarks, we can

generate the graphs:

$ python3 figures.py

This will generate three plots: vector_speedups.png, case_study.png,

and trees.png. To view these, either attach to the running Docker

container (e.g. using VS Code), or copy the �les to your host ma-

chine:

$ docker cp $(docker ps -q):/home/artifact/graphs/ .
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Compiling all the small benchmarks takes about 13 minutes,

generating and compiling the random polynomial benchmarks

takes about 5 minutes, compiling the data layout case study takes

about 15 minutes, and building and running all the benchmarks

takes about 15 minutes.

A.6 Evaluation and Expected Results

After running through the work�ow described above, you should

have generated three plots, each of which replicates part of the

experiments in this paper:

• vector_speedups.png corresponds to Figure 6

• trees.png corresponds to Figure 7

• case_study.png corresponds to Figure 8

Note that the generated graphs may not contain all the experiments

found in the paper (for example, not all the benchmarks in Figure 6

are built in the above work�ow, and neither are the depth 10 trees

in Figure 7, as these take a long time to compile). However, the

speedups should resemble those in the corresponding �gures.

A.7 Experiment Customization

A.7.1 Writing a Coyote program. Coyote is a DSL embedded in

Python, so Coyote programs are just Python functions. To tag a

function as a circuit for Coyote to compile, �rst get an instance of

the Coyote compiler:

from coyote import *

coyote = coyote_compiler()

Next, use the compiler to annotate your function with input types:

@coyote.define_circuit(A=matrix(3, 3), B=matrix(3, 3))

def matrix_multiply(A, B):

...

For a full discussion of the available types and their compile-time se-

mantics, see Section 5.1 Finally, use the build script coyote_compile.py

to invoke the Coyote compiler on the Python �le in which this code

is saved:

python3 coyote_compile.py circuits.py -c \

matrix_multiply

A.7.2 Invoking the Compiler. The Coyote compiler can be invoked

from the command line via coyote_compile.py. The example in-

vocation above does the following:

(1) It parses circuits.py and loads a list of all circuits de�ned

in that �le

(2) It uses Coyote to compile the speci�ed matrix_multiply

circuit

(3) It creates a directory called matrix_multiply and saves

intermediate scalar and vector code into that directory

(4) It lowers the intermediate code into C++ and saves it in

bfv_backend

The script expects the name of a Python �le that de�nes one or

more circuits (as described above), and then takes a number of

command-line parameters:

• -l, 3list: Lists all the circuits de�ned in the �le and exit,

does not actually compile anything

• -c, 3circuits: Load the speci�ed circuits from the �le and

compile them into C++

• -o, 3output-dir: Specify the directory into which to place

the generated intermediate code (defaults to the directory

from which coyote_compile.py is invoked)

• 3backend-dir: Specify the directory containing the test har-

ness backend (defaults to bfv_backend/)

• 3no-cpp: Stops after generated the intermediate code and

doesn’t generate C++

• 3just-cpp: Uses pregenerated intermediate code to generate

C++ instead of recompiling the circuit; this fails if it can’t �nd

the intermediate code under [output-dir]/[circuit-name]/

A.7.3 Running the Test Harness. The backend test harness comes

with a CMake �le that automatically builds binaries for everything

under coyote_out/. The generated binaries perform a number of

runs, where each run consists of executing the scalar and vectorized

circuits on random encrypted inputs for a number of iterations and

then outputting the total time each version (scalar and vector)

took to encrypt, as well as run. All these outputs are then saved

into a csv �le with the same name as the circuit (e.g. running the

binary generated from the example above would create a �le called

matrix_multiply.csv).

The number of runs and iterations default to 50 each (as these

are the values used in this paper), but are con�gurable via cmake.

An example invocation that uses 10 runs with 10 iterations each is

as follows:

$ mkdir bfv_backend/build

$ cd bfv_backend/build

$ cmake .. -DRUNS=10 -DITERATIONS=10

$ make -j16
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