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1 Introduction

Radiation by a classical system is a well-known phenomenon. Probably the most familiar
example is the radiation of electromagnetic waves by an accelerating point-like particle.
The power loss, in this case, is calculated using the famous Larmor formula [1, 2], which, in
natural units, is given by

Ploss =
1
6π q

2a2, (1.1)

where q is the electric charge of the particle and a is its acceleration. The Larmor formula
in eq. (1.1) has been also generalized to other types of radiation by accelerating classical
sources, such as radiation of massive vector and scalar bosons [3–9].

Generalizations of the Larmor formula to exotic types of radiation are motivated, among
other things, by their applications to new physics searches. The basic idea is that if a new
physics radiation accompanies an accelerating astrophysical object, the power loss effect
can be enhanced thanks to the large number density of an object, even if the coupling
between the new physics and the Standard Model (SM) is very small. This expected
enhancement can be used to obtain constraints on various new physics scenarios using
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astrophysical observations. One example is the radiation of an ultra-light gauged Lµ − Lτ
vector boson [10–13] by pulsar binaries. The measurement of the orbital period decay, when
compared to the prediction due to the gravitational wave (GW) radiation, was used to
constrain the mass of the Lµ − Lτ gauge boson and its couplings to the SM [5, 6, 14–18].

In this paper, we extend the previous work and derive the generalization of the Larmor
formula to the case of fermion-antifermion pair radiation by classical systems. The interest
in this scenario is twofold. First, it is interesting theoretically since it is one more example
of a case where a fermion pair behaves like a boson (other cases are Cooper pairs in
superconductors and the mediation of forces between objects via 2-fermion forces [19–22]).
Thus we can study the coherent radiation of fermions. The key point is that single-fermion
emission changes the source and thus can not be treated classically. Fermion-pair emission,
however, can take place without changing any quantum degrees of freedom of the emitting
system (such as spin). Thus, fermion-pair emission (or emission of any even number of
fermions) can be treated classically.

The second aspect is phenomenological. In particular, we consider radiation by astro-
physical systems. In the SM, as we show below, the effect of the fermion pair radiation is
negligible. In beyond the SM (BSM) theories, however, such processes can be enhanced,
enabling us to probe various new physics scenarios using astrophysical observations. In
particular, fermion-pair radiation can become significant in models with a new light mediator
(a vector or scalar boson) that couples to some light fermionic degrees of freedom. These
fermionic degrees of freedom can be the well-known neutrinos or some new BSM fermions.
The effects of this radiation can become relevant when the mediator is too heavy to be
produced on-shell, but the fermions are much lighter and can be radiated out. Since fermion
pairs can be produced via off-shell mediators, the fermion pair radiation can be used to
probe broader regions of the parameter space of such models.

As a particular application of our result for the fermion-pair radiation, we consider two
models: (i) a model with a gauged Lµ − Lτ symmetry and (ii) a model with a muonophilic
scalar that couples to the muon and the muon neutrino. We study the implications of
these scenarios for the power loss by pulsar binaries and compare our results to the cases of
on-shell vector boson radiation [3, 5, 6] and on-shell scalar radiation [3]. A stark difference
is that the emission of neutrino pairs in a particular harmonic mode of the periodic system
is not kinematically forbidden when the mediator mass becomes larger than the frequency
of that particular mode. In the case of on-shell bosonic radiation, radiation from a harmonic
mode is cut off once the boson mass exceeds the frequency of that particular mode due
to energy conservation. We use the available period decay data for pulsar binaries to
demonstrate how neutrino pair radiation, mediated by BSM bosons, can be used to probe a
broader parameter space than the on-shell boson emission. We, however, do not perform a
comprehensive study of other bounds on the models we consider.

This paper is organized as follows: in section 2, we discuss the general machinery
required for calculating fermion-pair radiation from a classical system. In section 3, we
discuss the main features of the power-loss formula. In section 4, we perform the computation
for the particular case where the classical system is a binary system. We then use available
data to place constraints on the parameters of a few models. We conclude in section 5. The
detailed calculations are shown in the appendix.
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2 Fermion pair radiation by a point-like object

In this section, we outline the calculation of the power of fermion-pair radiation that
accompanies a non-relativistic point-like object. We formulate a general approach to the
derivation of the power loss formula with a focus on the case of elliptical orbits. The
fermion pair radiation is realized in our analysis via the coupling of the classical object to
a massive boson: a vector, or a scalar, which is unstable and decays into a fermion pair.
We consider the emission of Dirac fermions and generalize our result to the case of Weyl
fermions when we discuss the application of our result to the SM in section 3.3. While a
point-like object is a purely theoretical entity, it is worthwhile to perform this calculation
since the approximation of a radiating extended object as a point is valid in the limit of
long-wavelength radiation.

2.1 General formalism

We describe a point-like object as a classical source using classical current, Jµ
cl(x) and

classical density, ρcl(x), which are given by

Jµ
cl(x) = Qδ3(x − x(t))uµ, (2.1)

ρcl(x) = Nδ3(x − x(t)). (2.2)

Here, Q is the total charge of the object under the symmetry of interest, N is the number
of the relevant microscopic constituents, x(t) is its position as a function of time, t, and uµ

is its four-velocity.
Assuming motion in the x − y plane, in the non-relativistic limit, the four-velocity of

the object is given by
uµ = (1, ẋ, ẏ, 0) . (2.3)

We focus on the case of the elliptical motion in the x− y plane, which can be parametrically
described by

x = a(cos ξ − e), y = a
√
1 − e2 sin ξ, Ω t = ξ − e sin ξ, (2.4)

where e is the eccentricity, a is the semi-major axis of the ellipse, and Ω is the fundamental
frequency of revolution. One full revolution around the ellipse corresponds to changing the
parameter ξ from 0 to 2π.

The power loss due to the fermion-pair radiation is calculated using

Ploss =
∫
(ω1 + ω2) dΓ, (2.5)

where ω1 and ω2 are the energies of the emitted fermion and anti-fermion, respectively, and
dΓ is the differential rate of the fermion-pair emission. The rate depends on the type of
mediator, i.e., a scalar or a vector, and the specific form of the classical current or density.

In general, the acceleration is not constant. In the case of periodic orbits, the motion can
be decomposed into harmonic modes with frequencies Ωn = nΩ, where Ω is the fundamental
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ψ, k1

ψ, k2

mediator

Figure 1. Feynman diagram for a fermion pair emission by a classical current.

frequency of revolution. The total emission rate can then be written as a sum of emission
rates at different harmonics n,

dΓ =
∑

n

dΓn . (2.6)

The sum goes over all kinematically allowed harmonics n > 2mψ/Ω, where mψ is the mass
of the emitted fermions. The emission rate at harmonic n is found using

dΓn =
∑

s1,s2

|Mn(s1, s2)|2(2π)δ(Ωn − ω1 − ω2)
d3k1

(2π)3ω1

d3k2
(2π)3ω2

. (2.7)

Here, k1 = (ω1,k1) and k2 = (ω2,k2) are the four-momenta of the fermion and anti-fermion
respectively, and s1(s2) is the spin of the fermion (anti-fermion). The microscopic physics
enters via Mn (s1, s2), which is the matrix element of the fermion-pair emission at harmonic
n. At leading order, this matrix element is obtained from the diagram in figure 1. In the
diagram, ⊗ denotes the classical source, which is given by the classical current, Jµ

cl(x), in
the case of vector mediator and by the density, ρcl(x), in the case of the scalar mediated
radiation. The total power loss via fermion-pair radiation is simply a sum of power losses
over all harmonics

Ploss =
∑

n

Pn, Pn =
∫
(ω1 + ω2) dΓn. (2.8)

Here, Pn is the power loss of the nth harmonic.
In what follows, we consider two types of mediators: a massive gauge boson and a

massive scalar. We only consider s-channel exchange and remark on t-channel exchange at
the end of this subsection.

First, we consider a vector mediator, Aµ, that corresponds to a broken U(1)′ and has
mass mA. This gauge boson couples to a classical current Jµ

cl(x), which has charge Q under
U(1)′. The gauge boson Aµ is unstable and decays into a fermion pair. The terms in the
effective Lagrangian, relevant for the fermion-pair radiation via Aµ, are

Leff ⊃ gAµJ
µ
cl + gqψψ̄γ

µAµψ , (2.9)

where qψ is the U(1)′ charge of the fermion ψ, g is a dimensionless coupling constant, and
Jµ
cl(x) is the classical current defined in eq. (2.1). Both the vector boson and the fermions

are assumed to be massive with masses mA and mψ, respectively. The leading order matrix
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element for the emission, at the n-th harmonic, is given by

Mn(s1, s2) = g2qψ ū(k1, s1)γµv(k2, s2)
i(−ηµν + (k1 + k2)µ(k1 + k2)ν/m2

A)
(k1 + k2)2 − m2

A + imAΓA
Jνcl(Ωn) ,

(2.10)
where Jνcl(Ωn) is the Fourier transform of Jνcl(x), given by

Jνcl(Ωn) =
Ω
2π

∫ 2π/Ω

0
dt
∫

d3x ei(nΩt−p·x)Jνcl(x) (2.11)

with p = k1 + k2, ΓA is the decay width of the gauge boson, and 2π/Ω is the period. We
assume that the decay into a ψ̄ψ pair is the only decay channel for the gauge boson Aµ,
and that the fermion mass mψ is negligible compared to the gauge boson mass mA. Under
these assumptions, the decay width of Aµ is given by

ΓA =
g2q2ψmA

12π . (2.12)

The other case we consider is that of a scalar mediator, φ, for which the relevant terms
in the Lagrangian are

L ⊃ gφρcl + g′φψ̄ψ, (2.13)

where g is the dimensionless coupling between the scalar φ and the classical source, g′ is
the Yukawa coupling of the fermion ψ to the scalar φ, and ρcl(x) is the number density of
relevant particles in the classical source. Both the scalar and the fermions are assumed
to be massive with masses mφ and mψ, respectively. The matrix element in this case is
given by

Mn(s1, s2) = gg′ū(k1, s1)v(k2, s2)
iρcl(Ωn)

(k1 + k2)2 − m2
φ + imφΓφ

, (2.14)

where ρcl(Ωn) is the Fourier transform of ρcl(x),

ρcl(Ωn) =
Ω
2π

∫ 2π/Ω

0
dt
∫

d3x ei(nΩt−p·x)ρcl(x), (2.15)

and the decay width of the scalar is Γφ. As in the case of the vector mediator, we assume
that the fermionic decay mode is the only available mode, and the fermion mass mψ can be
neglected compared to the mass of a scalar mφ. Thus we have

Γφ = g′2mφ

8π . (2.16)

So far, we have only considered the s-channel contribution to the fermion pair radiation.
Fermion pair radiation via t-channel process mediated by a vector or scalar is also a
possibility. Such contributions, however, are highly suppressed for mS $ Ω,mM , where
mS is the mass of the particles in the source that couple to the fermion pairs ψ̄ψ at the
microscopic level, and mM is the mediator mass. Since the emitted fermions have energy
of the order of Ω, the fundamental frequency of the system, the t-channel contribution
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to the momentum entering the propagator is of the order of mS − Ω. Thus the t-channel
propagator is schematically given by

Π ∼ 1
(mS − Ω)2 − m2

M

. (2.17)

In the case where mS is much larger than both Ω and mM , the propagator is dominated by
the mass of the source particles, and the process is heavily suppressed. In this paper, we
assume that the mass hierarchy mS $ Ω,mM and neglect the t-channel contributions to
the fermion pair radiation everywhere.

2.2 Power loss formulae
Using eqs. (2.7)–(2.14), we can calculate the power loss via fermion-pair radiation from
a point-like object moving in an elliptical orbit. The detailed derivations are shown in
appendix A, and here we only quote the final result. The power loss due to fermion-pair
emission in harmonic n > 2mψ/Ω, for the cases of the vector and scalar mediator, can be
written as

PA
n =

g4q2ψQ
2

12π3 a2Ω4BA
n (nA, nψ, nΓ), (2.18)

P φ
n = g2g′2N2

12π3 a2Ω4Bφ
n(nφ, nψ, nΓ). (2.19)

The functions BM
n (nA, nψ, nΓ), where M = A,φ, are given by

BM
n (nM ,nψ,nΓ)≡

(

J ′
n(ne)2+

1−e2

e2
Jn(ne)2

)∫ n−nψ

nψ
dx FM (x,n,nM ,nψ,nΓ). (2.20)

Here
nM ≡ mM/Ω, nψ ≡ mψ/Ω, nΓ ≡ ΓM/Ω, (2.21)

and Jn(ne) is a Bessel function of order n with argument ne. The integration variable in
eq. (2.20) is defined by x ≡ ω1/Ω, where ω1 is the energy of one of the final-state fermion.
In what follows, for brevity, we use the notation

FM (x) ≡ FM (x, n, nM , nψ, nΓ), BM
n ≡ BM

n (nM , nψ, nΓ). (2.22)

The functions FM (x) have the general form

FM (x) = FM
0 (x) + FM

1 (x)
nMnΓ

[
tan−1

(
a(x) + b(x)

nMnΓ

)
− tan−1

(
a(x) − b(x)

nMnΓ

)]

+ FM
2 (x) tanh−1

(
2a(x)b(x)

a(x)2 + b(x)2 + n2
Mn2

Γ

)

, (2.23)

with a(x) and b(x) being universal for both gauge boson and scalar mediators,

a(x) = 2n2
ψ − n2

M + 2nx − 2x2 ,

b(x) = 2
√
x2 − n2

ψ

√
(n − x)2 − n2

ψ . (2.24)
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The functions FM
0 (x), FM

1 (x), and FM
2 (x) are different for the two cases. For a gauge boson

mediator, we obtain

FA
0 (x) = b(x)/2n ,

FA
1 (x) = 1

4n
(
n4
A + 4n2n2

ψ − n2
An

2
Γ + 2n2

An
2 − 4nxn2

A + 4x2n2
A

)
,

FA
2 (x) = 1

2n
(
n2
A + n2 − 2nx+ 2x2

)
, (2.25)

while for a scalar mediator,

F φ
0 (x) = −b(x)/2n ,

F φ
1 (x) =

1
4n
(
n2
φn

2
Γ + (n2 − n2

φ)(n2
φ − 4n2

ψ)
)
,

F φ
2 (x) =

1
4n
(
n2 + 4n2

ψ − 2n2
φ

)
. (2.26)

Eqs. (2.18)–(2.26) are the main results of our work. Analytical integration of FA(x)
and F φ(x) is challenging, but it still can be performed in certain limits. In section 3.2, we
consider two limiting cases: the case of nM ' 1, which reproduces the Larmor formula, and
nM $ 1, which is relevant for the fermion pair radiation in the SM. In general, however,
calculating the power loss requires numerical analysis. We perform such an analysis in
section 4 when we discuss a particular phenomenological application of our result.

3 Discussion of the power-loss formula

The power loss due to fermion-pair emission by a classical source on an elliptical orbit
is given by eqs. (2.18)–(2.26). Below we discuss the main features and the asymptotic
behavior of this result.

3.1 General features of the power-loss formula

We start with the general features that hold for both the vector and scalar cases.
• The radiation rate is proportional to the charge-squared; that is, the functions PA

n

and P φ
n depend on Q2 and N2, respectively. This is a manifestation of the fact that the

fermion-pair radiation that we are considering is coherent.
• The form of FM (x), with M = A,φ, in eq. (2.23) is somewhat general. We show

in appendix A that the overall form of FM (x), at the tree level, is the same for any
renormalizable theory that couples fermions to a classical source moving in an elliptical
orbit. Note that the functions a(x) and b(x) defined in eq. (2.24) are purely kinematic
and thus have the same form for any theory of fermion pair emission, while the form of
FM
0 (x), FM

1 (x), and FM
2 (x) vary with the theory considered. For instance, considering

non-renormalizable interactions would lead to a different momentum dependence of the
matrix element that could, in principle, change the form of FM (x).

• The power loss for both vector and scalar mediators behaves qualitatively the same
way despite the different functional forms of FA

i (x) vs. F φ
i (x), with i = 0, 1, 2. This is not

– 7 –
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surprising since there is nothing fundamentally different between the matrix elements for
the vector and scalar cases.

• Energy conservation implies that the functions FM (x) are invariant under x → (n−x)
exchange. The reason is that the total energy radiated in fermion pairs in the n-th harmonic
is nΩ. The transformation x → (n − x) exchanges the energies of the emitted fermion and
anti-fermion, and the emission rate is the same regardless of the order in which the integrals
are carried out. This invariance results from the fact that the fermion-antifermion emission
from a classical system is essentially a 2-body decay. Note that this has nothing to do with
the details of the considered model.

• For nA < n, the power loss has a very weak dependence on nA. This is true for
the particular models that we chose here but is not expected to be true in general. For
an example when this is not the case, see the discussion of Proca fields in ref. [6], where
dependence on nA appears due to the absence of gauge symmetry.

• There is an interplay of three energy scales: the mass of the mediator, mM , the
mass of the fermion, mψ, and the frequency of the harmonics, nΩ. The fermions cannot
be produced when 2mψ > nΩ. In the opposite limit, when 2mψ < nΩ, the production
rate depends strongly on the mediator mass. For mM < 2mψ < nΩ, fermion production
is strongly suppressed since the on-shell boson is kinematically forbidden from decaying
into fermions. (Note that strictly speaking, our result cannot be straightforwardly applied
in this case as everywhere we assume ΓM > 0.) For 2mψ < mM < nΩ, the fermions are
produced via decay of the on-shell mediator. Thus the power loss in the fermion-pair
radiation is equal to that of the on-shell boson radiation. The region of the parameter space
where mM > nΩ > 2mψ is of the most interest to us, as in this region the fermions are
kinematically allowed, the mediator is off-shell, and therefore the fermion pair emission is
most significant.

• As an example that illustrates the qualitative features of the power loss, consider
figure 2. It shows BA

n , defined in eq. (2.20), as a function of nA for massless fermions for
the first four harmonics. The most striking feature of the plots is a sharp drop at nA ∼ n.
This behavior follows from the fact that at nA ∼ n, the radiation regime switches from
the radiation dominated by on-shell boson production (nA < n), which is proportional to
g2 to the off-shell production (nA > n) proportional to g4. The power loss in the regime
dominated by fermion-pair radiation is thus suppressed by g2 compared to the power loss
in the regime dominated by the on-shell boson radiation. The power loss in the case of the
scalar mediator exhibits the same behavior.

• Comparing our results to the cases of vector [3, 5, 6] and scalar radiation [3], we note
that from kinematic considerations alone, boson radiation drops to zero as soon as nM = n.
This is not what we observe for the fermion-pair emission. In the case of fermion-pair
radiation, off-shell boson production is possible, even though there is an extra suppression
by g2 for a vector and g′2 for a scalar compared to on-shell boson radiation. As a result,
the regime nM > n opens up new regions of the parameter space for each harmonic n and
is of particular phenomenological interest to us.

• Next, we remark on the dependence of the power loss on the eccentricity in the case
of orbits close to circular. For that, we note that the eccentricity only enters the power loss
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Figure 2. BA
n vs nA for fixed eccentricity, e = 10−3, coupling constant g = 10−15, and massless

final state fermions, mψ = 0. See eqs. (2.20)–(2.25) for the definition of BA
n .

through the Bessel function prefactor of BM
n in eq. (2.20), which we denote as K(n, e),

K(n, e) = J ′
n(ne)2 +

1 − e2

e2
Jn(ne)2 . (3.1)

We recall that Jn(z) and J ′
n(z) behave asymptotically, in the limit z ' 1, as

Jn(z) ≈ 1
n!

(
z

2

)n

, J ′
n(z) ≈ n

n!
1
2

(
z

2

)n−1
≈ n

z
Jn(z), z ' 1. (3.2)

Using eq. (3.2), we find for the eccentricity dependent prefactor K(n, e), in the limit
ne ' 1, that

K(n, e) = J ′
n(ne)2 +

n2 − (ne)2
(ne)2 Jn(z)2 ≈ J ′

n(ne)2 +
n2

(ne)2Jn(z)
2

= 2n
2

z2
Jn(ne)2 =

(ne)2n−2

22n−1
n2

(n!)2
= (ne)2n−2

22n−1 ((n − 1)!)2
. (3.3)

Thus we learn that in the limit ne ' 1, prefactor K(n, e) scales with the eccentricity as

K(n, e) ∝ (ne)2n−2 . (3.4)

This shows that for small eccentricities (and thus orbits close to circular ones), the con-
tributions from higher harmonics die away very fast as n increases. For n = 1 and e ' 1,
we have K(1, e) ≈ 1/2. For each subsequent harmonic power drops by a factor of order e2,
until the factorial in the denominator of K(n, e) (see eq. (3.3)) starts to dominate. Then
the contributions from the higher harmonics start to decay away even faster. Figure 2
illustrates the behavior of the power loss for the first four harmonics in the case of small
eccentricity e = 10−3.

• The case of highly eccentric orbits e ∼ 1 is significantly more involved. First, the
contributions from different modes do not follow the simple hierarchy of the low eccentricity
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Figure 3. Left: BA
n as a function of n in the regime where the radiation is dominated by on-shell

boson production. Different colors correspond to different values of eccentricity. The values of nψ,
nA and g are fixed. Right: BA

n as a function of n for a highly eccentric orbit with e = 0.6 in the
regime where the radiation is dominated by off-shell boson production.

case. The contributions from higher modes can be of the same order or even larger than
the first mode depending on the values of other parameters. See the left panel of figure 3
to compare the n-dependence of BA

n for different eccentricity values. Second, as figure 3
demonstrates, the hierarchy of modes in the on-shell dominated part of the parameter space
does not carry into the off-shell dominated region. Consider the green line corresponding to
a highly eccentric orbit with e = 0.6. For nA = 10−1 (left panel), the maximum contribution
to the power loss comes from the mode with n = 2 and the first five modes contribute at
about the same order. The situation is drastically different for nA = 50 (right panel). The
maximum contribution to the power loss comes from the n = 8 mode. We learn that for
e ∼ 1, generally speaking, the power loss per mode first increases as we increase n and then
starts decreasing after reaching a certain value of n. Where this maximum occurs depends
on other parameters.

We conclude the discussion of the power loss formula by noting that it is derived under
an implicit assumption that the environment surrounding the classical system contains a
negligible number of fermions ψ and ψ̄ and thus the effect of the Pauli blocking on the
radiation can be neglected. This is a good approximation in the case of ultralight fermions
as they propagate at speeds close to the speed of light and are not expected to accumulate
in the vicinity of the system.

3.2 Asymptotic behavior for the case of circular orbits
We now move to the discussion of the asymptotic behavior of the power loss in two limiting
cases mM ' Ω and mM $ Ω, where mM is the mass of the mediator, M = A, φ. In this
subsection, for simplicity, we consider the straightforward case of circular orbits (e = 0) and
massless fermions (mψ = 0). For the eccentricity dependent part of the power loss, K(n, e),
we have

lim
e→ 0

K(n, e) = lim
e→ 0

(

J ′
n(ne)2 +

1 − e2

e2
Jn(ne)2

)

= 1
2δn,1. (3.5)

Thus the only mode that contributes to the power loss in the circular orbit limit is the
mode with n = 1.
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First, let us consider the regime of light mediators, mM ' Ω, or equivalently nM ' 1.
In this limit, FM (x) defined in eq. (2.23) is dominated by the second term. We thus neglect
the first and the third terms of FM (x) and take the nM → 0 limit in the second term. After
that, the integral in (2.20) can be performed analytically, yielding the following asymptotic
expressions for the power radiated via vector and scalar, respectively:

PA(mA ' Ω) ≈ g2

6πQ
2a2Ω4, (3.6)

P φ(mφ ' Ω) ≈ g2

12πN
2a2Ω4. (3.7)

The asymptotic behavior that we find for PA and P φ reproduces the known results for the
on-shell vector [3, 5, 6] and scalar [3] radiation. This is expected as, in the regime mM ' Ω,
the fermion pair radiation is dominated by on-shell boson production. Additionally, eq. (3.6)
also reproduces the Larmor formula for the power of the electromagnetic wave radiation
given in eq. (1.1). To see this, recall that the acceleration on a circular orbit is equal to
aΩ2, where a is the radius of the orbit and Ω is the frequency of revolution.

Next, we study the regime when on-shell boson production is kinematically forbidden,
and the fermion pair radiation takes place through the off-shell mediator. This is the limit
of heavy mediators, mM $ Ω, or equivalently nM $ 1. In this case, we take the nM → ∞
limit of FM (x) and find that the resulting expression can be integrated analytically. Upon
performing the integration, we find that the vector and scalar-mediated radiation behave as

PA(mA $ Ω) ≈
g4q2ψQ

2

210π3
a2Ω8

m4
A

= 1
35π2

g2q2ψΩ4

m4
A

× PA(mA ' Ω), (3.8)

P φ(mφ $ Ω) ≈ g2g′2N2

840π3
a2Ω8

m4
φ

= 1
70π2

g′2Ω4

m4
φ

× P φ(mφ ' Ω). (3.9)

We learn that in the limit of heavy mediators, the fermion pair radiation is suppressed
compared to on-shell boson radiation by the following factors:

1. A factor of g2q2ψ or g′2, which, at the amplitude level, comes from the coupling of the
mediator to the fermion pair.

2. A factor of Ω4/m4
φ, which comes from the propagator of the mediator.

3. A phase space factor of 1/35π2 or 1/70π2, which arises from the fact that there are
more particles in the final state in the case of the off-shell fermion pair production
than in the case of the on-shell boson production. In the on-shell case, a single vector
or scalar boson is radiated whereas in the off-shell case, we have two fermions.

Note that eqs. (3.8) and (3.9) can be interpreted as integrating out the heavy mediator,
resulting in an effective 4-Fermi interaction with a coefficient proportional to g2/m2

A or
gg′/m2

φ. Thus, it is also valid for t-channel and u-channel interactions.
Last, we compare the results of the vector to that of the scalar mediators. Consider

mA = mφ, Q2 = N2 and g′ = gqψ. In this case, the power radiated via the vector mediator
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is greater than the power radiated via the scalar mediator in both radiation regimes. In
particular, we have

PA(mA ' Ω)
P φ(mφ ' Ω) ≈ 2, PA(mA $ Ω)

P φ(mφ $ Ω) ≈ 4. (3.10)

These factors are related to the different number of degrees of freedom between the vector
and scalar cases. There are two polarization states for an on-shell massless vector, while
the scalar has only one. For the deeply off-shell mediator, the correspondence is not so
clear, but it seems to us that it is related to the fact that off shell gauge boson, Aµ, has
four degrees of freedom

3.3 Fermion-pair radiation in the SM

The expression in eq. (3.8) can be used to estimate the power loss due to fermion pair
radiation by classical sources within the SM. In this subsection, we consider neutrino pair
radiation mediated by Z-boson. The contribution due to W -boson mediated pair emission
is qualitatively the same as the Z-boson contribution and is expected to be of the same
order. The main difference between the two contributions is due to the fact that W -boson
mediated radiation is only relevant for leptons in the source while Z-boson contribution is
present for all types of fermions.

Consider a source made of NΨ fermions of type Ψ with the total weak charge Q = NΨqΨ.
To apply eq. (3.8) to the neutrino pair radiation in the SM, we need to recall that eq. (3.8)
was derived under the assumption of vectorial couplings, while the SM is a chiral theory.
The relevant parts of the SM Lagrangian are different from the Lagrangian in eq. (2.9); in
particular, in the SM we have

LSM ⊃ −i
g

2 cos θW

(
Ψ̄γµ(cΨ

V − cψA)Ψ + ν̄γµ(cνV − cνA)ν
)
Zµ. (3.11)

Thus eq. (3.8) yields the following expression for the Z-boson mediated power loss due to
the neutrino pair radiation in the SM

PZ(mZ $ Ω) ≈ 1
210π3

g4q2νq
2
ΨN

2
Ψ

16 cos4 θW
a2Ω8

m4
Z

, (3.12)

where we perform the replacement g → g/(2 cos θW ) in eq. (3.8) and define

q2ψ = q2ν = (cνV )2 + (cνA)2, qΨ = cΨ
V , mA = mZ . (3.13)

Note that, for the source, only vectorial coupling cΨ
V enters the power loss. This is because

we consider coherent radiation.
The expression in eq. (3.12) can be rewritten as

PZ(mZ $ Ω) ≈ G2
effq

2
Ψq

2
νN

2
Ψ
a2Ω8

210π3 , (3.14)

where Geff =
√
2GF and GF is the Fermi constant. When the power loss is written in

the form of eq. (3.14), it becomes clear that it is the same as what one would obtain by
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performing the calculation for the effective Fermi theory with the effective Lagrangian
given by

LZ
eff ⊃ Geff[Ψ̄γµ(cΨ

V − cΨ
Aγ

5)Ψ][ν̄γµ(cνV − cνAγ
5)ν]. (3.15)

This, of course, is not surprising as we consider radiation at the energy Ω, which is much
less than the electroweak scale, Ω ' mZ . In fact, the result in eq. (3.14) applies to any
effective 4-Fermi interaction. While we derive our results for s-channel exchange, in the
limit where the mediator is much heavier than the orbit frequency, we do not need to
distinguish between s-channel and t-channel. Thus, eqs. (3.12) and (3.14) can also be used
for t-channel W -exchange in the SM.

Finally, we discuss the situation when there are several different types of fermions in the
source. In this case, we need to first add all the amplitudes that correspond to the radiation
by different fermions Ψ (for leptons, we add both Z-boson and W -boson contributions).
Then, we square the sum of the relevant amplitudes to obtain the total emission rate.

We end this subsection with the following remark. The power loss due to neutrino
pair radiation in the SM was estimated in ref. [4] to be PZ

SM ∼ G2
FΩ6. Using the explicit

calculation, however, we find that PZ
SM ∼ G2

Fa
2Ω8. That is, there is an extra factor of a2Ω2

compared to the estimation of ref. [4]. In fact, our result includes the semi-major axis a as
an additional energy scale of the system.

4 Fermion pair radiation by pulsar binaries

We now move to discuss the phenomenological applications of our results to astrophysical
systems. We focus on the neutrino-pair emission from pulsar binaries [23–33]. A pulsar
binary is a binary system of a pulsar and companion. This choice is motivated by the
availability of extensive period decay data for such systems. In particular, we apply our
results to two binaries: Hulse-Taylor binary PSR B1913+16 [34–36] (a system of a pulsar
and a neutron star) and PSR J1738+0333 [29, 37] (a system of a pulsar and a white dwarf).
The parameters characterizing the two systems are summarized in table 1.

In what follows, we first discuss the applicability of our results of section 2.2 to pulsar
binaries in general. Then we estimate the contribution to the power loss due to neutrino
pair emission in the SM and show that it is negligible compared to the gravitational wave
radiation. We then consider neutrino pair radiation in two BSM scenarios via ultralight
vector and scalar mediators and apply our results to the pulsar binaries with the parameters
in table 1.

4.1 Pulsar binaries as a classical source

The results for the fermion pair radiation, summarized in eqs. (2.18)–(2.26), were derived for
the case of classical current describing non-relativistic point-like object following an elliptical
orbit. To justify the application of our results to pulsar binaries, we note the following:

1. A pulsar binary can be treated as a classical source. The typical size of a pulsar binary
can be estimated as the size of the semi-major axis which varies between 106 and 108
km, that is, a ∼ 1024 − 1026 GeV−1. The wavelength of the radiation is determined by
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Binary system PSR B1913+16 [36] PSR J1738+0333 [29]
Eccentricity e 0.6171340(4) 3.4(11) × 10−7

Pulsar mass m1 (M$) 1.438(1) 1.46(6)
Companion mass m2 (M$) 1.390(1) 0.181(8)
Binary period Tb (GeV−1) 4.240 × 1028 4.657 × 1028

Intrinsic period decay Ṫb −2.398(4) × 10−12 −2.59(32) × 10−14

Predicted period decay due to GW ṪGW −2.40263(5) × 10−12 −2.77(19) × 10−14

Ratio of period decays R = Ṫb/ṪGW 0.9983(16) 0.94(13)

Orbital frequency Ω = 2π/Tb (GeV) 1.482 × 10−28 1.349 × 10−28

Semi-major axis a (GeV−1) 9.878 × 1024 8.77 × 1024

Table 1. The relevant parameters for the PSR B1913+16 and PSR J1738+0333 binary systems.
Figures in parenthesis are the 1σ uncertainties in the last quoted digit, where all the uncertainties
are symmetrized. M" is the mass of the sun. The relative experimental error of the binary period
Tb is ∼ 10−12 for PSR B1913+16, and ∼ 10−11 for PSR J1738+0333. The double line separates
binary parameters quoted in refs. [29, 36] and the ones we derive. Values of the semi-major axis a
are calculated using eq. (4.5).

the fundamental frequency of the orbit, and for a typical pulsar binary with periods in
the range of 10−1 − 103 days, the wavelength is λ ∼ 1028 − 1032 GeV−1. Thus, λ $ a

and we conclude that pulsar binaries can be treated as classical radiation sources.

2. Stars of the pulsar binary can be treated as point-like objects. Typical sizes of stars
in a binary vary from r ∼ 10 km ∼ 1019 GeV−1, for neutron stars, and r ∼ 103 km ∼
1021 GeV−1, for white dwarfs. Thus r ' a, λ and both pulsar and its companion
can be treated as point-like objects. Moreover, r ' λ implies the coherence of the
radiation.

3. The motion of the pulsar and its companion in the binary system is non-relativistic.
We can roughly estimate the orbital velocity of the stars in a binary as v ∼ aΩ, which
for characteristic values quoted above implies v ! 10−2.

4. For a wide range of pulsar binary systems, the observed power loss is such that it
has no significant effect on the eccentricity of the orbit. Thus we can treat the orbit
as elliptical over the time of observation. For example, the Hulse-Taylor binary has
e ∼ 1, with Tb(de/dt) ! 10−11, where Tb is the binary period and de/dt is the time
derivative of the eccentricity [36].

Now that we have established that the results of section 2.2 can be applied to pulsar
binaries, we proceed in two steps. First, we modify our expressions for the classical current
and number density in eqs. (2.1) and (2.2) to the case of two point-like objects on an
elliptical orbit. Second, we perform the standard reduction of the two-body problem to a
one-body problem.
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We write the classical current and number density as

Jµ
cl(x) =

∑

b=1,2
Qb δ

3(x − xb(t))uµb , (4.1)

and
ρcl(x) =

∑

b=1,2
Nb δ

3(x − xb(t) , (4.2)

respectively. Here, b = 1, 2 is the index that labels the stars of the binary system, xb(t) is
the position of the b-th star at time t, and uµb is its four-velocity.

Next, we move to the binary system’s Center-of-Mass (CoM) frame. For that, we define
R, the coordinate of center of mass, and r, the distance between the two stars,

R = m1
m1 +m2

x1 +
m2

m1 +m2
x2, r = x1 − x2 , (4.3)

where m1 and m2 are the masses of the two stars.
As we are not concerned with the translational motion of the system as a whole, which

is described by R, we can solely focus on r. This is the standard two-body to one-body
problem reduction for central force motion. The non-relativistic classical trajectory of the
stars in the CoM frame can thus be described by the vector r = (x, y, 0) and is given by
elliptical orbits as in eq. (2.3):

x = a(cos ξ − e), y = a
√
1 − e2 sin ξ, Ωt = ξ − e sin ξ, (4.4)

where e is the eccentricity, a is the semi-major axis of the elliptical orbit, and the fundamental
frequency of revolution is given by

Ω =
√

GN (m1 +m2)
a3

. (4.5)

The results of eqs. (2.18)–(2.26) generalize to the case of binary systems via the following
replacements that follow from the 2-body to 1-body reduction procedure:

Q2 → M2
(
Q1
m1

− Q2
m2

)2
, N2 → M2

(
N1
m1

− N2
m2

)2
, (4.6)

where
M = m1m2

m1 +m2
(4.7)

is the reduced mass of the binary system. As a result we obtain the following expressions
for the power loss in n-th harmonic for a vector and scalar mediators respectively:

PA
n =

g4q2ψ
12π3M

2
(
Q1
m1

− Q2
m2

)2
a2Ω4BA

n (nA, nψ, nΓ), (4.8)

P φ
n = g2g′2

12π3M
2
(
N1
m1

− N2
m2

)2
a2Ω4Bφ

n(nφ, nψ, nΓ), (4.9)

where the functions BA
n and Bφ

n are defined in eqs. (2.20)–(2.26).
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4.2 Neutrino pair radiation by pulsar binaries in the SM

In the SM, for the pulsar binary, the power loss via electroweak mediators is discussed in
section 3.3. Here, we simply generalize it to the case of 2-body motion using eq. (4.6). We
obtain the following expression for the power loss in neutrino pair radiation via Z-exchange
in the SM

PSM ≈
G2

F

(
cνV

2 + cνA
2
)

105π3 cos2 θW
M2a2Ω8



 1
m1

∑

i=n,p,e,...

ciV N1iQ1i − 1
m2

∑

i=n,p,e,...

ciV N2iQ2i




2

(4.10)
where the sum goes over all microscopic constituents of binary stars, such as neutrons (n),
protons (p), electrons (e), etc. To perform a numerical estimate, we consider a pulsar binary
with a neutron star companion and assume that all of the neutron star mass is in the form
of neutrons. We consider a typical pulsar-neutron star binary with

m1,2 ∼ M$ ∼ 1057GeV, a ∼ 1025 GeV−1, Ω ∼ 10−28 GeV, (4.11)

and non-zero dipole moment

M2
(
Q1
m1

− Q2
m2

)2
∼ Q2

1,2 ∼ 10114, (4.12)

where Qb = Nb(n) − Nb(n̄) ≈ Nb(n) ≈ M$/mn ≈ 1057, with b = 1, 2, are the neutron
charges of the neutron stars, Nb(n) and Nb(n̄) are the numbers of neutrons and anti-neutrons
respectively, mn is the neutron mass. Using cνV = cνA = 1/2, cnV = −1/2, and the measured
values of mn, GF , and θW , we find the following numerical estimate for the radiated power

PSM ∼ 10−56eV2. (4.13)

To see if the above result is significant, we compare it to the power loss in the form of
gravitational wave (GW) radiation. Using the quadrupole formula for the GW radiation [38]
for the case of circular orbit (e = 0) we have

PGW = 32
5 GNM2a4Ω6 ∼ 108GeV2 (4.14)

where GN is Newton’s gravitational constant. The rough estimates in eqs. (4.13) and (4.14)
show that, in the SM, the fermion-pair radiation by astrophysical objects is completely
negligible compared to the gravitational wave radiation.

We close the subsection with one remark. Within the SM, neutron stars also emit
synchrotron radiation of fermion-antifermion pairs in their self-produced magnetic fields, as
shown in ref. [39]. This phenomenon is different from the one we consider here. Synchrotron
radiation is an incoherent effect. Thus, the power loss, in this case, scales as N , the number
of neutrons in the star. In the case we are considering, the radiation is coherent and comes
from the star’s acceleration as a whole. Then, the net power that is radiated is proportional
to N2.
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4.3 New physics constraints from the neutrino pair radiation by pulsar
binaries

Since extra radiation in the SM is negligible, any observed deviation from the gravitational
wave radiation would be strong evidence for the physics beyond the SM. In particular,
fermion-pair radiation can be enhanced in BSM models with light vector or scalar mediators,
with mA,φ ' mZ . To explain why such light bosonic states have evaded detection so
far, we must require that they have small enougth couplings. The smallness of couplings,
however, still can be compensated in cases where the object has a large charge under the
new symmetries. This can be the case for astrophysical objects.

In particular, in this subsection, we demonstrate how our results can be used to derive
new physics bounds from the neutrino pair radiation by pulsar binaries. As we mentioned
above, we use two distinct pulsar binary systems, the Hulse-Taylor binary PSR B1913+16
and PSR J1738+0333. The relevant properties of the two systems are summarized in
table. 1. The Hulse-Taylor binary is a pulsar binary with a neutron star companion, it is
highly eccentric, and the mass ratio of the two stars is close to 1. The PSR J1738+0333,
on the other hand, is a pulsar-white dwarf binary with an almost circular orbit and a
high pulsar-to-companion mass ratio. For both systems, the data on the orbital period
decay is shown in table 1. The power loss for both of them lies within 1σ of the general
relativity prediction.

In our analysis, we exploit the fact that typical neutron stars contain a very large
number of muons, N(µ) ∼ 1055 [40–43]. Thus, the effects of muonophilic new physics can
be significantly enhanced. The presence of the large muon number in neutron stars is
attributed to the fact that when the electron chemical potential, µe, is larger than the muon
mass µe > mµ, it becomes energetically favorable for relativistic electrons at the Fermi
surface to decay into muons via e− → µ− + ν̄µ + νe. Moreover, the muonic beta-decay
n → p+ µ− + ν̄µ and inverse beta-decay p+ µ− → n+ νµ reactions become energetically
favorable, while the muon decay µ− → e− + ν̄e + νµ is forbidden by Fermi statistics.

Being motivated by the neutron star muonic content, we consider neutrino pair emission
by pulsar binaries via the following two types of BSM mediators:

• U(1)Lµ−Lτ massive gauge boson with

L ⊃ gAα (µ̄γαµ − τ̄ γατ + ν̄µγ
ανµ − ν̄τγ

αντ ) , (4.15)

• Massive muonophilic scalar with

L ⊃ gφµ̄µ+ g′φν̄µνµ . (4.16)

We emphasize that we do not consider any specific model here and we are not concerned
with any particular UV completion. We consider the interaction terms above in order to
provide proof of principle that fermion-pair radiation can be used to probe new physics,
but we do not consider the details of such new physics in this work.

It is known that at least two of the SM neutrinos are massive, while the third neutrino
can be very light or massless. This means that only one neutrino mass eigenstate can be
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radiated in the two scenarios we consider here. A realistic treatment of neutrino emission
would include insertions of the corresponding PMNS matrix elements [44], resulting in an
additional factor of order one. Since we already neglect an O(1) factor coming from the
estimate of the muon number density in the neutron stars, we also ignore any PMNS factors
in the rest of this section.

Note also that in a theory with general couplings to the left and right-handed neutrinos,
i.e., gAαν̄γα(cV − cAγ5)ν, the results for the power loss are qualitatively similar. Moreover,
in the case of massless neutrinos, the power loss for the case of the general coupling is the
same as the power loss for the case of purely vectorial coupling up to g2 → g2(c2A + c2V )
replacement. This is why in what follows, for simplicity, we consider the case of the vectorial
coupling only.

These two BSM models imply the possibility for the neutrino pair radiation at rates
enhanced compared to the SM. Our results from eqs. (4.8) and (4.9) thus can be used to
set bounds on the coupling constants and masses of the new bosons.

The presence of the muonophilic new physics, however, not only alters the radiation
patterns of pulsar binaries, but it also has important implications for the neutron star’s
equation of state. In particular, the presence of a repulsive (vector) or attractive (scalar)
interaction between muons could affect the muon number, which depends on the coupling g

to the new physics. In the following, we write the muon number as N(µ, g) to keep the
dependence on g explicit.

The number of muons becomes g-dependent as the interactions change the muon
chemical potential. The muon interaction due to the Lµ − Lτ vector boson is repulsive,
and thus the chemical potential is increased compared to its SM value by ε ∼ g2N(µ, g)/R,
where R is the radius of the neutron star the boson mass is neglected. When the coupling g

is small, such that ε ' mµ, the effect of the new interaction is insignificant, and the number
of muons is approximately given by its value in the limit of no interaction N(µ, g = 0).
When the interaction is strong, such that ε $ mµ, it becomes energetically less favorable
to have muons inside the neutron star and thus N(µ, g) < N(µ, g = 0).

Similar reasoning applies to the case of the scalar mediator. The only difference is
the sign of the interaction. In the scalar case, the interaction between muons is attractive.
Thus the muon chemical potential is decreased by ε. This leads to the increase of the muon
number for larger couplings N(µ, g) > N(µ, g = 0). In both cases, the change from the
regime when N(µ, g) ≈ N(µ, g = 0) to the situation when the interaction starts to affect
the muon number happens for couplings such that ε ∼ mµ, or numerically g ∼ 10−18 for a
typical neutron star [5].

However, in what follows, we ignore the effect of the new physics on the muon number.
Everywhere in our analysis, we use the muon number in the limit of no new physics
interaction, that is we set N(µ) = N(µ, g = 0) ∼ 1055 [40–43]. In principle, g-independence
of muon number can be achieved in models with both vector and scalar mediators with
fine-tuned coupling constants such that the repulsive and attractive interactions cancel
each other.

To apply eqs. (4.8) and (4.9), we define Nb(µ) and Nb(µ̄) as the number of muons and
antimuons respectively in neutron star labeled by b = 1, 2. Then, as there are almost no
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tau leptons in neutron stars, Qb = Nb(µ) − Nb(µ̄) is the total charge of the neutron star
under the Lµ − Lτ gauge symmetry, and Nb = Nb(µ) +Nb(µ̄) is the total number of muons
and anti-muons in the star. Additionally, since Nb(µ̄) ≈ 0, we have Qb ≈ Nb.

The energy lost through radiation in a binary star system can be directly probed by
measuring the decay of the orbital period. Assuming that the attractive gravitational force
between the two stars is such that their orbits stay Keplerian, the decay rate of the period
of revolution Tb is related directly to the energy lost via radiation [6]:

Ṫb = −6πa5/2G−3/2
N (m1m2)−1(m1 +m2)−1/2 × Ploss, (4.17)

where Ṫb is the time derivative of the binary period, GN is the gravitational constant, m1
and m2 are the masses of the stars in the binary system, a is the semi-major axis of the
elliptical orbit, and Ploss is the total power radiated. The decay of the period per unit of
time is dimensionless and is measured experimentally.

GW emission is the dominant source of power loss in a binary star system. Assuming
that the GW emission and neutrino pair emission are the only sources of energy loss, we have

Ploss = PGW + Pν̄ν , (4.18)

where Pν̄ν is the power loss due to the neutrino pair radiation and PGW is the power loss
due to GW emission, which, to the leading order, is given by the GW quadrupole radiation
formula [38],

PGW
loss = 32

5 GΩ6M2a4(1 − e2)−7/2
(
1 + 73

24e
2 + 37

96e
4
)
, (4.19)

where M is the reduced mass of the system, as defined in eq. (4.7). The binary period
decay Ṫb thus can be written as a sum of two contributions,

Ṫb = ṪGW + Ṫν̄ν . (4.20)

We next introduce the period decay ratio R as the ratio of the measured period decay
to the theoretical prediction of the period decay due to GW radiation,

R = Ṫb

ṪGW
= 1 + Ṫν̄ν

ṪGW
. (4.21)

We use the measured value of R to set 2σ limits on the masses and couplings of the BSM
mediators of neutrino pair radiation as

Ṫν̄ν
ṪGW

≤ (R − 1) + 2σ, (4.22)

where the values of R and σ for the two pulsar binaries under consideration are given
in table 1.

The resulting constraints on the parameter space (g,mA) and (g,mφ) that we derive
from the period decay data for the Hulse-Taylor binary and PSR J1738+033 are shown in
figure 4. When deriving the constraints, we use Qb = Nb = 1055 with b = 1, 2 and qν = 1.
For the gauge boson mediator (left panel), we calculate the period decay due to neutrino
pair emission, Ṫν̄ν , using eqs. (4.8) and (4.17). As we take all three neutrinos to be massless,
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Figure 4. Left: constraints on g vsmA from the highly eccentric PSR B1913+16 (Hulse-Taylor)
Bounds from the neutrino pair radiation (solid) and vector boson radiation (dashed) are shown such
that the region above the curves is excluded by the measurements of the period decay. The system
parameters are taken from table 1. Right: constraints on g vsmφ from PSR J1738+033. The dashed
gray line corresponds to the bound set by the emission of the scalar boson only, while the solid lines
show the bounds from including a coupling g′ to the neutrinos.

and as Lµ −Lτ boson couples to two neutrino types, there is an extra factor of 2 in eq. (4.8).
Similarly, for the case of the scalar mediator (right panel), we use eqs. (4.9) and (4.17). As
there is no symmetry that requires equality of g and g′ in the case of the scalar mediator,
we present our results for the scalar case in the (g,mφ) plane for four different values of g′

that vary from 10−7 to 10−1.
First, let us discuss the left panel of figure 4, which shows constraints on the mass

and coupling of the gauge boson. For the PSR J1738+0333 (red line), whose orbit is very
close to circular, the effect of neutrino pair radiation becomes significant for the mediator
masses greater than the second harmonic frequency, mA > 2Ω. For the highly eccentric
Hulse-Taylor binary, off-shell radiation dominates for mA > 85Ω. In the region mA > 2Ω
(mA > 85Ω) for PSR J1738+0333 (Hulse-Taylor binary), the boundary of the excluded
region is approximately quadratic in the mediator mass. This is in stark contrast with the
case of the on-shell boson emission discussed in refs. [3, 5, 6], where the boundary of the
excluded region jumps in steps at mA = nΩ, with n being an integer. For comparison, the
dashed lines in figure 4 show the bounds due to the on-shell boson radiation.

Finally, we comment on the right panel of figure 4, which shows the constraints on
the mass mφ and coupling g for different values of g′ in the case of the scalar mediated
radiation. We only demonstrate the constraints for PSR J1738+0333; the results for the
Hulse-Taylor binary are qualitatively the same. Depending on the value of g′ the off-shell
scalar radiation starts to dominate for mφ > Ω (g′ " 10−4) or mφ > 2Ω (g′ ! 10−8). As
one can see from the plot, g′ = 10−1 provides the strongest bound.

We conclude this section by noting that we do not perform a detailed analysis of the
bounds on muonophilic light states. We only remark that very strong bounds on light states
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are derived from fifth force searches. Most of these bounds do not apply in our case as
these experiments are done using materials made out of protons, neutrons, and electrons
with negligible numbers of muons.

5 Conclusion

It is well known that fermion pairs can behave as bosons in several circumstances. In this
work, we show that fermion pairs can also constitute classical radiation just like bosonic
states do. We use this understanding to derive the generalization of the Larmor formula for
the case of the fermion pair emission.

Being motivated by the potential of applying fermion pair radiation to astrophysical
objects, we consider the case of classical sources following elliptical orbits. The most
interesting regime of fermion pair radiation is when the mediator is off-shell, which takes
place when the mass of the mediator is much smaller than the frequency of the periodic
motion of the source. In this regime, the fermion pair emission takes over from on-shell
boson production. This opens up a window into a broader region of parameter space for
various models that allow for the fermion pair radiation by classical sources.

Subsequently, we apply our results to neutrino-antineutrino emission by two pulsar
binary systems PSR B1913+16 and PSR J1738+0333. Neutrino pair emission by binary
systems is highly suppressed in the SM compared to GW radiation, but can be significantly
enhanced in various BSM scenarios. In particular, we consider two possibilities: light
muonophilic vector and scalar mediators that couple to the SM neutrinos. Using period
decay data for the two binary systems, we derive bounds on the parameters of the two
models. While we did not perform a comprehensive study of the relevance of these bounds,
the key point is that they provide a demonstration of the fact that fermion pair radiation
can be used to enhance BSM probes using astrophysical data.

There are several future directions to go from here. Here are a few that we find
particularly interesting:

• A thorough and detailed study of the bounds that we find on specific models is called
for. This, however, is complicated by the large uncertainties that come from the
estimates on the neutron star constituents. In particular, new physics interactions alter
the equation of state of a neutron star and, currently, there is no precise quantitative
understanding of how this affects its content.

• It also would be interesting to see if we can find more systems to which our results
can be applied. In particular, exotic astrophysical systems and exotic types of new
physics models.

• In this work, we only consider fermion pair radiation; however, the results can
be modified to also include bosonic pair radiation. All that needs to be done is
to calculate the relevant matrix elements. It is expected to result in a different
kinematic dependence.

We conclude with the main message of our paper: if nature includes new light states,
fermion pair radiation can be one more tool in our toolbox to probe them.
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A Derivation of the power loss formula

We present below an explicit derivation of the power loss formula for the fermion pair
radiation by a point-like classical object on an elliptical orbit. We perform the calculation
separately for the case of vector and scalar mediators. In our calculation, we follow closely
the analysis in ref. [6].

A.1 The case of a vector boson mediator
The power loss is a sum over different harmonics, as given by eqs. (2.7) and (2.8). The
matrix element, at leading order, for a vector boson mediator, is given by eq. (2.10). It
includes the Fourier Transform of the classical current Jµ

cl(x) defined in eq. (2.1). We rewrite
it here for convenience:

Mn(s1, s2) = g2Qψ ū(k1, s1)γµv(k2, s2)
i(−ηµν + (k1 + k2)µ(k1 + k2)ν/m2

A)
(k1 + k2)2 − m2

A + imAΓA
Jνcl(Ωn) ,

(A.1)
where ηµν is the Minkowski metric tensor. Note that the contribution from the (k1 +
k2)µ(k1 + k2)ν term vanishes by means of the Dirac equation since the fermions are on-shell,
that is,

ū(/k1 + /k2)v = ū(mψ − mψ)v = 0. (A.2)

Squaring the amplitudes corresponding to different harmonics and summing over spins,
we find

|Mn|2 =
∑

s1,s2

|Mn|2 =
g4Q2

ψ

((k1+k2)2−m2
A)

2+m2
AΓ2

A

Jµ
cl(Ωn)J∗ν

cl (Ωn)Tr[(/k1+mν)γµ(/k2−mν)γν ]

=
4g4Q2

ψ

((k1+k2)2−m2
A)

2+m2
AΓ2

A

Jµ
cl(Ωn)J∗ν

cl (Ωn)
(
k1µk2ν+k1νk2µ− 1

2(k1+k2)2ηµν
)
.

(A.3)

Finally, we are ready to write the expression for the rate of energy loss due to ψψ̄
emission at harmonic n by the classical source as

Pn =
(
dE

dt

)

n
=
∫

Ωn dΓn

= Ωn

∫ d3k1
(2π)3(2ω1)

d3k2
(2π)3(2ω2)

(2π)δ(Ωn − ω1 − ω2)|Mn|2

= Ωn

∫
dΦ1dΦ2

|k1|dω1
2(2π)3

|k2|dω2
2(2π)3 (2π)δ(Ωn − ω1 − ω2)|Mn|2 , (A.4)
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where |k1,2| =
√
ω2
1,2 − m2

ψ, we used Ωn = ω1 + ω2 for the total energy carried away by the
fermion pair, dΦ1,2 are the differential elements of solid angles in the fermion’s direction of
flight, and

∣∣∣Mn

∣∣∣
2
is given in eq. (A.3). The total power radiated is found by summing over

all kinematically allowed harmonics:

P =
∑

n

Pn. (A.5)

To calculate the power radiated in fermion pairs by a point-like source in an elliptical
orbit, we need to evaluate the integrals in eq. (A.4), after substituting in the explicit form
of Jµ

cl(Ωn) in eq. (A.3). Using eqs. (2.1) and (2.4), we find the Fourier Transform Jµ
cl(Ωn) as:

J i
cl(Ωn) = aΩQjin, J0

cl(Ωn) = aΩQ
(
jn · p
nΩ

)
, (A.6)

where the 3-vector jn is defined as

jn =
(

−iJ ′
n(ne),

√
1 − e2

e
Jn(ne), 0

)

, (A.7)

with Jn(z) denoting a Bessel function, and p = k1 + k2.
The terms in the numerator of |M|2 in eq. (A.3), are then given by

(Jµ
cl(Ωn)k1µ)(Jν∗

cl (Ωn)k2ν)= a2Ω2Q2jinj
j∗
n

[
ω1ω2

(nΩ)2
pipj− ω1

nΩpikj2− ω2
nΩki1p

j+ki1k
j
2

]

, (A.8)

and

|Jµ
cl(Ωn)|2 = |J0

cl(Ωn)|2 − |Jcl(Ωn)|2 = a2Ω2Q2jinj
j∗
n

[
pipj

(Ωn)2 − δij
]

, (A.9)

where we used Ωn = nΩ. Note that all quantities above are 3-vectors with Latin indices
i = 1, 2, 3, and a sum over i and j is implicit. The expression for (Jµ

cl(Ωn)k2µ) (Jν∗
cl (Ωn)k1ν)

is obtained from eq. (A.8) via complex conjugation.
Next we note that the denominator of |Mn|2, see eq. (A.3), depends only on mA, ΓA,

ω1,2, the magnitudes |k1,2| and the relative angle between the two momenta k1, and k2 that
we denote as γ. Because of this, it is convenient to perform the change of coordinates in the
integral in eq. (A.4) from the integration over the solid angles dΦ1dΦ2 to the integration
over dΦ1dΦr

2 where the solid angle of the second neutrino is measured relative to the
direction of k1, hence the super index r. (Equivalently, one can also choose to integrate
over dΦr

1dΦ2.) The Jacobian of this coordinate change is unity since the transformation is
simply a coordinate rotation, and thus

dΦ1dΦ2 = dΦ1dΦr
2. (A.10)

Defining
dΦb = sin θbdθbdφb, dΦr

2 = sin γdγdδ, b = 1, 2 , (A.11)
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we find the following relations between the two sets of integration variables

cos γ = cos θ1 cos θ2 + sin θ1 sin θ2 cos (φ2 − φ1) ,

sin δ = sin θ2 sin (φ2 − φ1)
sin γ . (A.12)

Since, out of all the angular variables, the denominator only depends on the relative angle
γ, the integrals over θ1, φ1 and δ can be taken easily using the following relations

∫
dΦ1dΦ2k

i
ak

j
a =

∫
dΦ1dΦr

2k
i
ak

j
a = δij

8π2
3 k2

a

∫
sin γdγ,

∫
dΦ1dΦ2k

i
1k

j
2 =

∫
dΦ1dΦr

1k
i
1k

j
2 = δij

8π2
3 (k1 · k2)

∫
sin γdγ,

∫
dΦ1dΦ2 =

∫
dΦ1dΦr

2 = 8π2
∫

sin γdγ . (A.13)

Using this and the results of eqs. (A.8) and (A.9), we perform the integration over θ1, φ1
and δ in eq. (A.4), and find the following expression for the power radiated in harmonic n,

Pn = g4 (nΩ)
12π3 a2Ω2Q2

ψQ
2 |jn|2

∫
δ(nΩ − ω1 − ω2)

(
(k1 + k2)2 − m2

A

)2 +m2
AΓ2

A

×
[

−1
2 (k1 + k2)2

[
(k1 + k2)2 /

(
(nΩ)2 − 3

)]
+ 2 ω1ω2

(nΩ)2
(k1 + k2)2

−2 ω1
nΩ

(
k2
2 + k1 · k2

)
− 2 ω2

nΩ
(
k2
1 + k1 · k2

)
+ 2k1 · k2

]
×

ω1ω2

(

1 −
m2
ψ

ω2
1

)1/2(

1 −
m2
ψ

ω2
2

)1/2

sin γ dγdω1dω2 , (A.14)

where the only integrals left are the integrals over γ, ω1 and ω2.
Next, we introduce the following dimensionless variables and parameters

x1 =
ω1
Ω , x2 =

ω2
Ω , nψ = mψ

Ω , nA = mA

Ω , nΓ = ΓA

Ω . (A.15)

Performing the change of variables in eq. (A.14) from (ω1,ω2) to (x1, x2), we rewrite the
expression for the power radiated in harmonic n as follows:

Pn = g4

12π3a
2Ω4Q2

ψ|jn|2
∫

sin γ dγ dx1 dx2 δ(n − x1 − x2)F(cos γ, x1, x2) . (A.16)

Upon taking the integral over x2 and performing the replacement x1 → x, we obtain

Pn = g4

12π3a
2Ω4Q2

ψQ
2|jn|2

∫ n−nψ

nψ
dx
∫ 1

−1
d(cos γ)F(cos γ, x) , (A.17)

where function F(cos γ, x) is given by

F(cos γ, x) = b(x)
2n

1
2b

2(x) cos2 γ + b(x)c(x) cos γ + d(x)
(a(x) − b(x) cos γ)2 + g2

, (A.18)
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with

a(x) = 2n2
ψ + 2x(n − x) − n2

A ,

b(x) = 2
√
x2 − n2

ψ

√
(n − x)2 − n2

ψ ,

c(x) = −
(
n2 + 2n2

ψ

)
,

d(x) = 2(x(n3 − 2n2x+ 2nx2 − x3) + 2n2n2
ψ + n4

ψ),

g2 = n2
An

2
Γ . (A.19)

The variable x here is the ratio of the energy of one of the fermions to the fundamental
oscillation frequency. It can be at least nψ or at most n − nψ, hence the limits on the
integral. Also note that F also depends on the parameters of the problem namely nA,
nψ, nΓ defined in eq. (A.15), but we do not write them explicitly for brevity. Lastly, note
that the γ-dependence of the numerator of function F is through a term quadratic in
cos γ and a term linear in cos γ. This behavior is attributed to the theory that we pick —
renormalizable theories such as in the case considered here would only contribute at most
two powers of momentum in the matrix element, leading to a cos γ dependence that is at
most quadratic. However non-renormalizable theories have more momenta in the matrix
element, and will give us a different cos γ dependence in the F .

Now, we define

FA(x) ≡ FA(n, x, nψ, nA, nΓ) =
∫ 1

−1
d (cos γ)F (cos γ, x, n) , (A.20)

where the superscript A denotes the vector boson mediator.
The integral over cos γ can be taken analytically. Then, we find that the function

FA(x), has the form:

FA(x) = FA
0 (x) + FA

1 (x)
nMnΓ

[
tan−1

(
a(x) + b(x)

nMnΓ

)
− tan−1

(
a(x) − b(x)

nMnΓ

)]

+ FA
2 (x) tanh−1

(
2a(x)b(x)

a(x)2 + b(x)2 + n2
Mn2

Γ

)

, (A.21)

with:

FA
0 (x) = b(x)/2n ,

FA
1 (x) = 1

4n
(
n4
A + 4n2n2

ψ − n2
An

2
Γ + 2n2

An
2 − 4nxn2

A + 4x2n2
A

)
,

FA
2 (x) = 1

2n
(
n2
A + n2 − 2nx+ 2x2

)
. (A.22)

Consequently, the power loss formula of each mode with n > 2nψ becomes

Pn =
2g4Q2

ψQ
2

3(2π)3 a2Ω4
(

J ′
n(ne)2 +

1 − e2

e2
Jn(ne)2

)∫ n−nψ

nψ
dxFA(x), (A.23)
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which gives us eq. (2.18) for the case M = A, where we define for mediator M

BM
n (nM ,nν ,nΓ)≡

(

J ′
n(ne)2+

1−e2

e2
Jn(ne)2

)∫ n−nψ

nψ
dx FM (x,n,nM ,nν ,nΓ), (A.24)

where Jn(z) is a Bessel function of order n in the variable z.

A.2 The case of the scalar mediator
The derivation for the power loss in the scalar mediator is similar to the vector case, but
the matrix element is different, as shown in eq. (2.14). This matrix element contains the
number density ρcl(x) of source particles, instead of a current. As such, the difference in
the calculation in this case comes from the calculation of the squared matrix element, which
in this case, is given by:

∑

s1,s2

|Mn(s1, s2)|2 =
g2g′2

((k1 + k2)2 − m2
φ)2 +m2

φΓ2
φ

Tr(( /k1 +mψ)( /k2 − mψ))|ρcl(Ωn)|2

= 4g2g′2

((k1 + k2)2 − m2
φ)2 +m2

φΓ2
φ

(k1 · k2 − m2
ψ)|ρcl(Ωn)|2 ]. (A.25)

The power loss is again given by eq. (A.4).
Using eqs. (2.2) and (2.4), we find the Fourier Transform ρµcl(Ωn) as:

ρ0cl(Ωn) = aΩN
(
jn · p
nΩ

)
, (A.26)

where, like in the vector case, we define the 3-vector jin as follows:

jn =
(

−iJ ′
n(ne),

√
1 − e2

e
Jn(ne), 0

)

, (A.27)

with Jn(z) denoting a Bessel function, amd p = k1 + k2.
After performing all the steps analogous to eqs. (A.4)–(A.20) in the previous section,

i.e, after performing the angular integration, we get:

Pn = g2g′2

12π3 a
2Ω4N2|jn|2

∫ n−nψ

nψ
dx
∫ 1

−1
d cos γ F(cos γ, x) , (A.28)

where function F(cos γ, x) is given by

F(cos γ, x) = −b(x)
2n

1
2b

2(x) cos2 γ + b(x)c(x) cos γ + d(x)
(a(x) − b(x) cos γ)2 + g2

, (A.29)

with

a(x) = 2n2
ψ + 2x(n − x) − n2

φ ,

b(x) = 2
√
x2 − n2

ψ

√
(n − x)2 − n2

ψ ,

c(x) = (n − 2x)2
2 ,

d(x) = (n2
ψ − nx+ x2)(n2 − 2n2

ψ − 2nx+ 2x2),

g2 = n2
φn

2
Γ . (A.30)
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Like before, we define

F φ(x) ≡ F φ(n, x, nψ, nφ, nΓ) =
∫ 1

−1
d (cos γ)F (cos γ, x, n) , (A.31)

where the superscript φ denotes the scalar mediator.
The integral over cos γ can be taken analytically to find a form for F φ:

F φ(x) = F φ
0 (x) +

F φ
1 (x)

nMnΓ

[
tan−1

(
a(x) + b(x)

nMnΓ

)
− tan−1

(
a(x) − b(x)

nMnΓ

)]

+ F φ
2 (x) tanh−1

(
2a(x)b(x)

a(x)2 + b(x)2 + n2
Mn2

Γ

)

, (A.32)

with:

F φ
0 (x) = −b(x)/2n ,

F φ
1 (x) =

1
4n
(
n2
φn

2
Γ + (n2 − n2

φ)(n2
φ − 4n2

ν)
)
,

F φ
2 (x) =

1
4n
(
n2 + 4n2

ν − 2n2
φ

)
. (A.33)

Consequently, the power loss formula of each mode with n > 2nψ becomes

Pn = 2g2g′2

3(2π)3a
2Ω4N2

(

J ′
n(ne)2 +

1 − e2

e2
Jn(ne)2

)∫ n−nψ

nψ
dxF φ(x), (A.34)

which gives us eq. (2.19) for the case M = φ

P φ
n = g2g′2

12π3 a
2Ω4

(
N1
m1

− N2
m2

)2
Bφ

n(nA, nν , nΓ). (A.35)

We find that the form of the function FM is general for the two types of mediators, the
difference lying in the explicit forms of the functions FM

0 , FM
1 and FM

2 . This is due to the
fact that the cos γ dependence of the function F is the same in both cases, as in both cases,
the theory considered is a renormalizable one. As we explained in the previous sub-section,
this general form of FM is not what we will have when we consider non-renormalizable
theories that give us higher powers of momenta in the numerator of F .
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