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ABSTRACT

Acquiring computational modeling and simulation skills has become ever more critical for
students in life sciences courses at the secondary and tertiary levels. Many modeling and
simulation tools have been created to help instructors nurture those skills in their class-
rooms. Understanding the factors that may motivate instructors to use such tools is crucial
to improve students’ learning, especially for having authentic modeling and simulation
learning experiences. This study designed and tested a decomposed technology accep-
tance model in which the perceived usefulness and perceived ease of use constructs are
split between the teaching and learning sides of the technology to examine their relative
weight in a single model. Using data from instructors using the Cell Collective modeling
and simulation software, this study found that the relationship between perceived useful-
ness—teaching and attitude toward behavior was insignificant. Similarly, all relationships
between perceived ease of use—teaching and the other variables (i.e., perceived useful-
ness—teaching and attitude toward behavior) became insignificant. In contrast, we found
the relationships between perceived ease of use—learning and the other variables (i.e., per-
ceived usefulness—teaching, perceived usefulness—learning, and attitude toward behav-
ior) significant. These results suggest that priority should be given to the development of
features improving learning over features facilitating teaching.

INTRODUCTION

Computational modeling and numerical simulations have played an increasingly
important role across diverse learning environments, including science education
(e.g., life and medical sciences topics like cell biology and anatomy), mathematics
education (e.g., geometry), and engineering education (e.g., structural design)
(Smetana and Bell, 2012); a wide range of applications have been propelled by
increases in computational power and the availability of large-scale data sets. The
COVID-19 pandemic has brought these activities to the forefront, with the public at
large exposed to and discussing mathematical models of the disease epidemiology, the
impact of the virus on physiology, and vaccine efficacy. Modeling and simulations are
considered core elements for not only postsecondary undergraduate biology education
guidelines (AAAS, 2011) but also the Next Generation Science Standards for K-12
students (Achieve, 2013). Across the past few decades, education researchers have
learned much more about effective and equitable teaching and learning (National
Academies of Sciences, Engineering, and Medicine, 2018). For example, educational
technology to aid students in doing biological modeling and simulations can enable
equitable teaching by providing personalized instruction, access to educational
resources, and opportunities for collaboration and engagement; this can help level
the playing field for students who may not have access to high-quality educa-
tional resources and opportunities and foster a sense of community and belonging
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(Culp et al., 2005; Thomas, 2016). Indeed, the success of biol-
ogy education reform increasingly relies on the availability,
usability, and educator adoption of computational modeling
and simulation technologies. Following recognition that com-
putational modeling and simulation are skills needed for stu-
dents to deepen their understanding of complex biological pro-
cesses covered in life sciences courses, many modeling and
simulation tools have been developed and made available to
facilitate the development of those skills (Helikar, 2021).

Multiple technologies have been used for various educa-
tional purposes, including biological education, such as Web
platforms, robots, social networking tools, mobile devices,
machine learning-based education applications, learning ana-
lytics, and virtual reality technologies (Crompton et al., 2018;
Crompton and Traxler, 2018; Luo et al., 2019a,b; Brown et al.,
2020). However, the development and availability of educa-
tional tools are not a sufficient foundation for the transforma-
tive adoption of new technologies and related pedagogical
changes. Educational technologies are of limited use if they are
not broadly adopted and consistently used by instructors to
impact students’ learning at scale. Hence, continuous efforts to
engage more instructors and keep their interest are essential for
new technologies to reach students and impact their learning.
At the same time, the development of new technologies for
teaching often outpaces research investigating the effectiveness
of these technologies in equitably supporting student learning.
Although many studies have been conducted to develop and
expand our understanding of how educational technologies
impact learning (Hrastinski and Keller, 2007; Ross et al., 2010;
Barbera et al., 2015; Baydas et al., 2015; Tang and Tsai, 2016),
more research is needed for current technological advances, in
particular covering interdisciplinary domains such as computa-
tional modeling and simulation in the life sciences. Understand-
ing the factors that affect instructors’ adoption of technologies
is essential as the field considers how to engage students more
actively in learning how to model biological processes.

Many models and theories have been introduced to explain
technology adoption and use in general (Venkatesh et al.,
2003). They have been applied in investigating factors that
influence the adoption and continued use of educational tech-
nologies by instructors (Friedrich and Hron, 2011; Abdullah
and Ward, 2016; Panigrahi et al., 2018; Kaushik and Verma,
2019; Scherer et al., 2019; Alghazi et al., 2020; Liu et al., 2020;
Al-Nuaimi and Al-Emran, 2021; Grani¢, 2022). Foundational
models and theories include the theory of reasoned action
(Fishbein and Ajzen, 1975; Fishbein, 1979), technology accep-
tance model (TAM; Davis, 1989), theory of planned behavior
(TPB; Ajzen, 1991), diffusion of innovations theory (DIT;
Rogers, 2003), and self-determination theory (Deci and Ryan,
2013), among others. More recent models have attempted to
advance or extend TAM and TPB, apply DIT, introduce factors
from related models or theories, or investigate additional or
alternative belief factors. However, few, if any, studies on edu-
cational technology adoption have focused on computational
modeling and simulation technologies. Furthermore, although
many educational technologies propose features and present
challenges for both instructors (teaching) and students (learn-
ing), past research has primarily focused on either the teaching
or learning side of technology, rarely considering both sides of
educational technology features at the same time. In most
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cases, students’ use of specific educational technologies depends
on instructors’ adoption and deployment (especially in the for-
mal education environment), and instructors consider their stu-
dents when choosing to adopt and continue to use educational
technologies. Hence, the research that considers one side of the
spectrum (i.e., either teaching or learning) may provide limited
insight for promoting the adoption and continued use of educa-
tional technologies.

This study attempts to address this need. To explore the fac-
tors that may motivate or better facilitate the use of modeling
and simulation software in the classroom, we use the Cell Col-
lective (Cell Collective, 2022), an interactive computational
and modeling platform designed to deepen students’ under-
standing of biological processes and networks by building, sim-
ulating, and breaking computer models of such biological pro-
cesses (Helikar, 2021; Helikar et al., 2012, 2015). This study
encompasses two core constructs of TAM—perceived usefulness
and perceived ease of use—considered both for teaching and
learning as perceived by instructors. The results provide practi-
cal information about more efficiently (any resources—includ-
ing financial, human, and time—required for developing educa-
tional technology) to developing or enhancing educational
technology to promote instructors’ adoption of educational
technology more efficiently.

METHODS

Decomposed Technology Acceptance Model

Past studies on educational technology adoption involved either
instructors (e.g., Wong, 2016; Cheng, 2019; Huang and Teo,
2020; Islamoglu et al., 2021; Tang et al., 2021) or students (Joo
et al., 2016; Yang et al., 2017; Eraslan Yalcin and Kutlu, 2019;
Teo et al., 2019; Sun and Gao, 2020), not reflecting the unique
situation in which an educational technology provide features
for teaching and learning. Weighing the distinct sets of features
is critical in deciding where to invest more resources. The few
studies that have considered both sides added some measure-
ment items for the learning side into the construct for the teach-
ing side (Wang and Wang, 2009; Sanchez-Mena et al., 2019).

We employed the TAM to address this research gap. TAM
was developed to explain how individual end-users accept and
use information systems (Davis, 1989). Davis (1989) included
the constructs of perceived usefulness (defined as the degree to
which one believes that using a particular system would
enhance one’s job performance) and perceived ease of
use (defined as the degree to which one believes that using a
particular system would be free of effort) as determinants of
attitudes toward using information systems. The other main
variables in TAM are attitude toward behavior (defined as an
individual’s positive or negative feelings [evaluative affect]
about performing the target behavior—use of Cell Collective in
this study; Fishbein and Ajzen, 1975), behavioral intention to
use, and actual use of information systems (refer to the Supple-
mental Material to see how these constructs are measured).
Figure 1 is a graphic representation of TAM.

Davis et al. (1989) empirically showed that TAM is more
powerful in explaining behavioral intention to use technology.
Many researchers have empirically tested the relationships
between constructs employed in TAM (e.g., Adams et al., 1992;
Hendrickson et al., 1993) and extended TAM to different settings
(Agarwal and Prasad, 1999; Koufaris, 2002; Gefen et al., 2003;
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FIGURE 1. Original technology acceptance model (TAM).

Amoako-Gyampah and Salam, 2004; Wixom and Todd, 2005;
Venkatesh and Bala, 2008; Grani¢ and Maranguni¢, 2019;
Al-Emran and Grani¢, 2021), significantly contributing to devel-
oping technology adoption research. A number of studies using
TAM indicate its popularity in the field of educational technol-
ogy (Grani¢ and Maranguni¢, 2019; Al-Emran and Granic,
2021).

We developed a decomposed TAM in which two core con-
structs of TAM—perceived usefulness and perceived ease of
use—are duplicated to represent teaching and learning, result-
ing in the variables perceived usefulness—teaching, perceived
usefulness-learning, perceived ease of use-teaching, and per-
ceived ease of use-learning. Like the original TAM, the decom-
posed model hypothesizes positive relationships between per-
ceived usefulness—teaching and attitude toward behavior (H1),
between perceived usefulness-teaching and behavioral inten-
tion (H2), between perceived usefulness-learning and attitude
toward behavior (H3), and between perceived usefulness—
learning and behavioral intention (H4). It is reasonable to think
that instructors would consider the impact on learning by their
students when considering the usefulness of educational tech-
nology. Thus, our decomposed model also hypothesizes a posi-
tive relationship between perceived usefulness-learning and
perceived usefulness-teaching (H5).

Like the original TAM, our decomposed TAM hypothesizes
positive associations between perceived ease of use-teaching
and attitude toward behavior (H6), between perceived ease of
use-teaching and perceived usefulness-teaching (H7), between
perceived ease of use-learning and attitude toward behavior
(H8), between perceived ease of use-learning and perceived
usefulness—learning (H9), between perceived ease of use-learn-
ing and perceived usefulness-teaching (H10), and between atti-
tude toward behavior and behavioral intention (H11). Our 11
hypotheses are presented on the decomposed TAM in Figure 2.

Measurement

Our questionnaire aimed to measure secondary and tertiary
biology instructors’ perceived usefulness and ease of use for
teaching and learning, their attitudes toward technology adop-
tion behavior, and their behavioral intentions to use the model-
ing and simulation software tool Cell Collective in their life
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Educational Technology Adoption Factors

sciences courses. We used the research model’s constructs—the
latent variables—to minimize measurement error from percep-
tion-based question statements and reduce their collinearity
(Gefen et al., 2000). Our questionnaire’s scales are all drawn or
adapted from existing instruments and follow standard practice
(American Educational Research Association et al., 2014). Per-
ceived usefulness scales include five items for teaching and four
for learning, while perceived ease of use scales include five
items for both teaching and learning; we adapted them from
Adams et al. (1992), Davis (1989), Davis et al. (1989), and
Moore and Benbasat (1991). The items were worded differently
to reflect the teaching and learning context. For example, Moore
and Benbasat (1991) have a question item stated as “using a
PWS increases my performance,” but in this research, it was
revised to “Using Cell Collective improves my teaching perfor-
mance” to represent the teaching side of the technology and
“Using Cell Collective improves my students’ learning perfor-
mance” to represent the learning side of technology.

Attitude toward behavior has been a core construct in most
technology acceptance models (Venkatesh et al., 2003). We
adapted the attitude scale from these previous studies by add-
ing the “teaching” context for instructors. Finally, we adapted
items to measure behavioral intention from Taylor and Todd
(1995) and Venkatesh et al. (2003) by adding “continue to use
Cell Collective.” All constructs employed in the research model
were modeled to be reflective (Chin, 1998; Diamantopoulos
and Siguaw, 2006). We used a seven-point Likert scale to mea-
sure each item. The respondents were asked to rate each item or
statement from 1 (strongly disagree) to 7 (strongly agree).

Cell Collective: The Technology in This Study

Cell Collective is a modeling and simulation software tool used
in the life sciences (Cell Collective, 2022). It is research-grade
technology to build scientifically authentic technical skills and
makes computational modeling of complex biological processes
accessible to users regardless of their prior modeling experience
(Helikar, 2021; Helikar et al., 2012, 2015). The technology was
originally designed for scientists to use in their work, but also
has teaching features for instructors and learning features for
students. Having software suitable for use in secondary and ter-
tiary classrooms that is also used by active scientists allows
instructors to more authentically engage their students in doing
science. Cell Collective is a Web-based platform accessible from
any browser, eliminating the need for users to install the soft-
ware on local computers and allowing flexible implementation
(on-campus/remote, lecture/laboratory, in class/homework).
The models and lessons are customizable; components and
relationships between components can be added, removed, or
modified. During the course of developing and implementing
the simulation and modeling lessons, research has shown
mounting evidence of the effectiveness of simulation and mod-
eling in promoting student learning (Bergan-Roller et al., 2018;
Dauer et al., 2019; Clark et al., 2020; Helikar, 2021).

Data Collection

An online survey method was employed to collect data from
instructors using Cell Collective. An online survey was con-
ducted to collect cross-sectional research data. An email tar-
geted all instructors who adopted Cell Collective when teaching
biological networks. We sent the survey to 98 instructors, but
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FIGURE 2. Decomposed model of educational technology acceptance. Perceived
usefulness and ease of use are considered separately for learning and teaching. “Hx" refers

to the hypotheses listed in the text.

two emails bounced due to invalid addresses, resulting in 96
effective survey invitations. We received 42 responses from 37
institutions (about 30% men, 70% women; an average age of
42.7 years; 17.6% professor, 20.6% associate professor, 38.2%
assistant professor, 5.9% lecturer, and 2.9% teaching assistant),
ending up with a response rate of 43.8%.

A critically related issue with sample size is whether it pro-
vides enough statistical power for hypothesis testing. Power
analysis relies on effect size information. The recommended
method for determining effect size is to identify the latent vari-
able block of the research model that requires the largest multi-
ple regression; for this, the larger of the following needs to be
used: 1) the block with the highest number of formative indica-
tors or 2) the dependent latent variable with the largest number
of independent variables affecting it (Kock, 2021). Once the
larger of the two options is identified, the effect size, Cohen’s f?,
can be calculated using the R? of the dependent latent variable.
According to Cohen (1988), f? values of 0.02, 0.15, and 0.35
represent the independent variable’s small, medium, and large
impact on the dependent variable, respectively; the correspond-
ing R? for small, medium, and large effect size is 0.02, 0.13, and
0.26, respectively. The research model includes four dependent
latent variable blocks: perceived usefulness-teaching, perceived
usefulness-learning, attitude toward behavior, and behavioral

intention. Table 1 shows R?, f2, the number
of predictors, and the sample size required
to test hypotheses for a statistical power of
0.8 for each of the dependent latent vari-
able blocks drawing on the power analysis
table adapted by Green (1991). According
to Table 1, the minimum sample size to test
hypotheses for a statistical power of 0.80
for all the dependent latent variable blocks
in the research model is 39, and the num-
ber of respondents from the online user
survey is 43. Therefore, we secured the rec-
ommended statistical power of 0.80.

Behavioral
Intention

Data Analysis

We performed structural equation model-
ing (SEM) to test the study’s hypotheses,
because it offers an analytical ability to
handle both latent and measured variables
and allows for the simultaneous analysis
of multiple relationships among variables,
including direct, indirect, and mediated
effects (Kaplan, 2009). The sample size
was small, and the sample data in this
research did not satisfy the multivariate
normality requirement. These data and
model characteristics led to a need to conduct partial least-
squares SEM (PLS-SEM), which relies on a component-based
estimation approach, instead of covariance-based SEM
(CB-SEM). Despite certain disadvantages compared with
CB-SEM (e.g., potentially biased parameter estimates, no global
fit criteria provided), PLS-SEM can handle both data with mul-
tivariate nonnormality and a model with a small sample size
(Chin, 1998). Estimation methods in CB-SEM—generalized
least-squares and maximum likelihood—require normally dis-
tributed data. An alternative method—asymptotically distribu-
tion free—can be used to estimate parameters using nonnor-
mally distributed data in CB-SEM, but it requires a considerable
sample size (e.g., > 2500) and has limitations in handling miss-
ing data.

RESULTS

Measurement Model

We modeled all constructs to be reflective. We used the esti-
mates to assess the measurement model in terms of instrument
reliability, discriminant validity, collinearity, and predictive
validity. Composite reliability and Cronbach’s alpha coefficients
are measures of reliability, and average variances extracted
(AVE) and full collinearity variance inflation factors (VIFs) were
used to assess discriminant validity and overall collinearity,

TABLE 1. Minimum sample size required to test hypotheses for a power of 0.80

Dependent latent variable® R? Cohen’s effect size (f?) Number of predictors Minimum sample size
PU-T 0.587 1.421 (large) 3 35
PU-L 0.447 0.808 (large) 1 24
ATT 0.398 0.661 (large) 4 39
BI 0.564 1.123 (large) 3 35

apU-T, perceived usefulness—teaching; PU-L, perceived usefulness-learning; ATT, attitude toward behavior; BI, behavioral intention.
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TABLE 2. Construct coefficients

Educational Technology Adoption Factors

Construct? Composite reliability Cronbach’s alpha Average variance extracted Full collinearity VIF
PUT 0.948 0.930 0.785 2.212
PU-L 0.910 0.867 0.718 2.691
PE-T 0.909 0.874 0.669 1.860
PE-L 0.955 0.940 0.809 3.081
ATT 0.924 0.890 0.753 2.212
BI 0.945 0.922 0.811 2.040

aPU-T, perceived usefulness—teaching; PU-L, perceived usefulness-learning; PE-T,
toward behavior; BI, behavioral intention.

respectively (Kock, 2021). We show the construct coefficients of
these assessment criteria in Table 2.

Composite reliability and Cronbach’s alpha are used to test
internal consistency reliability, the degree to which responses
are consistent across a set of question items within a single fac-
tor or construct. A measurement instrument can be regarded as
having good reliability when the question items associated with
each construct are understood in the same way by different
respondents (Kock, 2021). Though there is no universal stan-
dard about how high composite reliability and Cronbach’s alpha
should be, in general, an alpha coefficient greater than 0.9 can
be considered “excellent,” a coefficient value greater than 0.8 is
“very good,” and a value greater than 0.7 is “adequate” (Kline,
2005, p. 59). The Cronbach’s alpha coefficients for the con-
structs in this research are all greater than 0.8, indicating that
the internal consistency reliability is significantly high (very
good or excellent) in this study, as shown in Table 2.

Campbell and Fiske (1959) stressed the importance of using
both discriminant and convergent validation techniques when
assessing the validity of the measurement model; this recom-
mendation is supported in more recent guidelines for construct-
ing validity arguments for instruments (American Educational
Research Association et al., 2014). Discriminant validity rep-
resents the degree to which a construct differs from the other
constructs and can be tested by AVEs in conjunction with con-
struct correlations. Construct correlations are shown in Table 2.
The measurement model demonstrates acceptable discriminant
validity, as all the correlation coefficients between paired con-
structs are less than the square root of AVE associated with each
construct. Therefore, oOur model exhibits strong discriminant
validity for the questionnaire to measure instructors’ percep-
tions of the included scales.

Meanwhile, we achieve strong convergent validity evidence
when all standardized factor loadings are greater than 0.7 and
significant, when the AVE of each construct is greater than 0.5
(Fornell and Larcker, 1981), and when construct reliability or

TABLE 3. Construct correlations and the square root of AVEs?®

perceived ease of use-teaching; PE-L, perceived ease of use-learning; ATT, attitude

internal consistency reliability is achieved. As shown in Table 3,
all AVEs are greater than 0.5. In addition, construct reliability or
internal consistency reliability is demonstrated as acceptable by
significantly high composite reliability and Cronbach’s alpha.
Finally, Table 4 presents combined factor loadings and
cross-loadings that provide evidence for the convergent validity
of the measurement model in this research. Two criteria are rec-
ommended as the basis for concluding that a measurement
model has acceptable convergent validity. First, the p values
associated with the loadings should be less than 0.05. Second,
the loadings should be equal to or greater than 0.7 (Chin, 1998)
or 0.5 (Hair et al., 2009). As shown in Table 4, all factor load-
ings are both greater than 0.7, except for one item to measure
the construct of perceived ease of use for students, and statisti-
cally significant (p < 0.001); therefore, our model demonstrates
strong evidence for convergent validity of the questionnaire to
measure our intended constructs.

We conducted a Harmon one-factor test (Podsakoff et al.,
2003) to see whether the measurement involved a common
method bias issue. The covariance explained by one factor is
48.03%, indicating that the common method bias is not a seri-
ous concern (not a likely contaminant of the measurement).
Full collinearity VIFs can also be used to conduct common
method bias tests (Lindell and Whitney, 2001) that are more
conservative than the traditionally used tests relying on explor-
atory factor analyses (Kock, 2021). Table 2 presents full collin-
earity VIFs for all constructs. These VIFs are estimated by a full
collinearity test that enables the identification of both vertical
and lateral collinearity (Kock, 2021). The full VIFs in Table 2
are all much less than 10, demonstrating no existence of multi-
collinearity in the measurement model.

Structural Model

Efron (1979) suggested using bootstrapping (a resampling
technique) to determine the significance of path coefficients.
We used bootstrapping with 100 resamplings. The results for

Mean SD PU-T PU-L PE-T PE-L ATT BI
PU-T 4.90 1.32 0.886
PU-L 5.65 1.07 0.658%*** 0.847
PET 5.18 1.02 0.379* 0.554%** 0.818
PE-L 4.41 1.34 0.614%** 0.633*** 0.638%** 0.899
ATT 5.75 0.91 0.511%** 0.595%** 0.398** 0.632%** 0.868
BI 4.79 1.32 0.512%** 0.346* 0.351* 0.612%** 0.596%** 0.901

aPU-T, perceived usefulness—teaching; PU-L, perceived usefulness-learning; PE-T, perceived ease of use-teaching; PE-L, perceived ease of use-learning; ATT, attitude

toward behavior; BI, behavioral intention.* p < 0.05, ** p < 0.01, and *** p < 0.001.
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TABLE 4. Combined loadings and cross-loadings

PU-T PU-L PE-T PE-L ATT BI SE p value
PUL T 0.910 -0.277 0.171 -0.052 -0.130 0.011 0.105 <0.001
PU2_ T 0.897 -0.162 0.040 0.045 0.214 -0.012 0.106 <0.001
PU3 T 0.930 0.034 -0.007 -0.220 -0.047 0.146 0.104 <0.001
PU4.T 0.775 0.469 -0.225 0.176 0.198 -0.234 0.112 <0.001
PUS_T 0.910 0.003 -0.011 0.082 -0.202 0.050 0.105 <0.001
PU1 L -0.057 0.893 0.142 -0.133 0.178 -0.089 0.106 <0.001
PU2 L -0.084 0.884 -0.154 —-0.085 0.004 —-0.085 0.106 <0.001
PU3 L -0.130 0.865 -0.079 0.001 -0.151 0.017 0.107 <0.001
PU4 L 0.323 0.738 0.105 0.261 -0.043 0.190 0.113 <0.001
PE1_T -0.107 -0.023 0.752 0.242 -0.083 -0.112 0.113 <0.001
PE2 T -0.109 0.257 0.866 -0.144 0.163 -0.143 0.107 <0.001
PE3 T 0.352 —-0.346 0.705 0.030 -0.054 0.174 0.115 <0.001
PE4 T —0.146 -0.137 0.879 -0.070 0.024 0.183 0.107 <0.001
PES T 0.063 0.183 0.873 -0.020 -0.071 —-0.086 0.107 <0.001
PE1 L 0.242 -0.001 -0.173 0.822 0.017 0.040 0.109 <0.001
PE2 L —0.055 0.070 0.090 0.917 0.027 0.056 0.105 <0.001
PE3 L -0.137 0.019 -0.073 0.911 —-0.095 —-0.055 0.105 <0.001
PE4 L -0.124 -0.110 0.144 0.905 -0.094 -0.003 0.106 <0.001
PE5 L 0.094 0.020 —-0.004 0.936 0.142 -0.034 0.104 <0.001
ATT1 -0.150 0.250 —-0.013 -0.072 0.910 0.003 0.105 <0.001
ATT2 —0.022 0.051 —0.069 0.002 0.860 -0.234 0.108 <0.001
ATT3 0.322 —-0.226 0.311 0.008 0.802 0.031 0.110 <0.001
ATT4 -0.115 -0.102 -0.199 0.064 0.894 0.195 0.106 <0.001
BI1 -0.020 -0.079 0.063 0.178 -0.134 0.923 0.105 <0.001
BI2 -0.158 —-0.006 -0.139 0.274 0.000 0.919 0.105 <0.001
BI3 —-0.048 0.160 -0.078 -0.011 -0.149 0.903 0.106 <0.001
BI4 0.242 -0.077 0.165 —-0.475 0.301 0.855 0.108 <0.001

apU-T, perceived usefulness-teaching; PU-L, perceived usefulness-learning; PE-T, perceived ease of use-teaching; PE-L, perceived ease of use-learning; ATT, attitude

toward behavior; BI, behavioral intention.

the default (original) TAM’s average R*(ARS) were 0.332 (p <
0.01), with the average path coefficient (APC) being 0.398 (p <
0.01) and the average variation inflation factor (AVIF) being
1.299. Individual path coefficients between exogenous and
endogenous constructs in the original TAM all turned out to be
significant, as shown in Figure 3.

Perceived
Usefulness-
Teaching

i toward —>
o \Behavior $=0.410
\_/, ( <0.01)

/ R?=0.409
3=0.325
\\// (p<0.05
Perceived
Ease of Use-

Teaching

Behavioral
Intention

R*=0.510

FIGURE 3. Results for the original TAM.
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Meanwhile, the decomposed model (the research model in
this study) explained more of the variance in the endogenous
latent variables compared with the original TAM; the average
R?(ARS) was 0.494 (p < 0.001), with the APC being statistically
significant (§ = 0.296, p < 0.01) and the AVIF belonging to an
acceptable level (2.349). Individual path coefficients between
exogenous and endogenous constructs are shown in Figure 4.
The path coefficients from perceived usefulness—teaching to
attitude ( = 0.18, p = 0.115) turned out to be insignificant,
while the path from perceived usefulness-teaching to behav-
ioral intention ( = 0.41, p < 0.01) was found to be significant,
supporting hypothesis 2 but not hypothesis 1. The path coeffi-
cient from perceived usefulness-learning to attitude was found
to be significant (§ = 0.23, p < 0.05), supporting hypothesis 3,
but the path to behavioral intention turned out to be insignifi-
cant (f = 0.05, p = 0.381), rejecting hypothesis 4. The path
coefficient from perceived usefulness—learning to perceived use-
fulness—teaching was found to be significant (f = 0.51, p <
0.001), supporting hypothesis 5.

We found the paths from perceived ease of use-teaching to
attitude toward behavior (B = 0.09, p = 0.271) and perceived
usefulness—teaching ( = 0.05, p = 0.376) insignificant, failing
to support hypotheses 6 and 7. In contrast, the path coefficients
from perceived ease of use-learning to attitude toward behav-
ior (B = 0.32, p < 0.05) and perceived usefulness-learning
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(B =0.67, p < 0.001) turned out to be significant, supporting
hypotheses 8 and 9. Furthermore, we also found the path from
perceived ease of use-learning to perceived usefulness—teach-
ing significant (f = 0.34, p < 0.01), supporting hypothesis 10.
Finally, the path inherited from TAM from attitude toward
behavior to behavioral intention was also significant ( = 0.42,
p < 0.01), supporting hypothesis 11.

Table 5 shows the total effects of independent constructs on
behavioral intention to continue using the technology in this
research. All independent constructs but perceived ease of use
turned out to have significant total effects on behavioral inten-
tion. Among these, the total effect of perceived ease of use for
learning turned out to be the largest (effect size = 0.309).

DISCUSSION

In many cases, students’ use of specific educational technology
relies on instructors’ adoption and continued use of that tech-
nology. Therefore, to improve life sciences education through
novel technologies, such as those enabling learning through
computational modeling and simulation (like Cell Collective),
motivating or facilitating instructors’ acceptance and use of
educational technologies in their courses is crucial. The effort to
motivate instructors or to facilitate their task begins with under-

TABLE 5. Total effects on behavioral intention

Construct? Effect p value SE Effect size
PU-T 0.492 <0.001 0.113 0.235
PU-L 0.474 <0.001 0.113 0.147
PET —-0.024 0.428 0.134 0.008
PE-L 0.553 <0.001 0.110 0.309
ATT 0.511 <0.001 0.112 0.307

apU-T, perceived usefulness—teaching; PU-L, perceived usefulness-learning; PE-T,
perceived ease of use-teaching; PE-L, perceived ease of use-learning; ATT, atti-
tude toward behavior.
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standing the factors influencing their
intention to adopt and continue using edu-
cational technologies.

The insights revealed by the original
TAM (i.e., the model without the decom-
position between learning and teaching)
support the relationship between per-
ceived usefulness and attitude toward edu-
cational technology. Various studies have
consistently supported this relationship
since the foundational research by Davis
et al. (1989; e.g., Taylor and Todd, 1995;
Wixom and Todd, 2005; Bhattacherjee and
Sanford, 2006). The original TAM also
supports the relationship between per-
ceived usefulness and behavioral intention
(Moore and Benbasat, 1991; Thompson
et al., 1991; Adams et al., 1992; Compeau
and Higgins, 1995; Igbaria et al., 1996;
Gefen and Straub, 1997; Karahanna et al.,
1999; Karahanna and Straub, 1999), indi-
cating that functionality of educational
technology plays a key role in instructors’
decisions to adopt and continue to use
educational technology. However, in the decomposed TAM, in
which the constructs of perceived usefulness and perceived ease
of use are split into teaching and learning, the relationship
between perceived usefulness-teaching and attitude became
insignificant, while the path from perceived usefulness—learning
to attitude still remained significant.

Similarly, all paths from perceived ease of use to the other
constructs in the original TAM were supported as theorized.
The relationships between perceived ease of use and perceived
usefulness and between perceived ease of use and attitude have
been found to be significant in the context of educational tech-
nology adoption (Scherer et al., 2019). However, in the decom-
posed TAM, in which the constructs of perceived usefulness and
perceived ease of use are split into teaching and learning, all
paths from perceived ease of use-teaching became insignifi-
cant. In contrast, all paths from added perceived ease of use—
learning to the other constructs (i.e., attitude toward behavior,
perceived usefulness—teaching, and perceived usefulness-learn-
ing) turned out to be significant. Presumably, these findings can
be explained from the perspective of instructors’ professional
ethics: to serve students (Professional Standards and Practices
Commission, n.d.).

Our results have theoretical and practical implications. The-
oretically, this study included, for the first time, separate con-
structs to study the impact of educational technology on learn-
ing and teaching in a single model, thereby enabling a
comparison between the two sides (e.g., relative weights). This
decomposed model of educational technology acceptance
reflects the unique context in which instructors consider their
students when determining the adoption and continued use of
educational technology. The model shows how the relation-
ships among the constructs in the original TAM changed when
this unique context is reflected in the model. The comparisons
between the original and decomposed models have significant
implications for the development and improvement of educa-
tional technologies projects in contexts where instructors
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consider their students when deciding to adopt and continue to
use such technology. In most cases, the resources for further
development or improvement are limited, and such scarce
resources must be used efficiently. Understanding the relatively
more important factors should be the first step toward efficient
spending. Our results suggest that prioritizing learning features
(i.e., features improving learning by the students) over teaching
features (i.e., features facilitating the teaching by instructors) is
important to motivate instructors to accept and continue to use
educational technology.

Despite the significant theoretical and practical implications,
the sample size might limit the generalizability of our results.
This study met the minimum sample size to secure statistical
power of 0.8. However, future research needs to be conducted
with a larger sample size to ensure greater statistical power and
strengthen the external validity of the results. In this study, TAM
was used to examine the relative weights of the constructs
affecting the efficiency of instructors and students (i.e., per-
ceived usefulness-teaching vs. perceived usefulness-learning;
perceived ease of use-teaching vs. perceived ease of use-learn-
ing) through a survey involving instructors. Although what
instructors think or feel is relevant to this study’s context (their
assessments are based on the information from all sources,
including observations of, interactions with, and feedback from
students), future research should also consider collecting data
directly from students to capture student perceptions of useful-
ness and ease of use and compare them with instructors’ per-
ceptions of the learning side. For example, a gap between
instructors and students in terms of perceived usefulness and
ease of use might exist, and that information should be shared
with instructors to address their concerns. Future research is
warranted to investigate other factors (e.g., facilitating condi-
tions) employed in other major technology acceptance models
and theories (e.g., TPB, DIT) and thereby fill a knowledge gap
in the literature.

CONCLUSION

Engaging students in modeling and simulation tasks in life sci-
ences courses can improve student learning compared with stu-
dents solely attending lectures. However, adopting instructional
technology to support such tasks takes time (a precious resource
for instructors) to develop expertise to use a particular instruc-
tional technology tool. Our study has practical implications in
the context of limited resources available for creating or improv-
ing educational technology: Prioritize features improving the
learning rather than features facilitating the teaching to moti-
vate instructors to use the technology, so that they reach more
students and help students improve their understanding of life
science through interactive computational modeling and
simulations.
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