L)
Sz Coyote: A Compiler for Vectorizing Encrypted Arithmetic Circuits

Raghav Malik Kabir Sheth Milind Kulkarni
School of Electrical and Computer School of Electrical and Computer School of Electrical and Computer
Engineering Engineering Engineering

Purdue University
West Lafayette, IN, USA
kdsheth@purdue.edu

Purdue University
West Lafayette, IN, USA
milind@purdue.edu

Purdue University
West Lafayette, IN, USA
malik22@purdue.edu

ABSTRACT

Fully Homomorphic Encryption (FHE) is a scheme that allows a
computational circuit to operate on encrypted data and produce a
result that, when decrypted, yields the result of the unencrypted
computation. While FHE enables privacy-preserving computation,
it is extremely slow. However, the mathematical formulation of
FHE supports a SIMD-like execution style, so recent work has
turned to vectorization to recover some of the missing performance.
Unfortunately, these approaches do not work well for arbitrary
computations: they do not account for the high cost of rotating vec-
tor operands to allow data to be used in multiple operations. Hence,
the cost of rotation can outweigh the benefits of vectorization.

This paper presents Coyote, a new approach to vectorizing en-
crypted circuits that specifically aims to optimize the use of rota-
tions. It tackles the scheduling and data layout problems simultane-
ously, operating at the level of subcircuits that can be vectorized
without incurring excessive data movement overhead. By jointly
searching for good vectorization and lane placement, Coyote finds
schedules that avoid sacrificing one for the other. This paper shows
that Coyote is effective at vectorizing computational kernels while
minimizing rotations, thus finding efficient vector schedules and
smart rotation schemes to achieve substantial speedups.

CCS CONCEPTS

« Security and privacy — Cryptography; Software and appli-
cation security; « Software and its engineering — Compilers;
Domain specific languages.

KEYWORDS

Homomorphic Encryption, Arithmetic Circuits, Vectorization

ACM Reference Format:

Raghav Malik, Kabir Sheth, and Milind Kulkarni. 2023. Coyote: A Compiler
for Vectorizing Encrypted Arithmetic Circuits. In Proceedings of the 28th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3 (ASPLOS °23), March 25-29,
2023, Vancouver, BC, Canada. ACM, New York, NY, USA, 16 pages. https:
//doi.org/10.1145/3582016.3582057

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

ASPLOS °23, March 25-29, 2023, Vancouver, BC, Canada

© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9918-0/23/03.
https://doi.org/10.1145/3582016.3582057

1 INTRODUCTION

Fully Homomorphic Encryption (FHE) refers to any encryption
scheme that allows for homomorphically adding and multiplying
ciphertexts, so that the sum of the encryptions of two integers is an
encryption of their sum, and similarly the product of the encryp-
tions of two integers is an encryption of their product [11]. While
FHE is a powerful technique for carrying out privacy-preserving
computations on encrypted data, it has a major downside: it is slow.
Homomorphic computations over ciphertexts are often orders of
magnitude slower than a corresponding plaintext computation.
Many FHE cryptosystems support packing large numbers of ci-
phertexts into ciphertext vectors, essentially compensating for the
inherent slowness of FHE by enabling SIMD-style computation
[2, 20]. To properly take advantage of ciphertext packing, we need
a compiler that can vectorize arbitrary FHE programs.

Vectorizing compilers for FHE, such as CHET [8] and Porcu-
pine [5], exist. However, neither of these approaches meets the
need for a vectorizing compiler for arbitrary FHE programs. While
CHET is optimized for highly regular computations over packed
tensors (such as neural networks), it does not generalize to more
irregular programs. Porcupine, which uses a synthesis-based ap-
proach to generate vectorized code for arbitrary kernels, does work
for a more general class of programs. However, it is not automated,
as it requires a programmer-provided sketch as a starting point.

Other approaches to vectorizing arbitrary, non-loop-based code,
such as Superword-Level Parallelism [14], also fail here. SLP ag-
gressively packs isomorphic instructions into vectors, because it
assumes that shuffling vector lanes around or indexing into a vector
is relatively cheap. In FHE, however, the vectors are not physical
vector registers with slots for data: the only way to move data be-
tween vector lanes in FHE is by performing a cyclic rotation of the
entire vector. Realizing the shuffles incurred by SLP with a series
of masks and rotates is expensive, and can quickly outweigh any
benefits from vectorizing.

More recent takes on SLP, such as VeGen [4] and goSLP [16],
recognize the need to take the cost of data movement into account.
VeGen can decide to not pack certain instructions together because
the data movement cost incurred is not worth it. However, VeGen
does its reasoning locally; that is, it cannot reason about the effect
packing instructions together may have on shuffling costs much
later in the program. This tradeoff, fine in circumstances when shuf-
fling is relatively cheap, is inappropriate for FHE, where shuffling is
very expensive. While goSLP does reason globally, the cost model
it uses to avoid over-packing is incompatible with the semantics of
FHE vectorization. We discuss this further in Section 7.

ASPLOS °23, March 25-29, 2023, Vancouver, BC, Canada
+
* / \ *
VRN VRN
+ + + +
A A A A
a b c d e f g h

Figure 1: An example of an arithmetic circuit

a+b

%0 [$0, %1, %3, %4] = [a, c, e, g] +
$1 =c +d b, d, £, hl
$2 = %0 * 31 [$2, _, %5, _1 = [%0, _, %3, _] *
%3 = e + f 181, _, %4, _]
%4 = g + h %6, _, _, _1 =10%2, _, _, _1+
%5 = 33 * 34 (85, _,» _, _I

$6 = 32 + 35

(b) Aggressive vectorization, incurs two

(a) No vectorization rotates
(%1, %3] = [c, el + [d, f]
[50, %4] = [a, g] + [b, h]
[%32, %5] = [%0, %3] * [%1, %4]
(26, 1 = [%2, 1 + [%5, 1

(c) Optimal schedule, incurs one rotate

Figure 2: Possible schedules for Figure 1

1.1 The Vectorization/Rotation Tradeoff

Without carefully accounting for, and controlling, rotation, tradi-
tional vectorization strategies can lead to slowdowns, rather than
speedup, in an FHE setting. It is often beneficial to give up vector-
ization opportunities to avoid incurring expensive rotations.
Consider the arithmetic circuit in Figure 1 implementing ((a +
b) (c +d)) + ((e + f) * (g + h)).! A naive vectorization would
pack together the four additions at the first level, and the two
multiplies at the second level (as in the schedule in Figure 2b). The
resulting schedule has a vector add, followed by a vector multiply,
followed by an add. Rotations are needed between each operation
to align the outputs of each operation with the next. Using an
approximate model? of the relative latencies of each instruction
in which multiplies and rotates have a latency of 1 and addition
has a latency of 0.1, the total cost of this schedule is 3.2. However,
by doing no vectorization and executing the circuit entirely with
scalar operations (Figure 2a), we have five adds and two multiplies,
with an overall cost of 2.5. In this case, vectorization actually makes
the performance worse! Figure 2c shows how we can do better: We
pack the a+ b and the e + f adds separately from the c+d and g+ h
adds, so that neither of them require a rotation to align with the
multiply above them. By saving one rotation at the cost of an extra
vector addition, we get a schedule with an overall cost of only 2.3.

!We adopt the FHE-standard representation of arithmetic circuits as the intermediate
representation for our programs [1, 5, 11, 15].

2 Algorithms in HElib [12] assigns a “high latency” to both multiplies and rotates and
a “low latency” to adds. For both simplicity and concreteness, we assume a 10:1 ratio
between “high latency” and “low latency.”

119

Raghav Malik, Kabir Sheth, and Milind Kulkarni

We need a new arbitrary vectorization strategy that is FHE-
aware; i.e., it packs instructions without relying on regularity in
the original computation, and can still account for the high cost of
data movement throughout the program.

1.2 Co-optimization of Vector Packing and Data
Layout

Our key insight is that because rotations are so expensive, data lay-
out and vector packing are fundamentally intertwined. Rather than
treat these as separate problems, we must optimize them together
when finding a schedule. The main obstacle to optimality when us-
ing the classical approach is simple: vectorizing across instructions
by aggressively packing them into vectors can require substantial
and complex data movement to align operands for downstream
vector instructions (e.g., SwizzleInventor [17], which resorts to
sketch-based synthesis to generate the appropriate permutations).
If permuting operands between lanes can only be done with expen-
sive rotations, an aggressively packed schedule can incur so much
overhead that no amount of vectorization makes it worth it.

Instead, we develop an approach that works at the level of sub-
circuits, splitting the program up into smaller pieces within which
all the computations are locked into a single lane to avoid doing
any rotations at all. While vectorizing across subcircuits gives up
some packing potential (because operations within a subcircuit
cannot be vectorized together), the savings on rotation costs can
make up the difference: the subcircuits prevent over-vectorization
that incurs too many rotations. The optimal schedule of Figure 2c
can be viewed as grouping (a + b) with its downstream multiply in
one subciruit, and (g + h) with its downstream multiply in another
subcircuit, and then vectorizing those two subcircuits together.

This approach yields a natural question: how do we decide which
computations to merge into a subcircuit? This seems circular: sub-
circuit merging is intended to yield fewer rotations, which are
determined by data layout, and data layout is driven by which op-
erations are vectorized together, which in turn is constrained by
subcircuit identification.

1.3 Contributions

This paper presents Coyote, the first vectorizing, FHE-aware com-
piler for programs that do not have regular structure. Coyote breaks
the circular dependence between vector packing and data layout
by using an iterative process that alternates between making pack-
ing decisions and determining data layout. Coyote uses simulated
annealing to find optimal data layouts, and uses these to guide a
best-first search towards optimal vector packs. Crucially, Coyote
uses layouts from previous iterations of scheduling to identify sub-
circuits that would be profitable to merge, and then re-schedules
based on the new subcircuits.

Rather than incurring many expensive data shuffling opera-
tions by aggressively vectorizing the whole program, Coyote uses
a subcircuit-based approach to scheduling and employs an FHE-
specific cost model co-optimize the data layout and vector packing,
producing a schedule that enjoys the benefits of vectorization while
still being able to efficiently realize the necessary rotations. For ex-
ample, Coyote’s vectorization algorithm is able to correctly identify
the schedule in Figure 2c as being optimal.

Coyote: A Compiler for Vectorizing Encrypted Arithmetic Circuits

The specific contributions we make are:

(1) An algorithm for simultaneously searching the space of data
layouts and the space of vector packings to find an efficient
combination.

(2) A lightweight Python embedded DSL called Coyote, with a
compiler that uses this algorithm to generate efficient FHE
code for arbitrary programs

We tested Coyote by using it to compile six computational ker-
nels (matrix multiply, point cloud distances, 1D convolution, dot
product, sorting a list, and finding the maximum element of a list),
and compared the performance of the vectorized code to to the
original unvectorized code. We also randomly generated several
irregular polynomial-evaluation programs to measure the effect
of things like operation density on Coyote’s ability to vectorize.
We find that Coyote very effectively vectorizes programs, yielding
efficient vector schedules with optimized rotations.

2 BACKGROUND

2.1 Fully Homomorphic Encryption

Fully Homomorphic Encryption (FHE) refers to any encryption
scheme with the property that encrypting inputs, computing over
them, then decrypting the result is equivalent to computing over
the un-encrypted inputs. [11] FHE is hence useful for computing
on encrypted data, improving privacy in situations such as compu-
tation offloading. Since addition and multiplication are complete,
FHE can be used to realize arbitrary functions on encrypted data.

The Brakerski/Fan-Vercauteren (BFV) [10] cryptosystem, which
is the particular FHE scheme that we use in this paper, is based
on the Ring Learning With Errors (RLWE) problem. Ciphertexts
in BFV are represented as high degree polynomials with an “error
term”, which is a small amount of noise added to the polynomial to
make the scheme “CPA-secure” (in other words, the same plaintext
will not encrypt to the same ciphertext each time).

2.1.1 Limitations. While FHE is an attractive approach to perform-
ing privacy-preserving computation, it presents a few challenges.
First, the polynomial encoding of ciphertexts incurs a huge over-
head for any secure computation. To achieve a reasonable degree
of security, the polynomials need to be quite large, so a single prim-
itive ciphertext operation like an add or a multiply gets translated
into very expensive polynomial math. This means that all but the
smallest FHE applications are often too slow to be practically run.
A second challenge for FHE computation is related to the noise
added to ciphertexts. When setting up an FHE computation, the
encryption parameters are used to determine a safe noise margin for
ciphertexts, which describes the level of noise above which cipher-
texts can no longer be decrypted. Freshly encrypted ciphertexts are
well below this margin, but multiplying two ciphertexts increases
the amount of noise present in the result. BFV does support boot-
strapping, which is a technique for homomorphically computing
a fresh encryption of a ciphertext to “reset” its noise level; how-
ever, bootstrapping is an expensive procedure. When designing
an FHE computation, therefore, it becomes important to limit its
multiplicative depth to avoid bootstrapping as much as possible.

120

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Finally, because of the nature of secure computation, FHE does
not support branching over ciphertexts—conditionals cannot de-
pend on the values of encrypted data, otherwise the path taken
through the computation leaks information about the data. In par-
ticular, this precludes FHE computations from having any kind of
control flow structures, including conditionals and loops, that are
control-dependent on ciphertexts.

2.1.2 Arithmetic Circuits. Since FHE does not support loops or
conditionals, computations have to be represented as combinatorial
arithmetic circuits. In particular, these arithmetic circuits we work
with closely resemble expression forests, where some of the trees
may in fact be DAGs (directed acyclic graphs) if any inputs are used
in multiple places. For the rest of this paper, we assume that the
programs we are compiling are already expressed in this way, and
talk about how to map the computations encoded as arithmetic
circuits to vectors. In practice, this is not too restrictive, since any
loop with known (plaintext) bounds can be fully unrolled, and any
conditional branching on a ciphertext can be converted into a “mux”
by evaluating both branches and only selecting the correct output.
The frontend DSL of Coyote does exactly that by staging python
programs, producing arithmetic circuits it can compile.

2.2 Vectorization

Single instruction, multiple data, or SIMD, is a way of amortizing
the run-time complexity of a program by vectorizing it, or lifting
its scalar computation to one that operates over packed vectors. To
vectorize, we need to first find sets of isomorphic scalar instructions
and then decide how to pack the scalar operands of those instruc-
tions into vectors before replacing all of them with a single vector
instruction. In traditional SIMD, this process relies heavily on the
presence of data-parallel loops in the original program. Unrolling
the loop by a few iterations (usually four or eight) produces a set
of isomorphic instructions, one for each unrolled iteration. These
are then packed into vectors, with one iteration per vector slot,
and lifted into vector instructions. Thus, a loop that performs a
scalar computation N times can be lifted into one that performs a
semantically equivalent vector computation N /4 times.

Superword-Level Parallelism (SLP) is a more general technique
that does not rely on the presence of loop-based control structures
in the program to find vectorizable instructions. SLP analyzes a
whole sequence of scalar instructions at once, looking for sets of
available instructions (instructions whose operands have already
been scheduled) that are all isomorphic to each other. At each step,
it picks such a set and packs its instructions together into a vector,
scheduling them together.

Vectorization in FHE. The way BFV encodes ciphertexts allows ab-
stractly representing large vectors of values as being encrypted into
a single ciphertext. In particular, homomorphic operations on such
ciphertexts correspond to element-wise operations on the underly-
ing packed vectors [2]. These polynomial rings also have specific
automorphisms that cyclically permute the “slots” into which ele-
ments are packed (hereafter called vector lanes). In other words,
ciphertext packing allows us to turn FHE into an abstract SIMD
architecture with instructions for (ciphertext) vector addition and

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

multiplication, as well as vector rotation. This style of vectorization
has a few peculiarities that distinguish it from normal vectorization:

(1) The vectors are much larger than traditional hardware vector
registers (e.g. several thousand slots wide, compared to the
usual 4 or 8 slots). Utilizing this much space poses unique
challenges.

(2) Unlike with physical vector registers, there is no indexing
primitive that can directly access a value in a particular slot
of a ciphertext vector.

(3) In general, the only way to move data between vector slots
is by rotating the entire vector. This makes it much more
important to assign vector lanes to packed instructions opti-
mally, since realizing arbitrary permutations by composing
several rotations quickly gets computationally expensive.

The challenges posed by points (2) and (3) in particular preclude
us from simply using SLP-style vectorization, since its local rea-
soning means it does not sufficiently consider the high cost of data
movement between lanes when deciding what instructions to pack
together. We discuss the specific drawbacks of applying the SLP
approach to FHE in Section 7.

3 COYOTE OVERVIEW

Coyote provides an embedded DSL (eDSL) that allows programmers
to use a high level language to express computations in FHE. This
computation is translated into an arithmetic circuit representing
the computation, which is then compiled into vectorized FHE code.
The process of compiling a circuit into vectorized code is as follows:

3.1 Compilation Steps

This section gives an overview of how Coyote vectorizes an arbi-
trary arithmetic circuit using the process laid out in Figure 3. We
will use the circuit in Figure 1 as a running example. Compilation
proceeds as follows:

(1) Coyote quotients an input circuit (collapses subcircuits into

single vertices) and assigns lanes to resulting vertices to pro-
duce a pre-schedule that can be realized into a more efficient
vector program. The result is a graph whose vertices corre-
spond to connected subgraphs of the original circuit, such
that no two vertices at the same height have the same lane
(and hence are eligible to be vectorized together). Coyote
collapses a subcircuit when it determines that the overhead
of internally vectorizing it is not worth the gain from vector-
ization, so this step essentially forces certain operations to
happen in scalar on a single lane. Section 4.2 describes how
Coyote makes this decision.
In the example in Figure 4a, the circled pairs of vertices are
collapsed, yielding the quotient circuit in Figure 4b. The lane
assignment for this pre-schedule puts each un-quotiented ad-
dition on the same lane as its quotiented parent, and chooses
one of these lanes on which to place the root of the tree.

(2) The (collapsed) vertices at each height are aligned to pack
together isomorphic nodes, producing a vector schedule from
the pre-schedule. In the example, the two adds at height 1
get trivially aligned, and the two “supernodes” at height 2
get aligned by packing together the two adds and the two
multiplies. No alignment is needed for the single vertex at

121

Raghav Malik, Kabir Sheth, and Milind Kulkarni

height 3. The details of the alignment procedure are given
in Section 4.4. Figure 4c shows the result of this alignment.
Coyote compiles the schedule into a vector IR. The crux of
this compilation step is figuring out when to blend and rotate.
When a vector operand requires values from several differ-
ent instructions, Coyote emits code to “blend” the results
together into a single vector. When the lane an operand is
used in is different from the lane it was produced in, Coyote
emits a rotation instruction to move the operand into the cor-
rect lane. Notice that each arc in the pre-schedule connecting
vertices of different lanes corresponds to a rotation in the
generated vector IR. Figure 4d shows the vector code Coyote
generates for our running example. Notice that the gener-
ated code contains two blends and one rotate. The blends
are necessary3 because on line 3 of the schedule, %0 and %3
are used in the same vector despite being produced in two
separate vectors. Since none of the operands need to shift
lanes, the vector instruction t0 = blend(v0@10, vi@01) takes
[%0, %4] and [%1, %3] and blends them together to produce
[%0, %3], which is exactly the operand used on line 3. Coyote
emits a rotation because %5 gets used on a different lane than
it is produced. The vector instruction s0 = v2 > 1 takes [%2,
%5] in v2 and produces [%5, %2] in s0. Section 5.2 describes
the specifics of code generation.

3.2

A programmer can use Coyote’s DSL (shown in Figure 5) to
specify a computation and generate an arithmetic circuit. The DSL
exposes a number of ways to annotate inputs to the computa-
tion:replication, packing, and fixing alayout. Annotating an input
with “replicate” indicates that a copy of the input should be passed
to the circuit for each place it is used (ensuring that each copy gets
used exactly once). By default, inputs are unreplicated, meaning
that an input that gets used in multiple places will have a fan-out
corresponding to its usage frequency.

Specifying a “packing” constraint for a set of inputs requires that
they be packed into a single input vector in the final circuit (note
that inputs in the same vector are necessarily in different lanes).
For example, a packing constraint might require that each entry of
a matrix be placed in the same input vector.

After Coyote vectorizes the circuit as described above, it auto-
matically packs the circuit inputs into vectors (while satisfying
any provided packing constraints) and chooses the data layouts
within these vectors. Alternatively, the programmer can choose to
override this and manually provide an input layout. This is useful,
for example, when composing multiple circuits, as the output lay-
out of one determines the input layout of the next. The details of
how these choices are made are discussed in Section 4.5, and the
tradeoffs these annotations provide are discussed in Section 5.1.

Using Coyote

3In this particular example, exchanging the positions of %3 and %4 produces se-
mantically equivalent code that does not require the blends. However, automatically
performing arithmetic rewrites such as this one is outside the scope of this work.

Coyote: A Compiler for Vectorizing Encrypted Arithmetic Circuits

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Compile DSL
program into
arithmetic circuit

Use simulated
annealing to do lane
placement

Find an edge to
contract to build a
quotient circuit

Use ILP solver to
align epochs into a

schedule

Fill in necessary
rotates and blends,
and emit C++

T

>
smaller J

schedule?

Figure 3: High-level compilation steps

+
*
/ .
e N\
() N

/ ¥
/ 1\
/ o\ [\ N
[v VN

(a) Circuit with subcircuits c d e f
identified

o

(31, % c, el + [d, f]
[%0, % a, gl + [b, h]
[%32, % [%0, %31 * [%1, %4]

= [%2, _1 + [%5, _] 50

=1
=1

’

(%6, _

Vector schedule after ali e oo
(¢) Vector schedule after alignmen (d) Generated vector code

Figure 4: A running example of how Coyote vectorizes arbi-
trary arithmetic circuits

def dot(vl, v2):
return sum([a * b for a, b in zip(v1, v2)1)

@coyote.define_circuit(A=matrix(3, 3), b=vector(3))
def matvec_multiply(A, b):
result = []
for i in range(len(A)):
result.append(dot(A[i], b))
return result

Figure 5: Coyote program for multiplying a vector by a ma-
trix

3.3 Backend

Coyote targets the BFV backend * for Microsoft SEAL[19]. The
encryption parameters are hardcoded, and are chosen to allow for
8192 vector slots and a standard 128 bits of security.

4 DESIGN

When vectorizing arithmetic circuits with an SLP-style approach, at
each step, we look at all available scalar instructions (whose source
operands have all been scheduled), pick the largest set with the
same operation, and schedule them together. This naive strategy
makes no guarantees about values being computed and used on
the same lane; in other words, lining the computation up on incurs
arbitrarily many shuffles. Unlike in normal vectorization, where
applying arbitrary permutations to the lanes is relatively cheap,
in FHE we are only allowed to rotate the entire vector by a fixed

4We could have instead chosen to use the CKKS backend, but BFV’s cost model is
more amenable to general vectorization. In particular, an operation we use often is
“blending” slots from several vectors into one; while this is almost free in BFV, the cost
of doing this in CKKS is nontrivial.

122

number of slots, and this rotation operation is expensive. Hence,
the cost of bookkeeping quickly outweighs whatever benefit we
might get from vectorization, making this approach not worth it.

When trying to vectorize an FHE program, we have two opti-
mization problems to solve: instruction scheduling, and data layout.
Optimizing only for instruction scheduling gives us the SLP ap-
proach: aggressively pack together isomorphic instructions without
worrying about the incurred data movement overhead. Optimizing
for data layout places us on the other end of the spectrum: to avoid
having to do any rotates, we must place each connected component
of the circuit on a single lane, precluding any vectorization and
forcing us to execute everything as scalar operations.

One of our key insights is that these two problems are highly
related, so we have to solve these simultaneously rather than inde-
pendently, attempting to choose an optimal point in the tradeoff
space between the two ends of the spectrum. In the following sec-
tions, we lay out the exact optimization problem as well as how we
search for a solution.

4.1 Overview

The input to the compilation process is an arithmetic circuit, rep-
resented as a directed acyclic graph (DAG), where each vertex
corresponds to an operation (gate) in the circuit and the leaves
(vertices with no children) correspond to the inputs, and there is
an arc 01 — 02 if v1 consumes v3. When a particular input is used
multiple times in the circuit, it can either be represented as a single
vertex with an incoming arc from every gate that consumes it, or it
can be replicated into multiple vertices which each get consumed
once. This choice is expressed by the programmer in the surface
language (Section 5.1).

The vector pre-schedule® is a labeled quotient of the original
circuit graph, where each vertex represents a connected subgraph,
and is labeled with an integer representing the lane the subgraph
gets placed on, such that no two vertices at the same height are
labeled by the same lane. The pre-schedule is naturally bi-graded
into epochs, or groups of (independent) vertices at the same height
which get packed together into a single sequence of vector instruc-
tions requiring no data movement, as well as columns, groups of
vertices assigned to the same lane representing computation that
happens in a single thread with no internal vectorization.

It turns out that both of our extremes from earlier can be realized
in this model. Aggressively vectorizing SLP-style can be recovered
by assigning a trivial subcircuit to each vertex of the quotient,
and simply enumerating lanes across epochs. On the other end
of the spectrum, we could instead quotient the circuit into the

5This structure is referred to as a pre-schedule to distinguish it from the actual vector
schedule, which explicitly computes an alignment for sequences of instructions at the
same level.

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Raghav Malik, Kabir Sheth, and Milind Kulkarni

Algorithm 1: Lane placement

Algorithm 2: Computing a good circuit quotient

Algorithm Placelanes(graph)
lanes « InitialPlacement(graph);
T « To;
cost « Cost(lanes, graph);
fori=1:Ndo
T« T/(1+pT);
candidate «— GenerateCandidate (lanes, graph);
cost’ « Cost(candidate, graph);
if Accept(cost, cost’, T) then
L lanes < candidate;

| return lanes, cost

cost « cost’;

Procedure Cost (lanes, graph)
rotations|*] < 0;
foreach (u — v) € graph do

if lanes|u] # lanes[v] then
L rotations[u.epoch] «—

rotations[u.epoch] U {lanes[v] — lanes[u]};
nstrs[#] < 0;

foreach epoch € graph do
foreach opcode do

L instr{opcode] «—

instr[opcode] + malx count(epoch, col, opcode);
co
return wg X 3, rotations[ep] + 3, wop X instrs[op]
ep op

discrete graph of its connected components and assign each vertex
an arbitrary lane; this graph has no edges and requires no rotations,
but also precludes any vectorization within connected components.
Finding a good pre-schedule then requires us to first compute
a “good” quotient that trades off between these extremes, together
with a lane assignment that somehow maximizes our ability to
vectorize without incurring too many rotations. This is expressed
in the search procedure Coyote uses when finding a vector schedule:
an outer loop performs a best-first search over possible quotient
graphs, and an inner loop uses simulated annealing on each quotient
to find a good lane placement. The result of the search procedure
is a quotient of the circuit and a lane placement for the quotient,
which together minimize® the cost of the resulting vector schedule.
The next section discusses this search procedure in more detail.

4.2 Schedule Search

Given a cost model, we use a two-layer optimization strategy to pro-
duce a schedule that has good packing properties without incurring
too much data movement overhead.

Determining lane placement (Algorithm 1). The inner layer uses sim-
ulated annealing to find an optimal lane assignment for a given
quotient graph. The initial assignment is the naive one given by
simply enumerating the vertices at each epoch. At each step of the

Srelative to the other quotients and lane placements visited in the search

123

Algorithm ComputeQuotient(graph)
lanes, cost « PlacelLanes(graph);
best « lanes, graph;

bestcost « cost;

pqueue — [];

Enqueue (pqueue, (graph, lanes), cost);
fori=1:Ndo

graph, lanes « Dequeue(pqueue);

if arc <~ CrossArcs(graph) then
candidate «—

Condensation(ContractEdge(graph, arc));
lanes’, cost’ < Placelanes(candidate);
Enqueue (pqueue, (candidate, lanes’), cost’);
if cost’ < bestcost then

L best « lanes’, candidate;

| Enqueue (pqueue, (graph, lanes), cost);

L return best

algorithm, we generate a candidate solution by randomly choosing
two columns and a subset of the epochs in them to swap, maintain-
ing the uniqueness condition of the schedule. If the overall cost (as
described in Section 4.3) of the candidate solution is lower than the
original cost, it is accepted, and used as the starting point for the
next round. If the candidate solution cost is higher than the original
cost, it is accepted with a probability that varies negatively with
the difference in cost, and is generally smaller in later rounds than
in earlier rounds’. After a fixed number of rounds have elapsed
(see footnote), this algorithm returns the best solution found so far.

Computing optimal circuit quotient (Algorithm 2). The outer layer
searches the space of quotients for a graph that admits a good
lane placement without giving up too much vectorizability. Here,
we use a priority queue to implement a simple best-first search.
Each graph in the queue is assumed to already be equipped with
an optimal lane placement, via the algorithm described above. At
each step, a graph is dequeued, and a new candidate solution is
generated by looking at its set of cross-lane arcs and choosing
one to contract (removing the edge and identifying its endpoints
into a single vertex). The contracted graph may not be acyclic, so
we continue contracting cycles until it is (in effect computing the
condensation). The candidate solution is then enqueued with its
cost from the annealed lane placement. If there are more available
arcs to contract, the original graph is enqueued again.

After a fixed number of rounds have elapsed, or once the queue
is empty, the algorithm terminates and returns the best graph.
Since each step of this algorithm involves an expensive call to
the lane placement procedure, this runs for a much smaller number
of rounds, usually between 150 and 200. In practice, this is enough
to find highly efficient schedules.

"We use a slow cooling schedule with initial temperature Ty = 50 and cooling param-
eter = 1073, The probability of accepting a move that increases the cost by A, is
e~Ae/T The annealing is run for 20k rounds.

Coyote: A Compiler for Vectorizing Encrypted Arithmetic Circuits

The next section discusses what makes one graph quotient or
lane assigment “better” than another, and how these tradeoffs are
quantified in Coyote’s cost model.

4.3 Cost Model

The cost of a particular pre-schedule comes from two places: the
number of rotations we have to perform, and the amount we have
“given up” on vectorizing.

Rotations. Given a vector schedule, each cross-lane arc in the graph
(an arc connecting vertices of different lanes) represents a rotation
that must be performed to align an output from the tail of the arc to
where it gets used at the head. However, determining the rotation
overhead is not as simple as counting these arcs. Consider the case
where instructions A and B are operands to instructions A’ and
B’, respectively. If A and B are assigned lanes n and m, A’ and B/
are assigned n + k and m + k, and A and B end up packed together
in the same vector instruction, the two separate data movement
operations required for the A — A’ arc and the B — B’ can actually
be performed by a single rotation by k (in fact, taking advantage of
this fact is the main way Coyote optimizes data layout to require
fewer total rotates). To compute the actual number of required
rotations, we instead proceed epoch-by-epoch. For each epoch, we
look at all cross-lane arcs with tails in that epoch, and compute the
number of columns each spans (i.e. the required rotation amount) by
subtracting the lane at the tail from the lane at the head. The rotation
cost for that epoch is then just the number of distinct rotation
amounts. For example, if a particular epoch has five cross-lane
arcs, of which three represent a rotation of —1 and two represent a
rotation of 6, its rotation cost is 2. It follows that the total rotation
cost of a schedule is the sum of the rotation costs of each epoch.

Vectorizability. Taking successive quotients of the circuit reduces
the total number of edges, and by extension, reduces the number
of rotates that might be required; however, it also precludes any
vectorization within the collapsed subcircuits. To account for this,
we need a way of quantifying the amount of vectorization we are
“giving up” with each quotient.

Unfortunately, directly computing the opportunity cost is very
messy: the amount of vectorization we give up by identifying a set
of vertices is not a property local to the vertices, but rather requires
us to look globally at all possible vertices in those epochs, to see
which vectorization opportunities are no longer available after the
identification. Instead, we use an estimated schedule height as a
proxy, with the justification being that giving up a lot of vectoriza-
tion generally results in taller, less efficient final schedules.

The schedule height computation also proceeds epoch-by-epoch.
For each epoch, we estimate the minimum number of vector instruc-
tions after packing by taking the maximum number of each type of
operation across all the subcircuits associated to the vertices in that
epoch. For example, the estimated height of an epoch containing
one vertex with 3 adds and 2 multiplies and another vertex with 2
adds and 4 multiplies would be 3 adds and 4 multiplies.

Overall Cost. The analysis presented above estimates the number
of each type of instruction in the generated vector program. The
final cost used a linear combination of all of these, with weights
determined empirically by how expensive each instruction type

124

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

is relative to the rest. In our implementation, we scale rotates and
multiplies by 1, and addition and subtraction by 0.1.

4.4 Instruction Alignment

We align the instructions corresponding to the subcircuits in each
epoch to produce a final vector schedule. It may seem like the so-
lution to this is just sequence alignment, but aligning circuits is
actually more complicated. At each step, the number of available
children to align roughly doubles, meaning that the total number
of subproblems to solve is exponential in the depth instead of lin-
ear. This causes the dynamic programming strategy of sequence
alignment to quickly blow up.

Instead of wrangling so many subproblems, we can formulate
this as an ILP. We create a variable for each scalar instruction
representing its schedule slot, or the time at which it executes. We
add constraints to require that each instruction be scheduled after
all of its dependences, and also that two instructions with different
operations never be scheduled at the same time. Finally, to speed
up the search for a solution, we place a bound on the total length of
the schedule which is iteratively tightened until the solver returns
“unsatisfiable”, meaning no shorter schedule could be found.

4.5 Data Layout

The circuit obtained after vectorization necessarily operates on
inputs that have been “packed” into vectors. Choosing a good layout
within these vectors is crucial, since a poor choice could incur
many additional rotations to line operands up with where they are
used. Coyote can automatically select a good layout as part of the
vectorization process. An input that is only used once is placed on
the lane within its vector corresponding to the unique lane where
it is used, and any two inputs that are placed on the same lane by
this rule are packed into separate input vectors to avoid collisions.

For inputs that are used multiple times (or inputs that are re-
quired to be packed into the same vector, e.g. elements of the same
matrix), Coyote places a no-op “load” gate in the scalar circuit (so
that the input is only used once, by the load gate). Two load gates
are placed in the same epoch in the circuit if and only if their corre-
sponding inputs are required to be packed together (thus ensuring
that they are given different lanes). The layout for these inputs is
then determined by the lanes chosen for their corresponding load
gates. This determines the data layout, as each input is placed on
the same lane as its corresponding load gate (Section 3.2).

5 IMPLEMENTATION

This section discusses how programmers write Coyote programs,
and how the code is generated.

5.1 An eDSL and Compiler for FHE Programs

Coyote consists of an embedded DSL (eDSL) in Python that can be
used to write FHE programs, shown in Figure 5. The DSL allows for
arbitrary arithmetic computation over encrypted variables, and sup-
ports conditionals and loops over plaintext values. All conditionals
and loops are fully evaluated and unrolled, and all function calls
are fully inlined before generating the arithmetic circuit. The gen-
erated circuit is then passed to Coyote’s back end, which vectorizes
the computation as described in the previous sections, yielding a

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

sequence of primitive vector operations that can be further lowered
into C++ code targeting Microsoft SEAL’s backend for BFV [19].
Coyote currently supports datatypes for encrypted inputs: scalar(),

vector(size), and matrix(rows, cols). Inputs annotated with scalar()
are free to be placed anywhere in the vector schedule; by contrast,
matrix and vector inputs are always grouped together into vectors.
The arithmetic circuits Coyote takes are directed acyclic graphs
(DAGs) that fail to be trees exactly when values are used as inputs
to multiple computations (e.g. the value a in ab + ac). Any such
DAG can be turned into a tree by replicating inputs (Section 3.2) in
a “reverse-CSE” process (for example, ab + ac — a1b + azc, where
the value of a is supplied to both a; and ay). This results in circuits
with better rotation characteristics at the cost of extra computation.
By default, Coyote automatically replicates all scalar inputs, and
leaves all vector and matrix inputs unreplicated, but this behavior
can be overridden by the programmer (note that replicating a vector
or matrix input results in multiple copies of each variable all being
grouped into the same vector).

Automatically choosing a data layout. While specifying a set of
inputs as a vector(n) or matrix(m, n), Coyote restricts the space of
available schedules to the ones that group these inputs together.
However, it is still free to choose a particular layout within the
vector (i.e., a[0] and a[1] need not be placed in adjacent lanes®).
In practice, this allows Coyote to choose a layout that minimizes
the rotations required to align inputs with where they are used. We
evaluate the effectiveness of this choice in Section 6.7.

5.2 Code Generation

The algorithm in Section 4 produces a vector schedule (i.e. a lane
and schedule slot for each scalar, where the schedule slot determines
the order in which instructions get executed). Coyote compiles this
schedule to a simple vector IR by scheduling vector instructions
according to a topological sort, inserting rotations as needed. The
vector ISA supports vector addition, subtraction, multiplication,
and rotation, as well as a constant load instruction and a blend
instruction. The semantics of the blend instruction are a bit subtle:
it mixes lanes from multiple vector registers into the same register
while keeping all data on its original lane. For example:

blend(x1x2x3x4@1010, y1y2y3y4@0101) — [x1y2x3y4]

In the backend, the blend is implemented as a series of plaintext
bitmasks followed by ciphertext adds.

6 EVALUATION
In this evaluation, we aim to answer the following questions:

(1) How effective is Coyote’s vectorization? To answer this,
we count the number of instructions generated in the vector
code compared to the scalar code. (Section 6.2)

(2) How much speedup does compiling with Coyote get
us? To address this, we compile several realistic benchmarks
and measure the speedup of the vectorized code over scalar
execution. (Section 6.3)

8Note that a noncanonical input layout potentially means that two kernels compiled
by Coyote may not be composable. We overcome this by allowing the programmer to
manually provide their own layout (Section 3.2).

125

Raghav Malik, Kabir Sheth, and Milind Kulkarni

(3) How well does Coyote scale up to larger kernel sizes?
To measure this, we compile a much larger circuit by vector-
izing and composing its components. (Section 6.4)

How well do Coyote’s schedules compare to hand op-
timized code? We compare the run times of various hand-
optimized benchmarks to the run time of the vector code
that Coyote generates for them. (Section 6.6)

To what extent does the data layout chosen by the
programmer affect Coyote’s ability to vectorize? We
conduct a case study exploring various data layout schemes
for a 3 X 3 matrix multiply, and measure the vectorization
speedup for each layout. (Section 6.7)

How effective is the layout/schedule co-optimization
strategy? We track the progress of the schedule-search pro-
cedure over time for various levels of data layout optimiza-
tion. (Section 6.8)

How much optimality do we sacrifice by setting syn-
thesis timeouts? We turn off the synthesis timeouts to
guarantee optimal schedule alignments and compare the
results. (Section 6.9)

o

=

6.1

To assess Coyote’s ability to vectorize general applications, we use
it to compile a suite of benchmarks and measure the speedup from
vectorization. While there is not currently a standard benchmark
suite on which to evaluate FHE-based compilers, we choose a set of
benchmarks similar® to those used by Porcupine [5], representing
a spectrum of both regular and irregular computations, as well as
ones that are both sparse and dense in terms of data reuse.
The benchmarks are as follows:

Computational Kernels

1. Multiplying two matrices. We do this with 2 X 2 matrices
(regular, little data reuse) and 3 X 3 matrices (regular, some
substantial data reuse).

. Vector dot product, with vector sizes of 3, 6, and 10 (all of
these are regular with no data reuse).

. 1D convolution. We do this with a vector of size 4 and a
kernel of size 2, and with a vector of size 5 and a kernel of
size 3. Both of these are regular and have little data reuse.

. Point cloud distances (Given a set of points, compute the
square of every pairwise Euclidean distance). We do this
for 3, 4, and 5 points. These are all regular but have some
substantial data reuse, especially in the 5-point case.

. Sorting a list of size 3. This benchmark implements the sort
as a “decision tree”, taking as input three ciphertexts rep-
resenting pairwise comparison results and six ciphertext
“labels” representing possible arrangements of the sorted list.
In particular, each of the three comparison results gets used
in multiple branches of the tree. “grouped” here means the
data layout groups the three comparisons into one vector
and the six labels into another. This is irregular, and the
grouped versions have data reuse.

“While we do not have access to Porcupine’s actual benchmarks for a direct comparison,
their polynomial regression corresponds to our matrix multiply, their L2 distance
correpsonds to our point cloud distance, and most of their image processing kernels are
specific convolutions (i.e. plaintext kernels), while we evaluate on generic convolutions.
The input sizes of our benchmarks are comparable to those of Porcupine’s.

Coyote: A Compiler for Vectorizing Encrypted Arithmetic Circuits

6. Finding the maximum element in a list of size 5. This bench-
mark takes as input five ciphertexts representing the ele-
ments of the list, and ten ciphertexts representing pairwise
comparison results. Similar to the sorting benchmark, this is
irregular, and the grouped versions have data reuse.

To investigate the effect of data replication we used three differ-
ent replication strategies for each benchmark:

(i) unreplicated, where each input appears in only one input
vector, and hence must be used by multiple operations.

(i) partially replicated in which one of the two inputs is fully
replicated—and hence each operation that requires that input
gets its own copy, obviating the need for data movement—
while the other is not.

(iii) fully replicated in which both inputs are fully replicated.

Note that for dot product, replication makes no difference as each
input is used exactly once.

6.2 Costs and Effects of Vector Compilation

Table 1 shows benchmark properties, including how long each
benchmark took to compile and how many operations each program
had before and after vectorization. Our benchmarks ranged in size
from 5 scalar instructions (size 3 dot product) to 75 instructions (5
point distances) While the number of scalar multiplies went as high
as 27 (for the 3 X 3 matrix multiply), Coyote was almost always
able to pack these into at most one or two vector instructions.
The main exceptions to this rule were the highly irregular tree
benchmarks, which still went from 10 scalar multiplies to between
4 and 5 vector multiplies. Another point to notice is the number of
rotates. Most benchmarks required fewer than 10 rotates. However,
the 5 point distance and 3 X 3 matrix multiply benchmarks had a
very high number of rotations after vectorization, as these were
the most data-dense ones—intermediate results were required by
many downstream computations, incurring considerable overhead.
Furthermore, the unreplicated versions of each benchmark almost
always incurred more rotates than the partially or fully replicated
versions, validating our hypothesis that input replication helps
alleviate the rotation burden.

Table 1 also shows the ideal speedup for each benchmark, us-
ing our cost model of multiplies being 10X as expensive as adds
and subtracts. Note that this modeled speedup is based on a clas-
sic work/span analysis, and hence assumes that permuting and
shuffling data between vectors is free. This modeled speedup thus
represents a substantial overestimate of the actual speedup that
could be achieved in the program. For example, a 3x3 matrix multi-
ply has nine 3-element dot products. The necessary 27 multiplies
can all be performed in one vector operation, but the results of three
multiplies need to be added to perform each dot product. Thus in
reality two of the multiplies are performed in the “wrong” lane and
need to be shuffled to the correct lane to complete the computation.

6.3 Speedups

While instruction counts indicate that Coyote is able to effectively
find vector operations for each benchmark, we must also deter-
mine whether the actual costs of rotations and blends outweigh
the vectorization benefits. Hence, we run each benchmark 50 times
in scalar, and 50 times after vectorization to compute the speedup

126

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Vectorized Speedups

(Normalized) Speedup
L
o w o w o

o
w

o
=)

co(\“'&;“qf’ﬁé\e\?’ d\s"m 6\""‘") éo"?’ éo\b éox»\'g ((\\07’ “\(0"5 (’o"&\q’;@*\c’\
Figure 6: Speedup of vectorized code over scalar (higher is
better). Left-to-right, the first three bars for each benchmark
represent unreplicated, partially replicated, and fully repli-
cated inputs, respectively. The fourth bar for the sort[3] and
max[5] benchmarks represent ungrouped inputs.

from vectorization, shown in Figure 6. We find very little variance
in execution time across individual runs for any benchmark. Each
benchmark has three bars representing, in order from left to right,
the unreplicated, partially replicated, and fully replicated runs. The
sort[3] and max[5] benchmarks have an extra green bar repre-
senting the ungrouped run (without grouping, all inputs are fully
replicated no matter what). We see speedups ranging from 1.5X on
the data-dense point cloud distances benchmarks to over 3.5X on
the highly vectorizable matrix multiply. We also generally notice
more speedup as the replication level increases, suggesting that
Coyote is able to take advantage of replicated inputs to eliminate
rotations from the schedule.

While it may appear that Coyote’s actual speedups are some-
times well off from the idealized speedups, this is due to the rota-
tions and blends required outside an idealized world where vec-
tor permutation is free. For example, in the 3x3, fully-replicated
matrix multiply case, Coyote generates 9 rotations to move re-
sults into place. We see, though, that in benchmarks where Coyote
can generate schedules with few rotates, it does well despite the
data movement costs. For example, in conv.4.2, Coyote achieves a
2.5% speedup versus an ideal speedup of 5x; and in dot.3, Coyote
achieves a 1.6x speedup versus an ideal speedup of 2.7x.

6.4 Scalability

Many of the benchmarks we evaluate on have relatively small
input sizes, since it is often intractable to directly apply the lane
placement search procedure. However, it is possible to scale Coyote
up to larger input sizes by “blocking”, or vectorizing smaller kernels
separately and then composing the vector programs. To investigate
how well this works, we use Coyote to compile a 16 X 16 matrix
multiply as follows. We vectorize the multiplication of a single 4 x 4
“block”, and record the input/output layouts Coyote chooses.

The output layout of each 4x4 block is used to fix the input layout
to another kernel (see Section 3.2), which takes 64 of these blocks
and performs the necessary reductions to arrange them into the
final 16 X 16 matrix multiplication. The metadata for this benchmark
is shown under mm. 16 in Table 1 (the compilation time includes

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada Raghav Malik, Kabir Sheth, and Milind Kulkarni

Table 1: Compilation time in seconds, as well as instruction counts in the scalar (SAdd, SSub, SMul) and vector (VAdd, VSub,
VMul, Rot, Blend) code, and the ideal speedup (work/span). Note that ideal speedup considers rotates and blends to be free.

Benchmark Time (s) SAdd +SSub SMul VAdd+ VSub VMul Rot Blend Ideal Speedup
conv.4.2.un 97 3 6 2 1 4 4 5.73
conv.4.2.partially 80 3 6 2 1 2 1 5.73
conv.4.2.fully 71 3 6 2 1 1 2 5.73
conv.5.3.un 206 6 9 3 1 7 5 8.0
conv.5.3.partially 211 6 9 4 1 4 3 8.0
conv.5.3.fully 208 6 9 4 1 2 3 8.0
dist.3.un 228 18 9 1 1 4 6 9.82
dist.3.partially 233 18 9 1 1 4 6 9.82
dist.3.fully 226 18 9 2 2 2 7 9.82
dist.4.un 425 32 16 2 2 6 8 17.45
dist.4.partially 432 32 16 2 2 6 8 17.45
dist.4.fully 463 32 16 2 2 4 8 17.45
dist.5.un 619 50 25 2 2 13 10 27.27
dist.5.partially 629 50 25 2 2 13 10 27.27
dist.5.fully 609 50 25 2 2 9 10 27.27
dot.3.un 10 2 3 3 1 2 0 2.67
dot.3.partially 10 2 3 3 1 2 0 2.67
dot.3.fully 10 2 3 3 1 2 0 2.67
dot.6.un 159 5 6 4 1 3 2 5.0
dot.6.partially 154 5 6 4 1 3 2 5.0
dot.6.fully 156 5 6 4 1 3 2 5.0
dot.10.un 254 9 10 6 1 5 4 7.79
dot.10.partially 257 9 10 6 1 5 4 7.79
dot.10.fully 251 9 10 6 1 5 4 7.79
mm.2.un 176 4 8 2 1 3 2 7.64
mm.2.partially 171 4 8 2 1 2 1 7.64
mm.2.fully 170 4 8 2 1 1 2 7.64
mm.3.un 573 18 27 5 2 20 10 24.0
mm.3.partially 610 18 27 4 1 18 6 24.0
mm.3.fully 607 18 27 4 2 9 3 24.0
sort[3].grouped.un 238 10 10 8 4 8 6 3.24
sort[3].grouped.partially 233 10 10 8 4 4 3 3.24
sort[3].grouped.fully 231 10 10 8 4 4 3 3.24
sort[3] 139 10 10 11 5 1 1 3.24
max[5].grouped.un 880 30 30 15 11 30 18 7.33
max[5].grouped.partially 905 30 30 12 27 15 7.33
max/[5].grouped.fully 902 30 30 19 9 24 23 7.33
max|[5] 537 30 30 17 6 15 13 7.33
mm.16.blocked 7139 3840 4096 414 128 4446 872 3200
the time to compile the 4 X 4 block as well as the reduction circuit). attempt to vectorize separate, identical kernels together (which is a
After vectorizing, the blocked 16 X 16 matrix multiply takes 3433 regular process so could use standard vectorization techniques).

seconds, compared to 4541 seconds before vectorizing, for a total
32% speedup. This shows that by composing smaller kernels, Coyote

is able to scale up to vectorizing much larger circuits and still see 6.5 Randomly Generated Irregular Kernels
relatively significant speedups over unvectorized code. Note that To further investigate Coyote’s ability to vectorize, even in the
this understates Coyote’s potential speedup as it does not currently absence of a regular structure on the computation, we randomly

127

Coyote: A Compiler for Vectorizing Encrypted Arithmetic Circuits

Random Polynomial Vectorized Speedups

o o B ¥
o @ o N B
L L ' L L

[=]
IS
L

(Normalized) Speedup

EEE Depth 5
B Depth 10

o
N
L

0.0 -

Sparse Dense, Hom

Dense, NonHom

Figure 7: Speedups for random polynomials (higher is better).

generated several polynomials to evaluate as arbitrary arithmetic
expression trees. The trees are generated according to three differ-
ent regimes to cover different kinds of programs:

(1) Dense, homogeneous: The expression tree is both full and
complete, and all the operations are isomorphic. In principle,
this represents a best case for vectorization.

Dense, nonhomogeneous: The expression tree is both full and
complete, each operation has a 50/50 chance of being an add
or a multiply. Hence, while the trees are structurally similar,
the heterogeneity of operations means that vectorization
opportunities are restricted.

Sparse: Many operations have one leaf node input, the tree
is not very balanced. In principle, this represents a worst
case for vectorization, where Coyote must work hard to find
vectorizable computation.

@

©)

For each regime, we generate ten total polynomials, five with a
circuit depth of 5 and five with a circuit depth of 10. Each polyno-
mial is run 20 times in scalar and 20 times after vectorization, and
we average speedups across the five polynomials in each regime
before reporting. These speedups are shown in Figure 7. We see
that Coyote is able to achieve speedups of up to 1.4X by vectorizing.
Looking at the depth 5 dense nonhomogeneous polynomials, we
found that many of them were too small and irregular to admit
any profitable vectorization; in these cases, Coyote was correctly
able to deduce that the scalar execution strategy was optimal rather
than attempting to vectorize and incur spurious rotations. Since the
generated vector code was identical to the scalar code for several
of these, the average speedup is very close to 1.0.

We find that both sparse and dense homogeneous polynomials
see substantial benefits from vectorization, with sparse polynomials
having more speedup. This may seem surprising: dense homoge-
neous trees appear to be a best case scenario for vectorization, as
all of the operations can be perfectly packed together. However,
the key to this result is that rotations are expensive. The sparse
trees have many vertices of arity 1—these operations do not require
any rotations to align their input operands. In contrast, the dense
trees require more rotations, canceling out the benefits from greater
vectorization. This is further justification for Coyote’s design deci-
sion to focus on minimizing rotation in its schedule search. In the

128

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Table 2: Coyote vectorization vs. expert-written code

Benchmark Coyote time (s) Expert time (s)

mv.2 2.37 2.51
mv.3 3.3 3.9
mv.4 7.7 5.3
dist.3 3.5 3.2
dist.4 8.4 4.0
dist.5 15.3 5.5
dot.3 1.6 1.6
dot.6 2.9 2.2
dot.10 3.8 2.6

light of this discussion, it is perhaps unsurprising that the dense
trees (requiring more rotation) with non-homogeneous operations
(limiting vector packing) ultimately have the lowest speedup.

6.6 Comparison to Hand-Optimized Schedules

To compare Coyote’s vectorized schedules to hand-optimized base-
lines, we compiled three kernels with Coyote: matrix/vector multi-
ply, dot product, and point-cloud distance. Each of these kernels has
a well-known expert-optimized baseline implementation, which
we also implemented in Coyote’s vector IR, before compiling both
to C++ and measuring the time it took to run each one 50 times.
The results are shown in Table 2. For smaller sizes, we see Coyote’s
vectorization was capable of matching or even outperforming the
expert-written baselines, although on larger sizes the search space
was often too big to automatically find the expert schedules. Man-
ually inspecting the generated code shows that this was usually
because the schedule Coyote generated used one or two more ro-
tates than the baseline. In the case of the dot product, the schedules
Coyote found all used the same number of rotates as the expert
schedule, but occasionally incurred more blends.

6.7 Effects of Data Layout

To study the effects of different data layout choices, we vary the
data layout in 3 X 3 matrix multiply:

Together: The matrices A and B are grouped into a single vector
of 18 elements

Separate: A and B are grouped into individual vectors (this is the
normal layout used in benchmarking in Figure 6)

Rows/Cols: The rows of A are grouped into three separate vectors,
as are the columns of B.

Cols/Rows: The columns of A are grouped into three separate
vectors, as are the rows of B.

Individual: Each of the 18 entries are grouped into their own
vector (note that this is different from simply leaving them
as free scalars, because this precludes Coyote from choosing
to put some of them on the same vector anyway).

In each layout, all the inputs are unreplicated. Figure 8 shows the
results of this case study. Interestingly, we find that grouping the ma-
trices together yields greater speedups than keeping them separate.
When multiple entries are on one vector, Coyote can arrange the
elements such that rotating one automatically gives useful rotations

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Data Layout Case Study

(Normalized) Speedup

el e \S S - qud'
oo™ 02 20wl Co\sl““"\N dnie?

Figure 8: Speedups for the five datalayout case studies (higher
is better). Note that the second bar (“Separate”) corresponds
to the leftmost bar of mm.3 in Figure 6.

Schedule cost over time

Cost

0 25 100 125 150 175 200

75
Number of rounds

50

Figure 9: Schedule cost over time (lower is better) for different
numbers of simulated annealing iterations for data layout
per step of scheduling.

of the others. By contrast, when each entry is on a separate vector,
every rotation must necessarily be done separately, so that schedule
ends up with much more overhead. In particular, we find that indiv
requires more than twice as many rotations as together.

6.8 Effects of Search and Co-Optimization

We would like to know how effective Coyote’s schedule search is,
and in particular, how good of a job it does at optimizing the data
layout and schedule together. To test this, we compile the 5-point
distances benchmark with three different levels of data layout by
varying the number of iterations of simulated annealing, and record
the cost of the generated schedule during each round of the search.

Figure 9 shows the cost of the vector schedule over time for
various levels of data layout. The blue line depicts the schedule
cost when we use 10k iterations of simulated annealing to find an
optimal data layout at each step; the orange line is 15k iterations and
the green line is 20k iterations. As expected, doing more iterations
of simulated annealing has a large effect on the efficiency of the final
schedule, since we rely on the fact that the data layout being used

129

Raghav Malik, Kabir Sheth, and Milind Kulkarni

Table 3: Comparison of compilation time (seconds) and vec-
torization speedup with vs. without synthesis timeouts.

Benchmark Timeout No Timeout
Time Speedup Time Speedup
dist.5.un 619 1.70 752 1.75
dist.5.partially 629 1.73 751 1.76
dist.5.fully 609 2.08 752 2.16
conv.4.2.un 97 1.75 122 1.78
conv.4.2.partially 80 3.12 102 3.19
conv.4.2.fully 71 3.21 87 3.15
conv.5.3.un 206 1.79 260 1.80
conv.5.3.partially 211 2.48 261 2.57
conv.5.3.fully 208 3.32 254 3.30
dot.3.un 10 2.11 13 2.15
dot.3.partially 10 2.11 13 2.13
dot.3.fully 10 2.12 13 2.14
dot.6.un 159 2.51 202 2.20
dot.6.partially 154 2,51 193 2.21
dot.6.fully 156 2,51 198 2.20
dot.10.un 254 2.21 320 2.75
dot.10.partially 257 2.15 323 2.77
dot.10.fully 251 2.27 311 2.74

to guide each round of the search is close to optimal. In compiling
all our benchmarks, we use 20k iterations of annealing.

6.9 Optimality Tradeoffs from Timeouts

The synthesis procedure we use for generating the final (aligned)
schedule from a pre-schedule uses iterative calls to an ILP solver
that reduce the schedule height constraint until hitting a timeout.
This is to prevent the synthesis time from blowing up, but it does
come at the cost of sacrificing some optimality, since the solver
might time out before finding the smallest possible schedule. In
this section, we investigate the extent to which this choice matters
by instead using a version of the scheduler that directly finds the
minimal-height schedule with no timeout. This approach guaran-
tees that the synthesized schedules have minimal height.' Table 3
summarizes the results. We see that compilation time increases with
the optimal ILP, but speedups are comparable (sometimes faster,
and even sometimes slower, due to different blends).

7 RELATED WORK

There are two main categories of related work. This section first
discusses work on FHE vectorization, and then discusses more
general approaches to plaintext vectorization

10Note that because the alignment algorithm cannot account for blend costs—they arise
after alignment—the minimal height schedule may not be the minimal cost schedule.

Coyote: A Compiler for Vectorizing Encrypted Arithmetic Circuits

7.1 Compilation and Vectorization for FHE

Prior work has been done on building vectorizing compilers for
FHE applications [5, 8]. CHET [8] is a vectorizing compiler for ho-
momorphic tensor programs that automatically selects encryption
parameters, and chooses optimal data layout strategies. CHET is
specifically targeted towards optimizing the dense tensor computa-
tions in neural network inference, and does not apply to a broader
class of programs, especially those with irregular computations
that are not so easily vectorized. Coyote makes no assumptions
about the domain of the program, and can vectorize even highly
irregular computations.

Porcupine [5] is a vectorizing compiler that uses a sketch-based
synthesis approach to generate vectorized kernels given a reference
implementation. While Porcupine is more general than CHET, it
relies on programmers providing partial implementations in the
form of sketches, making it less automatic than Coyote. Further-
more, Porcupine relies on the sketches to constrain the search space
of rotations, while Coyote is specifically designed to reduce the
number of rotations.

Gazelle [13] is a framework for secure neural network inference
in FHE. While it is very optimized for a particular use case, Gazelle
is not general: it consists of a library of highly efficient vectorized
kernels that are useful in neural network applications. By contrast,
Coyote can take arbitrary kernels and generate efficient vectorized
code on the fly.

Lee, et. al [15] describe a general method for automatically rewrit-
ing arithmetic and boolean FHE circuits according to a cost model
by learning semantically sound rewrite rules. This approach ex-
plores the space of scalar rewrites but does not directly deal with
vectorization, making it orthogonal to ours: a technique like this
could first be applied to an arbitrary computation to transform it
into one more amenable to vectorization before applying Coyote.

One class of related work consists of compilers [1, 3, 6, 7] that au-
tomatically lift programs written in a high level DSL into optimized
FHE circuits that perform the same computation. Unlike Coyote,
these circuit optimizations do not include automatic vectorization.
Although ACLHEMY [6] and EVA [7] do support ciphertext packing,
they require the programmer to perform the vectorization.

7.2 General Purpose Vectorization in non-FHE
Settings
Superword-Level Parallelism is a technique for automatically vec-
torizing programs [14]. SLP iterates over a sequence of scalar in-
structions and computes “vector packs,” or sets of isomorphic in-
structions that can be packed together into vectors. Because SLP
does not rely on the presence of data-parallel structures like loops,
it works well even for irregular programs. When computing vector
packs, SLP does not account for how expensive rotations are in
FHE, leading to schedules with very high data shuffling costs.
VeGen [4] is a recent variant of SLP, introducing a notion of lane
level parallelism that encodes which lanes are performing which
computations, allowing it to reason about rotation costs when
building vector packs. For example, VeGen can reason about the
rotation costs to pack together operands for an instruction into a
temporary vector, and can use this to decide whether or not packing
those instructions is worth it. However, this reasoning only happens

130

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

locally, and VeGen does not incorporate information about how
instruction packing might affect later rotations.

goSLP [16] reasons about globally optimal packing, and finds
lane placements that minimize data shuffling costs. However, there
are assumptions baked into its cost model that make it fundamen-
tally unsuitable for the FHE setting. goSLP frames vectorization
overhead in terms of the number of pack and unpack operations
incurred. For example, permuting the slots of a single vector incurs
one unpack, whereas blending the contents of N vectors (without
any permutation) incurs N unpacks. This cost model implicitly
requires wide blends to be more expensive than arbitrary permuta-
tions, almost the opposite of FHE’s cost model. In FHE, blends are
almost free (instantiated as cheap plaintext multiplies and cipher-
text adds) whereas a “bad” permutation can require O(n) rotates to
realize. In other words, goSLP will often forego a highly profitable
schedule with many blends and few rotates, and instead opt for a
more conservative one. Additionally, goSLP does lane placement
(permutation selection) after finding vector packs, creating situa-
tions like the one described in Section 1 in which the ostensibly
profitable packing does not admit a good data layout. By contrast,
Coyote’s cooperative scheduling strategy precludes this.

There is a class of work that deals specifically with optimizing
permutations in vectorized code [9, 17, 18]. Ren, et. al [18] present
an algebra for reasoning about the permutation workload in SIMD
programs. Eichenberger, et. al [9] develop a technique to efficiently
realign memory accesses produced as a result of vectorizing a loop.
Finally, Swizzle Inventor [17] automatically synthesizes efficient
data movement kernels for vectorized GPU code. The primary
obstacle Coyote faces in directly applying these approaches is that
they tackle the data movement problem after the kernel has been
vectorized. As we discussed earler, in the world of FHE, packing and
data movemnt are problems that must be reasoned about together.
There are two additional drawbacks: Eichenberger, et. al focus on
aligning memory accesses in regular, data-dense loops, but this is
not the setting in which Coyote operates. In the case of Swizzle
Inventor, the sketches it uses to guide synthesis rely on efficiently
accessing arbitrary slots of a packed vector, which is not possible
in FHE without incurring significant rotation overheads.

Diospyros [22] is an equality saturation—-based vectorization
strategy that constructs an e-graph [21, 23] of programs that are
semantically equivalent to a given specification, and then uses a cus-
tom cost model to extract an efficient vector program, together with
necessary shuffles. The simplicity of the cost model it associates to
various shuffles makes it unsuitable to deal with the peculiarities
and inflexibility of FHE rotations.

8 CONCLUSION

This paper presented Coyote, the first vectorizing compiler for
arbitrary FHE programs that considers FHE’s unique cost model for
data movement when vectorizing. Coyote operates at a coarser level
than most vectorizers, allowing it to minimize the data movement
overhead of vectorizing by only packing together sufficiently similar
subexpressions. Coyote can also find optimal lane placement and
data layouts that encourage more efficient rotation patterns. Coyote
can automatically vectorize a large class of useful kernels, showing
speedups of up to 3.5X over scalar code.

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

ACKNOWLEDGEMENTS

The authors appreciate the feedback from anonymous reviewers
from PLDI 2022, OOPSLA 2022 and ASPLOS 2023 that have im-
proved the paper. This work was partially supported by NSF grants
CCF-1908504 and CCF-1919197, as well as Cisco.

A ARTIFACT APPENDIX
A.1 Abstract

The artifact contains everything necessary to replicate the results
of this paper, including:

e An implementation of the compiler described in the paper

e A backend test harness for profiling the vectorized code
Coyote generates

o Implementations of all the benchmarks used in the evalua-
tion

e Various scripts necessary to automate the process of compil-
ing, running, and collecting data from the benchmarks.

Note that there are two experiments omitted from the artifact,
as they require nontrivial manual effort to set up and run. These
are the mm.16.blocked benchmark described in Section 6.4, and
Figure 9

A.2 Artifact Check-List (Meta-Information)

e Compilation: Translates a python program into an arithmetic

circuit, vectorizes it, and generates C++ FHE code

Transformations: Loop unrolling, function inlining, circuit vec-

torization

o Experiments: Compiling real-world benchmarks, compiling ran-
domly generated polynomial programs, experimenting with data
layouts

o How much disk space required (approximately)?: 200MB

How much time is needed to complete experiments (approxi-

mately)?: 45 minutes - 1 hour for the small version, up to several

hours for running all the benchmarks

Publicly available?: Yes

Code licenses (if publicly available)?: MIT

Archived: 10.5281/zenodo.7591603

A.3 Description

A.3.1 How to access. The Coyote compiler can be accessed at
https://github.com/raghav198/coyote

A.3.2 Hardware Dependencies. No specialized hardware is required
to use Coyote, beyond whatever may be necessary to efficiently
run z3 and SEAL.

A.3.3 Software Dependencies.

e The coyote compiler is implemented in Python 3.10 and
uses the networkx and z3 modules for its analysis

o The test harness backend is written in C++ and uses version
3.7 of the Microsoft SEAL library for its FHE implementation

o The test harness uses cmake for its build system

A.4 Installation

The Dockerfile provided with the artifact automatically builds and
installs all dependencies of Coyote. To build and run the Docker

131

Raghav Malik, Kabir Sheth, and Milind Kulkarni

image, run the following commands from the directory containing
the Dockerfile:

$ docker build -t coyote .
$ docker run -it coyote bash

A.5 Experiment Workflow

This section describes a workflow to reproduce a subset of the
results in the paper. We’ve recorded the approximate time it takes to
complete each step inside the Docker image on a 2020 M1 MacBook
Air. Lets start by building all the small benchmarks (all replication
sorts for conv.4.2,mm. 2, dot. 3, dot.6, and dot. 10, as well as the
ungrouped sort[3]).

$ python3 compile_benchmarks.py --preset small
We can also build the data layout case study from Section 4.5 of the
paper, although note that these circuits are considerably larger, so
compiling them will take some time:

$ python3 compile_benchmarks.py --preset layout

Lets also build some of the polynomial trees; in particular, we’ll
build two of the depth 5 trees in each of the three regimes.

$ python3 polynomial_benchmarks.py -d 5 -r \
"100-100" "100-50" "50-50" -i 2

We can see, for example, some of the Coyote vector IR:
$ cat sort_3/vec
and the corresponding generated vector C++ code:
$ cat bfv_backend/coyote_out/sort_3/vector.cpp

To build all the benchmarks from the paper (small, medium, and
large, as well as the layouts and the random polynomials), run the
following instead of following the above steps:

$ python3 coyote_compile.py benchmarks.py -c "x"
$ python3 polynomial_benchmarks.py -d 5 10 -r \
"100-100" "100-50" "50-50" -i 5

However, this is not recommended and will take several hours to
complete, as several of the circuits being compiled are quite large.

Now, we need to compile all the C++ code and collect data.
Although we used 50 runs and 50 iterations in the paper, lets only
use 10 of each to make this go faster:

$ python3 build_and_run_all.py \
--runs 10 --iters 10

You should see some CMake output followed by the encryption and
run times for both scalar and vector versions of each circuit. Note
that this script will not re-run benchmarks that already have corre-
sponding CSV files in bfv_backend/csvs/. Once this is finished
running, we can look at one of the generated CSV files:

$ cat bfv_backend/csvs/sort/sort_3.csv

Now that we’ve collected all the data for these benchmarks, we can
generate the graphs:

$ python3 figures.py
This will generate three plots: vector_speedups.png, case_study.png,
and trees.png. To view these, either attach to the running Docker
container (e.g. using VS Code), or copy the files to your host ma-
chine:

$ docker cp $(docker ps -q):/home/artifact/graphs/ .

Coyote: A Compiler for Vectorizing Encrypted Arithmetic Circuits

Compiling all the small benchmarks takes about 13 minutes,
generating and compiling the random polynomial benchmarks
takes about 5 minutes, compiling the data layout case study takes
about 15 minutes, and building and running all the benchmarks
takes about 15 minutes.

A.6 Evaluation and Expected Results

After running through the workflow described above, you should
have generated three plots, each of which replicates part of the
experiments in this paper:

e vector_speedups.png corresponds to Figure 6

e trees.png corresponds to Figure 7

e case_study.png corresponds to Figure 8
Note that the generated graphs may not contain all the experiments
found in the paper (for example, not all the benchmarks in Figure 6
are built in the above workflow, and neither are the depth 10 trees
in Figure 7, as these take a long time to compile). However, the
speedups should resemble those in the corresponding figures.

A.7 Experiment Customization

A.7.1 Writing a Coyote program. Coyote is a DSL embedded in
Python, so Coyote programs are just Python functions. To tag a
function as a circuit for Coyote to compile, first get an instance of
the Coyote compiler:

from coyote import *

coyote = coyote_compiler()
Next, use the compiler to annotate your function with input types:
@coyote.define_circuit(A=matrix(3, 3), B=matrix(3, 3))
def matrix_multiply(A, B):

For a full discussion of the available types and their compile-time se-

mantics, see Section 5.1 Finally, use the build script coyote_compile.

to invoke the Coyote compiler on the Python file in which this code
is saved:

python3 coyote_compile.py circuits.py -c \
matrix_multiply

A.7.2 Invoking the Compiler. The Coyote compiler can be invoked
from the command line via coyote_compile.py. The example in-
vocation above does the following:

(1) It parses circuits.py and loads a list of all circuits defined
in that file
(2) It uses Coyote to compile the specified matrix_multiply
circuit
(3) It creates a directory called matrix_multiply and saves
intermediate scalar and vector code into that directory
(4) Tt lowers the intermediate code into C++ and saves it in
bfv_backend
The script expects the name of a Python file that defines one or
more circuits (as described above), and then takes a number of
command-line parameters:
e -1, -list: Lists all the circuits defined in the file and exit,
does not actually compile anything
e -c,—circuits: Load the specified circuits from the file and
compile them into C++

Py

132

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

e -0, —output-dir: Specify the directory into which to place
the generated intermediate code (defaults to the directory
from which coyote_compile.py is invoked)

e —backend-dir: Specify the directory containing the test har-
ness backend (defaults to bfv_backend/)

e —no-cpp: Stops after generated the intermediate code and
doesn’t generate C++

e —just-cpp: Uses pregenerated intermediate code to generate
C++ instead of recompiling the circuit; this fails if it can’t find
the intermediate code under [output-dir]/[circuit-name]/

A.7.3 Running the Test Harness. The backend test harness comes
with a CMake file that automatically builds binaries for everything
under coyote_out/. The generated binaries perform a number of
runs, where each run consists of executing the scalar and vectorized
circuits on random encrypted inputs for a number of iterations and
then outputting the total time each version (scalar and vector)
took to encrypt, as well as run. All these outputs are then saved
into a csv file with the same name as the circuit (e.g. running the
binary generated from the example above would create a file called
matrix_multiply.csv).

The number of runs and iterations default to 50 each (as these
are the values used in this paper), but are configurable via cmake.
An example invocation that uses 10 runs with 10 iterations each is
as follows:

$ mkdir bfv_backend/build

$ cd bfv_backend/build

$ cmake -DRUNS=10 -DITERATIONS=10
$ make -j16

REFERENCES

[1] David W. Archer, José Manuel Calderén Trilla, Jason Dagit, Alex Malozemoft,
Yuriy Polyakov, Kurt Rohloff, and Gerard Ryan. 2019. RAMPARTS: A Programmer-
Friendly System for Building Homomorphic Encryption Applications. In Proceed-
ings of the 7th ACM Workshop on Encrypted Computing & Applied Homomorphic
Cryptography (London, United Kingdom) (WAHC’19). Association for Computing
Machinery, New York, NY, USA, 57-68. https://doi.org/10.1145/3338469.3358945
Zvika Brakerski, Craig Gentry, and Shai Halevi. 2012. Packed Ciphertexts in
LWE-based Homomorphic Encryption.

Sergiu Carpov, Paul Dubrulle, and Renaud Sirdey. 2015. Armadillo: A Compilation
Chain for Privacy Preserving Applications. In Proceedings of the 3rd International
Workshop on Security in Cloud Computing (Singapore, Republic of Singapore)
(SCC ’15). Association for Computing Machinery, New York, NY, USA, 13-19.
https://doi.org/10.1145/2732516.2732520

Yishen Chen, Charith Mendis, Michael Carbin, and Saman Amarasinghe. 2021.
VeGen: A Vectorizer Generator for SIMD and Beyond. In Proceedings of the
26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (Virtual, USA) (ASPLOS 2021). Association for
Computing Machinery, New York, NY, USA, 902-914. https://doi.org/10.1145/
3445814.3446692

Meghan Cowan, Deeksha Dangwal, Armin Alaghi, Caroline Trippel, Vincent T.
Lee, and Brandon Reagen. 2021. Porcupine: A Synthesizing Compiler for Vec-
torized Homomorphic Encryption. In Proceedings of the 42nd ACM SIGPLAN
International Conference on Programming Language Design and Implementation
(Virtual, Canada) (PLDI 2021). Association for Computing Machinery, New York,
NY, USA, 375-389. https://doi.org/10.1145/3453483.3454050

Eric Crockett, Chris Peikert, and Chad Sharp. 2018. ALCHEMY: A Language and
Compiler for Homomorphic Encryption Made EasY. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security (Toronto,
Canada) (CCS ’18). Association for Computing Machinery, New York, NY, USA,
1020-1037. https://doi.org/10.1145/3243734.3243828

Roshan Dathathri, Blagovesta Kostova, Olli Saarikivi, Wei Dai, Kim Laine, and
Madan Musuvathi. 2020. EVA: An Encrypted Vector Arithmetic Language and
Compiler for Efficient Homomorphic Computation. In Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and Implementation

[2

—
LN

[4

—_
2

—
)

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

8

=

=

(London, UK) (PLDI 2020). Association for Computing Machinery, New York, NY,
USA, 546-561. https://doi.org/10.1145/3385412.3386023

Roshan Dathathri, Olli Saarikivi, Hao Chen, Kim Laine, Kristin Lauter, Saeed
Maleki, Madanlal Musuvathi, and Todd Mytkowicz. 2019. CHET: An Optimizing
Compiler for Fully-Homomorphic Neural-Network Inferencing. In Proceedings of
the 40th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (Phoenix, AZ, USA) (PLDI 2019). Association for Computing Machinery,
New York, NY, USA, 142-156. https://doi.org/10.1145/3314221.3314628
Alexandre E. Eichenberger, Peng Wu, and Kevin O’Brien. 2004. Vectorization
for SIMD Architectures with Alignment Constraints. In Proceedings of the ACM
SIGPLAN 2004 Conference on Programming Language Design and Implementation
(Washington DC, USA) (PLDI "04). Association for Computing Machinery, New
York, NY, USA, 82-93. https://doi.org/10.1145/996841.996853

[10] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat Practical Fully Homo-

[11]
[12]

[13]

[14]

[15]

morphic Encryption. IACR Cryptol. ePrint Arch. 2012 (2012), 144.

Craig Gentry. 2009. A Fully Homomorphic Encryption Scheme. Ph. D. Dissertation.
Stanford, CA, USA. Advisor(s) Boneh, Dan. AAI3382729.

Shai Halevi and Victor Shoup. 2014. Algorithms in HElib. Cryptology ePrint
Archive, Report 2014/106. https://ia.cr/2014/106.

Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. 2018.
GAZELLE: A Low Latency Framework for Secure Neural Network Inference. In
27th USENIX Security Symposium (USENIX Security 18). USENIX Association, Bal-
timore, MD, 1651-1669. https://www.usenix.org/conference/usenixsecurity18/
presentation/juvekar

Samuel Larsen and Saman Amarasinghe. 2000. Exploiting Superword Level Paral-
lelism with Multimedia Instruction Sets. In Proceedings of the ACM SIGPLAN 2000
Conference on Programming Language Design and Implementation (Vancouver,
British Columbia, Canada) (PLDI '00). Association for Computing Machinery,
New York, NY, USA, 145-156. https://doi.org/10.1145/349299.349320
DongKwon Lee, Woosuk Lee, Hakjoo Oh, and Kwangkeun Yi. 2020. Optimizing
Homomorphic Evaluation Circuits by Program Synthesis and Term Rewriting.
In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation (London, UK) (PLDI 2020). Association for Comput-
ing Machinery, New York, NY, USA, 503-518. https://doi.org/10.1145/3385412.
3385996

133

Raghav Malik, Kabir Sheth, and Milind Kulkarni

[16] Charith Mendis and Saman Amarasinghe. 2018. GoSLP: Globally Optimized
Superword Level Parallelism Framework. Proc. ACM Program. Lang. 2, OOPSLA,
Article 110 (oct 2018), 28 pages. https://doi.org/10.1145/3276480

Phitchaya Mangpo Phothilimthana, Archibald Samuel Elliott, An Wang, Abhinav
Jangda, Bastian Hagedorn, Henrik Barthels, Samuel J. Kaufman, Vinod Grover,
Emina Torlak, and Rastislav Bodik. 2019. Swizzle Inventor: Data Movement
Synthesis for GPU Kernels. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems (Providence, RI, USA) (ASPLOS ’19). Association for Computing Machin-
ery, New York, NY, USA, 65-78. https://doi.org/10.1145/3297858.3304059

[18] Gang Ren, Peng Wu, and David Padua. 2006. Optimizing Data Permutations
for SIMD Devices. In Proceedings of the 27th ACM SIGPLAN Conference on
Programming Language Design and Implementation (Ottawa, Ontario, Canada)
(PLDI °06). Association for Computing Machinery, New York, NY, USA, 118-131.
https://doi.org/10.1145/1133981.1133996

SEAL 2021. Microsoft SEAL (release 3.7). https://github.com/Microsoft/SEAL.
Microsoft Research, Redmond, WA..

Nigel Smart and Frederik Vercauteren. 2011. Fully homomorphic SIMD operations.
IACR Cryptology ePrint Archive 2011 (01 2011), 133. https://doi.org/10.1007/
$10623-012-9720-4

Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. 2009. Equality
Saturation: A New Approach to Optimization. SIGPLAN Not. 44, 1 (jan 2009),
264-276. https://doi.org/10.1145/1594834.1480915

[22] Alexa VanHattum, Rachit Nigam, Vincent T. Lee, James Bornholt, and Adrian
Sampson. 2021. Vectorization for Digital Signal Processors via Equality Saturation.
Association for Computing Machinery, New York, NY, USA, 874-886. https:
//doi.org/10.1145/3445814.3446707

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock,
and Pavel Panchekha. 2021. Egg: Fast and Extensible Equality Saturation. Proc.
ACM Program. Lang. 5, POPL, Article 23 (jan 2021), 29 pages. https://doi.org/10.
1145/3434304

[17

[19

[20

[21

[23

Received 2022-10-20; accepted 2023-01-19

	Abstract
	1 Introduction
	1.1 The Vectorization/Rotation Tradeoff
	1.2 Co-optimization of Vector Packing and Data Layout
	1.3 Contributions

	2 Background
	2.1 Fully Homomorphic Encryption
	2.2 Vectorization

	3 Coyote Overview
	3.1 Compilation Steps
	3.2 Using Coyote
	3.3 Backend

	4 Design
	4.1 Overview
	4.2 Schedule Search
	4.3 Cost Model
	4.4 Instruction Alignment
	4.5 Data Layout

	5 Implementation
	5.1 An eDSL and Compiler for FHE Programs
	5.2 Code Generation

	6 Evaluation
	6.1 Computational Kernels
	6.2 Costs and Effects of Vector Compilation
	6.3 Speedups
	6.4 Scalability
	6.5 Randomly Generated Irregular Kernels
	6.6 Comparison to Hand-Optimized Schedules
	6.7 Effects of Data Layout
	6.8 Effects of Search and Co-Optimization
	6.9 Optimality Tradeoffs from Timeouts

	7 Related Work
	7.1 Compilation and Vectorization for FHE
	7.2 General Purpose Vectorization in non-FHE Settings

	8 Conclusion
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Check-List (Meta-Information)
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Results
	A.7 Experiment Customization

	References

