


CC ’23, February 25–26, 2023, Montréal, QC, Canada R. Rocha, C. Saumya, K. Sundararajah, P. Petoumenos, M. Kulkarni, M. O’Boyle

function call [4]. Loop rolling transforms equivalent instruc-

tions from a single block into a loop [27].

Despite all these e�orts, state-of-the-art techniques still

cannot fully exploit code similarity to reduce code size. In

this paper, we identify such a missed opportunity: reducing

code size by merging similar code in branches that form

if-then-else constructs. This technique, known as branch fu-

sion, was originally proposed as an optimization for reducing

thread divergence in GPUs [10, 31]. Our key insight is that

branch fusion can be adapted to reducing code size. The

main barrier for that is the simplicity of existing techniques.

Branch fusion [10] only merges highly similar single-block

branch paths, while control-�ow melding (DARM) [31] only

works on branch paths that contain simple control-�ow re-

gions, e.g., nested if-then,if-then-else or natural loops, that

are isomorphic. DARM might be su�cient to cover certain

important GPU kernels, but its was not designed for code

size reduction and, it is not capable of handling complex

control-�ow regions present in real-world CPU programs.

Our work introduces two novel branch fusion approaches

that overcome these limitations. The �rst one, Control-�ow

Melding for Code Size (CFM-CS), adapts DARM [31] to re-

duce code size in CPU programs while extending it to sup-

port any complex Single-Entry-Single-Exit (SESE) regions

that can be present in real programs, including unstruc-

tured control-�ow. The second one, SEME-Fusion, gener-

alizes function merging [28], enabling it to also work as

a branch fusion technique capable of merging any pair of

SEME regions inside a conditional branch using its �exible

matching approach allows us to uncover merging opportu-

nities in branches whose divergent paths have little struc-

tural similarity. The two techniques have di�erent strengths

and limitations, uncovering di�erent code-saving opportu-

nities. We combine them into a uni�ed framework, HyBF ,

that chooses which one to apply on a branch-to-branch basis,

maximizing their potential.

The experimental results show that our approach is capa-

ble of signi�cant code size reduction: up to 67KB and 3.1KB

on average, much higher than any individual branch fusion

approach on its own. We demonstrate that signi�cant gains

are obtained on top of highly optimized programs including

state-of-the-art code size optimizations, such as function

merging [29, 36]. The compile-time overhead we pay for

this is low, less than 8% slowdown for half of the bench-

marks, 15.7% on average. The e�ect on the performance of

the generated binaries is negligible.

Our main contributions are:

• We are the �rst to employ branch fusion and control-

�ow melding for code size reduction.

• We propose the �rst branch fusion technique capable

of merging any pair of SEME regions, regardless of

their structural similarity.

• We propose HyBF , a novel framework that combines

multiple branch fusion techniques to leverage their

individual strengths in di�erent scenarios.

• An implementation of HyBF in LLVM that is publicly

available1.

• We show the e�ectiveness of our approach on full

benchmark programs as well as individual functions

extracted from real-world code.

2 Background and Motivation

In this section, we contrast the existing optimizations for

code size reduction on conditional branches. We also moti-

vate the need for a new branch fusion strategy tailored for

code size optimizations.

2.1 Code Motion

The two important code motion optimizations for code re-

duction are code hoisting and code sinking [7, 39]. Both tech-

niques replace multiple equivalent expressions (i.e., expres-

sion that produce the same value) with a single one. Code

hoisting inserts the uni�ed expression in a common dom-

inator location, while code sinking places it in a common

post-dominator location.

2.2 Branch Fusion

Coutinho et al. [10] originally proposed an optimization

called branch fusion in order to reduce control-�ow diver-

gence in GPU kernels and improve performance. Their tech-

niqueworks on diamond-shaped if-then-else constructs, where

each of the two paths contains a single basic block. For these

two blocks, they align and merge equivalent instructions

using sequence alignment. Instructions with the same op-

codes and data types are matched and merged, potentially

using extra conditional select statements to handle argu-

ment mismatches. Otherwise, the execution of mismatched

instructions is controlled through if-then-else constructs on

the same condition as the original branch. While code mo-

tion is based on value equivalence, branch fusion is based

only on opcode and type equivalence. However, while code

motion is able to move any amount of copies into a com-

mon location, branch fusion is limited to merging only pairs

of instructions, i.e., one from each side of the conditional

branch.

Our central insight is that branch fusion can also be em-

ployed for code size reduction. Figure 1 shows an example

of branch fusion in C code extracted from the Linux kernel.

Traditional local code motion optimizations, such as hoisting

and sinking, cannot merge the statements in the two paths

of the if-then-else. While both contain very similar calls to

rcu_btrace, but they are not equal in value, which is what

determines whether hoisting and sinking can be applied. On

the other hand, branch fusion merges code paths based on

1https://github.com/charitha22/hybf-cc23-artifact

157







HyBF : A Hybrid Branch Fusion Strategy for Code Size Reduction CC ’23, February 25–26, 2023, Montréal, QC, Canada

3.2 Pro�tability Analysis

When merging two non-identical regions from a conditional

branch, the extra code necessary for handling their di�er-

ences might result in an overall code increase. Therefore,

we need to identify opportunities where branch fusion is

pro�table and reduces code size. To this end, we employ a

pro�tability analysis. The �nal decision is based on estimates

of the code-size costs for both the merged and the original

if-then-else. The version with the smallest estimated code

size is chosen.

The pro�tability is measured with the help of the com-

piler’s target-speci�c cost model. The cost of each instruc-

tion comes from querying the compiler’s built-in cost model,

which provides a cost estimation that approximates the size

of an IR instruction when lowered to the target machine.

We use the code-size cost model provided by LLVM’s target-

transformation interface (TTI), which is used in the decision

making of most optimizations [30, 40].

4 Control-Flow Melding

Control-�ow Melding [31] (DARM) is a code optimization

technique used for reducing control-�ow divergence in GPU

programs. DARM reduces divergence by merging similar

control-�ow regions contained within divergent branches

of the CFG. Previous compiler-based divergence reduction

techniques such as Tail Merging and Branch Fusion are un-

able to merge control-�ow beyond basic block boundaries.

Therefore, they have limited applicability in real-world pro-

grams. DARM was proposed to �ll this gap and enable merg-

ing control-�ow at region level. DARM works by merging

structurally similar (i.e., isomorphic) single-entry single-exit

(SESE) regions within if-then-else branches. Even though

the general idea of merging similar control-�ow regions is

applicable to real-world programs, DARM’s implementation

is fairly restrictive as it only supports merging simple nested

if/if-else statements and loops inside if-then-else branches.

In this work, we extend and adapt DARM to reduce code

size in CPU programs. In the following sections we describe

the main steps in Control-�ow Melding for Code Size Reduc-

tion (CFM-CS). Figure 6 shows the main stages of CFM-CS.

4.1 Identifying Regions for Melding

The �rst step of CFM-CS is identifying on which locations

to apply the transformation. As described in Section 3.1,

CFM-CS is applicable to if-then-else constructs that contains

isomorphic control-�ow regions. To formally describe the

conditions that a valid location must satisfy, consider the

CFG in Figure 6 a©. This CFG contains a basic block ā with

a conditional branch at its end. Basic blocks Ĉ and Ď be the

two successors of ā. Let Ĕ be the immediate post-dominator

of ā. ā dominates all basic blocks contained within the SESE

region ā-Ĕ . ā is considered to be a valid location for our

L

E

S

R

T

U

X

E

R

X

E

R

X

a b c

T F

L

S

T

U

P Q

W

Figure 6. CFM-CS overview. (a) Given an if-then-else state-

ment, (b) we identify isomorphic control-�ow in the two re-

gions, and (c) we align and merge the corresponding blocks.

transformation if there exist no paths in the CFG from ā to

Ĕ that goes through both Ĉ and Ď. This ensures that either Ĉ

or Ď is executed at a time but not both, enabling us to at least

merge the common computations within Ĉ and Ď. If there

exists a path from Ĉ to Ď at least one predecessor of Ď must

be dominated by Ĉ because all program paths from ā to Ĕ

must go through either Ĉ or Ď. We use this property to check

non-existence of paths from Ĉ-Ď or Ď-Ĉ. In addition, basic

blocks contained within ā-Ĕ must not contain unhandled

instructions for CFM-CS to be applicable2.

The next step of CFM-CS is to collect all the subregions

contained with the parent region of ā-Ĕ . We employ LLVM’s

region tree (i.e., region hierarchy graph) [17] data structure

to do this. We collect subregions along the left path (from

Ĉ to Ĕ ) and right path (from Ď to Ĕ ). Each subregion is

selected such that subregion entry is dominated by Ĉ or

Ď and subregion exit post-dominates Ĉ or Ď. For example,

the CFG in Figure 6 a© has the subregion Ĉ-ď on left path

and subregions Ď-Đ ,Đ -đ on the right path. Any isomorphic

SESE subregion pair consisting of one subregion from left

and right paths can be merged to potentially reduce code

size. We use a heuristic-based approach based on instruction

frequencies and their size cost to determine what isomorphic

subregion pairs to merge. Isomorphic SESE subregions with

more similar instructions are more pro�table to be merged

together. We formulate this as a sequence alignment problem

and solve it using the Smith-Waterman algorithm [34]. For

example, in Figure 6 b© isomorphic subregions Ĉ-ď and Đ -đ

are aligned together and their corresponding basic blocks

(shown connected with light blue bars) can be merged.

2Even though this is not a strict limitation of CFM-CS transformation, we

do not merge regions containing switch-case constructs

160













HyBF : A Hybrid Branch Fusion Strategy for Code Size Reduction CC ’23, February 25–26, 2023, Montréal, QC, Canada

References

[1] 2020. The LLVM Compiler Infrastructure. MergeFunctions pass, how
it works. http://llvm.org/docs/MergeFunctions.html.

[2] Rafael Auler, Carlos Eduardo Millani, Alexandre Brisighello, Alisson
Linhares, and Edson Borin. 2017. Handling IoT platform heterogeneity
with COISA, a compact OpenISA virtual platform. Concurrency and
Computation: Practice and Experience 29, 22 (2017), e3932. h�ps:

//doi.org/10.1002/cpe.3932

[3] Preston Briggs and Keith D. Cooper. 1994. E�ective Partial Redundancy
Elimination. In Proceedings of the ACM SIGPLAN 1994 Conference on

Programming Language Design and Implementation (Orlando, Florida,
USA) (PLDI ’94). ACM, New York, NY, USA, 159–170.

[4] Milind Chabbi, Jin Lin, and Raj Barik. 2021. An Experience with
Code-size Optimization for Production iOS Mobile Applications. In
IEEE/ACM International Symposium on Code Generation and Optimiza-

tion (CGO). IEEE Press, US, 1–12. h�ps://doi.org/10.1109/CGO51591.

2021.9370306

[5] Wen Ke Chen, Bengu Li, and Rajiv Gupta. 2003. Code Compaction
of Matching Single-Entry Multiple-Exit Regions. In Static Analysis,
Radhia Cousot (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,
401–417. h�ps://doi.org/10.1007/3-540-44898-5_23

[6] Wen-Ke Chen, Bengu Li, and Rajiv Gupta. 2003. Code Compaction
of Matching Single-Entry Multiple-Exit Regions. In Proceedings of the

10th International Conference on Static Analysis (San Diego, CA, USA)
(SAS’03). Springer-Verlag, Berlin, Heidelberg, 401–417.

[7] Cli� Click. 1995. Global Code Motion/Global Value Numbering. In
Proceedings of the ACM SIGPLAN 1995 Conference on Programming Lan-

guage Design and Implementation (La Jolla, California, USA) (PLDI ’95).
Association for Computing Machinery, New York, NY, USA, 246–257.
h�ps://doi.org/10.1145/207110.207154

[8] John Cocke. 1970. Global Common Subexpression Elimination. In
Proceedings of a Symposium on Compiler Optimization. ACM, New
York, NY, USA, 20–24. h�ps://doi.org/10.1145/800028.808480

[9] Keith D. Cooper, Philip J. Schielke, and Devika Subramanian. 1999.
Optimizing for Reduced Code Space Using Genetic Algorithms. In Pro-

ceedings of the ACM SIGPLAN 1999 Workshop on Languages, Compilers,

and Tools for Embedded Systems (Atlanta, Georgia, USA) (LCTES ’99).
ACM, New York, NY, USA, 1–9. h�ps://doi.org/10.1145/315253.314414

[10] B. Coutinho, D. Sampaio, F. M. Q. Pereira, and W. Meira Jr. 2011. Di-
vergence Analysis and Optimizations. In 2011 International Conference

on Parallel Architectures and Compilation Techniques. 320–329.
[11] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.

1989. An E�cient Method of Computing Static Single Assignment
Form. In Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages (Austin, Texas, USA) (POPL
’89). ACM, New York, NY, USA, 25–35.

[12] Anderson Faustino da Silva, Bruno Conde Kind, José Wesley de
Souza Magalhães, Jerônimo Nunes Rocha, Breno Campos Fer-
reira Guimarães, and Fernando Magno Quinão Pereira. 2021. ANG-
HABENCH: A Suite with One Million Compilable C Benchmarks
for Code-Size Reduction. In 2021 IEEE/ACM International Sympo-

sium on Code Generation and Optimization (CGO). 378–390. h�ps:

//doi.org/10.1109/CGO51591.2021.9370322

[13] Saumya K. Debray, William Evans, Robert Muth, and Bjorn De Sutter.
2000. Compiler Techniques for Code Compaction. ACMTrans. Program.

Lang. Syst. 22, 2 (mar 2000), 378–415. h�ps://doi.org/10.1145/349214.

349233

[14] Tobias J.K. Edler von Koch, Björn Franke, Pranav Bhandarkar, and
Anshuman Dasgupta. 2014. Exploiting Function Similarity for Code
Size Reduction. In Proceedings of the 2014 SIGPLAN/SIGBED Conference

on Languages, Compilers and Tools for Embedded Systems (LCTES ’14).
ACM, New York, NY, USA, 85–94. h�ps://doi.org/10.1145/2666357.

2597811

[15] Tianao Ge, Zewei Mo, Kan Wu, Xianwei Zhang, and Yutong Lu. 2022.
RollBin: Reducing Code-Size via Loop Rerolling at Binary Level. In
Proceedings of the 23rd ACM SIGPLAN/SIGBED International Conference

on Languages, Compilers, and Tools for Embedded Systems (San Diego,
CA, USA) (LCTES 2022). Association for Computing Machinery, New
York, NY, USA, 99–110. h�ps://doi.org/10.1145/3519941.3535072

[16] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown. 2001. MiBench: A free, commercially representative
embedded benchmark suite. In Proceedings of the Fourth Annual IEEE

International Workshop on Workload Characterization. WWC-4 (Cat.

No.01EX538). 3–14.
[17] Richard Johnson, David Pearson, and Keshav Pingali. 1994. The Pro-

gram Structure Tree: Computing Control Regions in Linear Time.
SIGPLAN Not. 29, 6 (June 1994), 171–185. h�ps://doi.org/10.1145/

773473.178258

[18] S. L. Keoh, S. S. Kumar, and H. Tschofenig. 2014. Securing the Internet
of Things: A Standardization Perspective. IEEE Internet of Things

Journal 1, 3 (June 2014), 265–275. h�ps://doi.org/10.1109/JIOT.2014.

2323395

[19] Jens Knoop, Oliver Rüthing, and Bernhard Ste�en. 1994. Partial
Dead Code Elimination. In Proceedings of the ACM SIGPLAN 1994

Conference on Programming Language Design and Implementation (Or-
lando, Florida, USA) (PLDI ’94). ACM, New York, NY, USA, 147–158.
h�ps://doi.org/10.1145/773473.178256

[20] Rahman Lavaee, John Criswell, and Chen Ding. 2019. Codestitcher:
Inter-Procedural Basic Block Layout Optimization. In Proceedings of the
28th International Conference on Compiler Construction (Washington,
DC, USA) (CC 2019). Association for Computing Machinery, New York,
NY, USA, 65–75. h�ps://doi.org/10.1145/3302516.3307358

[21] Martin Liška. 2014. Optimizing large applications. arXiv preprint

arXiv:1403.6997 (2014).
[22] Gábor Lóki, Ákos Kiss, Judit Jász, and Árpád Beszédes. 2004. Code

factoring in GCC. In Proceedings of the 2004 GCC Developers’ Summit.
79–84.

[23] HenryMassalin. 1987. Superoptimizer: A Look at the Smallest Program.
In Proceedings of the Second International Conference on Architectual

Support for Programming Languages and Operating Systems (ASPLOS

II). IEEE Computer Society Press, Los Alamitos, CA, USA, 122–126.
h�ps://doi.org/10.1145/36177.36194

[24] Behandelt PostgreSQL. 1996. PostgreSQL. Web resource:

http://www.PostgreSQL.org/about (1996).
[25] Rodrigo Rocha, Pavlos Petoumenos, Charitha Saumya, and Kirshan-

than Sundararajah. 2023. [Artifact] HyBF : A hybrid branch fusion
strategy for code size reduction. (1 2023). h�ps://doi.org/10.6084/m9.

figshare.21976358.v1

[26] Rodrigo C. O. Rocha, Pavlos Petoumenos, Bjorn Franke, Pramod Bhato-
tia, and Michael O’Boyle. 2022. Loop Rolling for Code Size Reduction.
In 2022 IEEE/ACM International Symposium on Code Generation and

Optimization (CGO). 217–229. h�ps://doi.org/10.1109/CGO53902.2022.
9741256

[27] Rodrigo C. O. Rocha, Pavlos Petoumenos, Björn Franke, Pramod Bhato-
tia, and Michael O’Boyle. 2022. Loop Rolling for Code Size Reduction.
In 2022 IEEE/ACM International Symposium on Code Generation and

Optimization (CGO). 217–229. h�ps://doi.org/10.1109/CGO53902.2022.
9741256

[28] Rodrigo C. O. Rocha, Pavlos Petoumenos, Zheng Wang, Murray Cole,
KimHazelwood, and Hugh Leather. 2021. HyFM: FunctionMerging for
Free. In Proceedings of the 22nd ACM SIGPLAN/SIGBED International

Conference on Languages, Compilers, and Tools for Embedded Systems

(Virtual, Canada) (LCTES 2021). Association for Computing Machinery,
New York, NY, USA, 110–121. h�ps://doi.org/10.1145/3461648.3463852

[29] Rodrigo C. O. Rocha, Pavlos Petoumenos, Zheng Wang, Murray Cole,
and Hugh Leather. 2019. Function Merging by Sequence Alignment.
In Proceedings of the 2019 IEEE/ACM International Symposium on Code

166



CC ’23, February 25–26, 2023, Montréal, QC, Canada R. Rocha, C. Saumya, K. Sundararajah, P. Petoumenos, M. Kulkarni, M. O’Boyle

Generation and Optimization (CGO 2019). IEEE Press, Piscataway, NJ,
USA, 149–163. h�ps://doi.org/10.1109/CGO.2019.8661174

[30] Rodrigo C. O. Rocha, Pavlos Petoumenos, Zheng Wang, Murray Cole,
and Hugh Leather. 2020. E�ective Function Merging in the SSA
Form. In Proceedings of the 41st ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation (PLDI 2020). Asso-
ciation for Computing Machinery, New York, NY, USA, 854–868.
h�ps://doi.org/10.1145/3385412.3386030

[31] Charitha Saumya, Kirshanthan Sundararajah, and Milind Kulkarni.
2022. DARM: Control-Flow Melding for SIMT Thread Divergence Re-
duction. In Proceedings of the 20th IEEE/ACM International Symposium

on Code Generation and Optimization (Virtual Event, Republic of Korea)
(CGO ’22). IEEE Press, 28–40. h�ps://doi.org/10.1109/CGO53902.2022.

9741285

[32] Ulrik Pagh Schultz, Kim Burgaard, Flemming Gram Christensen, and
Jørgen Lindskov Knudsen. 2003. Compiling Java for Low-end Em-
bedded Systems. In Proceedings of the 2003 ACM SIGPLAN Confer-

ence on Language, Compiler, and Tool for Embedded Systems (San
Diego, California, USA) (LCTES ’03). ACM, New York, NY, USA, 42–50.
h�ps://doi.org/10.1145/780732.780739

[33] A. Sehgal, V. Perelman, S. Kuryla, and J. Schonwalder. 2012. Man-
agement of resource constrained devices in the internet of things.
IEEE Communications Magazine 50, 12 (December 2012), 144–149.
h�ps://doi.org/10.1109/MCOM.2012.6384464

[34] T.F. Smith and M.S. Waterman. 1981. Identi�cation of common molec-
ular subsequences. Journal of Molecular Biology 147, 1 (1981), 195 –
197.

[35] SPEC. 2014. Standard Performance Evaluation Corp Benchmarks.
http://www.spec.org.

[36] Sean Stirling, Rocha Rodrigo C. O., Kim Hazelwood, Hugh Leather,
Michael O’Boyle, and Pavlos Petoumenos. 2022. F3M: Fast Focused
Function Merging. In 2022 IEEE/ACM International Symposium on Code

Generation and Optimization (CGO). 242–253. h�ps://doi.org/10.1109/

CGO53902.2022.9741269

[37] Sean Stirling, Rocha Rodrigo C. O., Kim Hazelwood, Hugh Leather,
Michael O’Boyle, and Pavlos Petoumenos. 2022. F3M: Fast Focused
Function Merging. In 2022 IEEE/ACM International Symposium on Code

Generation and Optimization (CGO). 242–253. h�ps://doi.org/10.1109/

CGO53902.2022.9741269

[38] Andrew S. Tanenbaum, Hans van Staveren, and Johan W. Stevenson.
1982. Using Peephole Optimization on Intermediate Code. ACM Trans.

Program. Lang. Syst. 4, 1 (Jan. 1982), 21–36. h�ps://doi.org/10.1145/

357153.357155

[39] Linda Torczon and Keith Cooper. 2007. Engineering A Compiler (2nd
ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[40] V. Porpodas, R. C. O. Rocha, and L. F. W. Góes. 2018. VW-SLP: Auto-
vectorization with Adaptive Vector Width. In Proceedings of the 27th

International Conference on Parallel Architectures and Compilation Tech-

niques (Limassol, Cyprus) (PACT ’18). ACM, New York, NY, USA, 12:1–
12:15.

[41] A. Varma and S. S. Bhattacharyya. 2004. Java-through-C compilation:
an enabling technology for Java in embedded systems. In Proceedings

Design, Automation and Test in Europe Conference and Exhibition, Vol. 3.
161–166 Vol.3. h�ps://doi.org/10.1109/DATE.2004.1269224

[42] Mark N. Wegman and F. Kenneth Zadeck. 1991. Constant Propagation
with Conditional Branches. ACM Trans. Program. Lang. Syst. 13, 2 (apr
1991), 181–210. h�ps://doi.org/10.1145/103135.103136

Received 2022-11-10; accepted 2022-12-19

167


	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Code Motion
	2.2 Branch Fusion
	2.3 Limitations of the State of the Art

	3 A Branch Fusion Framework for Code Size Reduction
	3.1 Searching for Conditional Branches
	3.2 Profitability Analysis

	4 Control-Flow Melding
	4.1 Identifying Regions for Melding
	4.2 CFM-CS Code Generation
	4.3 Region Replication

	5 Branch Fusion for SEME Regions
	5.1 Extracting SEME Regions from Branches
	5.2 Merging Two SEME Regions
	5.3 Adjusting Phi-Nodes in the Exit Blocks

	6 Evaluation
	6.1 Code Size Reduction

	7 Related Work
	8 Conclusion
	References

