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Abstract

Accurate epidemiological models require parameter estimates that account for mobility pat-

terns and social network structure. We demonstrate the effectiveness of probabilistic pro-

gramming for parameter inference in these models. We consider an agent-based simulation

that represents mobility networks as degree-corrected stochastic block models, whose

parameters we estimate from cell phone co-location data. We then use probabilistic pro-

gram inference methods to approximate the distribution over disease transmission parame-

ters conditioned on reported cases and deaths. Our experiments demonstrate that the

resulting models improve the quality of fit in multiple geographies relative to baselines that

do not model network topology.

Author summary

The ability to create computer simulations of epidemics is important to be able to pre-

dict where and when people will be become infected, identify factors which either con-

tribute to or slow disease spread, and test various interventions without risking real

lives. However, the conclusions of experiments performed using these simulations are

only meaningful in the real world if we can be sure the simulation accurately models

what is happening in the real world. We study methods for fitting parameters, such as

infectiousness, to real world data so that the disease simulator correctly represents the

actual disease. We achieve this using probabilistic programming methods which auto-

matically adjust the parameters of the simulator until its outputs look realistic. Our

method can work on very detailed simulators which model individual people interacting

at specific locations in different locales whereas other methods can only fit very simple

simulators.
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1 Introduction

Planning and control of disease spread often relies on having access to realistic simulation

models that can capture fine-grained dynamics and differences between geographic regions.

Models of infectious diseases track the number of individuals in different stages of disease pro-

gression and with varying granularity. The least granular models track global population totals

in compartments such as susceptible, infected, and removed [1], and rely on an assumption of

uniformmixing such that the simulated population can be fully described by a system of differ-

ential equations. This simplifies computation, but also imposes limitations on dynamics, such

as the fact, that unlike real-world infection data with multiple waves of infection, this model

can only generate a single wave [2]. More sophisticated simulators stratify the population

according to age [3] or geography [4] to account for variations in the frequency of interactions.

The most fine-grained simulation models are agent-based [5], and can account for the fact that

highly-connected individuals are more likely to both contract and spread a disease [6].

Fine-grained models are desirable for epidemiologists who seek to encode important

domain knowledge, such as the effects of pre-existing patient states (e.g. age, co-morbidities,

or even genetic predispositions) and regional differences in mobility and policy. However,

such models will typically have a large number of parameters, and estimating these parameters

poses challenges. Some parameters, such as those describing person-to-person interaction fre-

quency, can be estimated prior to simulation using available data on mobility and demograph-

ics. Other parameters, such as disease transmission rates, may have substantial uncertainty,

particularly during the early stages of an ongoing epidemic, or may be sensitive to implemen-

tation details of a simulator so that they cannot be estimated externally. Moreover, parameter

estimates based on past data can be invalidated by public health intervention policies affecting

mobility and social interaction. In such settings, we would like to deploy models that can

incorporate high-resolution data from as many sources as possible. Then, we can apply tech-

niques for maximum likelihood estimation and approximate inference to reason about the

most probable parameter values.

In this paper, we present a case study in the use of probabilistic programming methods to

infer parameters of agent-based disease simulations. Probabilistic programming research has

developed a wide variety of methods for inference in programmatically specified models,

including methods based on Markov Chain Monte Carlo (MCMC) [7], importance sampling

and variational inference [8]. An example of the use of probabilistic programming in disease

modeling is the work by Flaxman et al. [9], which applies methods based on Hamiltonian

Monte Carlo (HMC) to comparatively low-granularity compartmental models. HMC is widely

used and can be computationally efficient, but requires a differentiable model that defines a

density with continuous support. These requirements are not always easy to satisfy. Complex

simulations, such as the ones we consider here, may incorporate non-differentiable aspects

such as discrete variables or have discontinuities arising from if-then-else statements. More-

over, it is not always convenient to (re-)implement simulations in a special-purpose modeling

language that supports automatic differentiation.

Parameter estimation in complex disease simulations typically relies on comparatively sim-

ple methods such as importance sampling using likelihood weighting or approximate Bayesian

Computation [3, 4]. Approximate Bayesian Computation (ABC) relies on a heuristic likeli-

hood function to compare observed data and predictions from the simulation [10, 11].

However, there are numerous other methods from the probabilistic programming literature

that impose few requirements on the underlying model, and can be used to perform inference

in simulation-based models in a variety of languages with relatively few changes to the under-

lying code base. Examples include single-site Metropolis-Hastings [12], importance-sampling
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methods based on Sequential Monte Carlo [13], and stochastic variational inference methods

[13], which can be combined with deep learning to train models that invert probabilistic pro-

grams for fast inference at test time [14, 15].

In order to apply probabilistic programming methods to parameter estimation for fine-

grained disease simulations, we implement an agent-based simulation in the Julia language.

We model disease transmission on subsampled social proximity networks constructed from

cellphone co-location data (Sec. 4.2), in which nodes represent individuals who transition sto-

chastically between disease states (Alg. 4). We infer transmission parameters of this model

using Blackbox Variational Inference (BBVI, [16, 17]), a well-established stochastic variational

method for probabilistic programs. We use an implementation of BBVI in the Gen probabilis-

tic programming system [18]. We find that this method scales well with the relatively compu-

tationally intensive simulations in this model, and outperforms simpler methods based on

likelihood-weighted importance sampling and Metropolis-Hastings in terms of sample quality

and diversity. To separately capture the effects of changes in mobility from changes in trans-

mission during interaction (e.g. due to non-pharmaceutical interventions like mask-wearing),

we include experiments where the contact network varies over time. To explore the sensitivity

of our model to the network size, we also include experiments with up- and down-sampled

graphs. We find that our model gives high-quality samples in both of these cases. Lastly, we

consider an experiment in which we simultaneously fit both infection and death data, and find

that our model is able to incorporate both pieces of evidence successfully.

Limitations. We make several simplifying assumptions which are common in the litera-

ture. These are both in terms of the level of realism of our model design and the quality of our

inference approximation.

First, our simulator models the network topology of a region as a subsampled population of

nodes. This subsampling necessitates rescaling to compare model outputs to reported case

counts, and means that parameter estimates will depend on the degree of subsampling. Our

simulator is nonetheless relatively granular compared to other disease models and balances

well between speed and resolution.

Second, we perform variational inference for the parameters in our model using a so-called

fully-factorized approximation. This approximation makes the optimization problem simpler,

since fewer variational parameters have to be learned, but does have well-documented draw-

backs. Its main limitation is that a factorized variational distribution cannot capture correla-

tions between parameters in the posterior, which in turn can result in an under-

approximation of the posterior variance.

A further limitation is that our gradient estimates have a high variance. The reason for this

is that we treat the stochastic simulator as a black box. This means that the distribution over

parameters is optimized to maximize agreement with observed data, but simulator trajectories

are sampled from a broad prior distribution that is defined in terms of these trajectories (see

Fig 1). As a result, the accuracy of the posterior approximation may be limited by the variance

of the gradient signal.

Lastly, our method is not designed to model the evolving temporal dynamics of the disease.

We are able to fit time-varying infectiousness parameters over a past time range based on data,

but our model cannot extrapolate into the future except by assuming these parameters stay

constant.

Contributions. The present work evaluates the utility of probabilistic programming meth-

ods for parameter estimation in simulations that model disease transmission at the level of

individuals. For this purpose, we perform a relatively comprehensive set of numerical experi-

ments. Our results demonstrate that even BBVI, a relatively simple simulation-based inference

method, can be used for parameter inference in these models. We hope this will inspire further
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applications of probabilistic programming to this domain. In particular we observe that varia-

tional inference methods make it possible to estimate region-specific parameters in a manner

that results in a higher quality of fit when comparing to simpler compartmental models and

other inference methods commonly used in related work.

2 Background: Inference in simulators

In this paper, we apply methods for Bayesian inference to reason about unknown parameters

in disease simulations. Our goal is to approximate a posterior density over latent variables z

that is conditioned on observed data x,

pðz j xÞ ¼ pðx j zÞ pðzÞ
pðxÞ ; pðxÞ ¼

Z

dz pðx j zÞ pðzÞ: ð1Þ

Fig 1. Cumulative infection trajectories using fixed or sampled disease parameters. After fitting the parameters of our model to data, we show the
cumulative infections produced by 100 runs of the simulator using selected parameters. On the left, we use the posterior mean parameters; the observed
variation comes from the untraced randomness of network simulator. On the right, we use samples from the posterior distribution; variation comes
from both the untraced randomness and the variance of our posterior distribution.

https://doi.org/10.1371/journal.pcbi.1010591.g001
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This density is defined in terms of a likelihood p(x j z), which reflects the agreement

between observed data x and latent variables z, and a prior p(z) over latent variables z in the

absence of observations. The computational challenge in approximating the posterior is that

integrals with respect to z are generally intractable. This means that we cannot compute the

marginal likelihood p(x) in closed form and it is generally difficult to approximate the expected

value of any quantity h(z) that depends on the latent variables,

E
z�pðzjxÞ

½hðzÞ� ¼
Z

dz pðz j xÞ hðzÞ: ð2Þ

In this work, observed data takes the form of a time series x = (x1, . . ., xT), where each time

point xt is a count of reported cases. The latent variables z = {θ, s} comprise model parameters

θ and a sequence s = (s1, . . ., sT) in which st denotes the state of a disease simulator at time t.

We express the probability of latent variables and observations as,

pðx; zÞ ¼ pðx; s; yÞ ¼ pðx j s; yÞ pðs j yÞ pðyÞ: ð3Þ

This model has three components. The first is a likelihood p(x j s, θ), the second is a distri-

bution over disease simulations p(s j θ), and the third is a prior p(θ).

It is possible to define all model components in a probabilistic programming language to

facilitate inference later on. However, this may not be the most convenient choice when apply-

ing probabilistic program inference methods to an existing simulation code base, since all

simulation code must now be translated or modified to ensure that random variables are gen-

erated in a manner that can be tracked by the probabilistic programming framework.

In this paper we will instead focus on inference methods that require no changes to an exist-

ing simulation code base. These methods can be applied to a stochastic simulator that is

“opaque”, which is to say that randomness inside the simulation is not accessible to the infer-

ence algorithm. In the Gen probabilistic programming system [18], which we use as the basis

for our experiments, these uncontrolled random choices are referred to as “untraced”

randomness.

Concretely, we will assume that we have access to a simulator f with inputs θ, and that exe-

cution of this simulator generates a random trajectory s* f(θ). This implicitly defines a distri-

bution over trajectories s* p(� j θ). However, the density associated with this distribution is

intractable, which is to say that we cannot compute p(s j θ). To perform inference in a disease

simulation, we will assume that the user implements additional code to define a likelihood p(x

j s, θ) and a prior p(θ),
pðx j s; yÞ ¼ gðx; s; yÞ; pðyÞ ¼ f0ðyÞ: ð4Þ

We will assume that the prior f0 is a density or probabilistic program that is completely trac-

table, which is to say that we can sample θ* f0 and evaluate the density f0(θ). The likelihood g

may take the form of a tractable parametric density, as is the case for the Gaussian likelihood

that we define in Section 4.3. Alternatively, we can define a likelihood g(x, s, θ)/ exp[−ℓ(x, s)]

in terms of a loss function ℓ(x, s) that measures the discrepancy between the simulation state s

and the observations x. Such a loss function should be chosen to ensure that the normalizer

Z =
R

dx exp[−ℓ(x, s)] is a constant that is independent of s. We will discuss an example of

such a heuristic likelihood in our discussion of ABC rejection algorithms below.

2.1 Likelihood weighting (LW)

Probabilistic programming systems implement general-purpose inference methods that can be

applied to simulation-based models. These methods approximate the posterior using samples
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that are generated by repeatedly running the simulation. One of the simplest of these methods

is importance sampling using likelihood weighting, which generates samples by proposing θ

from the prior, running the simulator to generate a trajectory s, and computing an importance

weight w according to the likelihood,

wk ¼ gðx; sk; ykÞ; sk � f ðykÞ; y
k � f0; k ¼ 1; . . . ;K: ð5Þ

After normalizing these weights by their sum, this method can be used to approximate

expectations with respect to the posterior,

E
s;y�pðs;yjxÞ

h s; yð Þ½ � ’
X

K

k¼1

wk

P

k0w
k0
h sk; yk
� �

: ð6Þ

A convenient property of this style of inference is that it can be applied to any stochastic

simulator. Likelihood weighting does not require evaluation of p(s j θ) at any step in the com-

putation. The only requirements for likelihood weighting is that we should be able sample θ

from the prior, run the simulator to generate a trajectory s and evaluate the user-defined likeli-

hood g(x, s, θ).

Algorithm 1: LikelihoodWeighting
Function LIKELIHOOD-WEIGHTING(g, f, f0, K):
for k  1, . . ., K do
θk * f0 // Propose parameters θ
sk * f(θk) // Run simulator to generate trajectory s
wk  g(x, sk, θk) // Compute unnormalized importance weight w

return fðwk; sk; ykÞgKk¼1 // Return weighted samples

2.2 Black-box variational inference

One of the limitations of likelihood weighting is that it is not a particularly efficient inference

strategy. The prior f0 typically defines a distribution over a broad range of parameters, out of

which only a small subset are likely to give rise to simulation trajectories that are in good agree-

ment with the data. That is, likelihood weighting is a form of guess-and-check sampling—it

typically requires many proposals sk, θk, out of which the overwhelming majority will be in

poor agreement with the data. This means that the weighted average in Eq 6 will typically be

dominated by a small fraction of high-weight samples.

Variational inference methods directly approximate the posterior by optimizing the param-

eters of a variational distribution, thereby turning an inference problem into an optimization

problem. In this paper, we assume a distribution qϕ(θ) with variational parameters ϕ. If we

combine the variational distribution with the simulator f, then this defines a variational family

qϕ(s, θ),

q�ðs; yÞ ¼ pðs j yÞ q�ðyÞ: ð7Þ

Our goal is to learn parameters ϕ such that qϕ(s, θ) is as similar as possible to the posterior p

(s, θ j x). Since qϕ(s j θ) = p(s j θ) is just the distribution over trajectories in the simulator, for

which there are no optimizable parameters, making qϕ(s, θ) as similar as possible to p(s, θ j x)
equates to making qϕ(θ) as similar as possible to the posterior marginal over parameters p(θ j x).

To learn the variational parameters ϕ, we will in this paper use black-box variational infer-

ence (BBVI) [16, 17], which is one of the simplest and most widely implemented methods for

probabilistic programs. BBVI minimizes the Kullback-Leibler (KL) divergence KL(qϕ(s, θ)||p(s,
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θ | x)) by maximizing a variational lower bound L (see S1 Appendix for further discussion),

L ¼ Es;y�q� log
pðx; s; yÞ
q�ðs; yÞ

" #

¼ Es;y�q� log pðxÞ þ log
pðs; y j xÞ
q�ðs; yÞ

" #

ð8Þ

¼ log pðxÞ � KLðq�ðs; yÞ k pðs; y j xÞÞ: ð9Þ

Since log p(x) does not depend on the variational parameters ϕ, maximizing L with respect

to ϕ is equivalent to minimizing the KL divergence, which ensures that qϕ becomes as similar

as possible to the posterior.

Algorithm 2: Black-box Variational Inference
Function BBVI (g, f, f0, q�, K, α1:T):
for a  α1, . . ., αT do
for k  1, . . ., K do
θk * q� // Propose parameters θ
sk * f(θk) // Run simulator to generate trajectory s
wk  gðx; sk; ykÞ f0ðykÞ

q�ðykÞ
// Importance weight w (Eq 12)

b̂  1

K

PK

k¼1 log w
k // Compute control variate

ĝ  1

K

PK

k¼1 log wk � b̂
� �

r�log q�ðzkÞ // Gradient est. (Eq 12)
� �þ a ĝ // Update variational parameters

return q� // Return variational distribution
The variational objective can equivalently be decomposed into an expected log likelihood

and a KL divergence between the variational distribution and the prior,

L ¼ Es;y�q� log
pðx; s; yÞ
q�ðs; yÞ

" #

¼ Es;y�q� log pðxjs; yÞ þ log
pðs; yÞ
q�ðs; yÞ

" #

ð10Þ

¼ Es;y�q� ½log pðx j s; yÞ� � KLðq�ðs; yÞ k pðs; yÞÞ: ð11Þ

The variational objective represents a trade-off between two objectives. The first is to maxi-

mize the expected log likelihood, which tends to concentrate the variational distribution qϕ(θ)

around the parameters θ� that yield the highest agreement between simulation and data. The

second is to minimize the KL divergence relative to the prior, which tends to make the varia-

tional distribution more broadly peaked.

BBVI optimizes the variational objective L using stochastic gradient ascent, which requires

an unbiased estimate of the gradientr�L. To compute this estimate, BBVI uses samples sk,

θk* qϕ to compute a likelihood-ratio estimator (see S1 Appendix),

r�L ’ 1

K

X

K

k¼1
r�log q�ðykÞ logwk�b̂

� �

; wk ¼ gðx; sk; ykÞ f0ðy
kÞ

q�ðykÞ
: ð12Þ

The constant b̂, which is known as a baseline, serves to reduce the variance of the estimator.

Here, we use a simple baseline in the form of the average log weight.

As with likelihood weighting, BBVI is very broadly applicable to simulation-based models.

To compute the weights wk, we need to evaluate the likelihood g, the prior f0, and the varia-

tional density qϕ. The only additional requirement is that we can compute the log gradient

rϕ log qϕ(θ). As a result, BBVI can be implemented by simply running the simulator f repeat-

edly to generate samples.
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2.3 Metropolis-hastings

One of the baseline methods that we use in this paper is single-site Metropolis-Hastings

(MH) [12], which is a Markov Chain Monte Carlo (MCMC) method that is implemented in

many probabilistic programming systems. In MH, we randomly initialize a sample θ* f0
from the prior. We then apply a series of MCMC updates. For each update, we propose a

change θ0* q(θ0jθ). The proposed change is then either accepted or rejected according to a

Metropolis-Hastings ratio. In the resulting Markov chain, early samples will be representative

of the prior distribution, but successive updates define a biased random walk that converges

to the posterior.

In the context of simulation-based inference, there is a subtlety to performing MH sam-

pling. The MH acceptance ratio α for a simulation-based model has the form,

a ¼ pðx; y0Þ qðy j y0Þ
pðx; yÞ qðy0 j yÞ ; pðx; yÞ ¼

Z

ds pðx; s; yÞ: ð13Þ

Unfortunately, we cannot compute this acceptance ratio directly, since doing so requires

computing p(x, θ), which involves an integral with respect to all simulation trajectories s. How-

ever, we can use likelihood weighting to compute an acceptance ratio by running the simulator

to generate trajectories s0* f(θ0) and s* f(θ), and computing the acceptance ratio in terms of

importance weights,

â ¼ w0 pðy0Þ qðy j y0Þ
w pðyÞ qðy0 j yÞ ; w ¼ gðx; s; yÞ ¼ pðxjs; yÞ ¼ pðx; s j yÞ

pðs j yÞ : ð14Þ

This amounts to replacing the marginal likelihood p(x j θ0) with an unbiased estimate w0

and similarly replacing p(x j θ) with an unbiased estimate w, since,

E
s�pðsjyÞ

w½ � ¼
Z

ds pðs j yÞ pðx; s j yÞ
pðs j yÞ ¼ pðx j yÞ: ð15Þ

A justification for replacing α with â can be derived by noting that the resulting sampler sat-

isfies a technical definition known as proper weighting [19, 20].

Algorithm 3 summarizes the resulting MH sampling procedure when using a proposal that

updates a single randomly selected parameter y0i, keeping all remaining variables constant

(y0j 6¼i ¼ yj 6¼i) This sampler is once again very general. To generate a proposal and compute the

acceptance ratio â, we only need to be able to sample from the proposal kernel q(θ0jθ), run the

simulator to generate s0* f(θ0), and compute the weight w0 = g(x, s0, θ0). This construction is

once again generally applicable to probabilistic programs that make calls to stochastic func-

tions f whose random choices are opaque to the inference algorithm.

Algorithm 3: Single-Site Metropolis Hastings
Function TRACE-MH(g, f, f0, q, K):
θ * f0 // Initialize from prior
for k  1, . . ., K do
s * f(θ); w  g(x, s, θ) // Simulate and compute current

weight
i * Uniform({1, . . ., |θ|}) // Select site i
y
0
i � qið� j yÞ; y

0
j6¼i  yj6¼i // Propose for site i

s0 * f(θ0); w0  g(x, s0, θ0) // Simulate, compute proposal
weight

â  w0 f0ðy0Þ qiðyi j y0Þ
w f0ðyÞ qiðy0i j yÞ

// Compute acceptance ratio (Eq 13)
u * UNIFORM(0, 1)
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if u < â then θ, s  θ0, s0 // Update sample if move is accepted
y
k

out; s
k
out  y; s // Store current sample for output

return fykoutgKk¼1 // Output chain of samples

2.4 Inference methods for differentiable models

While BBVI does not require the simulator to be differentiable, there are a number of more

efficient inference methods that can be used when a model does support differentiation. Exam-

ples include variants of Hamiltonian Monte Carlo [21], and reparameterized methods for vari-

ational inference [22, 23]. To apply these methods, the model must be implemented in a

language that supports automatic differentiation, such as Stan [24], PyMC [25], or Pyro [15].

Moreover, since these methods rely on computation of the gradient of the log density with

respect to the latent variablesrz log p(x, z), all variables in the model need to be continuous.

For this reason, support for these methods must be factored into the design of a simulator

from the outset, and cannot easily be applied to code bases that do not already support auto-

matic differentiation. Furthermore, these design constraints limit the expressivity of disease

simulators, since it is not possible to apply differentiation to models with discrete random vari-

ables. By contrast, the BBVI methods that we consider in this paper have fewer implementa-

tion requirements, but typically require a much larger amount of computation to approximate

the posterior.

3 Related work

Markov chain Monte Carlo methods. For comparatively low granularity models, such as

models with global compartments, it is often possible to apply MCMCmethods, which are

guaranteed to asymptotically converge to the posterior. Hamiltonian Monte Carlo (HMC, [21,

26, 27]) methods are amongst the most efficient and widely used MCMCmethods in this con-

text. An example of the usage of such methods is the work by Flaxman et al. [9] using models

implemented in the Stan probabilistic programming language [24]. However, as discussed in

Section 2.4, applying HMC requires that the model be differentiable with respect to the latent

variables and, practically, the number of needed gradient evaluations be computationally feasi-

ble. This makes it difficult to apply HMC to larger-scale disease simulations (on the order of

10000 agents), such as the ones that we consider in this paper. These simulations are not always

differentiable, since they may contain discrete random variables, or may simply not be imple-

mented in a language that supports differentiation.

Likelihood weighting. Inference in larger-scale simulation-based models has typically

relied on much simpler techniques in order to reduce implementation requirements and bal-

ance the quality of approximation with computational cost. One of the more commonly used

methods in this context is likelihood weighting (see Alg. 1). Work byWood et al. [28] uses a

probabilistic programming implementation of likelihood weighting to perform inference in

FRED [5], an agent-based disease simulator. Wilder et al. [29] use likelihood weighting to fit 4

parameters: (1) the probability of infection after contact with an infected individual, (2) the

start time of an infection, (3) a base mortality rate multiplier, (4) the reduction factor in

expected number of contacts after a lockdown. They select a negative binomial distribution as

a likelihood function, where the dispersion parameter is estimated by fitting an autoregressive

binomial regression model. Samples are generated approximately from a uniform prior using

Latin hypercube sampling.

ABC rejection algorithms. Another class of methods related to likelihood weighting are

ABC rejection algorithms. These algorithms compare the simulation output s to the data x

according to some error function �(x, s) and reject all samples whose error exceeds a threshold
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�0. This is a special case of likelihood weighting using a heuristic likelihood of the form,

gðx; s; yÞ / exp �‘ x; sð Þð Þ; l x; sð Þ ¼
0 �ðx; sÞ � �0;

1 �ðx; sÞ > �0:

(

ð16Þ

In the limit where �0! 0, this heuristic likelihood conditions the simulation output to

exactly match the observations. Increasing the threshold �0 results in a higher sample effi-

ciency, at the expense of yielding larger approximation errors.

Chinazzi et al. [3] study the effect of travel restrictions on the spread of the coronavirus.

They use ABC rejection algorithms to estimate the posterior distribution of the reproductive

number R0. Specifically, they choose parameter values from samples which have simulated

case counts that match the observed number of cumulative imported cases before January 23,

2020 to within a margin of error of +40%.

Similarly, Chang et al. [4] use ABC to fit model parameters to the number of confirmed

cases provided by the New York Times. They estimate 3 parameters: (1) base transmission

rate, (2) point-of-interest transmission rate, (3) initial proportion of exposed individuals.

These parameters are fit by performing a grid search, where the utility of parameters is com-

puted based on the average root mean squared error (RMSE) over 30 random simulations. To

quantify uncertainty, the authors select parameters whose average RMSE is within 20% of the

best-fitting parameter set, and report the mean and 2.5–97.5th percentile range of parameter

values.

Unlike the ABC method used by Chinaazi et al. and Chang et al., our method does not use a

hard threshold for rejecting samples, which increases sample efficiency.

4 Methods

In this work, we consider a disease simulation model that we call Network-SEIR (NSEIR),

which comprises two components. The first is a network topology model, in the form of a

degree-corrected stochastic block model (DCSBM [30]). This model describes contact patterns

in the population. We obtain point estimates of network topology parameters using cell-phone

co-location data [31] in order to produce a representative graph for simulations. The second

component is an agent-based compartmental model that describes how disease spreads across

this network topology to produce simulated infection statistics.

To calibrate our Network-SEIR model to a particular region, we seek to learn input parame-

ters to this simulator that produce infection statistics matching the region’s true outcomes. We

incorporate this agent-based model into a probabilistic program by defining a prior over these

input parameters and a likelihood for reported case counts. The resulting probabilistic pro-

gram defines a Bayesian posterior over parameters that we approximate using variational

inference.

4.1 Compartmental SEIR models

We begin by briefly reviewing traditional global compartmental SEIR models in order to moti-

vate the agent dynamics in our Network-SEIR model. In a SEIR model, the population is sepa-

rated into four compartments representing Susceptible (S), Exposed (E), Infected (I), and

Removed (R) individuals. These compartments are approximated by continuous values S(t), E

(t), I(t), and R(t), where the total population size is fixed at N = S(t) + E(t) + I(t) + R(t). The
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population dynamics are modeled by the differential equations,

dS

dt
¼ � bIS

N
;

dE

dt
¼ bIS

N
� gE;

dI

dt
¼ gE� lI;

dR

dt
¼ lI: ð17Þ

In some settings, this model includes natural rates of birth and death for the population; we

omit these factors from our network model for two reasons. First, newborn individuals will

not contribute meaningfully to the spread of infection on their own; rather, they can be treated

as a sub-compartment of their caregivers. Second, individuals who die of natural causes make

the overall mobility network slightly more sparse, and omitting this effect causes only a small

error in our predictions.

4.2 Network-SEIR model

We now describe the stages of constructing our stochastic disease simulator.

4.2.1 Network modeling. The first stage of constructing our disease simulator involves fit-

ting a network model to regional mobility data. Our network model belongs to the popular

category of mobility networks called spatial meta-population models [3, 32, 33]. We use mobil-

ity data from SafeGraph [31], consisting of opt-in, anonymized foot-traffic to points-of-inter-

est (POIs) such as stores and schools across the United States. Devices in this data are assigned

to a home Census Block Group (CBG), the smallest geographical unit for which population

data is reported in the U.S. Census. For each region of interest, we collect one week of data

beginning on February 17, 2020, shortly before widespread quarantines were instituted in the

United States and elsewhere. We then select CBGs that contribute to the top 10% of mobility

data available for each county during this time period.

We use an extension of a Degree-Corrected Stochastic Block Model (DCSBM) to generate a

synthetic contact network that captures the community structure and heterogeneous degree

distribution of real networks. The DCSBM has two parameters: 1) a partition of vertices

fV1; . . . ;Vcg into C communities, and 2) a symmetric matrix P 2 RC�C of edge probabilities,

where element Prs gives the probability of an edge existing between any two vertices u 2 Vr
and v 2 Vs. For our model, we apply a degree correction procedure within each community

and overlay edges that represent household interactions. We leverage census data to extract

the household size distribution for each community.

We choose the number of communities in the modeled network by analyzing convergence

properties of core topological properties like network density and number of triangles. The

sizes of each community and the density of contact patterns within and across communities

are selected to match census and Safe graph data from the corresponding Census Block

Groups.

Edge probabilities. To construct the block matrix P describing community structure, we

compute each entry Prs from the cross-correlation score of the POI visit vectors of CBGr and

CBGs. Let L 2 RC�N be the visit count matrix for a specific week of data, where N is the num-

ber of POIs. The cross-correlation score is given by,

Prs ¼
PN

i¼1ðLri � �LrÞðLsi � �LsÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN

i¼1 ðLri � �LrÞ
2 PN

i¼1 ðLsi � �LsÞ
2

q ; �Lr ¼
1

N

X

N

i¼1
Lri: ð18Þ

We perform a degree-correction procedure on this network to yield a heterogeneous degree

distribution between nodes in different communities. The parameter for degree-correction is

sampled from a power-law function with exponent γ = 3 selected so the node with the largest

degree in each community has a degree in the range of 50–100. This is done to be consistent
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with other realistic social contact networks of similar sizes [34, 35, 36]. The correction proce-

dure is done on a per-community basis, such that the degree sequence sampling takes into

account the size and average degree of each CBG.

This gives us a DCSBM where the edge probability between two CBGs reflects how often

individuals from those communities tend to visit the same POIs. From this DCSBM, we sam-

ple a network instance G with vertices V and edges E. Each vertex v 2 V represents a simulated

person, and belongs to some CBGi (where i 2 {1, . . ., C}). Vertices are also randomly assigned

to households (cliques) within each CBG based on census survey data describing the size dis-

tribution of households with 1 to 7 people, resulting in additional “household” edges [37].

Edge weights. Given the edge structure described above, we assign edge weights by consid-

ering visit overlap duration within a chosen 1-week time window. The weight of edge (u, v)

represents the total expected minutes for which individuals u and vmight overlap at various

POIs. For each POI p, SafeGraph provides the median visit duration dp. We build a visit dura-

tion tensor D 2 RC�N�M, where C is the number of CBGs, N is the number of POIs, andM is

the total number of minutes POIs are open (we assumeM = 10 hours per day, 7 days per

week = 4, 200 minutes). Specifically, for each POI p, we examine our visit count matrix L, and

include Lrp total visits from CBGr, letting each visit start at a uniform randomminute in the

interval (0,M − dp) and last for dpminutes. An entry Drpt indicates the number of visitors

from CBGr present at POI p in minute t. The weight assigned to an edge between nodes u 2 Vr
and v 2 Vs is then given by the total minutes of overlap,

Wuv ¼
X

t2ð0;M�dpÞ p2½1;N�
DrptDspt: ð19Þ

The weight on the additional “household” edges is set to correspond to 8 hours per day (3,

360 weekly minutes).

4.2.2 Disease transmission model. Given a representative network instance as described

above, we construct a stochastic disease state model as follows. Nodes transition between four

states as in the traditional SEIR model: susceptible, exposed, infected, and removed. Let St, Et,

It, and Rt refer to the subset of nodes in each state at time t. We model exposure probability

using an exponential distribution,

pðv2Etþ1 j v2StÞ ¼ 1� expð�Epressure
t �Ipressuret Þ: ð20Þ

Here the terms Epressure
t and Ipressuret affecting node v’s transition probability are defined based

on its network weights to exposed neighbors NE
t ðvÞ and infected neighbors NI

t ðvÞ, and scaled
by time-dependent transmission parameters bEt and b

I

t ,

Epressure
t ¼

X

u2NE
t
ðvÞ

Wuv b
E

t ; Ipressuret ¼
X

u2NI
t
ðvÞ

Wuv b
I

t : ð21Þ

Once individuals are exposed, they transition to infected and removed states with constant

daily probabilities γ and λ,

pðv2 Itþ1 j v2EtÞ ¼ g; pðv2Rtþ1 j v2 ItÞ ¼ l: ð22Þ

The full disease simulation procedure, which we refer to as fNSEIR, is described in Algorithm

4. The inputs to this model are the simulated regional network G (described by its vertices V

and weighted edgesW), initial rates of exposure ρc in each community, state transition param-

eters γ and λ, and values for bEn and b
I

n at N time points τn, from which we define parameters at

all other times t using linear interpolation.
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Algorithm 4: Stochastic Disease Simulator fNSEIR
Function fNSEIR ðG ¼ ðV;WÞ, ρ, βE, βI, γ, λ, τ, T):

for c  1 to C do // Initial exposure
for v 2 Vc do if UNIFORM(0, 1) < ρc then v ! E1 else v ! S1

for t  1, . . ., T − 1 do // Simulate T days
b
E

t  INTERPOLATEððt1;bE1Þ; . . . ; ðtN;b
E

NÞÞ
b
I

t  INTERPOLATEððt1; bI1Þ; . . . ; ðtN; b
I

NÞÞÞ
for v 2 St do // New exposures
Epressure  P

u2NE
t
ðvÞWuvb

E

t

Ipressure  P

u2NI
t
ðvÞWuvb

I

t

if UNIFð0; 1Þ < 1� expð�Epressure � IpressureÞ then v ! Et+1
for v 2 Et do if UNIF(0,1) < γ then v ! It+1 // Symptoms begin
for v 2 It do if UNIF(0,1) < λ then v ! Rt+1 // Infection ends

return fPj

t¼1 jIt \ Et�1jg
T

j¼1 // List of Cumulative Infections
Linearly approximated transitions. The exponential transition formula (Eq 20) can be lin-

early approximated pðv2Etþ1 j v2StÞ � E
pressure
t þ Ipressuret . When using this approximation, we

call our disease model Network-SEIR-Linear (NSEIR-Linear). In this approximation, the val-

ues and meanings of the edge weightsWuv and disease parameters bEt ; b
I

t differ relative to the

regular NSEIR model. We use the NSEIR-Linear model in our experiments with synthetic data

since the bEt ; b
I

t values are more easily interpretable; in Eq 20, increasing bEt ; b
I

t beyond a certain

magnitude has a very small impact on the probabilities due to exponential decay.

4.3 Parameter inference

Given a regional network G and the stochastic disease simulator fNSEIR from Algorithm 4, we

seek to fit the remaining free parameters of our simulator to regional data. To do so, we use

BBVI (Section 2.2), as implemented in the Gen probabilistic programming system, to approxi-

mate the posterior over model parameters and initial conditions using a variational

distribution.

In the fNSEIR disease simulator, the set of parameters that we will infer is θ = {ρ, βE, βI}. We

treat the other inputs to the model as fixed hyperparameters, including the latency parameter γ
= 0.143, and the recovery parameter λ = 0.072, (corresponding to a mean latency of 7 days and

mean recovery time of 14 days) which we base on clinical case studies [38]. Given these inputs,

the simulator returns a sampled trajectory s that contains the number of infected nodes at each

time,

s1:T � f
NSEIR
ðG; y; g; l; t;TÞ: ð23Þ

To define an inference problem for fNSEIR simulator, we need to define a prior f0(θ), a likeli-

hood g(x, s, θ) of reported case counts x, and a variational distribution qϕ(θ).

Prior. We define a prior distribution over input parameters to our simulator. We choose to

factor this distribution into the product of independent logistic normal distributions over each

disease parameter,

~rc � LNðm̂r
c ; ŝ

rÞ; rc ¼
~rc

P

c
~rc
E0 for c 2 f1; . . .Cg;

b
E

tn
� LNðm̂En; ŝEÞ; b

I

tn
� LNðm̂In; ŝIÞ for n 2 f1; . . .Ng:

ð24Þ

Note that there is some flexibility in deciding how to parametrize each component of the

variational model. Our first constraint is that the sampled values of each of these variables (ρc,

b
E

tn
, and bItn) should be non-negative; this suggests the use of log-normal or logistic normal
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distributions as relatively standard choices. Since ρc represents a percentage of exposed indi-

viduals in a community, this parameter should also be restricted in [0, 1]. We similarly chose

to restrict the values of bEtn and b
I

tn
to the range of [0, 1], such that a node’s maximal contribu-

tion to the infection of a neighbor is limited by the edge weight between them. The logistic

normal distribution becomes a natural choice, as it enforces the desired constraints on these

variables. The logistic normal distribution is defined so that values z* LN(�) sampled from

the distribution can be transformed by the sigmoid function y = SIGMOID(z) to produce Gauss-

ian-distributed outputs. The parameters defining the prior m̂r; ŝr;E0; m̂
E; ŝE; m̂I; ŝI are hyper-

parameters of model tuned with grid search (See Sec. 5.1 and S3 Appendix). We fix the

percent exposed on the first day E0 to remove ambiguity between having high ρc and low b
E

t0

versus low ρc and high b
E

t0
, which has only a small impact on the likelihood.

Likelihood. We define a likelihood that compares the model output s1:T to the reported

case counts x1:T for a particular region. Here, we must account for the fact that our agent-

based simulator uses a subsampled population that is orders of magnitude smaller than the

actual regional population. For this purpose, we define a likelihood model with time-depen-

dent Gaussian noise, which incorporates a scaling factor r to account for the ratio between

individuals in the population and nodes in the network topology and a hyperparameter ν

describing the noise in our observations (see Sec. 5.1 and S3 Appendix),

xt � N ðr st; r sxðG; n; tÞÞ; sxðG; n; tÞ ¼ n
ffiffi

t
p
jVj: ð25Þ

The above time dependent function σx was arrived at through experimentation (see Sec.

5.1).

Variational distribution. To approximate the model posterior over latent variables, we

define a variational distribution qϕ(θ) which mirrors the prior of the generative model, with

parameters ϕ = {μρ, σρ, μE, σE, μI, σI} for the individual logistic-normal distributions. This

results in a fully-factorized variational approximation of the form,

q�ðyÞ ¼
Y

C

c¼1
qðrc; mr

c ; s
rÞ
Y

N

n¼1
qðbEn; mEn; sEÞ qðb

I

n; m
I
n; s

IÞ: ð26Þ

Note that we share the variance parameters σρ across communities, and share variance

parameters σE and σI across time points. This modeling choice reduces the number of parame-

ters in our model at a small cost to expressivity.

5 Results

Our experiments evaluate the extent to which standard probabilistic programming methods,

which have been implemented in a wide range of probabilistic programming systems, can be

used to estimate parameters in the Network-SEIR model, a representative of agent-based mod-

els that are on the computationally intensive end of the spectrum. In particular, we examine

whether our approach results in an approximation to the posterior that more accurately mir-

rors real-world disease spread, especially when compared to other commonly-used methods

that assume simplified disease models or fitting techniques.

We first validate the self-consistency and accuracy of our inference model. In Section 5.2,

we show that our fitting procedure is well-calibrated by checking if our method is able to infer

disease parameters when applied to synthetic data generated by our own simulator using

known ground truth values. In Sections 5.3 and 5.4, we compare our method to other methods

which use either simplified disease models or simplified fitting procedures common in the
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literature. We show our method is able to more accurately fit the complex dynamics of real-

world data.

Next, we perform a series of experiments to understand how the output of our inference

procedure varies as we vary the regional network topology and regional disease statistics. In

Section 5.5, we compare the inferred disease parameters found by applying our method to dif-

ferent regional networks and infection data. In Section 5.6, we explore the pattern of initial dis-

ease spread inferred by our model.

Lastly, in Section 5.7, we perform sensitivity analysis for our inference procedure to choices

made when modeling the network topologies.

5.1 Experiment setup

Before describing the results of our experiments, we first describe data preprocessing, evalua-

tion metrics, and the hyper-parameter tuning procedure.

Regional infection data processing. We fit the parameters of our disease model to a partic-

ular geographic region by conditioning the model on corresponding county’s cumulative

infection counts from the Johns Hopkins University Center for Systems Science and Engineer-

ing (JHU CSSE) dashboard [39]. We use data from February 29, 2020 until August 9, 2020.

We preprocess this data by applying a 7-day rolling average to mitigate the effects of delayed

reporting and weekly variation. We then select a 163-day window of investigation, beginning

one average latency period (1/γ days) before the community infection count reached the cho-

sen initial percentage of exposed individuals E0.

We then rescale the infection counts to the number of nodes in our network topology.

Instead of rescaling proportionately by nodes
county pop:

, we scale by a constant r such that the total

infection count reaches approximately 50% of the nodes by the end of our simulation time-

window (see Eq 25). We do this for two reasons. First, when working with heavily down-sam-

pled graphs, and especially in areas or time periods with limited test information, the number

of infections may be so low that the signal is difficult to resolve in simulation. Second, studies

have shown a systematic under-counting of cases, for example by comparing the rates of posi-

tive PCR tests (which can detect active or recently cleared infection) to the rates of positive

serum antibody tests (which can detect historical infection in individuals who were asymptom-

atic and may not have received a PCR test) [40].

More sophisticated approaches are certainly possible, such as using counts of hospitaliza-

tions and deaths (since severe and fatal cases may be less prone to under-counting problems),

and then estimating a static or a time-varying fraction of severe and fatal cases. Likewise, it

would be possible to model a daily latent variable representing testing rates, which would

require conditioning the model on data describing the number of tests administered in a cer-

tain region. In this case study, we are primarily interested in evaluating the feasibility of apply-

ing probabilistic program inference methods, and we will therefore leave further refinement of

the regional data model to future work.

Evaluation metric. To evaluate quality of fit for a given disease model, either with fixed dis-

ease parameters or a distribution over disease parameters, we generate multiple trajectories

from our stochastic disease model, sampling from the disease parameter distribution if neces-

sary. We then compute the mean daily absolute error (MDAE),

MDAEðx; x̂Þ � E
q�ðzÞ

k f
NSEIR
ðzÞ � x k1
TN

� �

� 1

NT

X

n

X

t

1

S
jf

NSEIR
ðznÞt � xtj; ð27Þ

where x represents the true cumulative case counts, x̂ represents our inferred cumulative case

counts using sampled parameters z, N represents the number of trajectories computed, T

PLOS COMPUTATIONAL BIOLOGY Probabilistic program inference in network-based epidemiological simulations

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1010591 November 7, 2022 15 / 40

https://doi.org/10.1371/journal.pcbi.1010591


represents the time duration of each trajectory, and S represents the size of the regional popu-

lation being simulated. MDAE measures the time- and population-normalized distance

between the generated cumulative infection counts and true data to which the model was fit.

We evaluate model quality in terms of infection counts rather than inferred parameters

because our inference model is conditioned only on infection counts, and there exist multiple

solutions for our overparametrized model whose output infection counts would be of similar

quality. In the case of experiments on data generated from our own disease model, it is mean-

ingful to compare the disease parameters used to generate the data with those we infer. How-

ever, for experiments using real-world data, there are no a priori ground truth values for these

disease parameters to compare our learned values to, since these disease parameters are intrin-

sic to our specific disease model.

Though values for βE and βI are reported elsewhere in the literature, these are, in fact, aver-

age transmission rates under the homogenous network assumption valid only for a global

compartmental model. In our model, we relax this assumption to take into account the hetero-

geneity of the network, and thus we cannot directly compare.

Hyperparameter optimization. We perform a grid search over hyperparameters for our

probabilistic model. This includes hyperparameters such as learning rate and samples per gra-

dient step for the BBVI algorithm, assumed observational noise, and the values for the prior

over disease parameters. See Table A in S3 Appendix for the explored parameter ranges.

Likelihood noise model. All experiments presented in this paper use the time-dependent

noise model σx described in 4.3. We also considered likelihood models with noise scaling

based on the value,

sxvalue�dependentðG; x; tÞ ¼ nxtjVj: ð28Þ

as well as constant or piecewise constant noise functions,

sxconst:ðtÞ ¼ n; ð29Þ

sxpiecewiseðtÞ ¼

n0; if 0 � t � t1

. . .

nN ; if tN�1 � t � tN :

8

>

>

>

<

>

>

>

:

ð30Þ

These alternative approaches did not work as well in early experiments and we did not pur-

sue them further.

5.2 Validation on simulated data

To confirm our inference procedure is well-calibrated, we perform inference conditioned on

synthetic data. We generate simulated infection counts from our own disease model using

known, fixed disease parameters. We then check that BBVI can recover the known disease

parameters from the cumulative infection counts alone. For this experiment, we use Network-

SEIR-Linear (see Section 4.2.2), a disease model that replaces the exponential transition for-

mula (Eq 20) of Network-SEIR with its linear approximation since Eq 20 is not highly sensitive

to changes in disease parameters bEt and b
I

t for higher values of b
E

t and b
I

t .

We perform this experiment by generating data using 6 different time-varying patterns for

b
E

t . For example, the pattern “low-high-low”, corresponds to a time interval with low b
E

t values,

followed by a time interval with high bEt values and ending with a time interval with low b
E

t val-

ues. Then, we run our inference procedure and compare trajectories from our model after
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fitting to trajectories from the ground truth disease hyperparameters. We find that our method

is able to obtain good fits in all cases as shown in Table 1 and Fig 2.

We also compare the inferred b
E

t parameter values to those used to generate the plots. In

Fig 3, we see that when the high value for β was used to generate data, the inferred value was

higher and similarly the inferred value was lower when the generating value was lower. This

effect held across different scenarios and across time within each scenario. We observe the

inferred values for βE do not match the generating values at the end of the simulation. Since

the training signal for βE comes from a delayed statistic (cumulative infection counts), the

model has little information to constrain the parameter at the end of simulation, and it reverts

towards the prior mean of βE = 0.2. Furthermore, the model shows some under-fitting due to

our choice of large observational noise.

Note that this setting also allows us to evaluate our model in the absence of model misspeci-

fication error; whereas real-world infection counts arise from a different system and may or

may not be in the range of a particular model, the synthetic data we generate here is known to

be in the range of our generative model.

5.3 Network versus compartmental disease model

Compartmental disease models are popular in the literature as they are lightweight, determin-

istic, and differentiable. There are thus many effective strategies for fitting compartmental

models to data. Here we use a five-compartment SEIRD model, where R represents recovered

and D represents deceased individuals, and fit the model to data using Certainty-Equivalent

Expectation Maximization (CE-EM) [41]. To compare with our method, we combine the con-

tents of the Recovered and Deceased compartments to approximate our Removed

compartment.

In Table 2, we see that our method achieves better fit across multiple regions. Compartmen-

tal models lack expressivity and flexibility and are not able to capture the wide range of disease

dynamics we see in different regions. In particular, for fitting data containing phenomena

such as multi-wave infections and variable spread-rate resulting from network structure, our

agent-based or network-based model achieves much lower MDAE than the compartmental

baseline.

5.4 Comparing inference methods for network model

We compare BBVI against several alternative procedures for fitting our NSEIR model to data.

These alternate methods are used elsewhere in the literature for fitting complex disease models

to data. However, due to the large number of parameters in our model and the high degree of

untraced randomness, we find these simpler alternative procedures are not able to obtain good

fits for Network SEIR.

The alternate fitting procedures we use are (1) Rt-analytic (see S2 Appendix), (2) likeli-

hood-weighted importance sampling (IS, Algorithm 1), and (3) Metropolis-Hastings (MH,

Algorithm 3). The MDAEs for these methods are listed in Table 2. Samples from NSEIR using

parameters fit with these methods are shown in Figs 4 and 5. In order to provide a fair compar-

ison between different inference strategies for fitting the NSEIR model to regional infection

Table 1. MDAE using synthetic data from different counties and disease dynamics.

County low high low-high high-low low-high-low high-low-high

Miami-Dade 0.0052 0.0046 0.0042 0.0051 0.0043 0.0050

Los Angeles 0.0037 0.0046 0.0050 0.0044 0.0048 0.0047

https://doi.org/10.1371/journal.pcbi.1010591.t001
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statistics, we use the same prior distribution and run each method with the same total sam-

pling budget of 4800 forward simulations. For BBVI, this sampling is allocated into 120 sam-

ples per gradient step, for 40 gradient steps. For MH, we increase sample diversity by running

100 sampling chains independently, each for 480 steps, and retaining only the final sample

Fig 2. Sampled infection trajectories after fitting parameters on synthetic data.We generate simulated data on Los Angeles and
Miami-Dade topologies using known disease parameters, and use this data for parameter inference. Generated disease trajectories use
“high”, “high-low”, “high-low-high”, “low-high”, “low-high-low”, “low” patterns, where data is simulated with βE that varies temporally
between “high” (βE = 0.45) and “low” (βE = 0.1) states.

https://doi.org/10.1371/journal.pcbi.1010591.g002
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Fig 3. Inferred parameter values from synthetic data.We plot the inferred values of bEt across 6 different generated scenarios
using 6 lines. The scenarios are “high”, “high-low”, “high-low-high”, “low-high”, “low-high -low”, and “low” where βE varies
temporally between “high” βE = 0.45 and “low” βE = 0.1 states, represented by horizontal dotted lines. The vertical dotted lines
represents the times when the true parameters were changed while generating data. The value of β used when generating the data is
indicated by marker with up arrows indicating high and down arrows indicating low. We see that when the high value for β was
used to generate data, the inferred value was higher and similarly the inferred value was low when the generating value was low.
The inferred value for βE is closer to the prior value of 0.2 in all scenarios at the end of the simulation when the signal from the
cumulative infection counts is weaker.

https://doi.org/10.1371/journal.pcbi.1010591.g003

Table 2. Mean daily absolute error (MDAE, Eq 27) for various disease models and fitting procedures across several counties. BBVI fits the NSEIR model to real infec-
tion statistics better than Metropolis-Hastings or Likelihood-weighted importance sampling. NSEIR also outperforms Compartmental SEIR model with CE-EM.

Disease Model Fitting Method Los Angeles Miami-Dade Middlesex

Compartmental SEIR CE-EM 0.0127 0.0217 0.0080

Network SEIR Rt-analytic 0.0103 0.0367 0.0021

Network SEIR Metropolis Hastings 0.0124 0.0134 0.0076

Network SEIR LikelihoodWeighting 0.0066 0.0090 0.0056

Network SEIR BBVI 0.0011 0.0036 0.0012

https://doi.org/10.1371/journal.pcbi.1010591.t002
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Fig 4. Samples for the NSEIRmodel for Miami-Dade using parameters learned from likelihood weighting and
Metropolis-Hastings.Neither alternate method is able to produce a good fit.

https://doi.org/10.1371/journal.pcbi.1010591.g004
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Fig 5. Rt-analytic parameter inference baseline. Rt-analytic derived parameters can only produce a distinctive curve shape; while this
fits well for some data (such as Middlesex County above), it fits poorly much of the time.

https://doi.org/10.1371/journal.pcbi.1010591.g005
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from each chain. For IS, we include 4800 samples from the prior, with self-normalized impor-

tance weights as described in Sec. 4.3.

5.5 Regional variation in disease parameters

We use BBVI to fit a distribution over disease parameters for the Network-SEIR model to

three diverse geographical regions in the US: Los Angeles County (CA), Middlesex County

(MA), and Miami-Dade County (FL). All three counties have very different network topolo-

gies and very different historical disease trends. Nonetheless, our method is able fit all counties

well and the variation in learned parameters reflects the differences in the counties well.

We fit our guide distribution over the parameters for Network-SEIR by conditioning on

the cumulative infection counts in each county, as reported on the Johns Hopkins University

Center for Systems Science and Engineering dashboard [39]. In Fig 6, we show network

instances constructed for these three counties.

Table 3 shows the MDAE of our fits for each region and average values for βE, the primary

parameter controlling the infectiousness. Fig 7 shows the median and interquartile range of βE
over time for all 3 regions. Fig 8 shows the posterior distribution of βE and βI at each of the 6

knots during the simulation. Note the difference in posterior variance at different time points;

this may reflect the model’s varying degree of confidence in the inferred parameter values. In

Fig 9, we compare 100 samples from our posterior distribution to true infection counts. Fig 10

visualizes these 100 samples in terms of daily infection counts instead of cumulative counts.

We find that our network model with parameters learned through probabilistic inference

fits observed data well, despite varying topological structure and disease dynamics across the

different geographical regions. Our method is able to recover regional-specific disease parame-

ters and disease progressions that reflect reported case counts. For example, in Middlesex

county, where the first wave of the disease grows rapidly, our model infers higher early values

for βE (the parameter controlling the probability of an exposed person spreading the infection).

Among the three counties, we capture infections spikes occurring at different times and with

different intensities. In particular, for Los Angeles county, our model is able to fit data with

multiple waves of infection.

Due to the unknown initial exposure levels ρ, which must also be fit, we see higher variance

in the early values for bEt . Note that inference in our probabilistic program has a degree of

ambiguity; a model with lower initial exposure levels and higher initial βE values may give rise

to similar predicted infection counts as a model with higher initial exposure levels and and

lower initial infection rates. Here we hypothesize that the model may in certain cases select

higher βE values with a lower ρ in order to decrease the probability that the epidemic stops

spreading due to the sub-sampling of the network topology.

5.6 Inferring starting communities

Since our variational distribution includes means for the proportion of initial exposure in each

community c, we can interpret learned values for the parameters mr
c as indicating which com-

munities were likely to have had higher initial exposure given the observed disease data. Note

that this is not the same as inferring the actual precise location of the initial exposure within a

region, since our cumulative global infection data is too coarse to deduce this. In other words,

there are many possible initial exposure scenarios which may result in similar aggregate infec-

tion data. Rather, we can only conclude that the location of certain communities in the net-

work topology is more consistent with observed disease dynamics. However, even having the

ability to filter out potential source communities is a very useful feature in practical settings,

especially when designing localized intervention strategies.
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Fig 6. Map overlay of network topologies.Nodes from each CBG are grouped together and placed on the central coordinates for that community.
Edges between CBGs represent the sum of all connected edge weights, where darker lines indicate a greater sum of edge weights. Underlying map tiles
from Stamen Design under CC BY 3.0. Data by OpenStreetMap, under ODbL [53] (Top left—Los Angeles: http://maps.stamen.com/terrain-
background/#10/34.0692/-118.2438. Top right—Miami-Dade: http://maps.stamen.com/terrain-background/#11/25.9046/-80.3070, Bottom—
Middlesex: http://maps.stamen.com/terrain-background/#12/42.4205/-71.4415.

https://doi.org/10.1371/journal.pcbi.1010591.g006

Table 3. Comparison of the MDAE value and average βE for different regions.Our method can fit well to different
regions with different dynamics.

Region MDAE Average βE

Los Angeles, CA 0.0011 0.050

Miami-Dade, FL 0.0036 0.097

Middlesex, MA 0.0012 0.245

https://doi.org/10.1371/journal.pcbi.1010591.t003
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In Fig 11, we see that for large observational noise ν, the inferred parameters are closer to

the uniform prior mr
c ¼ :05, whereas for small observation noise, we find a higher initial expo-

sure in certain communities is more consistent with observed data. Varying the size of our

observation noise controls the sparsity of inferred starting conditions. As our noise distribu-

tion tightens, inference moves further from our uniform prior over initial community expo-

sure rates. For example, in the top left, in Los Angeles county, we infer higher initial exposures

in communities 11 and 17.

In Fig 12, we show the posterior distribution of ρ for each CBG. Recall that the total initial

exposure level is fixed, so that the sampled value of ρc only controls the fraction of initial expo-

sure allocated to a given CBG. The posteriors shown here use the fit of lowest MDAE from

each region.

5.7 Robustness to network size

We find that our inference procedure is flexible enough to successfully fit disease data for a

range of choices in our network modeling. In particular, we show that the quality of fit is

largely unaffected by the number of nodes and communities we use in our network.

Our goal is to produce a regionally-calibrated disease simulator in a practical and computa-

tionally efficient manner. Thus, we try to use the smallest networks that can still produce high-

fidelity fits to regional infection statistics. We vary network size by selecting the top subset of

most highly connected CBGs after constructing the block matrix P in our DCSBM. This pre-

serves as much disease transmission as possible between communities, while also allowing us

Fig 7. Median values of bt

E from inferred distribution over time time.Values are interpolated between 6 knots. Our inferred parameters vary over
time to match the regional case counts; for example, in Middlesex county, our model infers high early values for βE due to an early spike in regional case
counts.

https://doi.org/10.1371/journal.pcbi.1010591.g007
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Fig 8. Posterior distribution of btn
E and b

tn
I at each change point during simulation.

https://doi.org/10.1371/journal.pcbi.1010591.g008
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Fig 9. Cumulative infection trajectories sampled from fitted model.Our method is capable of obtaining
distributions of disease parameters which reproduce true data closely over a variety of regions. The orange line
represents true cumulative infections counts for 160 days starting from 7 days before the first day in which infections
counts accounted for 0.5% of the population: May 3, 2020 for Los Angeles, March 29, 2020 for Miami-Dade, and
March 15, 2020 for Middlesex. The blue lines represent 100 simulations of fNSEIR using disease parameters sampled from
our fit variational distribution. The black lines represent quartiles for these 100 samples.

https://doi.org/10.1371/journal.pcbi.1010591.g009
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Fig 10. SEIR curves produced by fitted model.Our method is capable of fitting different disease dynamics in
different regions including infections with multiple waves and different rates of infectivity over time. We plot the total
Susceptible, Exposed, Infected, and Removed (SEIR) counts over 160 days from 100 simulations for our fit posterior
distribution.

https://doi.org/10.1371/journal.pcbi.1010591.g010
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to trade-off fidelity of our network model with speed and efficiency of our overall disease

simulator.

In Fig 13 and Table 4, we compare the disease models fits on graphs of varying size with

either 5, 10, 15, 20, 30, or 40 CBGs. We see that applying the same prior parameters on these

different size graphs produces substantially different prior behavior due to the effect of the dif-

ferent topologies on disease spread. In particular, since we scale the infection data to the down-

sampled graph before parameter fitting, the infection must spread more slowly from node to

node to achieve the same scaled trajectory. For highly downsampled graphs, we thus observe

smaller βE values. Nonetheless, we observe that our inference can successfully find parameter

Fig 11. Varying observation noise level controls sparsity of inferred starting conditions. As noise distribution tightens, inference moves further
from our uniform prior on initial community exposure rates. Low noise corresponds to ν = 0.00025, and high noise to ν = 0.0005. The network
topology of each county is modeled using 20 communities which correspond to actual geographic areas. We plot mr

c for 1� c� 20. In the left plots, we
use ν = 0.00025, a tighter observational noise than the right plots where ν = 0.0005.

https://doi.org/10.1371/journal.pcbi.1010591.g011
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Fig 12. Posterior distribution of ρc for communities and b
t

I at each change point during simulation.Note that CBGs
have no correspondence across counties.

https://doi.org/10.1371/journal.pcbi.1010591.g012
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values that fit the observed data well, and thus the MDAE does not vary significantly for differ-

ent sizes of subsampled graph. Note that we use 20 CBGs for all other experiments.

In Table 4 and Fig 14, we compare the inferred values of βE for each graph. Since the net-
work topologies vary, we should not necessarily expect to find consistent values for different

numbers of CBGs. Nonetheless, the parameters are fairly consistent during the middle and late

Fig 13. Prior and posterior disease trajectories with varying network size. Applying the same prior parameters on graphs subsampled
to a different initial set of CBGs produces substantially different prior behavior for the disease simulator (blue). Our inference converges
to a consistent behavior (red) that is close to the observed data (black).

https://doi.org/10.1371/journal.pcbi.1010591.g013
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time-range. There is more variance in the inferred early values of βE, likely due to the model

compensating for underestimates of initial exposure.

5.8 Sensitivity to time-varying network model

We find that our model still fits well if we use time-varying edges weights to reflect changing

mobility patterns in the network. In this case, the βE and βI parameters only reflect changing

infectivity patterns.

Transmission dynamics change as a result of at least two sources of variation. First, changes

in mobility and interaction frequency may occur due to quarantines and business closures.

Second, transmission probability during each contact may change, due to the use of personal

protective equipment, hygiene practices, seasonal effects, and disease mutation. These

Table 4. The MDAE does not vary significantly for different sizes of subsampled graphs. The inference procedure
found values of βE which fit the observed data well in each case.

Num. CBG MDAE Average βE

5 0.00077 0.055

10 0.00239 0.072

15 0.00196 0.111

20 0.00118 0.245

30 0.00159 0.191

40 0.00153 0.177

https://doi.org/10.1371/journal.pcbi.1010591.t004

Fig 14. Posterior mean parameter values with varying network size.We vary the size of our simulated network by varying the
number of Census Block Groups (CBG) used during construction. We observe that the inferred disease parameters follow a
similar trend even across large differences in network size.

https://doi.org/10.1371/journal.pcbi.1010591.g014
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non-pharmaceutical interventions may have a strong effect on the trajectory of the pandemic.

In our model as described in Sec. 4.3, we account for both of these sources of variation by

allowing our disease transmission parameters βE and βI to vary over time. Alternatively, we

can account for variation in mobility in the network itself, by varying the network across time.

This leaves the parameters βE and βI to model the transmission probability during each

contact.

In this experiment, we evaluate whether using time-varying network connectivity can fur-

ther improve the quality of fit. To do so, we construct time-varying networks as follows. Simi-

lar to Sec. 4.2.1, each estimate of network structure is formed from a week’s worth of geo-

location data. At the beginning of each week of our disease simulator, we allow the network

structure to vary. We begin with a network estimated from the first week of data as before. For

subsequent weeks, we separately estimate a network instance for each week of data, containing

the same CBGs and the same number of nodes in each CBG. All nodes are assigned by ID to

the same households, to maintain an identity for each node, and other edges (both connectiv-

ity and weights) are allowed to vary freely.

Note that procedure allows for the possibility that nodes will change rank order (i.e. that

the highest degree node for one week may not be highest in another week), since constraining

nodes to keep the same rank order may be unrealistic. Note also that we continue to allow dis-

ease parameters to vary over time; in this way, we expect that the network modeling can cap-

ture mobility-related effects, while the time-varying disease parameters can capture the

behavioral and other effects mentioned above.

In Fig 15, we find that the model successfully learns time varying parameters that are rela-

tively consistent with the observed data, achieving an MDAE of 0.00260. We hypothesize that

Fig 15. Inferred cumulative infection statistics and SEIR curves for network modeled with time-varying edge weights.
Our model still finds parameters that approximately match the data, even when the network topology changes over time.
Note that the model also compensates for the poor performance of the prior parameters.

https://doi.org/10.1371/journal.pcbi.1010591.g015
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the relatively noisy procedure used for node re-assignment contributes additional error to our

model.

5.9 Using death data for model fitting and evaluation

The model and metric may be simply extended to use cumulative death counts in addition to

cumulative infection counts. Due to issues with infection testing in the early days of the pan-

demic, infection data was prone to undercounting and delay. While undercounting and delay

may also be an issue for deaths in cases when the correct cause of death is not ascertained,

death statistics are often more reliable that infection counts. While death counts may be more

reliable, they are also difficult to use in a small-scale model, since the scaled number of deaths

may be less than a single node. This results in a potential resolution issue during inference.

We modify Algorithm 4 to also return the size of the removed compartment fRjg
T

j¼1 at all

times. The removed compartment includes both recovered and deceased individuals and so

we estimate daily death counts dt = λDRt where λD is the mortality rate in the given county for

the given time period, derived from case data [39]. While it would be more accurate to add a

separate death compartment to Network-SEIR with time-varying mortality rate, our goal here

is to show that death data may be used to condition our existing disease simulator with mini-

mal modifications.

We then modify the likelihood of our model (Eq 25) by comparing both modified model

outputs s1:T and d1:T to the case counts x1:T and death counts xd
1:T for a particular county in a

particular time range

xt � N ðr st; r sxðG; n; tÞÞ; sxðG; n; tÞ ¼ n
ffiffi

t
p
jVj; ð31Þ

xdt � N ðr dt; r sxðG; n; tÞÞ: ð32Þ

Thus our inference procedure will find parameters whose resulting simulator dynamics are

in agreement with both observed infections and observed deaths.

To evaluate the effectiveness of this modified model, we evaluate the model using MDAE

(Eq 27) to compare model output infections s1:T to observed case counts x1:T and model output

deaths d1:T to observed death counts xd
1:T .

In Fig 16 and Table 5, we find that the model is able to assimilate the new input signal com-

ing from the death data and infer model parameters which result in good fits for both observed

death and infection counts. Note that the MDAE metric is scaled by county population, so we

naturally observe a lower value when measuring prediction error for death counts.

5.10 Simulator noise and posterior variance

One of the challenges of fitting the parameters of a stochastic simulator is that the intrinsic

randomness of the simulator sets a limit on the level of precision of the learned parameters. In

Fig 1, we show examples of running the stochastic disease simulator using the mean parame-

ters �y ¼ Ey�q� ½y�, or using samples from the posterior distribution θ* qϕ. In both cases, we

sample trajectories s from the simulator. This allows us to visualize the difference between the

level of randomness inherent in the simulator and the variance of the posterior distribution

over model parameters. Note that these results are produced using the same runs discussed in

Section 5.9; a similar pattern occurs for results in all of our experiments.

In Fig 17, we show the average ELBO value over time for the same runs, to show that the fit-

ting procedure has converged well in these experiments. At this point in the model optimiza-

tion, it is likely the case that the untraced randomness of the simulator model has become the
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limiting factor in the quality of the estimated ELBO gradient, and thus we expect that the vari-

ance of the posterior likely can not be decreased much further. In other words, while sampling

parameters to estimate the gradient at the next iteration, even if the model samples parameter

values corresponding to the maximummarginal likelihood estimate, the significant random-

ness of the simulator means that these may not achieve a much higher likelihood value than a

slightly different set of parameter values. Overcoming this level of inherent noise in the simula-

tor would likely require greatly increasing the sample budget.

6 Discussion

The results in this paper demonstrate that probabilistic programming methods are a viable

tool for parameter inference in epidemiological simulations that have previously been imple-

mented in general purpose languages. The likelihood weighting, variational inference, and

Metropolis-Hastings methods that we discussed are among the simplest and most widely used

Fig 16. Cumulative infection trajectories sampled frommodel fit to infection and death data.We see that posterior samples of cumulative infection and death
counts from several counties are generally in good agreement with the data when we use both infections and deaths as input observations to our model.

https://doi.org/10.1371/journal.pcbi.1010591.g016

Table 5. MDAE for model conditioned on infection and death statistics.Note that MDAE is scaled relative to the
population of a given county; since death counts are smaller, a model with the same relative quality achieves lower
absolute error.

County Infections MDAE Deaths MDAE

Middlesex 0.0011 0.0002

Miami-Dade 0.0065 0.00008

Los Angeles 0.0022 0.00009

https://doi.org/10.1371/journal.pcbi.1010591.t005

PLOS COMPUTATIONAL BIOLOGY Probabilistic program inference in network-based epidemiological simulations

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1010591 November 7, 2022 34 / 40

https://doi.org/10.1371/journal.pcbi.1010591.g016
https://doi.org/10.1371/journal.pcbi.1010591.t005
https://doi.org/10.1371/journal.pcbi.1010591


Fig 17. Convergence curves, showing the ELBO at each iteration of optimization.We see that parameter inference
has converged within the allocated computation budget.

https://doi.org/10.1371/journal.pcbi.1010591.g017
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in the probabilistic programming literature. For epidemiologists looking to apply these infer-

ence methods to their models, there exist mature system implementations for models in

Python [15], Julia [18, 42], Clojure [43], and Javascript [44]. Moreover, systems like PyProb

[45] make it possible to apply inference methods to programs written in most languages by

way of a cross-language distribution library. This means that researchers designing disease

simulators have a much broader array of inference methods at their disposal than the standard

likelihood-weighting and ABC rejection algorithms that are commonly used to perform infer-

ence in large-scale granular disease simulations. Our experiments suggest that investing the

time to apply these methods is likely worthwhile; even comparatively simple methods can sub-

stantially improve the quality of fit in such models relative to baseline inference techniques.

As we mentioned at the start of this paper, the network-based disease model that we employ

has a number of limitations from an epidemiological perspective. Our simulator is relatively

granular; it implements an agent-based simulation defined in terms of region-specific mobility

networks and is conditioned on region-specific case count. However, we make simplifying

assumptions, such as considering a subsampled population of 2000 to 15000 nodes. This

means we must rescale our model output to compare with reported case counts, and inferred

parameter values will depend on the degree of subsampling. Moreover, simulations are condi-

tioned on aggregate county case counts, which means that the problem of inferring initial con-

ditions in the simulation is highly under-constrained. We would however expect our approach

to perform better in this regard with more granular case counts (i.e. counts at CBG level).

Finally, using time-dependent transmission parameters means that adapting this model to per-

form forecasting would require additional smoothing assumptions. A promising approach in

this context would be to replace the linear interpolation with a (variational) Gaussian process

prior [46, 47].

There are also technical limitations to the inference methods that we employ. We simplify

the design of our variational distribution by factoring it into a product over different parame-

ters. This approximation is commonly used in many probabilistic programming strategies,

because it lowers the dimension of the parameters, making inference more tractable, while

often being sufficiently descriptive to achieve good model fits. However, this use of a fully-fac-

torized approximation is known to produce a posterior distribution which is known to under-

approximate the posterior variance. This means that uncertainty estimates for parameters are

not necessarily reliable. Note that many simple inference baselines such as likelihood-weighted

importance sampling may suffer from an analogous problems. Using LW, a small subset of

samples will often receive the majority of the weight, resulting in a very tightly peaked poste-

rior with a poor estimate of variance. A second limitation is that we employ simple score-func-

tion estimators for optimizing variational parameters using stochastic gradient descent [16,

17]. These are generally applicable to models that employ non-differentiable functions, but are

known to yield high-variance gradient estimates. There is a large body work for probabilistic

program inference that improves upon standard score-function estimators using reparameter-

ization (which requires differentiable models) [48], neural proposals [45, 49], or by combining

variational inference and importance sampling [50, 51, 52]. We leave application of such meth-

ods to future work.

Supporting information

S1 Appendix. Derivation of blackbox variational inference.We restate the derivation of the

technique of blackbox variational inference, including the ELBO objective and the score func-

tion ELBO gradient.

(PDF)
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S2 Appendix. Baseline methods.We explain the details of the Analytic Rt-matched parameter

estimation and Certainty-Equivalent Expectation Maximization baseline methods.

(PDF)

S3 Appendix. Additional experimental details and results.We explain our hyperparameter

selection. We describe how the initial exposed fraction was handled for the baseline Rt analytic

and CE-EMmethods. Finally, we show results of the CE-EM baseline method.

(PDF)

S1 Fig. Daily SEIR and cumulative infection counts simulated using SEIR equations using

parameters estimated by CE-EM. This model is only capable of outputting a disease history

corresponding to a single wave of infection. In Miami-Dade, this allows for a reasonable

approximation of the regional case counts, whereas for Middlesex and Los Angeles the fit is

much worse.

(TIFF)
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