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ARTICLE

ABSTRACT
Acquiring computational modeling and simulation skills has become ever more critical for 
students in life sciences courses at the secondary and tertiary levels. Many modeling and 
simulation tools have been created to help instructors nurture those skills in their class-
rooms. Understanding the factors that may motivate instructors to use such tools is crucial 
to improve students’ learning, especially for having authentic modeling and simulation 
learning experiences. This study designed and tested a decomposed technology accep-
tance model in which the perceived usefulness and perceived ease of use constructs are 
split between the teaching and learning sides of the technology to examine their relative 
weight in a single model. Using data from instructors using the Cell Collective modeling 
and simulation software, this study found that the relationship between perceived useful-
ness–teaching and attitude toward behavior was insignificant. Similarly, all relationships 
between perceived ease of use–teaching and the other variables (i.e., perceived useful-
ness–teaching and attitude toward behavior) became insignificant. In contrast, we found 
the relationships between perceived ease of use–learning and the other variables (i.e., per-
ceived usefulness–teaching, perceived usefulness–learning, and attitude toward behav-
ior) significant. These results suggest that priority should be given to the development of 
features improving learning over features facilitating teaching.

INTRODUCTION
Computational modeling and numerical simulations have played an increasingly 
important role across diverse learning environments, including science education 
(e.g., life and medical sciences topics like cell biology and anatomy), mathematics 
education (e.g., geometry), and engineering education (e.g., structural design) 
(Smetana and Bell, 2012); a wide range of applications have been propelled by 
increases in computational power and the availability of large-scale data sets. The 
COVID-19 pandemic has brought these activities to the forefront, with the public at 
large exposed to and discussing mathematical models of the disease epidemiology, the 
impact of the virus on physiology, and vaccine efficacy. Modeling and simulations are 
considered core elements for not only postsecondary undergraduate biology education 
guidelines (AAAS, 2011) but also the Next Generation Science Standards for K–12 
students (Achieve, 2013). Across the past few decades, education researchers have 
learned much more about effective and equitable teaching and learning (National 
Academies of Sciences, Engineering, and Medicine, 2018). For example, educational 
technology to aid students in doing biological modeling and simulations can enable 
equitable teaching by providing personalized instruction, access to educational 
resources, and opportunities for collaboration and engagement; this can help level 
the playing field for students who may not have access to high-quality educa-
tional resources and opportunities and foster a sense of community and belonging 
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(Culp et al., 2005; Thomas, 2016). Indeed, the success of biol-
ogy education reform increasingly relies on the availability, 
usability, and educator adoption of computational modeling 
and simulation technologies. Following recognition that com-
putational modeling and simulation are skills needed for stu-
dents to deepen their understanding of complex biological pro-
cesses covered in life sciences courses, many modeling and 
simulation tools have been developed and made available to 
facilitate the development of those skills (Helikar, 2021).

Multiple technologies have been used for various educa-
tional purposes, including biological education, such as Web 
platforms, robots, social networking tools, mobile devices, 
machine learning–based education applications, learning ana-
lytics, and virtual reality technologies (Crompton et al., 2018; 
Crompton and Traxler, 2018; Luo et al., 2019a,b; Brown et al., 
2020). However, the development and availability of educa-
tional tools are not a sufficient foundation for the transforma-
tive adoption of new technologies and related pedagogical 
changes. Educational technologies are of limited use if they are 
not broadly adopted and consistently used by instructors to 
impact students’ learning at scale. Hence, continuous efforts to 
engage more instructors and keep their interest are essential for 
new technologies to reach students and impact their learning. 
At the same time, the development of new technologies for 
teaching often outpaces research investigating the effectiveness 
of these technologies in equitably supporting student learning. 
Although many studies have been conducted to develop and 
expand our understanding of how educational technologies 
impact learning (Hrastinski and Keller, 2007; Ross et al., 2010; 
Barbera et al., 2015; Baydas et al., 2015; Tang and Tsai, 2016), 
more research is needed for current technological advances, in 
particular covering interdisciplinary domains such as computa-
tional modeling and simulation in the life sciences. Understand-
ing the factors that affect instructors’ adoption of technologies 
is essential as the field considers how to engage students more 
actively in learning how to model biological processes.

Many models and theories have been introduced to explain 
technology adoption and use in general (Venkatesh et  al., 
2003). They have been applied in investigating factors that 
influence the adoption and continued use of educational tech-
nologies by instructors (Friedrich and Hron, 2011; Abdullah 
and Ward, 2016; Panigrahi et  al., 2018; Kaushik and Verma, 
2019; Scherer et al., 2019; Alghazi et al., 2020; Liu et al., 2020; 
Al-Nuaimi and Al-Emran, 2021; Granić, 2022). Foundational 
models and theories include the theory of reasoned action 
(Fishbein and Ajzen, 1975; Fishbein, 1979), technology accep-
tance model (TAM; Davis, 1989), theory of planned behavior 
(TPB; Ajzen, 1991), diffusion of innovations theory (DIT; 
Rogers, 2003), and self-determination theory (Deci and Ryan, 
2013), among others.  More recent models have attempted to 
advance or extend TAM and TPB, apply DIT, introduce factors 
from related models or theories, or investigate additional or 
alternative belief factors. However, few, if any, studies on edu-
cational technology adoption have focused on computational 
modeling and simulation technologies. Furthermore, although 
many educational technologies propose features and present 
challenges for both instructors (teaching) and students (learn-
ing), past research has primarily focused on either the teaching 
or learning side of technology, rarely considering both sides of 
educational technology features at the same time. In most 

cases, students’ use of specific educational technologies depends 
on instructors’ adoption and deployment (especially in the for-
mal education environment), and instructors consider their stu-
dents when choosing to adopt and continue to use educational 
technologies. Hence, the research that considers one side of the 
spectrum (i.e., either teaching or learning) may provide limited 
insight for promoting the adoption and continued use of educa-
tional technologies.

This study attempts to address this need. To explore the fac-
tors that may motivate or better facilitate the use of modeling 
and simulation software in the classroom, we use the Cell Col-
lective (Cell Collective, 2022), an interactive computational 
and modeling platform designed to deepen students’ under-
standing of biological processes and networks by building, sim-
ulating, and breaking computer models of such biological pro-
cesses (Helikar, 2021; Helikar et al., 2012, 2015). This study 
encompasses two core constructs of TAM—perceived usefulness 
and perceived ease of use—considered both for teaching and 
learning as perceived by instructors. The results provide practi-
cal information about more efficiently (any resources—includ-
ing financial, human, and time—required for developing educa-
tional technology) to developing or enhancing educational 
technology to promote instructors’ adoption of educational 
technology more efficiently.

METHODS
Decomposed Technology Acceptance Model
Past studies on educational technology adoption involved either 
instructors (e.g., Wong, 2016; Cheng, 2019; Huang and Teo, 
2020; Islamoglu et al., 2021; Tang et al., 2021) or students (Joo 
et al., 2016; Yang et al., 2017; Eraslan Yalcin and Kutlu, 2019; 
Teo et al., 2019; Sun and Gao, 2020), not reflecting the unique 
situation in which an educational technology provide features 
for teaching and learning. Weighing the distinct sets of features 
is critical in deciding where to invest more resources. The few 
studies that have considered both sides added some measure-
ment items for the learning side into the construct for the teach-
ing side (Wang and Wang, 2009; Sánchez-Mena et al., 2019).

We employed the TAM to address this research gap. TAM 
was developed to explain how individual end-users accept and 
use information systems (Davis, 1989). Davis (1989) included 
the constructs of perceived usefulness (defined as the degree to 
which one believes that using a particular system would 
enhance one’s job performance) and perceived ease of 
use (defined as the degree to which one believes that using a 
particular system would be free of effort) as determinants of 
attitudes toward using information systems. The other main 
variables in TAM are attitude toward behavior (defined as an 
individual’s positive or negative feelings [evaluative affect] 
about performing the target behavior—use of Cell Collective in 
this study; Fishbein and Ajzen, 1975), behavioral intention to 
use, and actual use of information systems (refer to the Supple-
mental Material to see how these constructs are measured). 
Figure 1 is a graphic representation of TAM.

Davis et  al. (1989) empirically showed that TAM is more 
powerful in explaining behavioral intention to use technology. 
Many researchers have empirically tested the relationships 
between constructs employed in TAM (e.g., Adams et al., 1992; 
Hendrickson et al., 1993) and extended TAM to different settings 
(Agarwal and Prasad, 1999; Koufaris, 2002; Gefen et al., 2003; 
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sciences courses. We used the research model’s constructs—the 
latent variables—to minimize measurement error from percep-
tion-based question statements and reduce their collinearity 
(Gefen et al., 2000). Our questionnaire’s scales are all drawn or 
adapted from existing instruments and follow standard practice 
(American Educational Research Association et al., 2014). Per-
ceived usefulness scales include five items for teaching and four 
for learning, while perceived ease of use scales include five 
items for both teaching and learning; we adapted them from 
Adams et  al. (1992), Davis (1989), Davis et  al. (1989), and 
Moore and Benbasat (1991). The items were worded differently 
to reflect the teaching and learning context. For example, Moore 
and Benbasat (1991) have a question item stated as “using a 
PWS increases my performance,” but in this research, it was 
revised to “Using Cell Collective improves my teaching perfor-
mance” to represent the teaching side of the technology and 
“Using Cell Collective improves my students’ learning perfor-
mance” to represent the learning side of technology.

Attitude toward behavior has been a core construct in most 
technology acceptance models (Venkatesh et  al., 2003). We 
adapted the attitude scale from these previous studies by add-
ing the “teaching” context for instructors. Finally, we adapted 
items to measure behavioral intention from Taylor and Todd 
(1995) and Venkatesh et al. (2003) by adding “continue to use 
Cell Collective.” All constructs employed in the research model 
were modeled to be reflective (Chin, 1998; Diamantopoulos 
and Siguaw, 2006). We used a seven-point Likert scale to mea-
sure each item. The respondents were asked to rate each item or 
statement from 1 (strongly disagree) to 7 (strongly agree).

Cell Collective: The Technology in This Study
Cell Collective is a modeling and simulation software tool used 
in the life sciences (Cell Collective, 2022). It is research-grade 
technology to build scientifically authentic technical skills and 
makes computational modeling of complex biological processes 
accessible to users regardless of their prior modeling experience 
(Helikar, 2021; Helikar et al., 2012, 2015). The technology was 
originally designed for scientists to use in their work, but also 
has teaching features for instructors and learning features for 
students. Having software suitable for use in secondary and ter-
tiary classrooms that is also used by active scientists allows 
instructors to more authentically engage their students in doing 
science. Cell Collective is a Web-based platform accessible from 
any browser, eliminating the need for users to install the soft-
ware on local computers and allowing flexible implementation 
(on-campus/remote, lecture/laboratory, in class/homework). 
The models and lessons are customizable; components and 
relationships between components can be added, removed, or 
modified. During the course of developing and implementing 
the simulation and modeling lessons, research has shown 
mounting evidence of the effectiveness of simulation and mod-
eling in promoting student learning (Bergan-Roller et al., 2018; 
Dauer et al., 2019; Clark et al., 2020; Helikar, 2021).

Data Collection
An online survey method was employed to collect data from 
instructors using Cell Collective. An online survey was con-
ducted to collect cross-sectional research data. An email tar-
geted all instructors who adopted Cell Collective when teaching 
biological networks. We sent the survey to 98 instructors, but 

Amoako-Gyampah and Salam, 2004; Wixom and Todd, 2005; 
Venkatesh and Bala, 2008; Granić and Marangunić, 2019; 
Al-Emran and Granić, 2021), significantly contributing to devel-
oping technology adoption research. A number of studies using 
TAM indicate its popularity in the field of educational technol-
ogy (Granić and Marangunić, 2019; Al-Emran and Granić, 
2021).

We developed a decomposed TAM in which two core con-
structs of TAM—perceived usefulness and perceived ease of 
use—are duplicated to represent teaching and learning, result-
ing in the variables perceived usefulness–teaching, perceived 
usefulness–learning, perceived ease of use–teaching, and per-
ceived ease of use–learning. Like the original TAM, the decom-
posed model hypothesizes positive relationships between per-
ceived usefulness–teaching and attitude toward behavior (H1), 
between perceived usefulness–teaching and behavioral inten-
tion (H2), between perceived usefulness–learning and attitude 
toward behavior (H3), and between perceived usefulness–
learning and behavioral intention (H4). It is reasonable to think 
that instructors would consider the impact on learning by their 
students when considering the usefulness of educational tech-
nology. Thus, our decomposed model also hypothesizes a posi-
tive relationship between perceived usefulness–learning and 
perceived usefulness–teaching (H5).

Like the original TAM, our decomposed TAM hypothesizes 
positive associations between perceived ease of use–teaching 
and attitude toward behavior (H6), between perceived ease of 
use–teaching and perceived usefulness–teaching (H7), between 
perceived ease of use–learning and attitude toward behavior 
(H8), between perceived ease of use–learning and perceived 
usefulness–learning (H9), between perceived ease of use–learn-
ing and perceived usefulness–teaching (H10), and between atti-
tude toward behavior and behavioral intention (H11). Our 11 
hypotheses are presented on the decomposed TAM in Figure 2.

Measurement
Our questionnaire aimed to measure secondary and tertiary 
biology instructors’ perceived usefulness and ease of use for 
teaching and learning, their attitudes toward technology adop-
tion behavior, and their behavioral intentions to use the model-
ing and simulation software tool Cell Collective in their life 

FIGURE 1.  Original technology acceptance model (TAM).
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intention. Table 1 shows R2, f2, the number 
of predictors, and the sample size required 
to test hypotheses for a statistical power of 
0.8 for each of the dependent latent vari-
able blocks drawing on the power analysis 
table adapted by Green (1991). According 
to Table 1, the minimum sample size to test 
hypotheses for a statistical power of 0.80 
for all the dependent latent variable blocks 
in the research model is 39, and the num-
ber of respondents from the online user 
survey is 43. Therefore, we secured the rec-
ommended statistical power of 0.80.

Data Analysis
We performed structural equation model-
ing (SEM) to test the study’s hypotheses, 
because it offers an analytical ability to 
handle both latent and measured variables 
and allows for the simultaneous analysis 
of multiple relationships among variables, 
including direct, indirect, and mediated 
effects (Kaplan, 2009). The sample size 
was small, and the sample data in this 
research did not satisfy the multivariate 
normality requirement. These data and 

model characteristics led to a need to conduct partial least-
squares SEM (PLS-SEM), which relies on a component-based 
estimation approach, instead of covariance-based SEM 
(CB-SEM). Despite certain disadvantages compared with 
CB-SEM (e.g., potentially biased parameter estimates, no global 
fit criteria provided), PLS-SEM can handle both data with mul-
tivariate nonnormality and a model with a small sample size 
(Chin, 1998). Estimation methods in CB-SEM—generalized 
least-squares and maximum likelihood—require normally dis-
tributed data. An alternative method—asymptotically distribu-
tion free—can be used to estimate parameters using nonnor-
mally distributed data in CB-SEM, but it requires a considerable 
sample size (e.g., > 2500) and has limitations in handling miss-
ing data.

RESULTS
Measurement Model
We modeled all constructs to be reflective. We used the esti-
mates to assess the measurement model in terms of instrument 
reliability, discriminant validity, collinearity, and predictive 
validity. Composite reliability and Cronbach’s alpha coefficients 
are measures of reliability, and average variances extracted 
(AVE) and full collinearity variance inflation factors (VIFs) were 
used to assess discriminant validity and overall collinearity, 

two emails bounced due to invalid addresses, resulting in 96 
effective survey invitations. We received 42 responses from 37 
institutions (about 30% men, 70% women; an average age of 
42.7 years; 17.6% professor, 20.6% associate professor, 38.2% 
assistant professor, 5.9% lecturer, and 2.9% teaching assistant), 
ending up with a response rate of 43.8%.

A critically related issue with sample size is whether it pro-
vides enough statistical power for hypothesis testing. Power 
analysis relies on effect size information. The recommended 
method for determining effect size is to identify the latent vari-
able block of the research model that requires the largest multi-
ple regression; for this, the larger of the following needs to be 
used: 1) the block with the highest number of formative indica-
tors or 2) the dependent latent variable with the largest number 
of independent variables affecting it (Kock, 2021). Once the 
larger of the two options is identified, the effect size, Cohen’s f2, 
can be calculated using the R2 of the dependent latent variable. 
According to Cohen (1988), f2 values of 0.02, 0.15, and 0.35 
represent the independent variable’s small, medium, and large 
impact on the dependent variable, respectively; the correspond-
ing R2 for small, medium, and large effect size is 0.02, 0.13, and 
0.26, respectively. The research model includes four dependent 
latent variable blocks: perceived usefulness–teaching, perceived 
usefulness–learning, attitude toward behavior, and behavioral 

TABLE 1.  Minimum sample size required to test hypotheses for a power of 0.80

Dependent latent variablea R2 Cohen’s effect size (f2) Number of predictors Minimum sample size

PU-T 0.587 1.421 (large) 3 35
PU-L 0.447 0.808 (large) 1 24
ATT 0.398 0.661 (large) 4 39
BI 0.564 1.123 (large) 3 35

aPU-T, perceived usefulness–teaching; PU-L, perceived usefulness–learning; ATT, attitude toward behavior; BI, behavioral intention.

FIGURE 2.  Decomposed model of educational technology acceptance. Perceived 
usefulness and ease of use are considered separately for learning and teaching. “Hx” refers 
to the hypotheses listed in the text.
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respectively (Kock, 2021). We show the construct coefficients of 
these assessment criteria in Table 2.

Composite reliability and Cronbach’s alpha are used to test 
internal consistency reliability, the degree to which responses 
are consistent across a set of question items within a single fac-
tor or construct. A measurement instrument can be regarded as 
having good reliability when the question items associated with 
each construct are understood in the same way by different 
respondents (Kock, 2021). Though there is no universal stan-
dard about how high composite reliability and Cronbach’s alpha 
should be, in general, an alpha coefficient greater than 0.9 can 
be considered “excellent,” a coefficient value greater than 0.8 is 
“very good,” and a value greater than 0.7 is “adequate” (Kline, 
2005, p. 59). The Cronbach’s alpha coefficients for the con-
structs in this research are all greater than 0.8, indicating that 
the internal consistency reliability is significantly high (very 
good or excellent) in this study, as shown in Table 2.

Campbell and Fiske (1959) stressed the importance of using 
both discriminant and convergent validation techniques when 
assessing the validity of the measurement model; this recom-
mendation is supported in more recent guidelines for construct-
ing validity arguments for instruments (American Educational 
Research Association et  al., 2014). Discriminant validity rep-
resents the degree to which a construct differs from the other 
constructs and can be tested by AVEs in conjunction with con-
struct correlations. Construct correlations are shown in Table 2. 
The measurement model demonstrates acceptable discriminant 
validity, as all the correlation coefficients between paired con-
structs are less than the square root of AVE associated with each 
construct. Therefore, o0ur model exhibits strong discriminant 
validity  for the questionnaire to measure instructors’ percep-
tions of the included scales.

Meanwhile, we achieve strong convergent validity evidence 
when all standardized factor loadings are greater than 0.7 and 
significant, when the AVE of each construct is greater than 0.5 
(Fornell and Larcker, 1981), and when construct reliability or 

internal consistency reliability is achieved. As shown in Table 3, 
all AVEs are greater than 0.5. In addition, construct reliability or 
internal consistency reliability is demonstrated as acceptable by 
significantly high composite reliability and Cronbach’s alpha. 
Finally, Table 4 presents combined factor loadings and 
cross-loadings that provide evidence for the convergent validity 
of the measurement model in this research. Two criteria are rec-
ommended as the basis for concluding that a measurement 
model has acceptable convergent validity. First, the p values 
associated with the loadings should be less than 0.05. Second, 
the loadings should be equal to or greater than 0.7 (Chin, 1998) 
or 0.5 (Hair et al., 2009). As shown in Table 4, all factor load-
ings are both greater than 0.7, except for one item to measure 
the construct of perceived ease of use for students, and statisti-
cally significant (p < 0.001); therefore, our model demonstrates 
strong evidence for  convergent validity of the questionnaire to 
measure our intended constructs.

We conducted a Harmon one-factor test (Podsakoff et  al., 
2003) to see whether the measurement involved a common 
method bias issue. The covariance explained by one factor is 
48.03%, indicating that the common method bias is not a seri-
ous concern (not a likely contaminant of the measurement). 
Full collinearity VIFs can also be used to conduct common 
method bias tests (Lindell and Whitney, 2001) that are more 
conservative than the traditionally used tests relying on explor-
atory factor analyses (Kock, 2021). Table 2 presents full collin-
earity VIFs for all constructs. These VIFs are estimated by a full 
collinearity test that enables the identification of both vertical 
and lateral collinearity (Kock, 2021). The full VIFs in Table 2 
are all much less than 10, demonstrating no existence of multi-
collinearity in the measurement model.

Structural Model
Efron (1979) suggested using bootstrapping (a resampling 
technique) to determine the significance of path coefficients. 
We used bootstrapping with 100 resamplings. The results for 

TABLE 2.  Construct coefficients

Constructa Composite reliability Cronbach’s alpha Average variance extracted Full collinearity VIF

PU-T 0.948 0.930 0.785 2.212
PU-L 0.910 0.867 0.718 2.691
PE-T 0.909 0.874 0.669 1.860
PE-L 0.955 0.940 0.809 3.081
ATT 0.924 0.890 0.753 2.212
BI 0.945 0.922 0.811 2.040

aPU-T, perceived usefulness–teaching; PU-L, perceived usefulness–learning; PE-T, perceived ease of use–teaching; PE-L, perceived ease of use–learning; ATT, attitude 
toward behavior; BI, behavioral intention.

TABLE 3.  Construct correlations and the square root of AVEsa

  Mean SD PU-T PU-L PE-T PE-L ATT BI
PU-T 4.90 1.32 0.886          
PU-L 5.65 1.07 0.658*** 0.847        
PE-T 5.18 1.02 0.379* 0.554*** 0.818      
PE-L 4.41 1.34 0.614*** 0.633*** 0.638*** 0.899    
ATT 5.75 0.91 0.511*** 0.595*** 0.398** 0.632*** 0.868  
BI 4.79 1.32 0.512*** 0.346* 0.351* 0.612*** 0.596*** 0.901

aPU-T, perceived usefulness–teaching; PU-L, perceived usefulness–learning; PE-T, perceived ease of use–teaching; PE-L, perceived ease of use–learning; ATT, attitude 
toward behavior; BI, behavioral intention.* p < 0.05, ** p < 0.01, and *** p < 0.001.
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the default (original) TAM’s average R2(ARS) were 0.332 (p < 
0.01), with the average path coefficient (APC) being 0.398 (p < 
0.01) and the average variation inflation factor (AVIF) being 
1.299. Individual path coefficients between exogenous and 
endogenous constructs in the original TAM all turned out to be 
significant, as shown in Figure 3.

Meanwhile, the decomposed model (the research model in 
this study) explained more of the variance in the endogenous 
latent variables compared with the original TAM; the average 
R2(ARS) was 0.494 (p < 0.001), with the APC being statistically 
significant (β = 0.296, p < 0.01) and the AVIF belonging to an 
acceptable level (2.349). Individual path coefficients between 
exogenous and endogenous constructs are shown in Figure 4. 
The path coefficients from perceived usefulness–teaching to 
attitude (β = 0.18, p = 0.115) turned out to be insignificant, 
while the path from perceived usefulness–teaching to behav-
ioral intention (β = 0.41, p < 0.01) was found to be significant, 
supporting hypothesis 2 but not hypothesis 1. The path coeffi-
cient from perceived usefulness–learning to attitude was found 
to be significant (β = 0.23, p < 0.05), supporting hypothesis 3, 
but the path to behavioral intention turned out to be insignifi-
cant (β = 0.05, p = 0.381), rejecting hypothesis 4. The path 
coefficient from perceived usefulness–learning to perceived use-
fulness–teaching was found to be significant (β = 0.51, p < 
0.001), supporting hypothesis 5.

We found the paths from perceived ease of use–teaching to 
attitude toward behavior (β = 0.09, p = 0.271) and perceived 
usefulness–teaching (β = 0.05, p = 0.376) insignificant, failing 
to support hypotheses 6 and 7. In contrast, the path coefficients 
from perceived ease of use–learning to attitude toward behav-
ior   (β = 0.32, p < 0.05) and perceived usefulness–learning FIGURE 3.  Results for the original TAM.

TABLE 4.  Combined loadings and cross-loadings

PU-T PU-L PE-T PE-L ATT BI SE p value

PU1_T 0.910 −0.277 0.171 −0.052 −0.130 0.011 0.105 <0.001
PU2_T 0.897 −0.162 0.040 0.045 0.214 −0.012 0.106 <0.001
PU3_T 0.930 0.034 −0.007 −0.220 −0.047 0.146 0.104 <0.001
PU4_T 0.775 0.469 −0.225 0.176 0.198 −0.234 0.112 <0.001
PU5_T 0.910 0.003 −0.011 0.082 −0.202 0.050 0.105 <0.001
PU1_L −0.057 0.893 0.142 −0.133 0.178 −0.089 0.106 <0.001
PU2_L −0.084 0.884 −0.154 −0.085 0.004 −0.085 0.106 <0.001
PU3_L −0.130 0.865 −0.079 0.001 −0.151 0.017 0.107 <0.001
PU4_L 0.323 0.738 0.105 0.261 −0.043 0.190 0.113 <0.001
PE1_T −0.107 −0.023 0.752 0.242 −0.083 −0.112 0.113 <0.001
PE2_T −0.109 0.257 0.866 −0.144 0.163 −0.143 0.107 <0.001
PE3_T 0.352 −0.346 0.705 0.030 −0.054 0.174 0.115 <0.001
PE4_T −0.146 −0.137 0.879 −0.070 0.024 0.183 0.107 <0.001
PE5_T 0.063 0.183 0.873 −0.020 −0.071 −0.086 0.107 <0.001
PE1_L 0.242 −0.001 −0.173 0.822 0.017 0.040 0.109 <0.001
PE2_L −0.055 0.070 0.090 0.917 0.027 0.056 0.105 <0.001
PE3_L −0.137 0.019 −0.073 0.911 −0.095 −0.055 0.105 <0.001
PE4_L −0.124 −0.110 0.144 0.905 −0.094 −0.003 0.106 <0.001
PE5_L 0.094 0.020 −0.004 0.936 0.142 −0.034 0.104 <0.001
ATT1 −0.150 0.250 −0.013 −0.072 0.910 0.003 0.105 <0.001
ATT2 −0.022 0.051 −0.069 0.002 0.860 −0.234 0.108 <0.001
ATT3 0.322 −0.226 0.311 0.008 0.802 0.031 0.110 <0.001
ATT4 −0.115 −0.102 −0.199 0.064 0.894 0.195 0.106 <0.001
BI1 −0.020 −0.079 0.063 0.178 −0.134 0.923 0.105 <0.001
BI2 −0.158 −0.006 −0.139 0.274 0.000 0.919 0.105 <0.001
BI3 −0.048 0.160 −0.078 −0.011 −0.149 0.903 0.106 <0.001
BI4 0.242 −0.077 0.165 −0.475 0.301 0.855 0.108 <0.001

aPU-T, perceived usefulness–teaching; PU-L, perceived usefulness–learning; PE-T, perceived ease of use–teaching; PE-L, perceived ease of use–learning; ATT, attitude 
toward behavior; BI, behavioral intention.
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(β = 0.67, p < 0.001) turned out to be significant, supporting 
hypotheses 8 and 9. Furthermore, we also found the path from 
perceived ease of use–learning to perceived usefulness–teach-
ing significant (β = 0.34, p < 0.01), supporting hypothesis 10. 
Finally, the path inherited from TAM from attitude toward 
behavior to behavioral intention was also significant (β = 0.42, 
p < 0.01), supporting hypothesis 11.

Table 5 shows the total effects of independent constructs on 
behavioral intention to continue using the technology in this 
research. All independent constructs but perceived ease of use 
turned out to have significant total effects on behavioral inten-
tion. Among these, the total effect of perceived ease of use for 
learning turned out to be the largest (effect size = 0.309).

DISCUSSION
In many cases, students’ use of specific educational technology 
relies on instructors’ adoption and continued use of that tech-
nology. Therefore, to improve life sciences education through 
novel technologies, such as those enabling learning through 
computational modeling and simulation (like Cell Collective), 
motivating or facilitating instructors’ acceptance and use of 
educational technologies in their courses is crucial. The effort to 
motivate instructors or to facilitate their task begins with under-

FIGURE 4.  Results for the decomposed model of educational technology acceptance.

TABLE 5.  Total effects on behavioral intention

Constructa Effect p value SE Effect size

PU-T 0.492 <0.001 0.113 0.235
PU-L 0.474 <0.001 0.113 0.147
PE-T −0.024 0.428 0.134 0.008
PE-L 0.553 <0.001 0.110 0.309
ATT 0.511 <0.001 0.112 0.307

aPU-T, perceived usefulness–teaching; PU-L, perceived usefulness–learning; PE-T, 
perceived ease of use–teaching; PE-L, perceived ease of use–learning; ATT, atti-
tude toward behavior.

standing the factors influencing their 
intention to adopt and continue using edu-
cational technologies.

The insights revealed by the original 
TAM (i.e., the model without the decom-
position between learning and teaching) 
support the relationship between per-
ceived usefulness and attitude toward edu-
cational technology. Various studies have 
consistently supported this relationship 
since the foundational research by Davis 
et al. (1989; e.g., Taylor and Todd, 1995; 
Wixom and Todd, 2005; Bhattacherjee and 
Sanford, 2006). The original TAM also 
supports the relationship between per-
ceived usefulness and behavioral intention 
(Moore and Benbasat, 1991; Thompson 
et al., 1991; Adams et al., 1992; Compeau 
and Higgins, 1995; Igbaria et  al., 1996; 
Gefen and Straub, 1997; Karahanna et al., 
1999; Karahanna and Straub, 1999), indi-
cating that functionality of educational 
technology plays a key role in instructors’ 
decisions to adopt and continue to use 

educational technology. However, in the decomposed TAM, in 
which the constructs of perceived usefulness and perceived ease 
of use are split into teaching and learning, the relationship 
between perceived usefulness–teaching and attitude became 
insignificant, while the path from perceived usefulness–learning 
to attitude still remained significant.

Similarly, all paths from perceived ease of use to the other 
constructs in the original TAM were supported as theorized. 
The relationships between perceived ease of use and perceived 
usefulness and between perceived ease of use and attitude have 
been found to be significant in the context of educational tech-
nology adoption (Scherer et al., 2019). However, in the decom-
posed TAM, in which the constructs of perceived usefulness and 
perceived ease of use are split into teaching and learning, all 
paths from perceived ease of use–teaching became insignifi-
cant. In contrast, all paths from added perceived ease of use–
learning to the other constructs (i.e., attitude toward behavior, 
perceived usefulness–teaching, and perceived usefulness–learn-
ing) turned out to be significant. Presumably, these findings can 
be explained from the perspective of instructors’ professional 
ethics: to serve students (Professional Standards and Practices 
Commission, n.d.).

Our results have theoretical and practical implications. The-
oretically, this study included, for the first time, separate con-
structs to study the impact of educational technology on learn-
ing and teaching in a single model, thereby enabling a 
comparison between the two sides (e.g., relative weights). This 
decomposed model of educational technology acceptance 
reflects the unique context in which instructors consider their 
students when determining the adoption and continued use of 
educational technology. The model shows how the relation-
ships among the constructs in the original TAM changed when 
this unique context is reflected in the model. The comparisons 
between the original and decomposed models have significant 
implications for the development and improvement of educa-
tional technologies projects in contexts where instructors 
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consider their students when deciding to adopt and continue to 
use such technology. In most cases, the resources for further 
development or improvement are limited, and such scarce 
resources must be used efficiently. Understanding the relatively 
more important factors should be the first step toward efficient 
spending. Our results suggest that prioritizing learning features 
(i.e., features improving learning by the students) over teaching 
features (i.e., features facilitating the teaching by instructors) is 
important to motivate instructors to accept and continue to use 
educational technology.

Despite the significant theoretical and practical implications, 
the sample size might limit the generalizability of our results. 
This study met the minimum sample size to secure statistical 
power of 0.8. However, future research needs to be conducted 
with a larger sample size to ensure greater statistical power and 
strengthen the external validity of the results. In this study, TAM 
was used to examine the relative weights of the constructs 
affecting the efficiency of instructors and students (i.e., per-
ceived usefulness–teaching vs. perceived usefulness–learning; 
perceived ease of use–teaching vs. perceived ease of use–learn-
ing) through a survey involving instructors. Although what 
instructors think or feel is relevant to this study’s context (their 
assessments are based on the information from all sources, 
including observations of, interactions with, and feedback from 
students), future research should also consider collecting data 
directly from students to capture student perceptions of useful-
ness and ease of use and compare them with instructors’ per-
ceptions of the learning side. For example, a gap between 
instructors and students in terms of perceived usefulness and 
ease of use might exist, and that information should be shared 
with instructors to address their concerns. Future research is 
warranted to investigate other factors (e.g., facilitating condi-
tions) employed in other major technology acceptance models 
and theories (e.g., TPB, DIT) and thereby fill a knowledge gap 
in the literature.

CONCLUSION
Engaging students in modeling and simulation tasks in life sci-
ences courses can improve student learning compared with stu-
dents solely attending lectures. However, adopting instructional 
technology to support such tasks takes time (a precious resource 
for instructors) to develop expertise to use a particular instruc-
tional technology tool. Our study has practical implications in 
the context of limited resources available for creating or improv-
ing educational technology: Prioritize features improving the 
learning rather than features facilitating the teaching to moti-
vate instructors to use the technology, so that they reach more 
students and help students improve their understanding of life 
science  through interactive computational modeling and 
simulations.
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