

The Journal of Immunology

ABSTRACT | MAY 01 2023

Modeling Immunological Networks in an Educational Setting using Cell Collective FREE

Rebekah Taylor; ... et. al

J Immunol (2023) 210 (1_Supplement): 231.08. https://doi.org/10.4049/jimmunol.210.Supp.231.08

Related Content

Active learning about the dynamic and complex nature of CD4+ T cell differentiation with computer network modeling and simulations

J Immunol (May,2020)

There's no time to teach that: integrating the immune system, autoimmunity, literacy, and research into an over-crowded curriculum (51.7)

J Immunol (April,2011)

A Perfect Fit: 3D-Printed Kit to Teach Students Principles of Antigen-Antibody Recognition and Herd Immunity

J Immunol (May,2023)

Modeling Immunological Networks in an Educational Setting using Cell Collective

Rebekah Taylor¹, Sumali Pandey², Louis B Justement³, and Tomas Helikar⁴

¹frostburg state university, ²Minnesota State University Moorhead, ³University of Alabama Birmingham, ⁴University of Nebraska Lincoln

One challenge in the teaching of immunology is the complexity of the subject. Immunology presents a long list of unique cells, signaling molecules, receptor-ligand interactions, regulatory mechanisms, developmental pathways, and outcomes that can feel burdensome to instructors and unapproachable to students. The beauty of this subject, however, is that these unique features interact in networks that parallel those in other biological fields. Visualizing the interactions between tissues, cells, and molecules of the immune system and their outcomes can promote immunological literacy and a broad understanding of biological systems.

Cell Collective (cellcollective.org) is an open-access, approachable software system that allows students and researchers alike to build models and perform simulations of biological processes. Students can use this interactive platform to probe cell-cell interactions, signaling pathways, metabolic networks, etc. while building systems thinking and computational skills, which are critical for success in STEM fields. After building models, real-time simulations can be run to visualize and understand the dynamics of the biological system under conditions of environmental pressure, disease, mutation, etc. Instructors can assess student knowledge by building assessments into modules in a formative or summative manner. Because it is free, user-friendly, and offers a host of pre-built training, educational and experimental modules, Cell Collective is ideally suited for use in all types of educational settings.