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Last-Level Cache Insertion and Promotion Policy in the Presence
of Aggressive Prefetching
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Abstract—The last-level cache (LLC) is the last chance for mem-
ory accesses from the processor to avoid the costly latency of going
to main memory. LL.C management has been the topic of intense re-
search focusing on two main techniques: replacement and prefetch-
ing. However, these two ideas are often evaluated separately, with
one being studied outside the context of the state-of-the-art in
the other. We find that high-performance replacement and highly
accurate pattern-based prefetching do not result in synergistic im-
provements in performance. The overhead of complex replacement
policies is wasted in the presence of aggressive prefetchers. We find
that a simple replacement policy with minimal overhead provides
at least the same benefit as a state-of-the-art replacement policy in
the presence of aggressive pattern-based prefetching. Our proposal
is based on the idea of using a genetic algorithm to search the space
of insertion and promotion policies that generalize transitions in
the recency stack for the least-recently-used policy.

Index Terms—Cache replacement, cache prefetching, last-level
cache, genetic algorithms, machine learning for systems.

1. INTRODUCTION

HE last-level cache (LLC) is the largest on-chip component

T of the memory hierarchy, keeping as many accesses as
possible from going off-chip. Research in LLC management
has focused on replacement and prefetching, but the interaction
of these two techniques have not been studied adequately. Work
on replacement tends not to use a state-of-the art prefetcher in
its baseline, and work on prefetching is often done with a simple
replacement policy. However, the choice of prefetcher can have a
significant impact on the effectiveness of the replacement policy.
Fig. 1 shows the performance of various combinations of
prefetchers and replacement policies on a simulated cache hi-
erarchy over a wide range of benchmarks described in Sec-
tion IV. The graph shows geometric mean speedup over a
baseline least-recently-used (LRU) policy managing the LLC.
Replacement policies modeled are multiperspective reuse pre-
diction [1], signature-based hit prediction [2], and Glider [3].
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Fig. 1. Performance of combinations of replacement and prefetchers.
Prefetchers modeled are none, next-line, and signature-path-
prefetcher (SPP) [4]. Without prefetching, modern replacement
policies improve performance. For example, Glider achieves
2.9% improvement. With a next-line prefetcher, Glider achieves
2.8% improvement. However, with the complex pattern-based
prefetcher SPP, the performance improvement of all cache re-
placement policies is negligible at best, and drops significantly
for multiperspective. Glider+SPP yields 10.2% speedup over
LRU alone, but only 0.8% speedup over LRU+SPP, quite a disap-
pointment compared to the potential 2.9% improvement without
prefetching. The technique we introduce in this paper using
insertion and promotion vectors (IPVs) yields a 11.0% speedup
over LRU alone, or a 1.5% improvement over LRU+SPP, out-
performing previous policies with significantly lower hardware
complexity.

Prefetchers and replacement policies should be developed
together. We propose a novel and low-cost replacement policy
based on insertion and promotion vectors(IPVs) [5], [6]. IPVs
are developed in the presence of a high-performance prefetcher.
The policies can adapt to the prefetcher’s behavior as well as
that of the current workload. The idea is that insertion and
promotion is governed by two IPVs: one for demand accesses
and one for prefetch accesses. The IPVs used for the current
workload will change based on set-dueling [7] a small number
of pre-developed IPVs to find the best one at the moment. The
set of IPVs themselves are developed by a genetic algorithm
running over hundreds of training workloads.

II. BACKGROUND AND RELATED WORK

A great deal of work has focused on cache replacement
and prefetching. Cache replacement work has focused on reuse
prediction [2], [8], [9]. More recent work has used complex
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algorithms based on machine learning [1], [3], [10], or emulating
Bélady’s MIN algorithm [11], [12]. These approaches have
grown increasingly complex and rely on front-end program
features such as the program counter to make predictions. Work
on prefetching has been active, with many recently proposed
complex designs [4], [13], [14], [15]. At least one of these
designs, SPP, has been adopted in hardware [16] so we focus on
it as an example of a feasible complex pattern-based prefetcher.
More recent work has taken into account the interaction of the re-
placement policy and the prefetcher [12], [17] but co-designing
the replacement policy and prefetcher while using program fea-
tures typically available to microarchitectural designers remains
apoorly explored area; we know of only one such proposal [18].

III. DEMAND AND PREFETCH INSERTION AND PROMOTION
VECTORS

A. Insertion and Promotion Vectors

Replacement policies such as LRU and RRIP associate a
position with each block in a set. For an n-way set-associative
cache, the LRU policy assigns a position from 0..n — 1 to each
block, ordering the blocks from most recently used in position
0 to least recently used in position n — 1.

When a block is first inserted into a set, it is placed in an
initial position. An incoming block is placed into position 0, the
most-recently-used (MRU) position. A subsequent hit to a block
will promote it to position 0.

Previous work has noted that these choices for insertion
and promotion positions can be improved. Dynamic Insertion
Policy (DIP) [7] adjusts the insertion position for LRU to 0 or
n — 1 based on which of these policies is working best for a
small group of sampled sets, an adaptive technique called set
dueling [7]. Genetic Insertion and Promotion for PseudoLRU
(GIPPR) [19] and follow-up work [6] use a genetic algorithm to
explore the space of possible insertion and promotion positions
for a PseudoLRU replacement policy. These policies use an
insertion and promotion vector (IPV) of n + 1 elements de-
scribing the insertion and promotion policy. An IPV is a vector
Vin+1] = [po,p1, -+, Pn—1, Pn]- Onamiss, the incoming block
is placed in position p,,. On a hit, if the matching block is in
position ¢, it is promoted to position p; and blocks previously
at position ¢ or higher shift toward the LRU position to accom-
modate the promoted block. This idea can be applied to LRU-
or RRIP-based replacement policies. In this paper we explore
LRU-based policies.

B. Extending IPVs

We extend the idea of IPVs in two ways:

1) Demand and Prefetch Accesses: First, instead of one IPV,
we develop two: one for demand accesses, and another for
prefetch accesses. We develop a pair of IPVs V[2][n + 1] =
[do,d1,...,dn-1,dn][Po, P1, - s Pn—1, Pn] such that on a demand
hit to recency position %, the accessed block is placed in posi-
tion V'[0][¢], while on a prefetch hit to recency position i, the
touched block is promoted to position V[1][i]. On a demand
miss, the new block is placed in recency position V'[0][n], while
amissed prefetch would be placed in position V[1][n]. There are
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TABLE I
CHAMPSIM SIMULATION PARAMETERS. THE L1 DCACHE AND L2 CACHE
IMPLEMENT NEXT-LINE PREFETCHING

L1 icache 32KB, 8-way, 4-cycle, 8-entry MSHR

L1 dcache 32KB, 8-way, 4-cycle, 8-entry MSHR

L2 cache 512KB, 8-way, 10-cycle, 16-entry MSHR

LLC 2MB per core, 16-way, 20-cycle, 64-entry MSHR
DRAM 4GB, DDR4, 4GHz, 3200 MT/s

Branch Pred | Hashed Perceptron

of the space of IPVs impossible for reasonable associativities,
so we find good candidates using the genetic algorithm on a
training set of traces.

2) Set-Dueling IPVs: Different workloads exhibit different
behaviors. There is no best policy, so in order to adapt to the
running workload, we develop a handful of IPVs and use set-
dueling to choose the best one [7]. Set-dueling chooses between
two cache management policies using two groups of leader
sets, , i.e., small subsets of the cache dedicated to each policy.
Set-dueling has been extended to multiple policies [20]. In this
work, we extend set-dueling to m IPVs by keeping m saturating
counters initialized to zero, one for each group of leader sets tied
to a particular IPV. When the i'" group experiences a miss, the 7™
counter is incremented. When a counter saturates, all counters
are halved. The rest of the cache sets follow the IPV with the
minimum counter.

C. Contrast With Previous Work

In contrast to previous work, our proposed technique uses
minimal extra hardware over the baseline replacement policy
For m IPVs, we require only m 12 bit counters to implement
multi-way set-dueling and a tiny amount of SRAM, 136 bytes
in our implementation, to encode the learned IPVs. Thus, the
total storage required for our idea is 148 bytes. The additional
logic is straightforward and confined to the LLC. Previous
proposals require complex predictors with many kilobytes of
tables and other bookkeeping structures as well as channels to
communicate program features not typically available to LLC
replacement policy logic, such as the address of the instruction
causing a hit or miss.

IV. METHODOLOGY

This section describes our methodology for evaluating the
idea. We describe the simulator, the workloads, and the training
methodology for the genetic algorithm.

A. Microarchitectural Simulator

We devised an infrastructure built on ChampSim, acommonly
used microarchitectural simulator with a robust modeling of a
three-level cache hierarchy and out-of-order execution. Table |
shows the microarchitectural parameters chosen for ChampSim.

ChampSim comes with code for simulating the LRU and
SHiP replacement policies as well as the next line and SPP
prefetchers. We obtained the source code for multiperspective
reuse prediction and Glider from the respective authors. We
implemented insertion and promotion vectors for demand and
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B. Benchmarks

For this work, we required workloads for training the IPVs
and separate workloads for reporting results. For the training
workloads, we chose the traces made available by Qualcomm
for the First Championship Value Prediction contest [21]. The
workloads are divided into broad categories such as compute_fp,
crypto, compute_int, and srv. We chose a subset that has a
least 1 miss per thousand instructions (MPKI) in the LLC. The
workloads were converted to ChampSim format. The Qualcomm
traces are generated from Arm64 compiled binaries.

For the testing workloads, we chose a subset of single-
threaded SPEC CPU 2006 and SPEC CPU 2017 simpoints [22]
with at least 1 MPKI in the LLC, as well as benchmarks from the
GAP benchmark suite [23] and XSBench benchmarks [24] with
at least 1 MPKI in the LLC. Each simpoint contains 1.5 billion
instructions allowing ample time for warming cache structures.
These traces are generated from x86_64 compiled binaries.

C. Genetic Algorithm

To find good sets of IPVs, we use a genetic algorithm. The
algorithm starts with a population of random vectors, evaluating
each one using a fitness function. In subsequent generations,
members of the population are replaced with new vectors ob-
tained by combining vectors that yielded the best fitness from the
previous generation as well as occasional mutations numerically
perturbing the vectors. After many generations, the population
converges. At this point, we use the best vector to measure the
optimization.

In the original IPV work, authors used a genetic algorithm
to find the best IPV. The fitness function was an estimate of
the speedup over LRU given a simple cache model based on
demand misses [5], [6] allowing the fitness function to be eval-
uated quickly compared to a full cycle-accurate simulator. This
approach fails in our context because the impact of prefetching
is not easily modeled with a simple simulator. Thus, we use
the full cycle-accurate simulator, increasing the runtime by two
orders of magnitude. We use an alternate method: implement-
ing the genetic algorithm directly into the simulator, allowing
vectors to evolve over the run-time of the training benchmark.
Each training workload runs one billion instructions evolving
a population of 64 IPVs, each sampling 6i4th of the cache. At
the end of each run, the best IPV is collected into a database of
IPVs for the different training workloads. A single generation
monitors 10 million memory accesses and the typical workload
goes through about 100 generations.

D. Finding a Good Set of IPVs

We evaluate each training workload on each IPV to get the
speedup obtained by using only that IPV. Then we try many
combinations of IPVs to find a good set of IPVs to duel. To find
the best combination of n IPVs, we choose all combinations
of n IPVs and compute the geometric mean of the minimum
speedup delivered for each benchmark by one of those n IPVs,
thus estimating the speedup that would be obtained if set-dueling
always chose the best of the n vectors for each workload. This
selection process is computationally intensive, so rather than

TABLE II
GOoOD IPVS FOR SINGLE-CORE WORKLOADS

Demand Vector Prefetch Vector

[000013430230731150]

[0000123240248011514]
[0013005063066128710]
[0000100605096511415]
[0000223010756421112]
[0020353069736441013]
[0001144502257511515]

001114304035410121515]
0000142455103121371515]
00121020201101113101013 ]
0000153572090411515]
0000022013525321515]
000112212009101211315]
000040166741110102511]

[00231056372509472] 000142153417159150]

exhaustive search, we use a large number of randomly sampled
subsets of IPVs and improve the best subset through greedy
search through the other IPVs. We developed 8 sets of demand
and prefetch IPVs for single-core workloads.

E. Multi-Programmed Workloads

We also simulate multi-programmed workloads. We simulate
4 cores, each running a different workload. We choose 50 mixes
of 4 randomly-chosen workloads from the single-core training
workloads for training, and 50 mixes of 4 randomly-chosen
workloads from the testing workloads for testing, developing
another 8 sets of demand and prefetch IPVs. For both training
and testing we allowed the simulations to run for one billion
instructions.

V. RESULTS

In this section we document the simulated performance and
miss rates from our technique, and illustrate a good set of IPVs
found.

A. Good IPVs

We write IPVs as pairs of vectors giving the insertion and
promotion policies for demand and prefetch accesses. Elements
i €{0..n— 1} of a vector give the position that a block in
recency position 7 should be promoted, while element n gives
the insertion position of an incoming block. For single-core
workloads, the best set of [PVs is given in Table II. Most vectors
tend to place demand and prefetch insertions close to the LRU
position. However, for example the first vector places incoming
demand misses into the MRU position while placing incoming
prefetch misses into the LRU position. The last vector places
demand misses close to MRU and prefetch misses into MRU.
Most of the vectors keep blocks in the LRU position near LRU,
but once they reach the middle of the recency stack they are
quickly promoted close to MRU. Space does not allow a full
analysis of the nature of these vectors. They could either be
deployed in a replacement policy as is, or further studied to find
new insights into insertion and promotion policies distinguishing
between demand and prefetch accesses.

B. Performance

Fig. 1 in the Introduction shows the geometric mean speedup
of combinations of replacement policies and prefetchers, in-
cluding the speedup for our technique of using demand and
prefetch IPVs together with SPP. Fig. 2 shows S-curves of
the performance of the various replacement policies with SPP
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Fig. 3. Speedups of various replacement policies with SPP and multi-core
workloads.

over the 86 workloads tested. IPVs+SPP outperforms the other
techniques for the majority of workloads. We also evaluated the
original IPV used in previous work [19]. It showed negligible
performance improvement over LRU.

Fig. 3 shows weighted speedups for multi-programmed work-
loads. Again, IPVs+SPP outperforms the other techniques for
most workloads, achieving a weighted speedup of 6.2% over
LRU, compared with 6.0% for Glider+SPP and 5.1% for
SHiP+SPP.

VI. CONCLUSION

We have shown that dueling genetically evolved demand
and prefetch insertion and promotion vectors yields a speedup
exceeding that of complex state-of-the-art replacement policies.
Our proposal requires minimal extra storage over the LRU policy
to represent set-dueling counters and IPVs, compared to many
kilobytes and new communications channels from the front-end
to the LLC required by previous work. We believe this practical
proposal could quickly be adopted by industry.
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