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cover analyses over three years (2015–2017). Mixed 
effect random forest models were used to identify 
commonalities among biotic, physical, chemical, 
and landscape parameters associated with the rela-
tive abundance of round goby among fish assem-
blages. Low dissolved oxygen and lower proportions 
of wetland and wetted area land cover in the riparian 
corridors were associated with highly invaded sites. 
Results were consistent with prior works suggest-
ing identification of sites with diminished riparian 
integrity and water quality may help prioritize stream 
reaches for monitoring to aid in early detection.

Keywords  Aquatic-terrestrial interaction · Context 
dependency · Environmental forecasting · Great 
Lakes · Land cover · Multiple stressors

Introduction

Invasive species can cause declines in native biodi-
versity, negatively affect water quality, and disrupt 
food webs and ecological processes (e.g., Ricciardi 
et  al. 1998). The economic consequences of inva-
sion can also be significant; for example, recreational 
fisheries alone are an estimated $190 billion per year 
global industry (World Bank 2012) but have seen 
dramatic declines in some areas due in part to spe-
cies invasions (e.g., Lauber et al. 2020). Invasions can 
also alter water quality and availability for drinking 
water and hydropower (Pejchar and Mooney 2009) 
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and decrease property values (Horsch and Lewis 
2009). The introduction of nonnative species is thus 
one of the foremost concerns for aquatic conserva-
tion (Wilcove et al. 1998; Tickner et al. 2020). Effec-
tive prevention is by far the most suitable method of 
addressing invasive species problems compared to 
trying to control them after establishment, as mitiga-
tion and removal are more difficult and costly (Rout 
et al. 2011). This dilemma has motivated researchers 
to identify the environmental context in which inva-
sion is most likely to occur to allow forecasting and 
better allocation of management resources.

The concept of ‘invasibility’, or how likely any 
system is to be invaded, evolved from ideas about 
competitive equilibria for species (MacArthur 1970) 
and was adopted for terrestrial species by Crawley 
(1987). Since this time, retrospective studies (e.g., 
Moyle and Light 1996; Gido and Brown 1999) have 
provided some indication of how these theories apply 
to freshwater habitats. The biology of the invader 
itself can dictate how likely it is to establish in new 
locations (Marchetti et  al. 2004). However, likeli-
hood of nonnative establishment can be difficult to 
determine based solely on information derived from 
a species’ native range (Kornis and Vander Zanden 
2010). Collectively, low native community diversity 
(Moyle and Light 1996), available niche space (Davis 
et al. 2000), and environmental similarity to the non-
native species’ native range are commonly identified 
as key characteristics of areas likely to be invaded 
(Shea and Chesson 2002). Given this understanding, 
direct observation of the environmental conditions of 
an invasion can assist in understanding factors that 
facilitate invasion.

Human alterations of ecosystems are also an 
important component of invasion potential (Leprieur 
et al. 2008). Nonnative introductions may occur over 
a large gradient of anthropogenic influence and some 
areas may be more vulnerable than others specifically 
due to human influence. The effects of human popu-
lation size (McKinney 2006), contaminants (Hillery 
et  al. 1997), nutrient runoff (Anderson et  al. 2002), 
previous invasions (Glon et  al. 2017), and nonna-
tive propagule pressure (Lockwood et  al. 2005) can 
impact invasion potential. Identifying the mecha-
nisms that govern native community response can be 
difficult when multiple stressors are present due to the 
potential for stressor interactions (Bianchi and Morri 
2000). Regardless, the potential for invasion may be 

exacerbated when native communities experience 
multiple stressors (Strayer 2010). Byers (2002) found 
that anthropogenic alteration of habitats through 
eutrophication or trophic restructuring created an 
environment where nonnative species were favored 
because advantages associated with local adapta-
tion were eliminated. Changes in land cover can also 
impact ecosystems through multiple mechanisms 
across a landscape (Wolter et al. 2006). Specifically, 
there can be large-scale effects from urban and agri-
cultural development that have multiple, long-lasting 
consequences for freshwater biota (Chen and Olden 
2020). Because altered land cover can impact ecosys-
tems through a suite of specific and potentially inter-
acting mechanisms, it can be an important metric for 
overall degradation (Foley et al. 2005). For example, 
this approach of quantifying land cover change as a 
measure of ‘cumulative stress’ has been instrumental 
in the Laurentian Great Lakes for identifying wide-
spread, landscape-scale impacts on freshwater eco-
systems, alongside many other stressors (Allan et al. 
2013).

The complex and interacting nature of environ-
mental factors that influence invasion potential have 
made implementation of best practices for conserva-
tion and management efforts difficult. For example, 
funding and personnel limitations sometimes limit 
our ability to measure critical system attributes at 
appropriate time- and spatial- scales (Simberloff et al. 
2012). However, understanding these characteristics, 
or the ‘context dependency’ for invasion, can help 
prioritize management resources to limit the degree 
and extent of consequences imposed by invasive spe-
cies (Dick et  al. 2017). While the specifics of any 
invasion can vary dramatically from one instance to 
another, the physical, chemical, biotic, and anthro-
pogenic factors surrounding invasion create common 
opportunities that contribute to the establishment of 
nonnative species and may act as potential indicators 
for vulnerable sites.

Here we identify the environmental factors rel-
evant to invasion success and develop a method to 
characterize the biotic and abiotic context of a suc-
cessful invasion. We focus on round goby (Neogob-
ius melanostomus) invasion in the Laurentian Great 
Lakes as an example. The round goby was intro-
duced to North America from the Ponto-Caspian 
region of Europe around 1990 (Jude et  al. 1992). 
Like the round goby’s invasion outside its native 
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range in Europe (Kornis et al. 2012), it has become 
one of the most prolific invaders in the Laurentian 
Great Lakes and has undergone secondary spread 
into inland waters (Kornis and Vander Zanden 
2010; Campbell and Tiegs 2012). In its introduced 
range, the round goby has engaged in egg predation 
of native fishes including economically important 
game species and species of conservation interest 
including lake trout (Salvelinus namaycush), lake 
sturgeon (Acipenser fulvescens), walleye (Sander 
vitreus), and smallmouth bass (Micropterus dolo-
mieu), (Kornis et  al. 2012), though associated 
population declines have not been reported. How-
ever, the round goby has been linked to population 
decreases in native benthic fishes which are the 
likely competitors in invaded streams including a 
suite of percid species and mottled sculpin (Cottus 
bairdii) (French and Jude 2001; Lauer et  al. 2004; 
Poos et al. 2010; Burkett and Jude 2015). In stream 
habitats, the round goby has induced shifts in diet 
composition in native benthic species due to com-
petition for resources (Stauffer et  al. 2016). How-
ever, in some systems, round goby has established 
with no apparent negative consequences for native 
fish abundances or assemblage composition thus 
far (Riley et al. 2008; Kornis et al. 2013). Because 
round goby establishment has been so successful, 
there is concern regarding the potential impact of 
round goby on native ecosystems, and investiga-
tions that may contribute to more effective preven-
tion strategies are timely.

Given the environmental differences between 
previously invaded lake habitats, and the river eco-
systems that are the current locations of secondary 
spread in the Great Lakes, we set out to identify 
characteristics common to Great Lakes tributaries 
that are experiencing initial invasions and expan-
sions of round goby populations. Specifically, we 
sought to (1) describe the nature of current second-
ary spread of round goby into Great Lakes tributar-
ies, and (2) identify common features of the habitats 
hosting the largest populations of round goby as a 
means to facilitate prediction of locations vulner-
able to future invasions. Due to the uncertainty sur-
rounding round goby impact on native ecosystems, 
a more thorough understanding of invasion poten-
tial, particularly in lotic waters, can provide impor-
tant context for management of invasions.

Methods

To determine the environmental context of round 
goby invasion, we conducted surveys in seven riv-
ers experiencing active round goby invasion (Fig. 1). 
Each river is a tributary to one of the Laurentian 
Great Lakes in the state of Michigan (USA; Table S1) 
and this suite of rivers was chosen to represent a 
variety of watershed types (land cover dominated by 
urban development, agriculture, forest, or wetland; 
Krabbenhoft 2019). Sampling occurred once per year 
at three wadeable stream reaches in each watershed in 
the spring and summer from 2015 to 2017; however, 
the Ocqueoc River and Stony Creek were not sampled 
in 2015. Sampling occurred in the spring as soon as 
water temperatures were conducive to full sampling 
of the fish assemblage (late April to early May of 
each year – see Table S1) and continued in a south-to-
north fashion until all rivers had been sampled (thus 
ensuring each river was sampled under similar tem-
perature conditions each year). Reach locations were 
chosen based on representative habitat from each 
section of the river. Reach lengths were designed to 
account for ten times the reach width where possible, 
or else contained at least two distinct geomorphic 
habitat types along the length to ensure a representa-
tive sample of the fish assemblage (e.g., riffles, pools, 
meanders; Lyons 1992).

Biotic parameters

We conducted annual fish surveys for approximately 
one hour at each site (from downstream to upstream) 
to identify the composition of the fish assemblage at 
each location. Fish were captured using a 3 × 1.5  m 
nylon seine (3.18 mm mesh) using a combination of 
sweeps and kick seining as appropriate for the habi-
tat. Seines were chosen as the ideal sampling device 
in this instance because the rivers in this study are 
largely sand or gravel bottom, and electrofishing 
has been known to exclude small-bodied individu-
als (Wiley and Tsai 1983) which made up a major-
ity of the species in fish assemblages in these rivers 
(Fig. S1). Individual fish were identified on site and 
released, except a subset which were euthanized via 
an overdose of MS222 (tricaine methanesulfonate) 
and preserved as vouchers for further analyses.

To complement this study’s data on round goby 
distribution, past fish survey data were gathered from 
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several sources to narrow down timing of initial inva-
sion for each site (Table  S2). Fish collection infor-
mation was gathered from the FishNet2 repository 
(FishNet2 2018), the University of Michigan Museum 
of Zoology Fish Division catalog (UMMZ 2018), 
the Midwest Invasive Species Network (MISIN 
2017), the Great Lakes Aquatic Nonindigenous Spe-
cies Information System (GLANSIS 2018), and 
the Global Biodiversity Information Facility (GBIF 
2018). In addition, collection records from fisheries 
surveys and scientific permits were obtained from 
the Michigan Department of Natural Resources (MI 
DNR) (personal communication – T. Goniea and K. 
Wehrly, Michigan DNR). Where necessary, individual 

watershed status reports were obtained from the MI 
DNR (Francis and Haas 2006). All collection records 
that included round goby were assessed for spatial 
relevance to our sample locations; a collection record 
was deemed spatially relevant if it occurred at or 
upstream of a study site, indicating that round goby 
had invaded or surpassed that site by the time of the 
collection. The dates of all records were interpreted 
as minimum estimates of initial invasion (acknowl-
edging that invasion timing may have occurred earlier 
than these survey events). At sites where collection 
records did not report round goby, timing of invasion 
was informed by survey data from this study. Initial 
invasion timing ranged from 2002 to 2017, and four 

Fig. 1   Seven watersheds in the lower peninsula of Michigan 
sampled from 2015 to 2017. Sample sites are indicated by yel-
low points in the top left panel. Smaller maps show sample 
sites in each watershed. Flowlines show streams, rivers, canals, 
and ditches (USGS 2017). Coloration of sample points on 

watershed maps illustrates round goby abundance throughout 
our study: goby absent for the entire study (green); goby pre-
sent but did not change in abundance over time (orange); goby 
increased in abundance over time (red); initial invasion was 
observed during this study (dark red)
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sites were uninvaded by the conclusion of surveys for 
this study (Table S3).

Physical parameters

In addition to fish surveys, a suite of water chemis-
try and physical variables were measured at the time 
of sampling. Temperature, dissolved oxygen, con-
ductivity, and pH were measured using a YSI mul-
tiparameter instrument. Average stream depth was 
estimated at the conclusion of sampling and average 
stream width was estimated for the reach using the 
Google Earth distance tool (Google 2018). In addi-
tion to basic water chemistry, we collected fifteen 
mL water samples, preserved with concentrated nitric 
acid- HNO3, for analysis of copper concentration 
(Van Metre and Mahler 2003). Copper was chosen as 
a metric for contamination associated with urbaniza-
tion as concentrations tend to be higher in freshwaters 
near areas with high human population density due 
to copper shed from tires and brake linings (Paul and 
Meyer 2001), runoff from rooftops (Van Metre and 
Mahler 2003), and contaminated sewage discharge 
(Sodré et al. 2005). Dissolved copper (Cu) was meas-
ured using a Shimadzu AA-7000 Atomic Absorption 
Spectrophotometer. Concentrations were calculated 
from an average of three concurrent runs of each 
sample based on a calibration curve of laboratory 
standards at 0, 0.5, 1.0 and 1.5 mg L−1. Using Arc-
GIS, landscape-scale habitat factors were measured, 
including the distance in river kilometers (rkm; linear 
distance along the stream flowline) to the river mouth 
and the overall area of each watershed (m2).

Land cover parameters

Finally, as a large-scale indicator of anthropogenic 
influence on invasions, 30-m resolution land cover 
data were obtained from the National Land Cover 
Database (NLCD; Homer et  al. 2015). Twenty land 
cover types defined by the NLCD were binned into 
five categories relevant to stream integrity (e.g., 
Ahearn et  al. 2005; Table  S4). Land cover infor-
mation from 2011 (Homer et  al. 2015) and 1992 
(Vogelman et  al. 2001) were used to represent how 
the current and past (legacy effects) landscape com-
positions influenced patterns of invasion, respec-
tively. Land cover was quantified for each water-
shed inside a 100 m riparian buffer zone (from each 

bank) following the flowline of the stream (National 
Hydrography Dataset – USGS 2004) using ArcGIS. 
Isolating the riparian buffer allowed us to account 
for the land area most directly affecting stream form 
and function (Allan 2004). In addition, each water-
shed was clipped along the streamline such that only 
the land area upstream of each site was considered. 
Upstream buffer clipping resulted in the downstream-
most site incorporating the largest land area, so land 
cover data were converted to proportional abundances 
for each site.

Data analysis

All analyses were completed using the statistical soft-
ware package, R (R Core Team 2016), with additional 
packages for specific analyses as indicated below.

Assemblage data from fish surveys were analyzed 
for assemblage diversity using the adjusted Shannon’s 
diversity index proposed by Chao and Shen (2003), 
which applies a maximum likelihood correction for 
rare species potentially missed during sampling. For 
various reasons (e.g., instrument failure), occasional 
missing data points existed for the water quality data 
(temperature, dissolved oxygen, conductivity, pH, and 
copper). Because missing data can skew results, miss-
ing points were imputed by multiple imputation using 
the R package, ‘missMDA’ (Josse and Husson 2016).

Model building

All physical, biotic, and land cover parameters 
(Table 1) were assessed for their predictive power of 
round goby proportional abundance using longitudi-
nal Mixed Effect Random Forests (Capitaine et  al. 
2021). Mixed Effects Random Forests (MERF) use a 
Classification and Regression Tree (CART) approach 
to build regression trees that partition the variable 
space of the explanatory variables by randomizing the 
explanatory variables at each step, and then average 
the predictions made by individual trees (see Hajjem 
et al. 2011). This approach allows estimation of pre-
diction error (out-of-bag error) of the model response 
variable based on a learning data set and predictions 
made for observations from trees built on the boot-
strapped data. Estimated errors are also used to assign 
variable importance which is calculated from the 
increase in mean error incurred in the final model by 
the iterative removal of each predictor variable. The 
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addition of stochastic processes and application to 
longitudinal data provided by Capitaine et al. (2021) 
adjusts this model to incorporate change in covari-
ance among variables over the range of observations, 
and takes into account repeated measures to increase 
understanding of within variable variance in addition 
to variation among variables.

Using the R package, ‘longituRF’ (Capitaine et al. 
2021), we built longitudinal MERF models with a 
stochastic process to account for fixed (site and river) 
or random variables (all other parameters) in our sam-
ple design. This process builds trees with a subsample 
of the original dataset that has been bootstrapped to 
allow calculation of out-of-bag (OOB) observation 
error rates with all data points. Our original model 
contained 21 physical, biotic, and land cover param-
eters (Table 1). We used a model simplification func-
tion (see Jiang et  al. 2004) to eliminate variables 
with the least amount of contribution to the depend-
ent variable variance based on mean out-of-bag error 
across all iterations of the random forests. Updated 
model parameters (less the bottom 20% of variables) 

were then iteratively rerun until only two explana-
tory variables remained. All models with a mean 
out-of-bag error within one standard error of the full 
model were deemed comparable (Hansen et al. 2015), 
and the model with the maximum percent variation 
explained was chosen as the final model. All mod-
els were calculated using 1000 trees, a delta value of 
0.01 to prevent overfitting (resulting in either 26 or 
27 iterations), and a maximum number of trees used 
for splitting at each node (‘mtry’) equal to one third 
of the number of explanatory variables in each model 
(in order to tune each model to correspond with the 
number of independent variables). Partial dependence 
plots were generated for the most important param-
eters by predicting the outcomes of all variables in 
the model while holding the variable of interest to a 
single value; this procedure was then repeated across 
the entire range of the predictor variable values to 
generate plots illustrating the relationships between 
predictor variables and the response variable (Cutler 
et al. 2007). Partial dependence plots are a useful way 
of illustrating the effect a single independent variable 

Table 1   Variables 
included in the Mixed 
Effects Random Forest 
model for identifying the 
environmental context of 
round goby populations. 
Independent variables are 
listed by category; the 
dependent variable was 
round goby abundance 
as calculated from fish 
assemblage surveys

Variable category Variable names Description

Biotic H_adjusted Shannon’s diversity index adjusted for rare species
Invasion_year Estimated year of invasion plus one

Physical Mouth_distance Distance from sample site to the mouth of the river (km)
Width Mean reach wetted channel width (meters)
Depth Mean reach water depth (meters)
Watershed_area Total area of the entire watershed for each river (m2)

Water chemistry Temp Water temperature (°C)
Cond Specific conductivity (µS cm−1)
DO Dissolved oxygen (mg L−1)
pH pH
Copper Concentration of dissolved copper (mg L−1)

Land cover Ag_2011 Percent agricultural riparian land cover in 2011
Urban_2011 Percent urban riparian land cover in 2011
Forest_2011 Percent forested riparian land cover in 2011
Water_2011 Percent water riparian land cover in 2011
Wetland_2011 Percent wetland riparian land cover in 2011
Ag_1992 Percent agricultural riparian land cover in 1992
Urban_1992 Percent urban riparian land cover in 1992
Forest_1992 Percent forested riparian land cover in 1992
Water_1992 Percent water riparian land cover in 1992
Wetland_1992 Percent wetland riparian land cover in 1992

Response variable Goby_density Number of round goby present divided by the total 
number of fish from the assemblage survey
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has on the outcome of the machine learning model 
when all other parameters are held constant.

Results

Biotic parameters

Fish surveys identified 4,663 fish of 57 species (Data 
S1). Fish assemblages varied among sites, water-
sheds, and years and largely consisted of cyprinids, 
percids, centrarchids, and catostomids (Figure S1; 
Data S1). The midstream site in the Rifle River had 
the lowest Shannon diversity (1.08), while the high-
est was at the upstream site in the Muskegon (2.05). 
The lowest watershed-level diversity was observed 
in the Rouge River (1.48), while the highest was in 
the Muskegon River (1.91). Round goby was present 
at 40 of 57 sites over three years and comprised an 
average of 16% of the fish assemblage, where pre-
sent (Fig.  2). The proportional abundance of round 
goby and the number of sites at which it was present 
increased over time. The greatest overall abundances 
were observed in the Rouge River and Stony Creek, 
the two southern-most watersheds in this study. Over 
the three years in this study, initial round goby inva-
sion (the invasion front) was identified at five sites 
across four rivers: the Rouge, Muskegon, Rifle, and 
Ocqueoc Rivers.

Fish collection information from online data-
bases, reports, and survey information yielded 385 

collections that were spatially relevant to this study 
including 48 round goby collections (Table  S2). 
Combined with our survey data, an approximate time 
of initial invasion was assigned to each site in the 
study (Table S3).

Physical parameters

Mean water depth at all sampled reaches was 0.95 m 
and mean reach width was 28.5 m. Dissolved oxygen 
ranged from 5.4 to 13.0 mg L−1 and was lowest in the 
most agriculture-dominated watershed (Stony Creek; 
Krabbenhoft 2019). Water chemistry parameters were 
relatively similar during fish surveys among years 
(within sites) and water temperature varied within a 
site by a maximum of 4.6 °C among years (upstream 
site in the Rifle; Data S1). pH was similarly consist-
ent among years and the highest values recorded were 
in the Rouge and Clinton Rivers (the most urban 
watersheds; Krabbenhoft 2019). Conductivity was 
similarly high in urban and agricultural reaches (Data 
S1). Contrary to our expectations, dissolved cop-
per concentrations were fairly low for all sites (mean 
0.102 mg L−1). Some of the highest values occurred 
in the Au Sable (0.251  mg  L−1) and Ocqueoc Riv-
ers (0.214  mg L−1) while there were samples with 
undetectable concentrations from both the Rouge and 
Clinton Rivers (the most urban watersheds).

Fig. 2   Round goby rela-
tive abundance (expressed 
as a proportion of the 
fish assemblage) at each 
of the three sites in each 
watershed (from left to 
right, sites are listed from 
upstream to downstream; 
rivers are listed from north 
to south). Abundances are 
shown as a mean per site 
across all sampling years (2 
years for the Ocqueoc River 
and Stony Creek; 3 years 
for all others)
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Land cover

Binned riparian land cover was summarized by the 
percent area of the riparian buffer for all streamlines 
upstream of each site (Figure S2). The Rouge and 
Clinton River watersheds were by far the highest in 
urban development, while Stony Creek had a rela-
tively high proportion of agricultural land use. The 
Au Sable, Rifle, and Ocqueoc had the most forested 
riparian areas. The Ocqueoc and Au Sable Rivers also 
had notable proportions of wetland in the riparian 
buffer. Forest, wetlands, and water decreased as agri-
culture and urban development increased over time, 
suggesting expansion of anthropogenic land uses 
across all watersheds, particularly for  urban devel-
opment (Table  S5). Variation in riparian land cover 
among sites within a river differed for each water-
shed. For example, in the Muskegon and Ocqueoc 
Rivers, all three sites had relatively similar land cover 
composition, while the other rivers showed gradients 
in land cover change from upstream to downstream 
(Table  S6). The Rouge River and Stony Creek had 
the highest percentage of agricultural land cover at 
the upstream-most site, while the Clinton River had 
the highest percentage of urban land cover at the 
upstream site. The Rifle and Au Sable (two northern, 
forested watersheds) had relatively similar composi-
tions of urban and agricultural land cover among sites 
but had the greatest proportions of wetland at their 
upstream sites.

Mixed effects random forest (MERF) model

The MERF model largely identified land cover vari-
ables as among the most important factors related to 
round goby abundance (Fig.  3). The final simplified 
MERF model for environmental conditions associ-
ated with round goby abundance had a mean out-of-
bag error of 0.001 and explained 94.38% (standard 
error 0.017) of the variance (Table  S7). The model 
was built from 26 iterations of the bootstrapped data 
and contained four variables: dissolved oxygen and 
three riparian land cover variables –water, wetland, 
and forest from 2011.

Partial dependence plots were fitted to each 
explanatory variable to indicate the direction and 
degree of the relationship between each of the 
independent variables in the final model and the 

relative abundance of round goby in the fish assem-
blage (Fig.  4). These relationships collectively 
indicate that round goby is lower in abundance in 
areas where dissolved oxygen is moderate, wetted 
area and wetland composition of the riparian area 
are high, and the proportion of forest in the ripar-
ian area is moderately high. Both dissolved oxygen 
and percent forest cover had non-monotonic rela-
tionships with round goby, where round goby abun-
dance was greater at the extreme ends of each dis-
tribution. It is also of note that partial dependence 
plots do not consider interactions among variables. 
It is therefore possible that additional variation 
within our model that cannot be explained by these 
four variables alone, may be due to their interac-
tions and contribute to additional variance in round 
goby abundance in our model.

Fig. 3   Relative importance of the independent variables in 
the Mixed Effects Random Forest model. Variables are listed 
from top to bottom relative to the percent increase in mean 
squared error incurred by removal of each parameter when it is 
permuted. Riparian land cover categories are listed with their 
respective years noted
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Discussion

Here we incorporate physical, chemical, and biotic 
parameters to identify the environmental context 
common to streams where round goby has success-
fully invaded and persisted. Physical and landscape 
characteristics reflected variation in overall site qual-
ity, largely corresponding to a north-to-south gradi-
ent across the state of Michigan. As demonstrated 
by Krabbenhoft and Kashian (2019), more densely 
populated areas in southern Michigan typically had 
the lowest habitat quality and the highest urban and 
agricultural land use. Despite large differences in site 
quality, stream morphometry, and landscape compo-
sition, round goby has successfully invaded all riv-
ers in this study. This finding is in line with previous 
results suggesting the round goby’s broad environ-
mental tolerance has allowed it to become a prolific 
invader in North America (Kornis et al. 2012).

Our model selection procedure identified sev-
eral variables that had minimal impact on the mean 
squared error of the model when removed. While 
logistic factors like propagule pressure (Lockwood 
et  al. 2005) have typically been identified as impor-
tant in invasion success, time since invasion and 

distance to the propagule source were only moder-
ately informative in our final model. Native species 
diversity was not among the most predictive factors 
in goby invasion in these rivers, similar to previous 
findings for round goby invasion in Lake Michigan 
tributaries (Kornis et  al. 2013). These findings are 
contrary to standing ecological theory (Elton 1958), 
which suggests that native diversity may increase sys-
tem resistance to invasion, but may reflect variations 
in this relationship across spatial scales (Von Holle 
2013). In particular, our approach to site selection 
that intentionally incorporated a gradient in ripar-
ian land cover types may have reinforced the impor-
tance of land cover over factors typically associated 
with invasion success (e.g., native diversity and prop-
agule pressure). This finding is also interesting given 
that some native species, particularly native benthic 
fishes, have often been shown to decline in response 
to round goby invasion (e.g., Janssen and Jude 2001; 
Lauer et al. 2004; Balshine et al. 2005; Krabbenhoft 
2019). This disparity suggests context-dependence 
may be a critical factor in governing the relationships 
among environment, native community composition, 
and round goby invasion and that interactions among 
these factors may be more informative. Other aspects 

Fig. 4   Partial dependence 
plots for the four most 
important variables in the 
final Mixed Effects Ran-
dom Forest model. Lines 
represent the predictions 
for round goby propor-
tional abundance relative 
to an increase in each 
parameter along the x-axis. 
Vertical lines along the 
x-axis show the distribution 
of the independent variable 
(deciles). Note that y-axes 
differ among plots
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of the invasion context that were not investigated in 
this study (e.g., invader genetic diversity (Roman and 
Darling 2007) and niche breadth (Vazquez 2006) may 
also influence both invasion and changes in native 
diversity. However, Wicks (2020) found that genetic 
diversity of round goby among these systems was 
relatively low, while differences in gene expression 
among sites was high. The interaction between native 
diversity and invasion potential may thus be indirect 
and difficult to measure.

Physical data corresponding to watershed and 
stream size and morphometry were also largely unin-
formative in our model, contrary to previous findings 
for round goby (Kornis and Vander Zanden 2010; 
Kornis et  al. 2013). Both stream depth and width 
as well as watershed area were removed during our 
model simplification procedure. We suggest this pat-
tern may be due to the relatively high influence of 
human-mediated movement across the landscape. 
This area of southern Michigan has a large popula-
tion of anglers (Krabbenhoft et  al. 2019) and bait 
bucket transfer of round goby may be high, as has 
been proposed elsewhere (Brownscombe et al. 2012; 
Mueller et  al. 2017). Spatial barriers which have 
often precluded initial introductions may only pro-
vide short-term barriers to range expansion as human 
activities act as vectors for movement of individuals 
across the landscape (Davidson et  al. 2017). In this 
case, the regularity of human transfer across inland 
waterscapes may have aided dispersal, rendering the 
influence of habitat and watershed size negligible in 
our final model. Similarly, Raab et al. (2018) identi-
fied distance to the nearest downstream impoundment 
was an important factor in secondary spread of round 
goby in inland waters, but we excluded this variable 
in our modeling procedure because our sample design 
necessitated that sites were concentrated to down-
stream reaches, in many cases because dams had 
thus far impeded upstream invasion (though not in 
all cases). As such, vulnerable sites that are upstream 
of existing barriers should continue to be monitored, 
despite current exclusion of natural upstream migra-
tion of round goby populations.

Our final model found that round goby relative 
abundance was related primarily to dissolved oxy-
gen concentrations and land cover composition of 
the riparian corridor. Specifically, round goby was 
lowest in abundance in areas with moderate lev-
els of dissolved oxygen and a high degree of wetted 

area, wetlands, and forest cover in the riparian buffer. 
Round goby have a relatively wide tolerance for dis-
solved oxygen (Tang et  al. 2020), but avoid habitats 
with consistently low dissolved oxygen concentra-
tions (< 60% saturation; Cooper et  al. 2009). In 
contrast, relatively high-quality habitat (e.g., high 
dissolved oxygen, undisturbed riparian land cover) 
that benefits native taxa may also facilitate invaders 
at large spatial scales (Von Holle 2013), thus mak-
ing the relationship to some of these variables non-
monotonic. However, correlation between land cover 
and human population density in Michigan could be 
masking the relationship between round goby abun-
dance and propagule pressure (due to a concentration 
of human development around Great Lakes port cit-
ies). Thus, these relationships should be further inves-
tigated in additional watersheds. While wetland and 
wetted area could simply correspond to stream size, 
the parameters for depth, width, and watershed size 
were excluded as variables in our final model, sug-
gesting the importance of land cover in our findings 
may be a result of the extent of floodplain connections 
and aquatic-terrestrial habitat linkages. For example, 
loss of aquatic-terrestrial linkages via channelization 
and urban stream burial, as well as the impact this 
has had on stream function, is well documented in 
the Rouge River (Napieralski et  al. 2015; Beam and 
Braunscheidel 1998). Although the relative impact of 
land cover, compared to other variables, might fluctu-
ate with further sampling (e.g., additional replicates 
within each land cover type), our findings support the 
idea that land cover alteration in a watershed is cor-
related with, and potentially can facilitate, invasion. 
This has previously been shown in freshwater inverte-
brate invasion (Früh et al. 2012). Because land cover 
types impact streams through different mechanisms 
(Allan 2004), land cover alone may be a poor predic-
tor of overall fish assemblage composition (Tóth et al. 
2019). However, we demonstrate here that a poten-
tial consequence of loss of natural land cover is an 
increased incidence of invasive species. This under-
scores the importance of considering ecosystem func-
tion in an urban planning and landscape development 
context. Specifically, maintaining natural land cover 
(and thus minimizing disturbance) in riparian corri-
dors may decrease the potential for aquatic invasions.

Our study illustrates a relationship between envi-
ronmental variables and round goby invasion. Though 
the heterogeneity in the relative abundance of round 
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goby in the fish assemblages at each site is similar 
to studies from tributaries in Wisconsin (USA), the 
driving factors in our final model showed greater 
emphasis on water quality (oxygen) and land cover 
than variables identified by Kornis et al. (2013). This 
shift in the priority of environmental factors related 
to round goby relative abundance may be due to the 
time since invasion (e.g., residence time) in our study 
(5–10 years later), differences in sampling strategies 
(repeated sampling in a few invaded streams repre-
senting specific land cover types vs. a large number of 
sites with broad land cover types), and/or differences 
in the variables measured (e.g., Kornis et  al. (2013) 
did not account for dissolved oxygen). We thus echo 
their concerns about the lag time and associated 
effects of round goby invasion, as well as the chang-
ing role of landscape and habitat variables in regulat-
ing round goby populations in invaded streams. The 
impacts of this invasion are variable and context-
dependent, but there is concern that as round goby 
becomes more established in tributary habitats, there 
will be greater consequences for native communities 
as has been seen in other invasions (Crooks and Soulé 
2001). The consequences of this invasion warrant 
further study, particularly in lotic habitats that have 
lagged in investigation relative to round goby popula-
tions in the Great Lakes.

Round goby distribution expanded over the course 
of this study and as shown here, populations have 
not yet decreased following initial invasion (e.g., 
boom-bust invasion dynamics; Strayer et  al. 2017). 
As round goby invasion continues in these tributar-
ies, we expect they will further integrate with native 
communities, as has been observed in lake popula-
tions (Foley et al. 2017). The adjustment of piscivo-
rous fish species to include round goby in their diet 
may offer some form of future population regulation 
(Madenjian et al. 2011). However, there is still much 
to be gained by curtailing round goby invasion where 
possible to minimize their impact on native species. 
In this study, we identified four environmental factors 
related to round goby invasion in Laurentian Great 
Lake tributaries. The biological, physical, and chemi-
cal contexts associated with this invasion correspond 
to long-standing ecological hypotheses that highlight 
the importance of riparian integrity and water quality 
for structuring aquatic communities (e.g., aquatic-ter-
restrial linkages), such as the role of habitat loss and 
human development. Though we cannot tease apart 

correlation vs. causality in our data, our findings sug-
gest that reaches with a high degree of development 
in riparian corridors and poorer water quality may be 
vulnerable to aquatic invasions. Our results add to a 
body of evidence that conservation and restoration 
activities may promote system resistance to invasion. 
We also suggest that an understanding of linkages 
between environmental factors and invasion success 
can help management entities maximize their return 
from limited resources by helping to prioritize moni-
toring efforts for early detection and conservation 
efforts for invasion prevention. These lessons should 
be broadly applicable across species and could aid 
conservation of native ecosystems and species in the 
face of increasing global species introductions.
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