Downloaded via UNIV OF MICHIGAN ANN ARBOR on July 2, 2023 at 13:52:54 (UTC).
See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

JOURNAL OF
CHEMICAL INFORMATION
AND MODELING

JCIM

pubs.acs.org/jcim

Machine Learning Strategies for Reaction Development: Toward the

Low-Data Limit

Eunjae Shim, Ambuj Tewari, Tim Cernak, and Paul M. Zimmerman*

Cite This: J. Chem. Inf. Model. 2023, 63, 3659-3668

I: I Read Online

ACCESS |

[l Metrics & More

| Article Recommendations

ABSTRACT: Machine learning models are increasingly being
utilized to predict outcomes of organic chemical reactions. A large
amount of reaction data is used to train these models, which is in
stark contrast to how expert chemists discover and develop new
reactions by leveraging information from a small number of
relevant transformations. Transfer learning and active learning are
two strategies that can operate in low-data situations, which may
help fill this gap and promote the use of machine learning for
tackling real-world challenges in organic synthesis. This
Perspective introduces active and transfer learning and connects
these to potential opportunities and directions for further research,
especially in the area of prospective development of chemical
transformations.

B INTRODUCTION

The chemical space of molecules and reactions is rich and
virtually unexplored. The number of drug-like molecules is
thought to be on the order of 10%,% 3 scale greater than the
mass of the universe in grams.” The number of plausible
reaction conditions leading to these molecules also grows
rapidly as key reaction components (for instance, catalysts,
base, or oxidants) can be combined in various amounts. To
reveal better performing molecules*™® and materials’~'°—and
more efficient ways of preparing them'’~*’—within this vast
chemical universe, effective navigation is crucial. For ages,
chemists have been constantly pushing the boundaries of
chemical knowledge through hypothesis-driven experiments
(Figure 1). Today, alternative strategies based on increasingly
accessible data®® and computational resources are emerging.
This Perspective seeks the intersection between traditional
expert strategies and computational means of exploring
reaction spaces.

The incredible success of chemistry as a scientific field has
been enabled by smart use of information from a variety of
sources. Within the mind of a chemist, a new reaction is
devised through creative processing of physically informed
chemical principles and prior knowledge of related reactions.
The chemist’s intuition builds upon known reaction conditions
derived from the literature to develop an initial set of
experiments in the new space. As information from experi-
ments becomes available, the expert’s hypotheses are refined
and the next set of experiments are planned. The scope and
direction of the exploration, however, can be unintentionally
bounded by the current body of chemical understanding,
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preventing consideration of potentially optimal solutions.
Despite this shortcoming and the rather small data chemists
are often equipped with—a few papers and manually
conducted experimental data points—the traditional scientific
process of chemistry undoubtably works. What can be done to
bolster this traditional process and further facilitate the
uncovering of physically sound, generalizable knowledge?

Machine learning has seen increased use and shown
considerable promise for identifying useful chemistry. This
makes sense because machine learning can perform a similar
process as chemists—intake data, numerically transform it, and
make predictions. This process also empowers the machine to
effectively approximate problem domains. As a result,
successfully trained models are capable of making quantita-
tively accurate chemical predictions such as reaction out-
comes™ % or physical properties of molecules.”’ ™' More
importantly, when applied to iterative experimentation, this
ability can quickly direct the exploration to better solutions and
reduce experimentation timeframes.”**~*> Supplementing the
conventional approach to chemistry with machine learning
could therefore reinforce our ability to tackle ongoing chemical
problems.

Received: April 17, 2023
Published: June 14, 2023

https://doi.org/10.1021/acs.jcim.3c00577
J. Chem. Inf. Model. 2023, 63, 3659—3668


https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jcim.3c00577&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00577?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00577?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00577?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00577?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/jcisd8/63/12?ref=pdf
https://pubs.acs.org/toc/jcisd8/63/12?ref=pdf
https://pubs.acs.org/toc/jcisd8/63/12?ref=pdf
https://pubs.acs.org/toc/jcisd8/63/12?ref=pdf
pubs.acs.org/jcim?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jcim.3c00577?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/jcim?ref=pdf
https://pubs.acs.org/jcim?ref=pdf

Journal of Chemical Information and Modeling

pubs.acs.org/jcim

known, relevant ==
chemistry

intuition-guided
starting point

Figure 1. Schematic representation of chemical research. Within the
vast chemical space, meaningful chemistry is sparse. To identify
productive reaction routes, relevant prior results are processed by a
chemist to determine the initial study. Experiments are then iteratively
conducted, with results informing the subsequent exploration. While
historically proven to be effective, the exploration process could be
streamlined.

Better alignment between the requirements of machine
learning and the reality of laboratory research would be helpful.
The character of the data sets that are normally utilized clearly
distinguishes the two. In particular, chemists work with a few
data points that are most relevant to the problem. On the other
hand, machines need orders of magnitude more data, covering
a sizable fraction of the problem domain. While technologies
like high-throughput experimentation®”**™*’ and flow chem-
istry™ can help prepare such tailored data sets, they remain less
broadly deployed compared to conventional experimentation.
Another discrepancy stems from the involvement of scientific
knowledge. For chemists, chemical principles are essential for
making meaningful predictions in a new problem domain. On
the other hand, big data sets digested by machine learning
algorithms lack such generalizable concepts. In all, machine
learning algorithms that operate on typical (small) chemical
data sets and can integrate scientific knowledge would enhance
their practicality for use in laboratories.

Incorporating the chemical intuition of expert chemists—
which has long enabled successful research from small data—
into machine learning algorithms presents opportunities for

realizing such a goal. In this Perspective centered on organic
synthesis, connections will be made between intuition- and
hypothesis-driven chemical research and machine learning
algorithms. An outlook on how these connections would
impact prospective application is also presented.

B TRANSFER LEARNING

General chemical principles combined with specific informa-
tion from closely related research literature play a crucial role
in elaborating early reaction exploration. For example, a
previously reported reaction condition can be modified to
accommodate a different functionality of a new substrate class.
In this case, the new substrates are fixed, but the remaining,
plausible components of the reaction are numerous. Even with
a limited number of possibilities for each reaction component,
the combinations grow quickly but only a limited number of
reactions can be handled at once. Therefore, the possibilities
must be narrowed down to a prioritized set of experiments to
build capabilities in the new area.

Transfer learning”"”” is a machine learning approach that
aims to tackle such a process in a quantitative manner. In
transfer learning, the aim is to use information extracted from a
data set in hand (called the source domain) to achieve more
efficient and effective modeling of the problem of interest
(called the target domain). Ideally, the resulting model’s
predictions would provide a meaningful set of initial
hypotheses to verify in a prioritized manner.

One popular transfer learning method is known as fine-
tuning, where a model (usually deep learning model) trained
on a large source data set, called a pretrained model, is refined
on a smaller target data set. The potential of pretrained models
is recognizable through Generative Pretrained Transformers
(GPT), which are language models capable of doing a wide
range of tasks through text production.”® For synthetic
chemistry, natural language processing models have been
fine-tuned to specific reaction classes to predict stereospecific
products™® or yields.”® In the former study, a transformer
model®® that predicts products, trained on approximately one
million generic reactions,”’ was fine-tuned on a smaller
carbohydrate chemistry data set of approximately 20,000
reactions. The resulting model’s top-1 accuracy for predicting
stereodefined carbohydrate products was 70%, which is an
improvement of 27% and 40% from models that were trained
only on the source and target data set, respectively. In addition,
predictions with the highest confidence scores were mostly
shown to be correct, which implies the possibility for
prioritization of experiments in a prospective setting.

Source Dataset
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Transfer Strategy 9

« fine-tuning models
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Figure 2. Overview of the components of transfer learning (top row). Features of each element in current fine-tuning work (middle row) are
compared to the realistic reaction development setting (bottom row), presenting opportunities.
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Figure 3. Mainstream machine learning algorithms often leverage large data sets (top). For the situation where data is scarce (bottom left), smaller
models need to be considered. Transfer learning for these situations has not received as much attention.
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Figure 4. Comparison of multisource transfer learning by expert chemists and machine learning algorithms. Chemists often extract concise,
qualitative chemical reasonings based on the literature and make appropriate adjustments toward the target reaction (along the solid gray arrows).
In contrast, the black box nature of machine learning models makes it difficult to extract and modify features important to the target problem

(along the dashed gray arrows).

With abundant source reaction data and a relatively smaller
target data set, fine-tuning can achieve performance that seems
impossible with only one of the two. Under this scenario, fine-
tuning enables deep learning algorithms to provide powerful
models that could not be created using the target data alone.
Although public reaction databases®®” may serve as source
data sets in a reaction development setting, in typical
situations, target data does not exist (e.g., at the very beginning
of the exploration) or comprises only negatives (ie., all
previous experiments were unsuccessful). In these cases,
retraining the source model via small target data sets is not
likely to be an effective means of updating the deep learning
model. New concepts in the target reaction space may be
required that are not part of the source model, limiting the
utility of fine-tuning. To overcome these challenges, all
components of transfer learning need to be addressed (Figure
2).

The source data set (Figure 2, left) is a crucial element of
transfer learning, as it provides information that enables
modeling of the target problem. For most machine learning
exercises, the source data set is a large database of reactions
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(Figure 3, top left).”*” For chemists, source data sets can be
conceived of at two levels. One encompasses the wide scope of
literature used to formulate broad qualitative chemical
concepts, for instance, reactivity trends and mechanisms.
This knowledge informs each chemist’s research strategy and
also constitutes the core of chemical intuition. The second type
of source data, which we will refer to as the source data set, is a
small number of reactions—as low as a few dozen—that are
selected specifically to be relevant to the reaction goal (Figure
3, bottom left). This latter situation has not received as much
attention, as it does not fit into the standard practice of
machine learning. For machine learning to mimic the expert
chemist, new strategies for transfer learning that deal with such
small, focused source data sets are needed.

Two approaches are plausible for specifying the source data
set. One possibility is to combine all relevant data in hand as a
single source data set, although the range of transformations to
include can be ambiguous. In one example, stereoselectivity
models of chiral phosphoric acid catalyzed nucleophilic
additions to imines®® were developed by combining reactions
from multiple literature reports. The data set included
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nucleophiles that were diverse, spanning from transfer
hydrogen sources to diazoacetamides. Models built with this
process were able to predict stereoselectivity for three external
test examples within 5% enantiomeric excess. To give another
example, consider the situation where reaction data consists of
a wide range of nucleophile classes (e.g., boron nucleophiles
and organozinc reagents, etc.) undergoing nickel-catalyzed C—
O activation reactions. For predicting yields of boron
nucleophiles, one can consider either reactions in the same
nucleophile class or the entire data set as the training data. In a
recent retrospective study,’’ such comparisons were made
from a data set compiled from the literature. The two training
data schemes show comparable yield regression performance
with R values of 0.47 vs 0.4S and 0.54 vs 0.57 for boron and
organozinc nucleophiles, respectively. The insignificant differ-
ence means that the models built from the nucleophiles of
interest were not improved using the data of other
nucleophiles. This showed that for reactions defined using
domain specific knowledge, modest predictivity is plausible
using relatively small data sets, in this case about 100 data
points. On the other hand, a similar analysis on Buchwald—
Hartwig C—N coupling reactions compiled from the literature
suggests the opposite: using the entire data set improved the
models.”” At this point in time, recognizing a priori which
approach is best is not a clearly defined task.

Alternatively, multiple source data sets could be utilized for
transfer learning, resembling the traditional approach where a
chemist’s source data contains just a handful of research
articles. Each work informs different aspects of the reaction
such as mechanistic concepts, viable catalysts and reagents, as
well as conditions like temperature or concentration. How this
information fuses into a unique design of a new reaction
depends on the chemist’s internal model, which is informed by
years of training and expertise (Figure 4, solid lines). Similarly,
multiple machine learning models can be trained on different
source transformations (Figure 4, dashed lines). Each of these
models would quantify how different aspects of reaction
components impact the reaction outcome (e.g., if larger steric
bulk of the substrate results in lower yield, a negative
regression coefficient for a steric descriptor would appear). It
is unlikely, however, that these parameters would quantitatively
transfer toward a new target reaction. On the other hand, a
subset of looser, qualitative features (e.g, the fact that the
coefficient of substrate steric descriptor is negative, ignoring its
magnitude) may still be useful hints for target reactivity. By
extracting and combining the most relevant hints from the
multiple source models, an effective consensus prediction can
be made. While balancing multiple viewpoints into viable
reaction conditions comes naturally to expert chemists,
achieving such harmonization statistically is a challenging
task that is currently being investigated by the machine
learning community.*®

Expert curation of source reactions does not guarantee that
the source model will show statistical predictivity for the target
problem. In fact, deteriorated performance is known to be a
possible outcome of transfer learning and is coined as “negative
transfer”.”’ Given how resource-intense experimental cam-
paigns are, being able to forecast negative transfer is critical.
While various approaches have been proposed in the machine
learning literature,”* it remains an unsolved problem. As a
source of negative transfer may be the involvement of
uninformative data,”' similarity metrics connecting source
reactions and the transformation of interest could possibly be
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beneficial. Such metrics are available for structural similar-
ity®>%® but are not established for overall reaction similarity.

Forecasting negative transfer appears to be a tenuous task
when the target domain contains little to no data. To
investigate transferability in a realistic data set, our recent
study evaluated the predictivity of models trained on a few
dozen palladium-catalyzed cross-coupling reactions of a
specific nucleophile (e.g., phenyl benzamide) toward reactions
of other nucleophiles (e.g., pyrazole and pinacol boronates).’”
The ability to classify reaction outcomes was measured with
the receiver operating characteristic—area under the curve
(ROC-AUC) metric. ROC-AUC of 1.0 and 0.5 corresponds to
perfect classification and random guessing, respectively. The
predictions made by the phenyl benzamide model were
excellent for reactions of pyrazole (ROC-AUC = 0.91) and
related nucleophiles. In contrast, for pinacol boronate
nucleophiles the quality of predictions was worse than random
(ROC-AUC = 0.13), indicating negative transfer. From the
model’s perspective, this is surprising because the target
reaction conditions were seen during training. However, this
difference in transferability maps well onto expert classification
of functional groups and their mechanistic knowledge, which
would predict that the pinacol boronate nucleophiles are
mechanistically distinct from nitrogen nucleophiles. Currently,
identifying these mechanistic distinctions by experts seems to
be the only means to avoid negative transfer.

In addition to the mechanistic relevance of the source to the
target reaction domain, the information content of the
transferred model influences the performance of transfer
learning. Models trained from reaction data sets that span
the full combinations of viable reagents could learn crucial
interactions between reagents that are otherwise difficult to
anticipate. However, there is a limitation to the number of
reactions that can be conducted, so preparing complete data
sets is impossible for all but the smallest experimental spaces.
With realistic, sparse source data sets, predictions on target
reaction condition candidates may be needed even for reagent
combinations where no data exists. Manually, chemists have
long made informed predictions on new conditions based on
sparse reaction data, using chemical principles and intuition to
bridge gaps in missing data. In a modeling context, this could
be mimicked through regularization or model simplifica-
tion.”*® Accordingly, we investigated the performance of
simplified random forest models for predicting outcomes of
target reactions involving reaction conditions that were unseen
in the model’s training. Simplified source models showed
benefits to transfer for some pairs of source—target
nucleophiles. Specifically, for a simplified benzamide source
model and pyrazole target reaction pair, ROC-AUC of 0.65
was achieved, while a conventional cross-validated model had
almost zero predictive ability, with an ROC-AUC of 0.52.
Collectively, even without any target reaction data points,
appropriately transferred models trained on reactions of a
relevant substrate class can locate an effective starting point for
exploring reaction conditions for the target substrate. However,
definitive methods need to be developed for reliable
prospective application of transfer learning, rather than the
ad hoc approaches attempted so far.

In summary, transfer learning is a machine learning approach
for making initial hypotheses in a new reaction space,
maximizing use of prior reaction data from a nearby but
indirectly related reaction space. Inspiration drawn from expert
chemists’ workflow can be used to better align all elements of
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Figure 5. An analogy between hypothesis-driven iterative experimentation (solid lines) and active learning (dashed lines). The differences in
operation between human and computational methods at each step are highlighted.

transfer learning—the source data set, transfer learning
strategy, and target data set—with the reaction development
setting (Figure 2). Smaller source data sets and models that
can learn better from the limited data deserve more attention
as large data sources are often unavailable for newer, and
perhaps more interesting, transformations (Figure 3). Also,
leveraging multiple source reaction data sets and their
components toward reaction design could be an interesting
transfer learning approach to reaction development (Figure 4).
Such advances in transfer learning might lead to recommen-
dations of more meaningful initial reaction conditions to

explore.

B ACTIVE LEARNING AND BAYESIAN
OPTIMIZATION

Initial hypotheses for reaction conditions—coming from
transfer learning or chemical intuition—must be updated as
the results of initial experiments come in. In many situations,
only one reaction component is updated and the variability
with those components is evaluated. Improved reagents are
merged into the current best-known set of reaction conditions,
and the process is repeated until satisfactory vyields are
obtained. This method of validating, refining, and generating
hypotheses (Figure S) is a fundamental of data-driven science
and has been a standard for development of new reactive
chemistries for a long time.

When computers use statistical models to choose the data
points to test, reaction condition development falls under the
umbrella of active learning68 (Figure S). To initiate active
learning, a model is trained to predict the utility of unlabeled
data points (i.e., plausible reactions that are yet to be
conducted). The model can either be exploitative and seek
the best reaction outcome or be explorative and seek to reduce
uncertainty in the model.”””" After conducting the most
“useful” reactions, the model is updated’” and then used to
generate another set of experiments to validate, starting a new
cycle. For organic reactions where the goal is quantitative (e.g.,
to obtain the highest yield or selectivity) optimization
frameworks such as Bayesian optimization’*’* are often
preferred. As highlighted by Figure S, active learning provides
a computational analogue to the conventional hypothesis-
driven experimentation described in the previous paragraph.

Early examples of autonomous iterative experimentation
focused on using flow reactors to understand the kinetics of
specific chemical reactions’*’® and optimizing their out-
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comes.”” Models such as linear or quadratic fitting are built
with available data to inform the next experiment to conduct.
These strategies are useful in understanding, improving, and
scaling up chemical processes.”® More recently, machine
learning algorithms have taken prominence to replace the
prior modeling strategies, though predicting quantitative
reaction outcomes remains the goal.

The black-box nature of machine learning algorithms,
however, merits further comparisons between human- and
machine-driven experimentation, and shows key differences
and limitations. First, the quality of the information in the
reaction data and how it is used is different between the two
types of experimentation (Figure S, green arrow). The
common expert approach of manually changing one variable
at a time allows the extraction of qualitative yet interpretable
reactivity trends from reaction data. In contrast, machine
learning models are trained through numerical processes,
which as a result makes them less interpretable.”” More
importantly, the process of selecting a small set of experiments
to conduct from the vast space of plausible reaction condition
differs significantly (Figure S, yellow arrow). In the traditional
approach, the best performing reagent identified from the
previous iteration is fixed and the next single reaction
component to screen is selected with heuristics based on
intuition. While this approach can improve yield, it is a search
in a narrow region of space and may lead to identification of
local maxima. Active learning, on the other hand, can evaluate
the whole candidate space defined by the chemist with
statistical scores. Whether active learning searches a narrow or
wide space depends on its objective function and underlying
models, which in principle could achieve either limit or some
goal between the two. Therefore, even a theoretically “perfect”
active learning method would require guidance from a chemist
to choose its objectives.

Regardless of potential limitations, active learning and
Bayesian optimization continue to be demonstrated in a
handful of reaction optimization campaigns in batch
experimentation settings.””*°~" One of the earlier studies
used active learning with random forest regressors that predict
yields to identify optimal numerical variables such as
stoichiometry, temperature, and time. Reaction conditions
for a variety of transformations were optimized within a few
iterations. For example, for an O-glycosylation of tyrosine, an
increase in yield from 40% to 68% was achieved within seven
iterations (sampling approximately 0.1% of the total con-
ceivable reaction conditions, Figure 6A).*” More recently,

https://doi.org/10.1021/acs.jcim.3c00577
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optimization of a stereospecific Suzuki—Miyaura coupling has
been achieved using a robotic platform connected to inline
analytic instrumentation and multiobjective Bayesian optimi-
zation frameworks. The yield and stereoselectivity were
increased from 60% yield and E/Z = 1.7:1 to 73% yield and
E/Z = 2.5:1 (Figure 6B).*" In another work, a multiobjective
BO tool was developed and used to improve nickel/
photoredox-catalyzed enantioselective couplings between
styrene oxide and two aryl iodides. Yields increased by 10%
while retaining stereoselectivity (one of the two examples
shown in Figure 6C).*!

Going beyond the optimization of a reaction between a
specific substrate pair, another Bayesian optimization approach
optimizes for substrate generality (i.e, across multiple
substrate pairs). By conducting five rounds of experimental
optimization consisting of 300 automated Suzuki-coupling
reactions using 11 pairs of heteroaryl bromides and N-
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methyliminodiacetic acid boronates, three improved reaction
conditions were identified. Compared to a benchmark
literature condition,®* two showed better yields for 20 diverse
and challenging Suzuki couplings.* In another recent report,
active learning was conducted on a wide array of substrate
classes for the Buchwald—Hartwig reaction with a goal to
develop a general yield prediction model. After conducting
experiments with more than 130 reactant pairs, each under 24
reaction conditions, the resulting model could prioritize high-
yielding reaction conditions for new substrates.”

The above examples show that active learning and Bayesian
optimization have made inroads toward reaction optimization
under realistic experimentation settings. As described, the
models must be trained before their first-round hypotheses can
be made so selection of initial reaction data is critical to their
success. For instance, random selection of reaction conditions
offers a set of reaction conditions that is unbiased,”” but likely
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suboptimal.””*" More sophisticated methods select data points
that span the feature space as widely as possible, providing
better initial models for active learning.”’ When multiple
substrates are under consideration, selecting centroids of
clusters based on structural similarity®> or physical properties*®
can be used. For reaction development, however, it is
important to have information on positive yielding reactions
that would lead to the desired product. Being able to utilize
effective chemical knowledge at the start of an active learning
experimentation therefore could be key to developing reaction
conditions as quickly as possible.

B COMBINING TRANSFER LEARNING AND ACTIVE
LEARNING

Using prior art to design plausible reactions is at the core of
chemist’s process of reaction development. In the machine
learning analogy, transfer learning can leverage prior art to help
direct active learning toward a potentially fruitful space. In
addition to providing an initialization scheme, the information
within the source model could also guide subsequent cycles of
exploration. To gain such benefits, transfer learning needs to
be seamlessly incorporated into active learning or Bayesian
optimization, which requires two aspects to be considered.
Most importantly, transfer learning must boost the perform-
ance of active learning. In other words, negative transfer must
be avoided, which is a significant problem on its own, as
described above. If this condition is satisfied, the role of
transferred source reaction information needs to be carefully
considered. For example, as target reaction data is collected
from different areas of the reaction space, only a subset of the
source information might be useful for training a model, or the
source data might be reweighted according to its utility in the
target region. Although challenging, an effective design
combining transfer learning and active learning or Bayesian
optimization may enable performance that cannot be reached
with either approach alone.

For challenging cases where transferred models are incapable
of making effective predictions in the target reaction space, the
combination of active learning with transfer learning can be
particularly useful.’” In our previous report, random forest
models trained on coupling reactions involving benzamide
were unable to predict reaction conditions for pyrazole (the
rate of identifying positive reactions was narrowly better than
random selection). When the models were updated by
retraining on source and target data simultaneously, only a
slight improvement was seen in predictive ability in the target
space. Better performance was achieved by training a target
model separately from the source model and using the two
models in tandem. The transferred model and active learning
acted hand in hand, the former providing knowledge of
catalysts and the latter supplementing information on other
reaction components (base and solvent) which helped the
source model to adapt in the target space.

B REFLECTIONS AND OUTLOOK

More and more examples have been showing that data science
can facilitate the development of new chemistries.*" "
Transfer and active learning have gained attention due to
their ability to empower predictivity in low-data situations. The
examples mentioned above show how reaction outcome
prediction and reaction condition prioritization have been
approached through transfer and active learning, respectively.
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There is no formal restriction, however, to applying the
concepts of transfer and active learning to broader classes of
problems. The general applicability of machine learning
methods therefore deserves considerably more study. Demon-
stration of these tools to less-explored reactions with diverse
above-the-arrow conditions is needed to advance the field.
This is further necessary when heuristics are involved (for
instance, selecting initial experiments), since their general-
ization to new reaction types becomes less certain. For these
tools to gain a higher reputation for reliability across a broader
community of organic chemists, discussions on how careful
studies can address common concerns (such as scope of
applicability and cost) are warranted.

How do we demonstrate that data science tools have utility
for prospective applications in reaction development? One way
is to share all attempts at prospective application regardless of
their success.”* Because a wide range of heuristics and models
are involved, both positive and negative results need to be
shared to assess the strengths and weaknesses of various data-
driven strategies. Moreover, unsuccessful scenarios could not
only be the start of an improved algorithm, but also be an
indicator of challenging chemistry where new thinking is
needed to make progress.

The practical cost of machine learning strategies in reaction
development is a central factor that can limit their widespread
application. While it appears accepted that machine learning
can model chemical properties and transformations, the
amount of data required to do so is often much more than
required by an expert chemist to make predictions in the same
space. Therefore, cost analyses would be a strong support for
their adoption, and we suggest three here. The extent of
improvement in reaction outcome such as yield or selectivity is
a crucial factor. Although comparison to algorithmic baselines
is useful for this metric, comparison to human chemists is
relatively less explored but can be insightful.“’gz’93 Next, the
cost of experiments needs to be considered. How can machine
learning approaches—which usually demand a large amount of
data—demonstrate reductions in cost, time, and human
resources to accomplish a challenging reaction development
task? Lastly, it is important to note that chemical under-
standing leads to generalization of reactions, which is a highly
valuable outcome of the reaction development process. In
contrast, the complexity of machine learning algorithms makes
it difficult to extract reactivity principles. The machine learning
community is well aware of this issue, and there are ongoing
efforts to build interpretable models.”* Moreover, the statistical
nature of machine learning-guided explorations may illuminate
underexplored chemical reactivities. Although metrics for these
three costs are largely nonobvious and intertwined, they will be
helpful to support the utilitz of prospective application of
machine learning approaches.”*™*’

B CONCLUSION

Conventional and high-throughput experiments, mechanistic
studies, and modeling approaches such as quantum chemistry
work together to continuously develop new catalysts, reactions,
and synthetic routes to challenging chemical targets. Machine
learning can inject statistical backing to these chemical studies
and provide practical value, although currently the “when and
if” this will hold true is difficult to tell from existing studies.
How much data is needed? Which machine learning
approaches are most tolerant to realistic, low-data scenarios?
Will useful chemical concepts be transparently uncovered? We

https://doi.org/10.1021/acs.jcim.3c00577
J. Chem. Inf. Model. 2023, 63, 3659—3668


pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.3c00577?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of Chemical Information and Modeling

pubs.acs.org/jcim

hope that the high level of discussions’’~*" and increasing

appearances of systematic, prospective studies’>”° help answer
these questions. As the community accumulates experience,
the science of machine learning explorations through reaction
space—especially in the low-data limit—may soon become an
indispensable toolbox for chemists. Ultimately, this will let
experts focus on the real challenge of designing and
discovering important transformations and functional mole-
cules.
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