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function call [4]. Loop rolling transforms equivalent instruc-

tions from a single block into a loop [27].

Despite all these e�orts, state-of-the-art techniques still

cannot fully exploit code similarity to reduce code size. In

this paper, we identify such a missed opportunity: reducing

code size by merging similar code in branches that form

if-then-else constructs. This technique, known as branch fu-

sion, was originally proposed as an optimization for reducing

thread divergence in GPUs [10, 31]. Our key insight is that

branch fusion can be adapted to reducing code size. The

main barrier for that is the simplicity of existing techniques.

Branch fusion [10] only merges highly similar single-block

branch paths, while control-�ow melding (DARM) [31] only

works on branch paths that contain simple control-�ow re-

gions, e.g., nested if-then,if-then-else or natural loops, that

are isomorphic. DARM might be su�cient to cover certain

important GPU kernels, but its was not designed for code

size reduction and, it is not capable of handling complex

control-�ow regions present in real-world CPU programs.

Our work introduces two novel branch fusion approaches

that overcome these limitations. The �rst one, Control-�ow

Melding for Code Size (CFM-CS), adapts DARM [31] to re-

duce code size in CPU programs while extending it to sup-

port any complex Single-Entry-Single-Exit (SESE) regions

that can be present in real programs, including unstruc-

tured control-�ow. The second one, SEME-Fusion, gener-

alizes function merging [28], enabling it to also work as

a branch fusion technique capable of merging any pair of

SEME regions inside a conditional branch using its �exible

matching approach allows us to uncover merging opportu-

nities in branches whose divergent paths have little struc-

tural similarity. The two techniques have di�erent strengths

and limitations, uncovering di�erent code-saving opportu-

nities. We combine them into a uni�ed framework, HyBF ,

that chooses which one to apply on a branch-to-branch basis,

maximizing their potential.

The experimental results show that our approach is capa-

ble of signi�cant code size reduction: up to 67KB and 3.1KB

on average, much higher than any individual branch fusion

approach on its own. We demonstrate that signi�cant gains

are obtained on top of highly optimized programs including

state-of-the-art code size optimizations, such as function

merging [29, 36]. The compile-time overhead we pay for

this is low, less than 8% slowdown for half of the bench-

marks, 15.7% on average. The e�ect on the performance of

the generated binaries is negligible.

Our main contributions are:

• We are the �rst to employ branch fusion and control-

�ow melding for code size reduction.

• We propose the �rst branch fusion technique capable

of merging any pair of SEME regions, regardless of

their structural similarity.

• We propose HyBF , a novel framework that combines

multiple branch fusion techniques to leverage their

individual strengths in di�erent scenarios.

• An implementation of HyBF in LLVM that is publicly

available1.

• We show the e�ectiveness of our approach on full

benchmark programs as well as individual functions

extracted from real-world code.

2 Background and Motivation

In this section, we contrast the existing optimizations for

code size reduction on conditional branches. We also moti-

vate the need for a new branch fusion strategy tailored for

code size optimizations.

2.1 Code Motion

The two important code motion optimizations for code re-

duction are code hoisting and code sinking [7, 39]. Both tech-

niques replace multiple equivalent expressions (i.e., expres-

sion that produce the same value) with a single one. Code

hoisting inserts the uni�ed expression in a common dom-

inator location, while code sinking places it in a common

post-dominator location.

2.2 Branch Fusion

Coutinho et al. [10] originally proposed an optimization

called branch fusion in order to reduce control-�ow diver-

gence in GPU kernels and improve performance. Their tech-

niqueworks on diamond-shaped if-then-else constructs, where

each of the two paths contains a single basic block. For these

two blocks, they align and merge equivalent instructions

using sequence alignment. Instructions with the same op-

codes and data types are matched and merged, potentially

using extra conditional select statements to handle argu-

ment mismatches. Otherwise, the execution of mismatched

instructions is controlled through if-then-else constructs on

the same condition as the original branch. While code mo-

tion is based on value equivalence, branch fusion is based

only on opcode and type equivalence. However, while code

motion is able to move any amount of copies into a com-

mon location, branch fusion is limited to merging only pairs

of instructions, i.e., one from each side of the conditional

branch.

Our central insight is that branch fusion can also be em-

ployed for code size reduction. Figure 1 shows an example

of branch fusion in C code extracted from the Linux kernel.

Traditional local code motion optimizations, such as hoisting

and sinking, cannot merge the statements in the two paths

of the if-then-else. While both contain very similar calls to

rcu_btrace, but they are not equal in value, which is what

determines whether hoisting and sinking can be applied. On

the other hand, branch fusion merges code paths based on

1https://github.com/charitha22/hybf-cc23-artifact
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3.2 Pro�tability Analysis

When merging two non-identical regions from a conditional

branch, the extra code necessary for handling their di�er-

ences might result in an overall code increase. Therefore,

we need to identify opportunities where branch fusion is

pro�table and reduces code size. To this end, we employ a

pro�tability analysis. The �nal decision is based on estimates

of the code-size costs for both the merged and the original

if-then-else. The version with the smallest estimated code

size is chosen.

The pro�tability is measured with the help of the com-

piler’s target-speci�c cost model. The cost of each instruc-

tion comes from querying the compiler’s built-in cost model,

which provides a cost estimation that approximates the size

of an IR instruction when lowered to the target machine.

We use the code-size cost model provided by LLVM’s target-

transformation interface (TTI), which is used in the decision

making of most optimizations [30, 40].

4 Control-Flow Melding

Control-�ow Melding [31] (DARM) is a code optimization

technique used for reducing control-�ow divergence in GPU

programs. DARM reduces divergence by merging similar

control-�ow regions contained within divergent branches

of the CFG. Previous compiler-based divergence reduction

techniques such as Tail Merging and Branch Fusion are un-

able to merge control-�ow beyond basic block boundaries.

Therefore, they have limited applicability in real-world pro-

grams. DARM was proposed to �ll this gap and enable merg-

ing control-�ow at region level. DARM works by merging

structurally similar (i.e., isomorphic) single-entry single-exit

(SESE) regions within if-then-else branches. Even though

the general idea of merging similar control-�ow regions is

applicable to real-world programs, DARM’s implementation

is fairly restrictive as it only supports merging simple nested

if/if-else statements and loops inside if-then-else branches.

In this work, we extend and adapt DARM to reduce code

size in CPU programs. In the following sections we describe

the main steps in Control-�ow Melding for Code Size Reduc-

tion (CFM-CS). Figure 6 shows the main stages of CFM-CS.

4.1 Identifying Regions for Melding

The �rst step of CFM-CS is identifying on which locations

to apply the transformation. As described in Section 3.1,

CFM-CS is applicable to if-then-else constructs that contains

isomorphic control-�ow regions. To formally describe the

conditions that a valid location must satisfy, consider the

CFG in Figure 6 a©. This CFG contains a basic block ā with

a conditional branch at its end. Basic blocks Ĉ and Ď be the

two successors of ā. Let Ĕ be the immediate post-dominator

of ā. ā dominates all basic blocks contained within the SESE

region ā-Ĕ . ā is considered to be a valid location for our
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Figure 6. CFM-CS overview. (a) Given an if-then-else state-

ment, (b) we identify isomorphic control-�ow in the two re-

gions, and (c) we align and merge the corresponding blocks.

transformation if there exist no paths in the CFG from ā to

Ĕ that goes through both Ĉ and Ď. This ensures that either Ĉ

or Ď is executed at a time but not both, enabling us to at least

merge the common computations within Ĉ and Ď. If there

exists a path from Ĉ to Ď at least one predecessor of Ď must

be dominated by Ĉ because all program paths from ā to Ĕ

must go through either Ĉ or Ď. We use this property to check

non-existence of paths from Ĉ-Ď or Ď-Ĉ. In addition, basic

blocks contained within ā-Ĕ must not contain unhandled

instructions for CFM-CS to be applicable2.

The next step of CFM-CS is to collect all the subregions

contained with the parent region of ā-Ĕ . We employ LLVM’s

region tree (i.e., region hierarchy graph) [17] data structure

to do this. We collect subregions along the left path (from

Ĉ to Ĕ ) and right path (from Ď to Ĕ ). Each subregion is

selected such that subregion entry is dominated by Ĉ or

Ď and subregion exit post-dominates Ĉ or Ď. For example,

the CFG in Figure 6 a© has the subregion Ĉ-ď on left path

and subregions Ď-Đ ,Đ -đ on the right path. Any isomorphic

SESE subregion pair consisting of one subregion from left

and right paths can be merged to potentially reduce code

size. We use a heuristic-based approach based on instruction

frequencies and their size cost to determine what isomorphic

subregion pairs to merge. Isomorphic SESE subregions with

more similar instructions are more pro�table to be merged

together. We formulate this as a sequence alignment problem

and solve it using the Smith-Waterman algorithm [34]. For

example, in Figure 6 b© isomorphic subregions Ĉ-ď and Đ -đ

are aligned together and their corresponding basic blocks

(shown connected with light blue bars) can be merged.

2Even though this is not a strict limitation of CFM-CS transformation, we

do not merge regions containing switch-case constructs
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