
IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 22, NO. 1, JANUARY-JUNE 2023 17
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of Aggressive Prefetching
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Abstract—The last-level cache (LLC) is the last chance for mem-
ory accesses from the processor to avoid the costly latency of going
to main memory. LLC management has been the topic of intense re-
search focusing on two main techniques: replacement and prefetch-
ing. However, these two ideas are often evaluated separately, with
one being studied outside the context of the state-of-the-art in
the other. We find that high-performance replacement and highly
accurate pattern-based prefetching do not result in synergistic im-
provements in performance. The overhead of complex replacement
policies is wasted in the presence of aggressive prefetchers. We find
that a simple replacement policy with minimal overhead provides
at least the same benefit as a state-of-the-art replacement policy in
the presence of aggressive pattern-based prefetching. Our proposal
is based on the idea of using a genetic algorithm to search the space
of insertion and promotion policies that generalize transitions in
the recency stack for the least-recently-used policy.

Index Terms—Cache replacement, cache prefetching, last-level
cache, genetic algorithms, machine learning for systems.

I. INTRODUCTION

T
HE last-level cache (LLC) is the largest on-chip component

of the memory hierarchy, keeping as many accesses as

possible from going off-chip. Research in LLC management

has focused on replacement and prefetching, but the interaction

of these two techniques have not been studied adequately. Work

on replacement tends not to use a state-of-the art prefetcher in

its baseline, and work on prefetching is often done with a simple

replacement policy. However, the choice of prefetcher can have a

significant impact on the effectiveness of the replacement policy.

Fig. 1 shows the performance of various combinations of

prefetchers and replacement policies on a simulated cache hi-

erarchy over a wide range of benchmarks described in Sec-

tion IV. The graph shows geometric mean speedup over a

baseline least-recently-used (LRU) policy managing the LLC.

Replacement policies modeled are multiperspective reuse pre-

diction [1], signature-based hit prediction [2], and Glider [3].
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Fig. 1. Performance of combinations of replacement and prefetchers.

Prefetchers modeled are none, next-line, and signature-path-

prefetcher (SPP) [4]. Without prefetching, modern replacement

policies improve performance. For example, Glider achieves

2.9% improvement. With a next-line prefetcher, Glider achieves

2.8% improvement. However, with the complex pattern-based

prefetcher SPP, the performance improvement of all cache re-

placement policies is negligible at best, and drops significantly

for multiperspective. Glider+SPP yields 10.2% speedup over

LRU alone, but only 0.8% speedup over LRU+SPP, quite a disap-

pointment compared to the potential 2.9% improvement without

prefetching. The technique we introduce in this paper using

insertion and promotion vectors (IPVs) yields a 11.0% speedup

over LRU alone, or a 1.5% improvement over LRU+SPP, out-

performing previous policies with significantly lower hardware

complexity.

Prefetchers and replacement policies should be developed

together. We propose a novel and low-cost replacement policy

based on insertion and promotion vectors(IPVs) [5], [6]. IPVs

are developed in the presence of a high-performance prefetcher.

The policies can adapt to the prefetcher’s behavior as well as

that of the current workload. The idea is that insertion and

promotion is governed by two IPVs: one for demand accesses

and one for prefetch accesses. The IPVs used for the current

workload will change based on set-dueling [7] a small number

of pre-developed IPVs to find the best one at the moment. The

set of IPVs themselves are developed by a genetic algorithm

running over hundreds of training workloads.

II. BACKGROUND AND RELATED WORK

A great deal of work has focused on cache replacement

and prefetching. Cache replacement work has focused on reuse

prediction [2], [8], [9]. More recent work has used complex
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algorithms based on machine learning [1], [3], [10], or emulating

Bélády’s MIN algorithm [11], [12]. These approaches have

grown increasingly complex and rely on front-end program

features such as the program counter to make predictions. Work

on prefetching has been active, with many recently proposed

complex designs [4], [13], [14], [15]. At least one of these

designs, SPP, has been adopted in hardware [16] so we focus on

it as an example of a feasible complex pattern-based prefetcher.

More recent work has taken into account the interaction of the re-

placement policy and the prefetcher [12], [17] but co-designing

the replacement policy and prefetcher while using program fea-

tures typically available to microarchitectural designers remains

a poorly explored area; we know of only one such proposal [18].

III. DEMAND AND PREFETCH INSERTION AND PROMOTION

VECTORS

A. Insertion and Promotion Vectors

Replacement policies such as LRU and RRIP associate a

position with each block in a set. For an n-way set-associative

cache, the LRU policy assigns a position from 0..n− 1 to each

block, ordering the blocks from most recently used in position

0 to least recently used in position n− 1.

When a block is first inserted into a set, it is placed in an

initial position. An incoming block is placed into position 0, the

most-recently-used (MRU) position. A subsequent hit to a block

will promote it to position 0.

Previous work has noted that these choices for insertion

and promotion positions can be improved. Dynamic Insertion

Policy (DIP) [7] adjusts the insertion position for LRU to 0 or

n− 1 based on which of these policies is working best for a

small group of sampled sets, an adaptive technique called set

dueling [7]. Genetic Insertion and Promotion for PseudoLRU

(GIPPR) [19] and follow-up work [6] use a genetic algorithm to

explore the space of possible insertion and promotion positions

for a PseudoLRU replacement policy. These policies use an

insertion and promotion vector (IPV) of n+ 1 elements de-

scribing the insertion and promotion policy. An IPV is a vector

V [n+ 1] = [p0, p1, ..., pn−1, pn]. On a miss, the incoming block

is placed in position pn. On a hit, if the matching block is in

position i, it is promoted to position pi and blocks previously

at position i or higher shift toward the LRU position to accom-

modate the promoted block. This idea can be applied to LRU-

or RRIP-based replacement policies. In this paper we explore

LRU-based policies.

B. Extending IPVs

We extend the idea of IPVs in two ways:

1) Demand and Prefetch Accesses: First, instead of one IPV,

we develop two: one for demand accesses, and another for

prefetch accesses. We develop a pair of IPVs V [2][n+ 1] =
[d0, d1, ..., dn−1, dn][p0, p1, ..., pn−1, pn] such that on a demand

hit to recency position i, the accessed block is placed in posi-

tion V [0][i], while on a prefetch hit to recency position i, the

touched block is promoted to position V [1][i]. On a demand

miss, the new block is placed in recency position V [0][n], while

a missed prefetch would be placed in position V [1][n]. There are

(n× n!)2 such possible pairs of IPVs making exhaustive search

TABLE I
CHAMPSIM SIMULATION PARAMETERS. THE L1 DCACHE AND L2 CACHE

IMPLEMENT NEXT-LINE PREFETCHING

of the space of IPVs impossible for reasonable associativities,

so we find good candidates using the genetic algorithm on a

training set of traces.

2) Set-Dueling IPVs: Different workloads exhibit different

behaviors. There is no best policy, so in order to adapt to the

running workload, we develop a handful of IPVs and use set-

dueling to choose the best one [7]. Set-dueling chooses between

two cache management policies using two groups of leader

sets, , i.e., small subsets of the cache dedicated to each policy.

Set-dueling has been extended to multiple policies [20]. In this

work, we extend set-dueling to m IPVs by keeping m saturating

counters initialized to zero, one for each group of leader sets tied

to a particular IPV. When the ith group experiences a miss, the ith

counter is incremented. When a counter saturates, all counters

are halved. The rest of the cache sets follow the IPV with the

minimum counter.

C. Contrast With Previous Work

In contrast to previous work, our proposed technique uses

minimal extra hardware over the baseline replacement policy

For m IPVs, we require only m 12 bit counters to implement

multi-way set-dueling and a tiny amount of SRAM, 136 bytes

in our implementation, to encode the learned IPVs. Thus, the

total storage required for our idea is 148 bytes. The additional

logic is straightforward and confined to the LLC. Previous

proposals require complex predictors with many kilobytes of

tables and other bookkeeping structures as well as channels to

communicate program features not typically available to LLC

replacement policy logic, such as the address of the instruction

causing a hit or miss.

IV. METHODOLOGY

This section describes our methodology for evaluating the

idea. We describe the simulator, the workloads, and the training

methodology for the genetic algorithm.

A. Microarchitectural Simulator

We devised an infrastructure built on ChampSim, a commonly

used microarchitectural simulator with a robust modeling of a

three-level cache hierarchy and out-of-order execution. Table I

shows the microarchitectural parameters chosen for ChampSim.

ChampSim comes with code for simulating the LRU and

SHiP replacement policies as well as the next line and SPP

prefetchers. We obtained the source code for multiperspective

reuse prediction and Glider from the respective authors. We

implemented insertion and promotion vectors for demand and

prefetch accesses as well as set-dueling between IPVs.
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B. Benchmarks

For this work, we required workloads for training the IPVs

and separate workloads for reporting results. For the training

workloads, we chose the traces made available by Qualcomm

for the First Championship Value Prediction contest [21]. The

workloads are divided into broad categories such as compute_fp,

crypto, compute_int, and srv. We chose a subset that has a

least 1 miss per thousand instructions (MPKI) in the LLC. The

workloads were converted to ChampSim format. The Qualcomm

traces are generated from Arm64 compiled binaries.

For the testing workloads, we chose a subset of single-

threaded SPEC CPU 2006 and SPEC CPU 2017 simpoints [22]

with at least 1 MPKI in the LLC, as well as benchmarks from the

GAP benchmark suite [23] and XSBench benchmarks [24] with

at least 1 MPKI in the LLC. Each simpoint contains 1.5 billion

instructions allowing ample time for warming cache structures.

These traces are generated from x86_64 compiled binaries.

C. Genetic Algorithm

To find good sets of IPVs, we use a genetic algorithm. The

algorithm starts with a population of random vectors, evaluating

each one using a fitness function. In subsequent generations,

members of the population are replaced with new vectors ob-

tained by combining vectors that yielded the best fitness from the

previous generation as well as occasional mutations numerically

perturbing the vectors. After many generations, the population

converges. At this point, we use the best vector to measure the

optimization.

In the original IPV work, authors used a genetic algorithm

to find the best IPV. The fitness function was an estimate of

the speedup over LRU given a simple cache model based on

demand misses [5], [6] allowing the fitness function to be eval-

uated quickly compared to a full cycle-accurate simulator. This

approach fails in our context because the impact of prefetching

is not easily modeled with a simple simulator. Thus, we use

the full cycle-accurate simulator, increasing the runtime by two

orders of magnitude. We use an alternate method: implement-

ing the genetic algorithm directly into the simulator, allowing

vectors to evolve over the run-time of the training benchmark.

Each training workload runs one billion instructions evolving

a population of 64 IPVs, each sampling 1

64
th of the cache. At

the end of each run, the best IPV is collected into a database of

IPVs for the different training workloads. A single generation

monitors 10 million memory accesses and the typical workload

goes through about 100 generations.

D. Finding a Good Set of IPVs

We evaluate each training workload on each IPV to get the

speedup obtained by using only that IPV. Then we try many

combinations of IPVs to find a good set of IPVs to duel. To find

the best combination of n IPVs, we choose all combinations

of n IPVs and compute the geometric mean of the minimum

speedup delivered for each benchmark by one of those n IPVs,

thus estimating the speedup that would be obtained if set-dueling

always chose the best of the n vectors for each workload. This

selection process is computationally intensive, so rather than

TABLE II
GOOD IPVS FOR SINGLE-CORE WORKLOADS

exhaustive search, we use a large number of randomly sampled

subsets of IPVs and improve the best subset through greedy

search through the other IPVs. We developed 8 sets of demand

and prefetch IPVs for single-core workloads.

E. Multi-Programmed Workloads

We also simulate multi-programmed workloads. We simulate

4 cores, each running a different workload. We choose 50 mixes

of 4 randomly-chosen workloads from the single-core training

workloads for training, and 50 mixes of 4 randomly-chosen

workloads from the testing workloads for testing, developing

another 8 sets of demand and prefetch IPVs. For both training

and testing we allowed the simulations to run for one billion

instructions.

V. RESULTS

In this section we document the simulated performance and

miss rates from our technique, and illustrate a good set of IPVs

found.

A. Good IPVs

We write IPVs as pairs of vectors giving the insertion and

promotion policies for demand and prefetch accesses. Elements

i ∈ {0..n− 1} of a vector give the position that a block in

recency position i should be promoted, while element n gives

the insertion position of an incoming block. For single-core

workloads, the best set of IPVs is given in Table II. Most vectors

tend to place demand and prefetch insertions close to the LRU

position. However, for example the first vector places incoming

demand misses into the MRU position while placing incoming

prefetch misses into the LRU position. The last vector places

demand misses close to MRU and prefetch misses into MRU.

Most of the vectors keep blocks in the LRU position near LRU,

but once they reach the middle of the recency stack they are

quickly promoted close to MRU. Space does not allow a full

analysis of the nature of these vectors. They could either be

deployed in a replacement policy as is, or further studied to find

new insights into insertion and promotion policies distinguishing

between demand and prefetch accesses.

B. Performance

Fig. 1 in the Introduction shows the geometric mean speedup

of combinations of replacement policies and prefetchers, in-

cluding the speedup for our technique of using demand and

prefetch IPVs together with SPP. Fig. 2 shows S-curves of

the performance of the various replacement policies with SPP
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Fig. 2. Speedups of various replacement policies with SPP.

Fig. 3. Speedups of various replacement policies with SPP and multi-core
workloads.

over the 86 workloads tested. IPVs+SPP outperforms the other

techniques for the majority of workloads. We also evaluated the

original IPV used in previous work [19]. It showed negligible

performance improvement over LRU.

Fig. 3 shows weighted speedups for multi-programmed work-

loads. Again, IPVs+SPP outperforms the other techniques for

most workloads, achieving a weighted speedup of 6.2% over

LRU, compared with 6.0% for Glider+SPP and 5.1% for

SHiP+SPP.

VI. CONCLUSION

We have shown that dueling genetically evolved demand

and prefetch insertion and promotion vectors yields a speedup

exceeding that of complex state-of-the-art replacement policies.

Our proposal requires minimal extra storage over the LRU policy

to represent set-dueling counters and IPVs, compared to many

kilobytes and new communications channels from the front-end

to the LLC required by previous work. We believe this practical

proposal could quickly be adopted by industry.
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