
Virtualization for Automotive Safety and Security
Exploration

Md Rafiul Kabir and Sandip Ray
Department of ECE, University of Florida, Gainesville, FL 32611, USA.

kabirm@ufl.edu, sandip@ece.ufl.edu

Abstract—A modern automobile system is a safety-critical

distributed embedded system that incorporates more than a

hundred Electronic Control Units, a wide range of sensors,

and actuators, all connected with several in-vehicle networks.

Obviously, integration of these heterogeneous components can

lead to subtle errors that can be possibly exploited by malicious

entities in the field, resulting in catastrophic consequences. We

develop a prototyping platform to enable the functional safety

and security exploration of automotive systems. The platform

realizes a unique, extensible virtualization environment for the

exploration of vehicular systems. The platform includes a CAN

simulator that mimics the vehicular CAN bus to interact with

various ECUs, together with sensory and actuation capabilities.

We show how to explore these capabilities in the safety and

security exploration through the analysis of a representative

vehicular use case interaction.

I. INTRODUCTION

We are experiencing an era of digital transformation at a
societal scale, with the advancement of the Internet-of-Things,
revolutionizing the notion of traditional embedded systems
with pervasive connectivity and artificial intelligence [1]. One
upshot of this transformation is our increased vulnerability
to electronic and software failures and cyberattacks. It is
obviously crucial for our well-being to develop technologies
for the systematic exploration of the safety and security of
critical cyber-physical systems.

Automotive systems constitute the quintessential representa-
tives of critical cyber-physical systems with strong safety and
security requirements. A modern automobile has hundreds of
electronic control units (ECUs), several sensors and actuators,
hundreds of megabytes of software, and several in-vehicle
networks. Automotive systems also include interfaces to com-
municate with the external world. These components leave
open a variety of opportunities for compromising the safety
and security of the vehicle, possibly resulting in catastrophic
accidents. A key issue is the introduction of connectivity
into a congregation of components that were not originally
designed with connectivity in mind. For instance, ECUs were
originally designed to receive commands from the systems
with which they communicate and to share information with
any other hardware on the same CAN bus without the need
for authentication and validation. However, with connectivity,
they are open to exploitation by hackers. Correspondingly,
sensors and actuators that contribute to the peripheral activities

*This research has been supported in part by the National Science Foun-
dation under Grant No. CNS-1908549.

for ECU performance are also prone to failure or adversarial
compromise.

In this paper, we demonstrate ways to explore the safety
and security of automotive systems. We develop a prototyping
infrastructure for exploring component failures and security
compromises. We demonstrate the framework using a rep-
resentative use case: the (right) turning functionality of the
electronic power steering.

Our approach builds upon previous work on developing
virtual prototyping infrastructure for automotive systems [2].
The infrastructure, VIVE, enables the exploration and coor-
dination of different vehicular components while abstracting
detailed functionality of ECUs, sensors, actuators, etc. How-
ever, security and safety were not considered, the focus was on
exploration and optimization. In this paper, we extend that in-
frastructure to account for component failures and adversarial
attacks that may result in critical use case dysfunction.

II. RELATED WORK

Virtualization of automotive components has become a
viable topic to explore the possibilities of development in
vehicular electronics. In order to manage multiple in-vehicle
execution software, Lee et al. [3] introduced a Virtualized
Automotive Display (VADI) system for a digital cluster. Safar
et al. [4] proposed the integration of a virtual platform (VP)
with the V-model of automotive software development to facil-
itate verification and validation at the SoC, ECU, and system
level. Strobl et al. [5] presents the benefits of automotive
virtualization as a foundation for consolidating a large number
of ECUs into a small number of Domain Controller Units
(DCUs). There are a few automotive simulators and security
exploration platforms for domain-specific usage. SUMO [6]
acts as an open-source miniature traffic simulation platform.
CARLA [7] enables the development, training, and validation
of autonomous driving systems. In order to conduct multi-
vehicle experiments when real vehicles are not readily avail-
able, Yang et al. [8] designed a digital twin prototype. For
a hands-on security exploration, AutoHaL [9] emerged as an
effective platform that explored ranging sensor attacks. Scalas
et al. [10] suggested a systematization of knowledge regarding
fundamental cybersecurity factors to consider when developing
a modern automobile.

979-8-3503-9918-9/23/$31.00 ©2023 IEEE

Figure 1. Platform provided CAN simulator modeling

III. SYSTEM DESIGN AND USE CASE IMPLEMENTATION

The VIVE platform enables the exploration, optimization,
and exercise of various security targets, with system-level
coordination involved in various use cases. While the specifics
of vehicular components (beyond the capability required to
comprehend the use case) can be abstracted, vehicular com-
munications, in particular, are incorporated. Here we briefly
discuss the component models and the CAN simulator com-
ponents, which are crucial to the extension of VIVE to
incorporate functional safety and security. We also introduce
the “right turn” use case.

A. VIVE component models

Automotive systems typically consist of sensors, actuators,
and ECUs connected to an in-vehicle communication network
(e.g., direct electrical signal, CAN, etc.). We virtualize all these
components in our simulated environment to exercise use cases
and security scenarios.

• ECU: VIVE does not require a complete software model
of the ECU, in contrast to conventional simulation plat-
forms. Instead, it utilizes the computational capabilities of
an actual ECU to simulate functionality that is pertinent to
the use cases by receiving inputs from appropriate sensors
or other simulation blocks.

• Sensors and Actuators: Similar to ECUs, we offer an
interface that may be used to connect a physical sensor
or actuator, as well as a software process that creates
synthetic sensory or actuarial data.

The goal of VIVE is to provide the user with a realistic
understanding of the interaction of various components and
subsystems via automotive use cases. As a result, all of the
vehicular components are represented as continuously running
computation blocks. For instance, the brake pedal position
sensor continuously sends brake input data to the ABS ECU
(part of the ABS use case).

B. CAN Simulator

In order to enable the coordination and communication of
automotive components we provide an in-vehicle communica-
tion system that allows two types of communication:

1) Electrical signal (without ECU involvement or CAN)
2) CAN communication (among ECUs)
We incorporate a versatile, reconfigurable communication

simulator mimicking the activities of an actual automotive

Figure 2. Primary component setup used as a basis to implement the Right
Turn use case

CAN bus, referring to it CAN simulator. The simulator im-
plements interaction between all of the ECU activities using
Transmission Control Protocol (TCP) sockets, with socket
programming based on a common client-server model. The
CAN frame is created as a byte array message for data
transmission and receipt over the socket and is modeled with a
Python-CAN package. The message frame includes the actual
data as well as additional information, e.g., the arbitration ID,
extended ID, and data length. The CAN simulator can alert
the user whenever there is a disruption in the network. Fig.
1 shows the virtualization from the CAN bus to the CAN
simulator. Communication with ECU processes is established
with corresponding TCP socket port numbers.

C. Right Turn Use Case

The electric power steering (EPS) system facilitates the
turning of steering wheels for the basic operational control
of a car. Right Turn is a segment of the operation that occurs
when the driver turns his steering wheel to the right. The EPS
system helps drivers steer the vehicle with minimal effort. The
functionality is fairly standard [11]. The use case simulated
components are indigenous processes for the ECUs, sensors,
and actuators, i.e., EPS ECU, ABS ECU, gateway ECU, angle
sensor, torque sensor, assist motor, and load motor. The user
initiates the Right Turn use case by turning the steering wheel
to the right i.e., sending steering wheel sensory data, which
is enabled via the VIVE GUI. All the communications are
implemented as byte array messages (via socket) by each com-
ponent (see Table I). Each computation process is associated
with arbitration IDs (e.g., 1, and 3) and port numbers (e.g.,
5004, 7400, etc.). The primary functionality of this use and the
corresponding system in our platform are shown, respectively,
in Fig. 3 (a) and (b).

On the action, the system behaves as follows:

Figure 3. Right Turn (from EPS) use case (a) functionality flow diagram and (b) platform’s primary system design

Table I
RIGHT TURN USE CASE BYTE ARRAY MESSAGES

Components Data

Angle sensor [0, 90, 180, 270, 360]
Torque sensor [0] or [3]

ABS simulated values from [0] to [70] (CAN)
EPS (output-1) calculated value between [0] and [17]
EPS (output-2) calculated value between [0] and [20]

EPS (for gateway) output-1 and output-2 values (CAN)

• In order to simulate the driver making the right turn, the
torque sensor and angle sensor data are continuously sent
to the EPS ECU. For simulation purposes, we assume
the steering torque to be 3 Nm and various angles of the
steering wheel as 0, 90, 180, 270, and 360 degrees.

• Additionally, the EPS ECU receives wheel speed data as
a CAN message from the ABS ECU, which is required
for the assist torque calculation.

• Depending on all three sensory data, the EPS ECU
calculates the assist torque required. For instance, if the
load torque required is 20 Nm (varies for different speed
values) then the assist torque would be (20 - 3) = 17 Nm

• Then, the EPS ECU sends assist torque and load torque
to the actuators: assist motor and load motor, respectively.

• Furthermore, the EPS ECU sends a CAN frame back to
the CAN simulator with an arbitration id 1, denoting the
gateway ECU.

IV. SECURITY COMPROMISE EXPLORATION

The initial phase of any adversarial attack focuses on
infiltrating the in-vehicle network, by typically accessing the
onboard diagnostics (OBD) or wireless interfaces [12]. Nev-
ertheless, there are several other works that explored different
entry points e.g., through a modified WMA audio file [13],
a USB-connected smartphone [14], etc. Irrespective of the
attacker entry point, the goal is to get access to the CAN bus
and consequently infiltrate the CAN frame, which will disrupt
major automotive ECU functions. Here we extend VIVE to
enable the exploration of two modes of attacker entry. These
compromises enable a security architect to explore the possible
extent of system compromise in the context of a cyberattack.

Frame Falsification: If the specifics of the CAN frames
are known, the adversary can falsify the CAN messages with
fake data to deceive the ECUs e.g., false data from the wheel
speed sensor in the case of the Right Turn use case. In section
III we mentioned the importance of the wheel speed data
in order to get correct assist torque values for the steering
wheel. Let us assume, the adversary has falsified the CAN
messages coming from the ABS to the EPS ECU. In this
situation, the EPS calculation will provide incorrect torque
values for the steering wheel as well as the car wheels. In the
real-life scenario, the driver can face multiple critical safety-
critical problems: 1) the driver may not steer the steering wheel
properly, resulting in the car not making a right turn at all,
2) the car may make the right turn so fast that it can lose
control and fall into a serious accident. Our platform enables
exploration of this scenario via real-time simulation (Fig. 4).

DoS Attack: We extend the CAN simulator to include
arbitration ids and priority schemes to employ queuing mech-
anisms, i.e., prioritizing which ECU messages to transmit first.
When a high-priority frame is transmitted, lower-priority ones
are forced to delay, allowing Denial of Service (DoS) attacks
to occur. Let us assume, the adversary has implemented a
DoS attack by flooding the CAN simulator with high-priority
messages coming solely from the EPS ECU. In that case, the
CAN simulator will not receive anything from the ABS ECU,
resulting in a lack of updated wheel speed data. In this regard,
similar safety-critical scenarios will occur discussed for frame
falsifying.

V. FUNCTIONAL SAFETY EXPLORATION

Automotive functional safety ISO 26262 standards were
prepared to address the risks as failures occur. There are
electronic component failure rates, failure classifications, and
hardware failure modes to understand the impact and severity
of the failures. With that being said, there are still no explo-
ration platforms for exploring system-level failures in a virtual
prototyping environment. We allow seamless component swap-
ping and explore use cases to simulate component failures.
Moreover, VIVE allows hardware integration with real sensors
and ECU process implementation in small-scale computers

Figure 4. Safety and security exploration in Right Turn use case with VIVE

(e.g., raspberry pi) to explore real-time failure explorations.
But, within the virtual environment, this exploration is less
sophisticated and more easily implementable to exercise and
understand the safety critical situation due to failures.

We extend VIVE with the ability to “tweak” any compo-
nents (i.e., ECU, sensor, or actuator) in a seamless configurable
manner from any use case and explore the corresponding result
of that use case performance under critical component failure
with a variety of failure modes. Fig. 4 depicts the scenario
where the load motor actuator has either (1) completely
failed, or (2) lost electrical connection with the EPS ECU.
Therefore, we are simulating the use case with port number
5044 being connected to a blank process. As a result, the
final output will generate an error saying the wheels are
not turning with adequate movement because no torque is
being applied. In a real-life scenario, the driver will not be
able to make a successful right turn with completely zero
or partial (considering a minimal amount of steering torque
coming from the driver) wheel movement. Similarly, an ECU
malfunction will result in a major safety-critical problem, i.e.,
severe dysfunction in ECU computations.

VI. COUNTERMEASURES

We explored a few security scenarios within our virtual
environment to show its viability and exploration capabil-
ities. Obviously, VIVE only provides an infrastructure for
exploration, and understanding of failure, not a resiliency
solution. Nevertheless, the user can define countermeasures
and explore their efficacy with VIVE. Major countermea-
sures against CAN compromises include dedicated hardware,
cryptography, intrusion detection, access control, etc. [10].
Within our platform architecture, the CAN simulator and ECU
processes are capable of alerting users at the initial stage
of certain component failures and abnormal CAN message
structures. We employ the usage of arbitration IDs and TCP
infrastructure and infused basic detection capabilities.

VII. CONCLUSION

Exploring and exercising system-level functional safety and
security scenarios early in the design is a critical requirement
for system-level validation of automotive systems. In this

paper, we addressed this problem through a platform to explore
it based on real-life attack occurrences and failure modes.
We discussed how to implement these features on top of
an existing prototyping platform VIVE that was originally
designed for functionality exploration and optimization. We
used a representative use case, right turn, to demonstrate the
viability of the approach.

In future work, we aim to implement more safety and
security scenarios and the corresponding countermeasures. For
instance, creating use cases to establish the functional safety
concept and consequently explore the viability of hardware
and software safety requirements is a critical exploration
area. Furthermore, adversarial cyber attacks on computer vi-
sion modules, machine learning mechanisms, and vehicular
communications are potential exploration challenges to be
considered for VIVE.

REFERENCES

[1] L. Da Xu, W. He, and S. Li, “Internet of things in industries: A survey,”
IEEE Transactions on industrial informatics, vol. 10, no. 4, pp. 2233–
2243, 2014.

[2] M. R. Kabir, N. Mishra, and S. Ray, “Vive: Virtualization of vehicular
electronics for system-level exploration,” in 2021 IEEE International

Intelligent Transportation Systems Conference (ITSC). IEEE, 2021,
pp. 3307–3312.

[3] C. Lee, S.-W. Kim, and C. Yoo, “Vadi: Gpu virtualization for an
automotive platform,” IEEE Transactions on Industrial Informatics,
vol. 12, no. 1, pp. 277–290, 2015.

[4] M. Safar, M. A. El-Moursy, M. Abdelsalam, A. Bakr, K. Khalil, and
A. Salem, “Virtual verification and validation of automotive system,”
Journal of Circuits, Systems and Computers, vol. 28, no. 04, p. 1950071,
2019.

[5] M. Strobl, M. Kucera, A. Foeldi, T. Waas, N. Balbierer, and C. Hilbert,
“Towards automotive virtualization,” in 2013 International Conference

on Applied Electronics. IEEE, 2013, pp. 1–6.
[6] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, “Sumo–

simulation of urban mobility: an overview,” in Proceedings of SIMUL

2011, The Third International Conference on Advances in System

Simulation. ThinkMind, 2011.
[7] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla:

An open urban driving simulator,” in Conference on robot learning.
PMLR, 2017, pp. 1–16.

[8] C. Yang, J. Dong, Q. Xu, M. Cai, H. Qin, J. Wang, and K. Li, “Multi-
vehicle experiment platform: A digital twin realization method,” in 2022

IEEE/SICE International Symposium on System Integration (SII). IEEE,
2022, pp. 705–711.

[9] B. B. Y. Ravi, M. R. Kabir, N. Mishra, S. Boddupalli, and S. Ray,
“Autohal: An exploration platform for ranging sensor attacks on auto-
motive systems,” in 2022 IEEE International Conference on Consumer

Electronics (ICCE). IEEE, 2022, pp. 1–2.
[10] M. Scalas and G. Giacinto, “Automotive cybersecurity: Foundations for

next-generation vehicles,” in 2019 2nd International Conference on new

Trends in Computing Sciences (ICTCS). IEEE, 2019, pp. 1–6.
[11] J.-H. Kim and J.-B. Song, “Control logic for an electric power steering

system using assist motor,” Mechatronics, vol. 12, no. 3, pp. 447–459,
2002.

[12] J. Liu, S. Zhang, W. Sun, and Y. Shi, “In-vehicle network attacks
and countermeasures: Challenges and future directions,” IEEE Network,
vol. 31, no. 5, pp. 50–58, 2017.

[13] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
S. Savage, K. Koscher, A. Czeskis, F. Roesner, T. Kohno et al.,
“Comprehensive experimental analyses of automotive attack surfaces.”
in USENIX security symposium, vol. 4, no. 447-462. San Francisco,
2011, p. 2021.

[14] S. Mazloom, M. Rezaeirad, A. Hunter, and D. McCoy, “A security
analysis of an in-vehicle infotainment and app platform.” in WOOT,
2016.

