This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2023.3267339

A Virtual Prototyping Platform for Exploration of
Vehicular Electronics

Md Rafiul Kabir, Bhagawat Baanav Yedla Ravi, and Sandip Ray Senior Member, IEEE

Abstract—A critical requirement for robust, optimized, and
secure design of vehicular systems is the ability to do system-level
exploration, i.e., comprehend the interactions involved among
ECUs, sensors, and communication interfaces in realizing system-
level use cases and the impact of various design choices on these
interactions. This must be done early in the system design to
enable the designer to make optimal design choices without
requiring a cost-prohibitive design overhaul. In this paper, we
develop a virtual prototyping environment for the modeling and
simulation of vehicular systems. Our solution, VIVE, is modular
and configurable, allowing the user to conveniently introduce new
system-level use cases. Unlike other related simulation environ-
ments, our platform emphasizes coordination and communication
among various vehicular components and just the abstraction
of the necessary computation of each electronic control unit.
We discuss the ability of VIVE to explore the interactions
between a number of realistic use cases in the automotive domain.
We demonstrate the utility of the platform, in particular, to
create real-time in-vehicle communication optimizers for various
optimization targets. We also show how to use such a prototyping
environment to explore vehicular security compromises. Further-
more, we showcase the experimental integration and validation
of the platform with a hardware setup in a real-time scenario.

Index Terms—Virtual Prototyping, Digital Twin, Automotive,
Electronics, Software Process, Simulation, Security

I. INTRODUCTION

ehicular systems have undergone rapid transformation
Vin recent years, with the integration of autonomous
features aimed at augmenting and, in many cases, replacing
human operations. Autonomous features have the potential
to dramatically increase safety by reducing human errors,
while also allowing for more efficient use of transportation
infrastructure and limiting environmental impacts. Neverthe-
less, one unintended consequence of this trend is an increase
in electronic and software complexity. A typical vehicle on
the road today includes hundreds of Electronic Control Units
(ECU), tens to hundreds of sensors, an average of 3-5 in-
vehicle networks, and hundreds of megabytes of software
code. Obviously, these systems can contain subtle, hard-to-
detect errors. A considerable number of these errors occur
when multiple components are coordinated simultaneously. A
simple optimization in one component, such as how a partic-
ular ECU interprets a message from the CAN bus, can have

This research has been supported in part by the National Science Foundation
under Grant No. CNS-1908549 and SATC-2221900.

Md Rafiul Kabir, Bhagawat Baanav Yedla Ravi, and Sandip Ray are with the
Department of Electrical and Computer Engineering, University of Florida,
Gainesville, FL 32611, USA. Email: kabirm@ufl.edu, b.yedlaravi@ufl.edu,
sandip@ece.ufl.edu.

Preliminary results from this research appeared in the Proceedings of the
24th IEEE International Conference on Intelligent Transportation [1].

© 2023 IEEE. Personal use is permitted, but rer)ublication/redistribution requires IEEE germission. See htf| s://www.ieee.or)%/publications/rights/index.html for more information.
orida. Downloaded on April 26,2023 at 13:55:47 UTC from IEEE

Authorized licensed use limited to: University of F

an unforeseen impact on timing, coordination, performance, or
even functionality, which may jeopardize safety, reliability, and
efficiency. Additionally, bugs that evade deployment can be
exploited by adversaries in the field to introduce inefficiencies,
and cause accidents, and finally, bugs that are discovered after
they have been deployed can be fixed by the developers.

In current industrial practice, exploration of system func-
tionality occurs through field testing at the sites of vari-
ous automotive OEMs. This involves connecting all of the
electronic parts, sensors, and actuators (possibly excluding
the mechanical chassis), installing the necessary software,
and exercising the vehicular use cases (e.g., braking, traction
control, turning right, etc.). A major drawback of this approach
is that it can only be used after all the hardware, sensors, and
actuators have been produced and put together. Any significant
redesign is typically avoided at this point since it can cause a
significant churn in the design and production timeline. This
precludes potential opportunities for optimization that would
be feasible if detected early in the design. Even design flaws
found late can be expensive to address. Evidently, there is a
critical need for a platform that can resolve all these issues
while also allowing users to explore and validate system-level
functionalities way early in the design process.

In this paper, we develop a novel prototyping environment,
VIVE to address this critical problem. VIVE enables a user
to systematically simulate a variety of automotive system-level
use cases, understand how they interact, and develop system-
level optimization and security solutions. To our knowledge,
VIVE is the first prototyping environment for exploring
system-level interactions in automotive systems. While there
has been previous work on hybrid virtual platforms for in-
dividual hardware components [2], [3], they focus on the
functionalities of a specific component rather than system-level
interaction. On the other hand, there are automotive simulators
(e.g., SUMO [4], CARLA [5]). However, these systems enable
the exploration of vehicular functionality in relation to their
environment and the high-level algorithms involved in the
realization of that functionality (see Section II-C). VIVE on
the other hand focuses on the exploration of the system-level
architecture of the vehicle, the coordination, and communica-
tion of ECUs through in-vehicle network messages, and their
impacts on optimization and security. We are aware of no other
platform that enables such exploration.

The paper makes the following important contributions:

o Our platform VIVE represents the first prototyping plat-
form to enable early exploration and optimization of
automotive system-level use cases.

plore. Restrictions apply.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2023.3267339

o We discuss the configurability and extensibility needs of
such a prototyping platform and demonstrate an approach
to achieving this in VIVE.

o« We demonstrate the use of VIVE in the design of a
variety of representative vehicular use cases of varying
complexity based on virtually simulated vehicular com-
ponents.

e« We demonstrate the use of VIVE in exploring opti-
mization opportunities and critical security compromise
scenarios.

o We showcase the integration and validation of VIVE with
hardware setup in a real-time scenario.

The remainder of the paper is organized as follows. Section
IT discusses the background and relevant research in this area.
Section III presents the system-level architecture of VIVE
and the details of communications, components, and interfaces
captured through the platform. In Section IV we discuss the
use of VIVE for several vehicular use-case implementations.
In Section V we demonstrate the application of the platform
in system-level optimization and security solutions. Section
VI presents the integration and validation of VIVE with the
hardware setup. We conclude in Section VII. For the interested
reader, a preliminary version of VIVE is available online [6].

II. BACKGROUND AND RELATED WORK
A. Digital Twin

Virtual prototyping requires developing a software (i.e.,
virtual) model of a design before constructing a physical
embodiment. It allows any real-world system or component
to be mimicked into a virtualized version that can be explored
freely. A widely recognized prototyping method is known
as digital twins [7]. The goal is to create a mathematical
model that simulates the actual world in digital space using
a digital representation of a physical device or item that
mimics the underlying physics. This is typically done by
combining models and data with state-of-the-art algorithms,
expert design, and connectivity [7]. Applications for digital
twins include many different fields e.g., aerospace, manufac-
turing, medicine, and healthcare [8]. Furthermore, it has a few
noteworthy applications in similar industries like aviation [9],
[10]. However, the emphasis has been primarily on simulating
mechanical and physical behavior.

B. Virtual Platform

The idea of virtual prototyping has been popular in the
cyber world, targeting SoCs, embedded software, and digital
hardware. This prototyping approach is well known as a virfual
platform. It is a software-based modeling system that can
completely mimic the functionality of a specific System-on-
Chip (SoC) or digital hardware. The goal is to develop an
abstract model of the underlying hardware device that can
offer a configurable platform early in the design process (pre-
silicon or even developed register-transfer level (RTL) models
are ready), which can be utilized for software development
and design optimization. However, this approach has been
beneficial for early software and hardware development, ver-
ification & validation, and hardware-software co-design [11],

© 2023 IEEE. Personal use is permitted, but rer)ublication/redistribution requires IEEE Sermission. See htf| s://www.ieee.or)% t
orida. Downloaded on April 26,2023 at 13:55:47 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: University of F

[12]. Furthermore, virtual prototyping has been developed
through a variety of commercial frameworks [13].

C. Related Work

As virtualization is becoming an emerging technology for
the future of automotive safety and security, there has been
some recent work to mention. Strobl et al. [2] discussed the
utility of automotive virtualization in integrating several ECUs
into a few Domain Controller Units (DCUs). They explained
their approach with concepts like Virtual Computer System
(VCS), Virtual Machine Monitor (VMM), etc. to suggest how
to effectively map these concepts into the field of embedded
systems —- especially those found in the automotive industry.
In order to virtualize a GPU and the connected display device,
Lee et al. [14] introduced the Virtualized Automotive DIsplay
(VADI) system. VADI oversees two execution domains: one
for the in-vehicle infotainment (IVI) software and one for
the automotive control software. A VP was added to the
V-model of automotive software development by Safar et
al. [15] as part of an improved methodology that permits
verification and validation at the ECU, SoC, and system level.
Additionally, it offers a co-debugging mechanism and fault
injection capability for AUTOSAR applications. Tharma et
al. [3] discussed a digital twin method in the context of the
automotive wiring harness in order to resolve the complexity
of the wiring harness for passenger vehicles. It explained
the basis of virtualization, specifically for wiring harness
systems by using Digital-Mock-Up (DMU), virtual product
development steps, and new concepts for the implementation
of the Digital Twin method. Rajesh et al. [16] discussed the
development of a digital twin that aids in the proactive mainte-
nance of a car brake system. Using the ThingWorx Internet of
Things (IoT) platform, brake pressure was recorded at various
vehicle speeds as a proof of concept. While these techniques
cover some components, unlike our framework, they only
take certain subsystems into account. A Synthetic Data Vault
(SDV) framework known as SOAFEE [17], was launched
to provide a cloud-native architecture optimized for mixed
critical automotive applications. It is an open architecture for
the embedded edge that shows a high-level perspective of the
hardware, software, and cloud components of an automotive
central computing solution stack.

A variety of automotive simulators have been developed
in recent years. SUMO [4] is an open-source traffic simu-
lation framework that allows the simulation of traffic man-
agement strategies and vehicular communications. CARLA
[5] is another open-source simulator for autonomous driving
research that allows for the customization of sensor suites
and environmental factors. Model-based designs using MAT-
LAB/Simulink [18] for automotive systems have been used for
design with simulation, implementation with code generation,
continuous testing, and verification. AUTOSAR classic and
adaptive platforms [19], [20] provide standardized software
architecture for automotive ECUs. Each of these works focuses
on a specific direction for automotive systems, i.e., traffic
simulation, autonomous driving environments, simulation for
testing, cloud-native architecture, or software abstractions.

/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2023.3267339

Electronic Control
Units (ECUs)

Sensors

Brake Pedal
Position

Actuators
_ ADAS Hydraulic
=3 - Modulator

A

Sensor

Acceleration 08
Pedal Position — \ -

TCSSwitch (9 —

CAN Bus

-~ ECM M

% Q Throttle

Torque _
Sensor —b

Angle
Sensor

»

Virtualization

— Input electrical signal

Electronic Control —» Output electrical signal

Units (ECUs)

Sensors Socket
— CAN message
Brake Pedal

Position
ABS —
Wheel Speed

Actuators

=
I i il E

Acceleration
Pedal Position i< wed

=

Hydraulic
Modulator

Sensor

Assist Motor

Gateway

1

TCS Switch —

gk

CAN Simulator

Load Motor

Torque
Sensor

ECM ——m> Throttle

1

Angle
Sensor

v

Figure 1. System architecture involving the virtualization of use cases. (Left) A typical physical prototype to support three representative use cases: Antilock
Braking System, Traction Control System, and Right Turn. (Right) Corresponding Virtualization.

VIVE is different from (and complementary to) these prior
efforts in its design goals, which governs the specific details
of the system elaborated and abstracted in the platform. In
particular, we focus on a prototyping solution that would
enable a system architect to explore system-level interactions
happening as a result of (possibly overlapping) vehicular use
cases (e.g., braking, turning, cruise control, security scenarios,
etc.). The system-level interactions of interest for VIVE are
interactions and communications among ECUs, sensors, and
software. VIVE correspondingly provides a prototyping envi-
ronment enabling exploration of configurability, optimization,
and security arising from this interaction. Furthermore, VIVE
differs from cloud-based SDF frameworks, being aligned with
edge computing, hardware-software components, and system
virtualization with inter-component and inter-system interac-
tions. Finally, VIVE enables a wide range of integration
possibilities through abstraction and configuration for both
hardware and real software parameters.

III. VIVE ARCHITECTURE

VIVE derives inspiration from both digital twins and virtual
platforms and aims to develop a targeted prototyping solution
for automotive systems. Similar to digital twins, we target the
total system-level interaction rather than a specific electronic
component. Similar to virtual platforms, the emphasis here
is on the cybernetic components of the system rather than
its mechanical or physical characteristics. We focus on two
features of cyber behavior:

1) Software functionality i.e., involving indigenous compu-

tational processes.

2) Communication and coordination through electrical sig-

nals and CAN messages.

A. High-level Architecture

A modern automotive system consists of ECUs, perhaps
connected with IoT components i.e., sensors and actuators, as

© 2023 |IEEE. Personal use is permitted, bu

tre)
Authorized licensed use limited to: University of Fﬁ)rlda. Downloaded on April 26,2053 at 13:55:47 UTC from IEEE

well as in-vehicle networks (e.g., CAN, LIN). Every automo-
tive use case (e.g., brake, right turn, cruise, etc.) is initiated
by some actuation action from the user and involves a series
of messages transmitted over the network by various ECUs.
Fig. 1 illustrates the high-level architecture of the platform
indicating the virtualization involved in three illustrative use
cases. Given this insight, VIVE permits the modeling of many
use cases by providing the following infrastructure.

o Network Simulator: VIVE facilitates a simulation envi-
ronment for the in-vehicle networks involved in the use
case. The implemented protocols (e.g., CAN, LIN, etc.)
are modeled by the network simulator.

o ECU: Of course, each ECU is a sophisticated computa-
tional component. In contrast to conventional virtual plat-
forms, a complete software implementation of the ECU
is not necessary for VIVE. Instead, it offers a general
interface that may be used to link either (1) an actual
ECU, (2) a computation process of the functionality, or
(3) a simple hardware platform (e.g., Raspberry Pi) to
mimic the computation of the ECU as required.

e Sensors: VIVE permits the interfacing with an actual
sensor or just a software process to produce artificially
generated computational data accurately simulating the
behavior of automotive subsystem sensors (e.g., angle
sensor, wheel speed sensor, etc).

o Actuators: Analogous to sensors, the actuators are simi-
larly represented by software processes and mostly func-
tion as the outputs from ECUs for actuation activities,
(e.g., assist motor, throttle, etc.). The actuator generates
GUI blocks as needed that serve as the final output.

B. In-vehicle Communication

The communication system acts as the central hub for real-
time simulation. VIVE models two types of communication:
(1) Electrical signal, and (2) Communications via in-vehicle

ublication/redistribution requires IEEE permission. See htj s://www.ieee.or)%/publications/rights/index.html for more information.

plore. Restrictions apply.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2023.3267339

Server Client
socket %
bind
@ Server creates listening socket
Establishing connection
————————————————————————————————— connect

Figure 2. TCP client-server socket flow

networks. Our platform currently supports CAN communica-
tion. We developed a specific virtual module to prototype CAN
bus communication i.e., to be referred to as the CAN simulator.
The simulator determines which ECU should it send data to
by using a unique identifier i.e., arbitration ID from the CAN
frame. Apparently, each arbitration ID is associated with a port
number that corresponds to a certain ECU. Furthermore, it can
handle several messages from multiple ECUs across various
use cases simultaneously.

Remark 1: (Implementation Note) The platform implemen-
tation for in-vehicle communication employs Transmission
Control Protocol (TCP) [21] sockets to enable interaction
among all the processes. TCP ensures that data packets are
successfully transmitted across the network, though at a higher
latency. Therefore, it can provide a secure and well-organized
data transfer between several hosts via an IP network. The
client-server model shown in Fig. 2 serves as the basis for
our socket programming. Typically, the client initiates the
communication while the server passively awaits to respond to
the client’s request [22]. Our implemented CAN simulator is
modeled with a python-can library to build the CAN frame that
is constructed as a byte array message for data transmission
and reception via the socket. The message frame comprises the
actual data with other peripheral information i.e., arbitration
id, extended id, and data length. The remaining sensor and
actuator communication, i.e., electrical signals (those that
don’t involve CAN frames), are simulated as simple byte-array
messages. The CAN frame used in vehicles contains many
components. However, for simulation, we chose a smaller
frame structure from the CAN library.

C. Vehicular Component Models

Typically, an actuation activity by the user initiates the
corresponding use case. For instance, traction Control will
be initiated by a user pressing the acceleration pedal. Other
components related to the use case (e.g., ECU and sensor

© 2023 IEEE. Personal use is permitted, but rer)ublication/redistribution requires IEEE germission. See htf| s://www.ieee.or)%/publications/rights/index.html for more information.
orida. Downloaded on April 26,2023 at 13:55:47 UTC from IEEE

Authorized licensed use limited to: University of F

computations) execute constant, ongoing activity: the wheel
speed sensor, while relevant to several use cases, performs
ongoing activity continuously independent of the actuation
actions that initiate the use case. VIVE supports this duality
as follows: — Sensors (or processes simulating the sensory
activities) are continuously sampled. Similarly, all compu-
tation blocks continue to run indefinitely. For instance, the
implemented wheel speed sensor provides continuous vehicle
speed information to the ECU. Subsequently, the acceleration
pedal position sensor receives direct user input by applying a
simulated acceleration pedal. (Fig. 4).

Note that the actuator occasionally uses information from
the ECU to carry out specific mechanisms. As a result, the
actuator computation process in VIVE supports the transmis-
sion of inputs from the simulated (or real) ECU and offers
output data with the final outcome of ECU computation. For
example, if we look at the Right Turn use case, the simulated
assist motor receives input from the simulated Electric Power
Steering (EPS) ECU and outputs what is required by the
next mechanism as a result of the ECU computation. This
output depicts the amount of steering assist torque being used
for the right turn. Finally, the ECU process is linked with
the (simulated) in-vehicle network in order to communicate
with other ECUs. Unlike most sensors and actuators, the
(simulated) ECU has the ability to both send and receive CAN
messages. Furthermore, ECUs and sensors can participate in
multiple use cases with necessary activities as required. For
example, note from Table I, the participation of the ABS
ECU and wheel speed sensor in four different use cases.
‘We conclude the discussion on the sensor, actuator, and ECU
models by noting the versatility of the platform.

Remark 2: (ECU Functionality) Our models of ECU com-
putation for the use cases implemented are based on available
open-source data (e.g., the functionality of ABS [23]-[25]).
Obviously, any deployed vehicle includes ECUs developed by
suppliers, including confidential and proprietary design IPs.
However, even in such cases, interface models are included
in the design of the ECU to enable subsequent players in the
supply chain to design and validate their interactions with the
ECU. Such models provide sufficient collateral for incorpo-
ration into VIVE since VIVE focuses on the interaction of
ECUs for realizing system-level use cases rather than low-
level implementation details of the ECUs themselves. Indeed,
this is one of the key features of VIVE that distinguishes it
from field testing and enables early system-level validation
before the ECU has been fully implemented. Once a (possibly
proprietary) hardware implementation is ready, of course,
VIVE also enables replacing the abstract interface model with
the actual hardware to explore more elaborate details of the
interaction.

D. Extensibility and User Interface

VIVE supports extensibility, i.e., the seamless addition of
new use cases (including those that might interact with the
ones already simulated). In order to expand VIVE with a new
use case, the following information needs to be provided:

plore. Restrictions apply.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2023.3267339

Table I
IMPLEMENTED USE CASES AND ASSOCIATED VEHICULAR COMPONENTS CLASSIFICATION

[Name [ECU

[Sensor [Actuator |

Anti-lock Braking
System (ABS)

ABS, ADAS, Gateway

Brake Pedal Position,
Wheel Speed Sensor

Hydraulic Modulator

Engine Control Module (ECM)

Right Turn Electric Power Steering (EPS), Angle Sensor, Torque Sensor Assist Motor,
ABS, Gateway Load Motor
Return-to-Center ABS, EPS, Gateway Angle Sensor, Torque Sensor Assist Motor
Traction Control TCS, ADAS, Gateway, TCS Switch, Acceleration Pedal Position, Throttle
System (TCS) Engine Control Module (ECM) Wheel Speed Sensor
Cruise Control Body Control Module (BCM), Gateway, Cruise Switch, Acceleration Pedal Position, Throttle

Wheel Speed Sensor, Acc/Dec Switch

Indirect Tire Pressure
Monitoring System (iTPMS)

ABS, Gateway

Wheel Speed Sensor

Direct Tire Pressure

Tire Pressure Monitoring System (TPMS),

Tire Pressure Sensor

Monitoring System (dTPMS) Gateway
Ultrasonic Park Assist Park Assist, EPS, BCM, Ultrasonic Sensor Gear Shifter
Gateway

Sensor ECU Actuator

Wheel Speed Sensor ~ ,/|/ADAS ECU | Throttle B

Acceleration pedal |[TCs ECU] 5

TCS switch .J[ECM ECU] B
| Gateway | =

Name of Use Case Traction Control
Add Component
Create New Use Case
Exit
Apply optimization technique?

No -
Which optimization technique?

Run and Get Results ‘

Stop ‘

Figure 3. VIVE simulation window for use case initialization. (Shown for
traction control here)

-
o7
OFF

!

O X = O X

\ ‘
‘ TCS OFF | TCSON‘ ‘

Release acceleration

Apply acceleration

Figure 4. Traction Control GUI. Showing two user inputs: (1) TCS switch
and (2) acceleration pedal position

1) ECUs involved; the required computation being per-
formed by each ECU to actualize the functions of the
ongoing use cases.

2) Sensors and actuators involved; when a new sensor
or actuator is required for a use case, the process
representing them must be included.

© 2023 |IEEE. Personal use is permitted, but rer)ublication/redistribution requires IEEE Sermission. See httj s://www.ieee.or)%/publications/rights/index.html for more information.
orida. Downloaded on April 26,2023 at 13:55:47 UTC from IEEE

Authorized licensed use limited to: University of F

3) Communication involved; message sequences transmit-
ted by the different ECUs from different use cases
(and the modes of communication, e.g., direct electrical
signals, CAN, etc.).
The platform regulates resource sharing, scheduling, and
communication between use cases. For example, recall the
participation of wheel speed sensor in multiple use cases. Fig.
3 displays the simulation window from which a use case can be
started (shown for traction control as an illustrative example).
The window allows the choice of sensors, ECUs, and actuators
to build the desired use case. It enables multiple graphical
user interfaces (GUI) to perform actuation actions of pressing
(shown in Fig. 4) and final simulation output.

Remark 3: (Real-time Computing) Since VIVE abstracts the
implementation details of ECUs, interactions involved in use
cases are explored in “event-driven” simulation at the level
of CAN communications. One upshot of this design choice
is that there is no direct synchronous global clock to account
for real-time constraints. However, real-time constraints can be
indirectly explored through congestion and latency measure-
ments induced by the interaction of different use cases (see
examples in Section V).

IV. USE CASES IMPLEMENTATION

Table I shows a list of use cases implemented in VIVE
along with corresponding vehicular components. VIVE en-
ables the user to define any arbitrary subset of the applicable
use cases and examine their interactions during simulation. To
give a sense of the platform operations, we provide a relatively
detailed overview of two use case implementations; we then
summarize the rest of the use cases.

A. llustrative Use Case-1: ABS Implementation

Anti-lock Braking System (ABS) is a safety system to
prevent the wheels from locking up during heavy braking,
thus allowing the driver to maintain steer-ability control over
the vehicle. Fig. 5 (a) provides an overview of the ABS use
case. The functionality is fairly standard [23]-[25], which
is simplified in Fig. 5 (b). The indigenous processes for

plore. Restrictions apply.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2023.3267339

Front disc Rear disc
ﬂ brake brake
L » an - Brake =
@ T3 Pedal |

&

Toothed | Hydraulic

{ y Wheel speed
fotor - _| modulator [S = sensor
Brake lines
é O By ABS wiring il O C
\;/ harness _/
ABS /
@
Brake pedal
position AES Sensor/Actuator
5 Start
Brake Signal Electrical Signal (Brakes Applied) ECU
Wheel Speed P
Sensor
Wheel Speed Electrical Signal Slip Rate > 0.3 ? CAN Vehicle Speed
Yes, No
Hydraulic
Modulator
Modulate Continue
Apply/Release Electrical Signal Sional WG
Brake Pressure
\/ Gateway
Send Packets CAN BN
Packets
Sensor/Actuator ECU CAN Bus =) TCP socket (with port)
Br;kel l?edal 5005 > 5060 5003 ADAS
osition :
arbid 6 arbid 6
Wheel Speed 5005 CAN
Sensor — LR Simulator
i 7400
]\I;I[erui‘ﬂlc 5010 5003 : e
odulator Sotput arbid 1 arbid 1
(©

Figure 5. ABS use case (a) corresponding hardware architecture (b) func-
tionality flow diagram and (c) primary system design with VIVE

vehicular components involved in this use case i.e., ECUs
(ABS, ADAS, and gateway), sensors (brake pedal position and
wheel speed sensor), and actuator (hydraulic modulator) taking
part in the primary system design are shown in Fig. 5 (c).
The VIVE implementation utilizes “sockets” (i.e., endpoint
of a two-way communication link) for sharing data among
these processes as discussed in Section III-B. For the ABS
use case, the simulated brake pedal position, wheel speed
sensor, and ADAS have client ports for sending data. The
hydraulic modulator and the gateway have server ports for
data reception. The ABS ECU and the CAN simulator are
the only components with both client and server sockets with
scheduling and computation capabilities based on the data.
To establish a reliable connection, the client calls to connect
to the server and initiates the three-way handshake. Each
computation process is linked to a particular port number (e.g.,
5005, 7400, etc) and additionally each ECU is recognized by
arbitration IDs (e.g., 1 and 6) i.e., shown in Fig. 5 (c). The
port numbers between communicating sockets (i.e., simulation

© 2023 IEEE. Personal use is permitted, but rer)ublication/redistribution requires IEEE Sermission. See htf| s://www.ieee.or)%/publications/rights/index.html for more information.
orida. Downloaded on April 26,2023 at 13:55:47 UTC from IEEE

Authorized licensed use limited to: University of F

Table II
BYTE ARRAY MESSAGES FOR ABS
[Component [Message |
Brake Pedal Position [0] or [1]

Wheel Speed Sensor
ADAS

simulated values ranging between [0] - [60]
simulated values ranging between [0] - [60]
(CAN)

[0] or [1000] (CAN)

[0] or [1] (CAN)

ABS (final output)
ABS (for gateway)

processes) have to match to establish a secured connection.
The user initiates the ABS use case by a certain actuation
action i.e., applying the brake, which is enabled via the VIVE
GUI. Table II shows all the byte array messages (via socket) by
each component. On the action, the system behaves as follows.

e The ABS ECU receives the brake position signal from
the brake pedal position sensor after the user input.

o The slip rate is computed using the simulated speed data
from the wheel speed sensor and ADAS. For simulation
purposes, the speed values range between 0-60 mph.
However, this range is not intuitively limited to every
use case.

o If the slip rate exceeds 0.3, the ABS notifies the hydraulic
modulator through a byte array message to either apply
or release brake pressure.

o Since the brake pressure parameters in a vehicle vary
between 1000 psi and 1600 psi [26], the byte array mes-
sage sent to the hydraulic modulator is depicted as [0]
and [1000] for no pressure and pressure application,
respectively.

e Due to the fact that this process runs continuously, the
slip rate fluctuates based on various speed data, producing
two different final outputs (ABS active or not active).

« Additionally, the ABS ECU sends a CAN message (con-
taining the ongoing ABS activity) to the CAN simulator
with an arbitration ID of 1, designating the gateway ECU.

o Finally, the gateway routes the ABS packets to other
ECUs and the instrument cluster via another CAN bus.!

Note that, while running ABS, any other use case can take
place i.e., multiple ECUs can communicate with the CAN sim-
ulator at the same time, which does not hamper any of the ABS
functionalities. Similarly, among ABS use case components,
the CAN simulator handles both the ABS and ADAS ECUs
with queuing and coordination capabilities, allowing them to
securely communicate and not lose any data. This enables the
user to comprehend the effects of several interactions and the
need for any substantial re-design, e.g., to support bandwidth
or real-time constraints of the target vehicle.

B. Illustrative Use Case-2: UPA Implementation
Ultrasonic Park Assist (UPA) system assists the driver in

parking and avoiding objects while in reverse gear. It operates

IVIVE component models include the gateway but not the instrument
clusters. Consequently, any response from the instrument cluster is addressed
directly from the gateway.

plore. Restrictions apply.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2023.3267339

Sensor/Actuator ECU CAN Bus =) TCP socket (with port)

Ultrasonic 5061 > 5099 5003 EPS

Sensor-1 "
arbid 9 arbid 9

Ultrasonic 5061 Park CAN 5003

— N . BCM
Sensor-2 Assist Simulator IR0
5061 5003 7400
Gear Shiftey m—) Gateway

arbid 1 arbid 1

Figure 6. UPA use case primary system design with VIVE

at a very low speed i.e., 5 mph. The functionality is rea-
sonably standard [27], [28] and it works as an alert/warning-
based system. The system primarily works for two types of
parking scenarios: 1) perpendicular and 2) parallel parking.
The indigenous processes for vehicular components involved
in this use case are: UPA, BCM, EPS, and gateway ECUs, two
ultrasonic sensors,” and a gear shifter. The primary system de-
sign (including all the operating port numbers and arbitration
IDs) is shown in Fig. 6. Note that the system itself does not
require observing the functions of components like EPS or
brake pedal, but rather our use case has those components to
show the maneuvering status of the driver. On the action, the
system behaves as follows.

« After applying the reverse gear, the ultrasonic sensors get
activated to sense objects.

o The driver’s maneuver status positions are known from
the CAN message containing the steering angle and brake
position information provided by the EPS and BCM
ECUs, respectively (via arbitration ID 9).

o For this initial implementation, object presence (e.g.,
parked car) is based on user input to the ultrasonic sensor.

o At the point of collision, the sensors will send an electri-
cal signal to the park assist ECU as a byte array message
of either [0] or [1].

o Next, the ABS ECU sends a CAN message (containing
the ongoing UPA activity) to the CAN simulator with an
arbitration ID of 1, designating the gateway ECU.

« Finally, the gateway is supposed to route the packets to
other ECUs and the instrument cluster. The dashboard
warnings are depicted as GUI output from the gateway
itself.

C. Other Use Cases Summary

VIVE incorporates various automotive subsystems to enable
its flexibility and viability. All the use cases involve multiple
ECUs, sensors, and actuators, with some shared across the use
cases. It was challenging to implement the right functionalities
for all use cases, as the same subsystem functions differently in
different vehicles in the real world. We attempted to prioritize
use cases that have noticeable functionality that is shared by
the majority of automobile manufacturers. We provide a brief
discussion of all the remaining use cases below.

2The number of ultrasonic sensors varies in different implementations. In
our implementation, we use two sensors.

© 2023 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See htj s://www.ieee.or)%/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Fﬁ)rlda. Downloaded on April 26,2053 at 13:55:47 UTC from IEEE

1) Right Turn: The right turn use case is a segment of the
electric power steering system (EPS) that helps drivers steer
the vehicle with minimal effort needed to turn the steering
wheel. The functionality follows a standard control logic [29].
The torques are categorized as load torque, assist torque, and
steering torque. The data provided by the angle sensor and
torque sensor on the steering wheel simulate the user turning to
the right. The EPS ECU calculates the assist and load torques
required. Consequently, ABS transmits the vehicle speed as a
CAN message to EPS, and EPS responds by transmitting the
turn status to the gateway.

2) Return-to-Center (RTC): The RTC use case is another
segment of the electric power steering system that occurs after
making a right or left turn by steering the wheels. The angle
sensor and torque sensor simulate the steering wheel returning
to the center after executing the right turn. The required RTC
assist torque is calculated by the EPS ECU. In response, EPS
communicates the RTC status as a CAN frame to the gateway
after receiving the vehicle speed as a CAN frame from ABS.

3) Traction Control System (TCS): Our implemented trac-
tion control use case follows a basic functionality [30], [31],
where the objective is to change the torque during vehicle
acceleration based on the calculated slip rate. The VIVE GUI
allows the user to launch actuation operations by pressing
the TCS switch and adjusting the acceleration pedal position.
TCS is activated while accelerating. Similar to the ABS use
case, slip rate calculation from simulated speed values induces
further actions i.e., ADAS sends the vehicle speed as a CAN
frame to TCS, and in response, the torque reduction status
is sent as a CAN message from TCS to both the ECM
and the gateway. The final output from the ECM depicts
the transmission of torque reduction data to the throttle for
providing traction, allowing the vehicle to accelerate more
smoothly.

4) Cruise Control: The cruise control use case has multiple
GUIs to potentially represent the acceleration pedal, cruise
ON/OFF switch, and cruise acceleration/deceleration buttons.
The user has to activate the cruise control to increase, decrease,
or maintain the vehicle speed. The functionality is kept as
minimal as possible for basic interactions. The ECM ECU
takes sensor inputs i.e., inputs from the GUI via BCM as
a CAN message, and computes the speed direction. Based
on the computation, the ECM sends the cruise status as a
CAN message to the gateway. This whole sequence happens
in one cycle. As the cruise control system is a continuously
running process, there is feedback implemented that goes back
to the GUI inputs for cruise status and current speed values.
Consequently, the next cycles run, taking the feedback as
initial values.

5) Indirect Tire Pressure Monitoring System (iTPMS): This
use case works with the car’s ABS and wheel speed sensors
(for systems that do not have tire pressure sensors inside the
tires). If one of the tires’ pressures is low, it will roll at a
different wheel speed than the others. The ABS ECU detects
this information by calculating tire pressure from the wheel
speed sensors to check pressure status. Subsequently, a tire

plore. Restrictions apply.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2023.3267339

User input braking

No brake ‘ Brake apply ‘ |Auto random brake ‘

For automation input for
continuous simulation

ABS ECU process activity

CAN Simulator activity while communication with a single ECU

Figure 7. ABS use case front-end activity

pressure alert message is sent as a CAN frame from ABS to
the gateway.

6) Direct Tire Pressure Monitoring System (dTPMS): This
use case does not depend on ABS; rather, it has its own ECU
and sensors to monitor the tire pressure. The central ECU
responsible for the Tire Pressure Monitoring System (TPMS),
directly receives continuous tire pressure readings from pres-
sure sensors. Failing to maintain the minimum pressure mark
will trigger the transmission of the tire pressure warning data
as a CAN message from the TPMS to the gateway.

This allows for the application of more complicated inte-
grations at later phases of system development when actual
hardware and software components are present. Note that the
RPI integration can be effective while simulating not a few
use cases, but rather a large number (e.g., 50-100) of use
cases where significantly more computation has to take place
together, especially with the CAN simulator handling multiple
ECUs with adequate efficiency and optimization.

D. Front-end Activity and Real-world Data

VIVE provides an elaborate front-end for the user to initiate
realistic use cases, comprehend interactions among various
sub-systems and components, and estimate various kinds of
latency overheads. Based on various customizations of use
cases, a realistic simulation is performed with CAN simulator
performance, ECU computation results, and sensor/actuator
activities. After initiating a use case from the simulation
window, we observe all the activities for each simulation
process within the platform window. Fig. 7 shows the experi-
mental front-end activity for the ABS use case, illustrating the
activities of CAN simulation and the ABS ECU process here,
as the major computations take place in these two components.
It shows how the CAN simulator is detecting corresponding
ECUs and the related computational activities of the ABS
ECU. Moreover, the platform allows exploration of simulated
and actual real-world data from sensors like wheel speed

© 2023 IEEE. Personal use is permitted, but re{)ublication/redistribution requires IEEE germission. See htf| s://www.ieee.or)%/publications/rights/index.html for more information.
orida. Downloaded on April 26,2023 at 13:55:47 UTC from IEEE

Authorized licensed use limited to: University of F

Anti-lock brgking applied

ABS activation notification

sensor and comprehends how the simulated speed data is
perceived by the respective ECUs. Section VI explores this
feature of VIVE to connect to perform integration validation
with physical models.

Remark 4: (Technical challenges) The CAN protocol is
designed to achieve a number of potentially disparate goals.
Consequently, the CAN payload includes a significant amount
of information, which can be confusing to the user. So, VIVE
carefully extracts a specific subset of the CAN frame that is
useful for the exploration of specific use cases. For instance,
instead of using a full CAN frame, we used a smaller, simpler
frame that would be more informative to the user. Mimicking
the CAN networking with socket programming was done
to accumulate all the functionalities of the CAN hardware
into a single process. Another challenge was to mimic the
right functionalities for all use cases, as the same subsystem
functions differently in different vehicles in the real world. We
prioritize use cases that have noticeable functionality that is
shared by the majority of automobile manufacturers.

V. APPLICATIONS BEYOND EXPLORATION: OPTIMIZATION
AND SECURITY WITH VIVE

Since VIVE enables exploration of various scenarios and
their interactions, users have the opportunity to comprehend
bottlenecks on various parameters and “tweak” the design
to address these bottlenecks early in the system develop-
ment. Correspondingly, it enables early exploration of rare
interactions to analyze potential safety and security impacts.
In this section, we showcase these abilities by developing
applications on top of VIVE to address specific optimization
and security targets. Note that the conclusion from these
applications are not germane to the paper, e.g., the bottlenecks
discovered by the optimizer depend on the specifics of the
use case implementations being used and would vary if the
implementations were modified. However, our work shows
how the same approach can be used by OEMs to analyze

plore. Restrictions apply.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2023.3267339

» —— Without Optimization
2 —— With Optimization
1
Y
o
S
W0 e
D,
o,
Onu
@ &.
Q
D
©,
g 6
B
< 4
3
2
1
I EEREEEEEEREEEEEEEEEEEE]
Cycles
150
- —— Without Optimization
—— With Optimization
130
120
110
100
>5u
o,
[0}
(b) &~
8.
s0
w
0
2
10

1 2 3 4 5 6 7 8 9 1011 12 13 184 15 16 17 18 19 20

Cycles

Figure 8. Results of optimization with Simulated Annealing on VIVE. The
illustrated use cases for this scheduling optimization are ABS, Right Turn,
Return-to-Center, and TCS. (a) Congestion vs. Time. (b) Latency vs. Time.

optimization and security concerns for their vehicular use
cases by porting their use case models with VIVE.

A. Optimization
To demonstrate optimization, VIVE includes the implemen-
tation of two (independent) real-time CAN packet scheduling
optimizers:
1) to reduce CAN bandwidth, i.e., the number of CAN
packets sent simultaneously.
2) to minimize latency, i.e., the amount of time it typically
takes for a CAN packet to travel from its source ECU
to its destination ECU.

We employ Simulated Annealing [32] for our real-time
optimizer.> By conceptualizing the idea of slow cooling of
metals as a gradual drop in the likelihood of accepting inferior
solutions as the feasible region is investigated, it provides a
close approximation to the optimal solution. In the real-time
implementation, the CAN bus transmits the packets specified
in the first cycle of the sequence once the final temperature
is achieved and the estimated sequence is determined, while
delaying the transmission of the remaining packets until the
bus cycle after that. The optimization values obviously depend
on the use cases taken into account, and the absolute numbers

30Obviously, one can implement a superior optimizer on top of the user cases
as well. Since the goal of the paper is to show the feasiblity of implementing
optimizers rather than their sophistication, we choose a baseline optimizer for
this demonstration because of its ease of use and comprehensibility.

© 2023 |IEEE. Personal use is permitted, but rer)ublication/redistribution requires IEEE Sermission. See httj s://www.ieee.or)%/publications/rights/index.html for more information.
orida. Downloaded on April 26,2023 at 13:55:47 UTC from IEEE

Authorized licensed use limited to: University of F

Byte array message
as spoofing

Adversary
6001
Victim ODbject presence feedback
ultrasound sensor 6001 User input
T
Object <-4
T 6002

object presence check

Figure 9. Ultrasonic sensor security compromise exploration with VIVE

might change for different implementations and use case
combinations. The plots, however, highlight the platform’s
usefulness for real-time optimizations in practical use. Note
that CAN packet scheduling to optimize for latency has a con-
siderable impact on the results for the use cases investigated,
whereas optimization for congestion appears to have a minimal
effect.

Remark 5: (CAN Scheduling Note) The reason why op-
timization for congestion has such an outcome and even
performs worse at some cycles than non-optimized scheduling
is that the number of packets delayed from cycle ¢ to cycle ¢+1
in order to preserve bandwidth at cycle ¢ exceeds the number
of new packets that the bus receives at cycle ¢+1. Such insights
obviously allow for systematic and efficient CAN scheduling
if they are attained early in the design exploration process.

Note that since system-level instances like the ones ad-
dressed in this research are only tested late during field testing,
optimizing packet scheduling must be done offline without
taking into consideration how various use cases interact.
However, with VIVE, the user can explore the results of
this interaction early in the design and fine-tune the optimizer
accordingly.

B. Security

Modern automobiles with autonomous features have the
potential to significantly increase safety by reducing and even-
tually eliminating human error. However, an obvious result
of autonomy is that these systems are now more vulnerable
to cyberattacks. Unfortunately, despite its utmost importance,
public awareness on the issue of security in vehicular systems
is still very low. Major security compromises on ultrasonic
sensors have been investigated in automotive security research,
based on spoofing and jamming attacks. Although the precise
mechanisms vary depending on the attack scenario, some
concepts are applied in various attacks. In particular, a spoofing
attack is a well-known adversarial method for compromising
ultrasonic sensors that involves the emission of ultrasonic
pulses that are analogous to the victim sensor [33]. It entails
modifying the return signal so that the victim vehicle receives
a false signal before the actual echo. Consequently, the sensor
in the victim vehicle interprets the spoofing signals in the same
way as the actual signals, leading to false obstacle detection
[34].

plore. Restrictions apply.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2023.3267339

VIVE enables exploration of attack scenarios for ranging
sensor attacks. We showcase this ability with the Park Assist
use case. Fig. 9 shows the workflow for a (simplified) spoof-
ing attack scenario compromising the ultrasonic sensor. The
ultrasound signal is represented as byte-array messages sent to
the object, which is a user-based model for object detection.
Three computation processes represent the ultrasonic sensor
(as the victim), the adversary sensor (attacker), and the object
to be detected (e.g., parked car, wall, stop sign, etc.). On
the action, the victim ultrasonic sensor sends a byte array
message to the object (via port 6002) to calculate its presence.
The user input GUI provides the status, and consequently,
the object computation module informs its status ([0] for
absence and [1] for presence) back to the ultrasound sensor.
The adversary can attack the sensor by sending similar (to
mimic spoofing) byte-array messages. As the ultrasonic sensor
receives all messages using TCP port 6001, a spoofing attack
(a false echo from the adversary) leads to the false detection of
the object i.e., the vehicle assuming the presence of an object
that is either closer or farther away than the actual distance.

VI. INTEGRATION AND VALIDATION

With all the implemented use cases and the applications be-
yond exploration, we establish VIVE as primarily adhering to
the indigenous process models since we put a lot of emphasis
on testing system-level scenarios early in the design process.
Nevertheless, in VIVE, switching out a component for a more
complex one only requires a simple component switch; the
interfaces themselves are left unchanged. In this section, we
showcase two specific applications of this extensibility. First,
we discuss an integration with Raspberry Pi that enables
early validation of automotive software. Second, we present
integration with physical sensors and actuators in a vehicle
model, which enables us to validate the platform’s computation
model, on which the use cases have been implemented, and
the viability of the infrastructure as a backbone for use cases
with real-time requirements.

A. Raspberry Pi Integration

To facilitate the exploration of functionality using real
software, all use cases can also be realized with Raspberry
Pi models for the corresponding ECUs. In Fig. 10, we show
the integration of the Raspberry Pi with Traction Control as
an illustrative use case. Here, all the computational blocks
for the corresponding sensors, actuator, and CAN bus are
implemented individually, while the ECUs (i.e., ADAS, TCS,
ECM, and gateway) are realized through RPIs. All five devices
will have their own IP addresses to connect to for this
integration, resulting in the development of an embedded
system with more computational capability. Because the RPI
can integrate with actual physical sensors, VIVE provides
an interface to integrate with physical sensors rather than
computational processes.

B. Configurability and Validation using PiCar

We now showcase the integration capability of VIVE with
physically configurable automotive electronics for validating

© 2023 IEEE. Personal use is permitted, but re{)ublication/redistribution requires IEEE germission. See htf| s://www.ieee.or)%/publications/rights/index.html for more information.
orida. Downloaded on April 26,2023 at 13:55:47 UTC from IEEE

Authorized licensed use limited to: University of F

e TCS Switch 5
Acceleration Pedal Position |
Wheel Speed Sensor
CAN Simulator
Throttle

Socket

[
|
|
|
|
|
|
|
|
|
|
|
|
\

s

\\ IP address:a.b.c.d //

s —
IP address:a. b.i.j

Figure 10. Raspberry Pi integration for Traction Control; showing one
personal computer and four Raspberry Pis containing all components

the viability of the infrastructure as a means of prototyping use
cases with real-time constraints. The vehicle we employ for
the test case detailed in this article is a PiCar-X by Sunfounder,
which is an open-source robot learning platform built on the
Raspberry Pi [35].

Platform Integration: Initiating the integration, all the pro-
cesses of VIVE environment are run on a single Raspberry Pi
mounted on the Pi-Car. Recall from the ABS illustration, the
speed values and the slip rate are critical for the use case
activity. While VIVE ABS use case comprises the ADAS
ECU process with simulated speed values, we employ the
ultrasonic sensor of the PiCar to get real-time vehicle speed
data. The actuarial function from the brake pedal position of
VIVE is integrated with the PiCar controller module. The
PiCar consists of two DC motors that propel it and a servo
motor that steers it. Due to the gear reduction unit in the
propulsion system, the pi car is incapable of coasting due to
kinetic inertia. Hence, this locks up the wheels. We intend to
utilize this outcome as a hard braking condition. This allows
us to utilize the car without having to include some additional
form of braking system.

Environmental Design: The Pi car is incapable of moving
at speeds high enough to recreate a skidding condition due
to its low top speed and low inertia. To understand and
validate our ABS, an inclined surface is set up where the
car is allowed to drive downward. Upon disabling the power
to the propulsion system, the wheels lock up because of the
gear reduction mechanism mentioned previously. This lets the
Pi car slide down the incline with the wheels locked. The
angle of inclination is decided after multiple trials to recreate
the condition that is easiest to perceive. Fig. 11 shows the
hardware exploitation scenario.

Experiment and Evaluation: The PiCar uses a PWM signal
as input from the VIVE environment to control the speed of
the propulsion system. This feature can transition into real-

plore. Restrictions apply.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2023.3267339

Figure 11. PiCar exploration testbed

55 —8— Vehicle speed

Wheel speed

50 A

45

40 -

35 A

10 20 30 40 50 60
Distance

Figure 12. VIVE enabling vehicle speed and wheel speed changes with
distance in the PiCar

time speed, assuming that there is very little backlash. This
was validated using a setup that involved a flat, zero-inclined
road to evaluate speed with respect to PWM input. This
provided a correlation that was uniform. Now that the wheel
speed values are obtained, we need to calculate the actual
speed of the vehicle, including the condition of slipping. For
this, we gathered the ultrasonic sensor data from the onboard
ultrasonic sensor. A zero incline surface would produce the
same result as the ultrasonic sensor-based speed value because
there is no slip in flat surface conditions. However, for the
inclined surface condition due to locking and sliding actual
vehicle speed is higher than the wheel speed. We have also
measured the distance values for various initial speeds just
before brakes were applied to compare the braking distances
and, subsequently, to compare ABS inactive vs. ABS active
conditions. At the point of 20 cm distance (Fig. 12), the
ABS ECU process running in the PiCar receives the brake
position signal from the user input that enables the wheel
speed value to start deviating from vehicle speed, resulting
in an appropriate slip condition i.e., slip-rate exceeding 0.3.

© 2023 IEEE. Personal use is permitted, bu

tre)
Authorized licensed use limited to: University of FForlda. Downloaded on April 26,20}2)3 at 13:55:47 UTC from IEEE

Therefore, we observe the ABS activation as we gradually
move towards a lower speed (simulating the vehicle slowing
down). We further evaluated the trend of wheel speed and
vehicle speed relation (from Fig. 12) with existing research
[36], [37]. We conclude that VIVE can be reconfigured to
be integrated with a hardware setup for real-time simulation
exploration and can be a viable option for shortening the sim-
to-real gap.

Remark 6: (Real-World Testing) As the integration valida-
tion demonstrates, VIVE supports hardware-in-loop testing
by enabling the connection of various sensors and actuators,
e.g., the ABS use case mentioned above. This is possible
due to the versatile nature of the hardware integration with
the onboard Raspberry Pi. To simulate the functioning of
an ECU, a microcomputer such as a Raspberry Pi Zero or
a microcontroller such as a Raspberry Pi Pico can be used.
The peripherals like sensors and actuators can be interfaced
with these ECUs to perform a task and communicate with
other ECUs using serial communication. As Section VI-B
demonstrates, simulation achieves results very close to real-
world testing.

VII. CONCLUSION

We have discussed a prototyping solution VIVE for method-
ically testing vehicular use cases at the system level. VIVE
is a versatile, configurable platform that allows use cases to
be specified using components at various abstraction levels,
e.g., indigenous processes, real hardware, or a Raspberry Pi.
Furthermore, the platform supports extensibility with new use
cases. Using VIVE, we demonstrated a number of use cases in
practice and showed how it is useful for developing real-time
scheduling optimizers. Additionally, VIVE enables versatile
exploration for various security compromises. Finally, our
platform demonstrates an effective roadmap for early system-
level exploration of diverse cyber-physical subsystems.

In future work, we plan to extend VIVE with more critical
use cases and employ other optimization algorithms. We will
also explore the utility of this platform to conduct some
preliminary research and early validation on functional safety
and security properties with adversarial attack scenarios.

REFERENCES

[11 M. R. Kabir, N. Mishra, and S. Ray, “Vive: Virtualization of vehicular
electronics for system-level exploration,” in 2021 IEEE International
Intelligent Transportation Systems Conference (ITSC). 1EEE, 2021,
pp. 3307-3312.

[2] M. Strobl, M. Kucera, A. Foeldi, T. Waas, N. Balbierer, and C. Hilbert,
“Towards automotive virtualization,” in 2013 International Conference
on Applied Electronics. 1EEE, 2013, pp. 1-6.

[3] R. Tharma, R. Winter, M. Eigner, et al., “An approach for the imple-
mentation of the digital twin in the automotive wiring harness field,”
in DS 92: Proceedings of the DESIGN 2018 15th International Design
Conference, 2018, pp. 3023-3032.

[4] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, “Sumo—
simulation of urban mobility: an overview,” in Proceedings of SIMUL
2011, The Third International Conference on Advances in System
Simulation. ThinkMind, 2011.

[5] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla:
An open urban driving simulator,” in Conference on robot learning.
PMLR, 2017, pp. 1-16.

[6] M. R. Kabir, B. B. Yedla Ravi, and S. Ray, “Virtualization of Vehicular
Electronics,” http://sandip.ece.ufl.edu/projects/vive/main.html.

ublication/redistribution requires IEEE permission. See htj s://www.ieee.or)%/publications/rights/index.html for more information.

plore. Restrictions apply.

[7]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
(18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2023.3267339

D. Wagg, K. Worden, R. Barthorpe, and P. Gardner, “Digital twins:
State-of-the-art and future directions for modeling and simulation in
engineering dynamics applications,” ASCE-ASME J Risk and Uncert in
Engrg Sys Part B Mech Engrg, vol. 6, no. 3, 2020.

B. R. Barricelli, E. Casiraghi, and D. Fogli, “A survey on digital twin:
Definitions, characteristics, applications, and design implications,” [EEE
access, vol. 7, pp. 167653-167 671, 2019.

C. Li, S. Mahadevan, Y. Ling, S. Choze, and L. Wang, “Dynamic
bayesian network for aircraft wing health monitoring digital twin,” Aiaa
Journal, vol. 55, no. 3, pp. 930-941, 2017.

A. J. Zakrajsek and S. Mall, “The development and use of a
digital twin model for tire touchdown health monitoring,” in 58th
AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials
Conference, 2017, p. 0863.

S. Ahn and S. Malik, “Automated firmware testing using firmware-
hardware interaction patterns,” in CODES+ISSS, 2014, pp. 25:1-25:10.
R. Kannavara, , C. J. Havlicek, B. Chen, M. R. Tuttle, K. Cong, S. Ray,
and F. Xie, “Challenges and Opportunities in Concolic Testing,” in
Proceedings of the National Aerospace Electronics Conference — Ohio
Innovation Summit, 2015.

Synopsys, “Virtualizer,” https://www.synopsys.com/verification/virtual-
prototyping/virtualizer.html, 2019.

C. Lee, S.-W. Kim, and C. Yoo, “Vadi: Gpu virtualization for an
automotive platform,” IEEE Transactions on Industrial Informatics,
vol. 12, no. 1, pp. 277-290, 2015.

M. Safar, M. A. El-Moursy, M. Abdelsalam, A. Bakr, K. Khalil, and
A. Salem, “Virtual verification and validation of automotive system,”
Journal of Circuits, Systems and Computers, vol. 28, no. 04, p. 1950071,
2019.

P. Rajesh, N. Manikandan, C. Ramshankar, T. Vishwanathan, and
C. Sathishkumar, “Digital twin of an automotive brake pad for predictive
maintenance,” Procedia Computer Science, vol. 165, pp. 18-24, 2019.
“Soafee homepage,” 2022. [Online]. Available: https://www.soafee.io/
J. Friedman, “Matlab/simulink for automotive systems design,” in Pro-
ceedings of the Design Automation & Test in Europe Conference, vol. 1.
IEEE, 2006, pp. 1-2.

M. Staron and M. Staron, “Autosar (automotive open system architec-
ture),” Automotive Software Architectures: An Introduction, pp. 97-136,
2021.

S. Fiirst and M. Bechter, “Autosar for connected and autonomous
vehicles: The autosar adaptive platform,” in 2016 46th annual IEEE/IFIP
international conference on Dependable Systems and Networks Work-
shop (DSN-W). IEEE, 2016, pp. 215-217.

J. Postel, “Transmission control protocol,” Tech. Rep., 1981.

R. L. R. Maata, R. Cordova, B. Sudramurthy, and A. Halibas, “Design
and implementation of client-server based application using socket
programming in a distributed computing environment,” in 2017 IEEE
International Conference on Computational Intelligence and Computing
Research (ICCIC). 1EEE, 2017, pp. 1-4.

V. D. Gowda, A. Ramachandra, M. Thippeswamy, C. Pandurangappa,
and P. R. Naidu, “Modelling and performance evaluation of anti-lock
braking system,” J. Eng. Sci. Technol, vol. 14, no. 5, pp. 3028-3045,
2019.

T. Matsushita, K. Kondo, T. Yasuda, and H. Watanabe, “Abs control
unit,” Fujitsu Ten Tech, vol. 6, pp. 52-62, 1994.

A. A. Aly, E.-S. Zeidan, A. Hamed, F. Salem, et al,, “An antilock-
braking systems (abs) control: A technical review,” Intelligent control
and Automation, vol. 2, no. 03, p. 186, 2011.

ASE, “Abs accumulators,” 2008. [Online]. Available:
https://www.freeasestudyguides.com/abs-pump-accumulator.html

G. P. Zobel, “Warning tone selection for a reverse parking aid system,”
in Proceedings of the Human Factors and Ergonomics Society Annual
Meeting, vol. 42, no. 17. SAGE Publications Sage CA: Los Angeles,
CA, 1998, pp. 1242-1246.

GMC, “Ultrasonic parking assist,” 2022. [Online]. Available:
https://www.gmcmaster.com/gimes-327-ultrasonic-parking-assist.html
J.-H. Kim and J.-B. Song, “Control logic for an electric power steering
system using assist motor,” Mechatronics, vol. 12, no. 3, pp. 447-459,
2002.

J. H. Park and C. Y. Kim, “Wheel slip control in traction control system
for vehicle stability,” Vehicle system dynamics, vol. 31, no. 4, pp. 263—
278, 1999.

L. Austin and D. Morrey, “Recent advances in antilock braking systems
and traction control systems,” Proceedings of the Institution of Mechan-
ical Engineers, Part D: Journal of Automobile Engineering, vol. 214,
no. 6, pp. 625-638, 2000.

[32] K. Dharageshwari and C. Nayanatara, “Multiobjective optimal place-
ment of multiple distributed generations in ieee 33 bus radial system
using simulated annealing,” in 2015 International Conference on Cir-
cuits, Power and Computing Technologies [ICCPCT-2015], 2015, pp.
1-7.

[33] W. Xu, C. Yan, W. Jia, X. Ji, and J. Liu, “Analyzing and enhancing the
security of ultrasonic sensors for autonomous vehicles,” IEEE Internet
of Things Journal, vol. 5, no. 6, pp. 5015-5029, 2018.

[34] B. B. Y. Ravi, M. R. Kabir, N. Mishra, S. Boddupalli, and S. Ray,
“Autohal: An exploration platform for ranging sensor attacks on auto-
motive systems,” in 2022 IEEE International Conference on Consumer
Electronics (ICCE). 1EEE, 2022, pp. 1-2.

[35] “Sunfounder picar-x: Self-driving robot car for the raspberry pi plat-
form.” [Online]. Available: https://docs.sunfounder.com/projects/picar-
x/en/latest/

[36] D. V. Gowda, R. AC, M. Thippeswamy, C. Pandurangappa, et al., “Auto-
motive braking system simulations v diagram approach,” International
Journal of Engineering & Technology, vol. 7, no. 3, pp. 1740-1744,
2018.

[37] M. Watany et al., “Performance of a road vehicle with hydraulic brake
systems using slip control strategy,” American Journal of Vehicle Design,
vol. 2, no. 1, pp. 7-18, 2014.

Md Rafiul Kabir is a Ph.D. student at the Depart-
ment of Electrical and Computer Engineering, Uni-
versity of Florida. Before that, he was an Electrical
Engineer at Horizon Global Americas in Michigan,
where he worked in the design and development of
OEM Trailer Brake Controllers used in automobiles.
Prior to that, he got his MSc degree in Electrical En-
gineering from the University of Toledo, where his
research was on renewable energy applications. He
received his B.Sc. degree in Electrical and Electronic
Engineering from Ahsanullah University of Science
and Technology, Dhaka, Bangladesh. Rafiul’s current research interests are
digital twins, exploration platforms for vehicular systems, cybersecurity and
IoT applications.

Bhagawat Baanav Yedla Ravi is currently pursuing
his Ph.D. in Electrical and Computer Engineering.
He received his Master’s degree in Mechanical En-
gineering from the University of Florida. He has 2
years of end-to-end product design and development
experience with consumer electronics and automo-
tive systems. His research interests include vehicular
security, exploration, and learning platforms across
IoT and vehicular systems.

Sandip Ray (SM’13) is a Professor at the Depart-
ment of Electrical and Computer Engineering, Uni-
versity of Florida, Gainesville, FL, where he holds
an Endowed IoT Term Professorship. Before joining
the University of Florida, he was a Senior Principal
Engineer at NXP Semiconductors, and prior to that,
Research Scientist with the Intel Strategic CAD
Laboratories. Dr. Ray’s current research targets cor-
rect, dependable, secure, and trustworthy computing
through the cooperation of specification, synthesis,
architecture, and validation technologies. He is the
author of three books and over 100 publications in international journals
and conferences. He has also served as a Technical Program Committee
Member of over 50 international conferences, as Program Chair of ACL2
2009, FMCAD 2013, and IFIP IoT 2019, as Guest Editor for IEEE Design
and Test, IEEE TMSCS, and ACM TODAES, and as Associate Editor of
Springer HaSS and IEEE TMSCS. Dr. Ray has a Ph.D. from the University
of Texas at Austin.

© 2023 |IEEE. Personal use is permitted, but re{)ublication/redistribution requires IEEE permission. See htt s://www.ieee.or)%/publications/rights/index.html for more information.

Authorized licensed use limited to: University of F

orida. Downloaded on April 26,2053 at 13:55:47 UTC from IEEE

plore. Restrictions apply.

