Highlights

A Sensemaking Analysis of APl Learning using React

Caitlin Kelleher, Michelle Brachman
e Interprets and formalizes sensemaking within the context of AP Learn-
ing.

e Describes an API learning process of the React API via sensemaking
and identifies ineficiencies in the process.

A Sensemaking Analysis of API Learning using React

Caitlin Kelleher?, Michelle Brachman®

@Washington University in St. Louis, 1 Brookings Dr., St.
Louis, 63130, Missouri, United States
b|BM Research, 314 Main St., Cambridge, 02142, Massachusetts, United States

Abstract

Current programming practices rely heavily on the use of APIs (Appli-
cation Programming Interfaces) and frameworks. However, APls can be
challenging to learn and use. Existing research focuses on specific barriers
programmers encounter while learning APIs, providing a fragmented under-
standing of the process. In this paper, we analyze the holistic process of
twelve programmers learning the React JS API using sensemaking theory
as a guiding framework for qualitative coding of behaviors. We describe
how these AP learners moved through sensemaking stages and how they in-
teracted with information during each sensemaking stage. Our results high-
lighted programmers’ tendency to seek understanding when they encountered
problems.

1. Introduction

Programmers of all skill levels often need to learn APls (Application Pro-
gramming Interfaces) and frameworks for modern software development, as
the number of new and updated APIs rapidly grows [1, 2]. Programmers
rarely learn how to use APIs through formal education. Instead, program-
mers tend to learn APIs on-the-fly to meet the needs of a given project [3].
Consequently, programmers must find and use web resources to both un-
derstand the capabilities and framework of an API as well as how to apply
that API to their problem context. Researchers have documented the trials
and tribulations of programmers attempting to learn and use APls on their
own [4, 5]. While helpful, this research often focuses on particular barriers,
such as finding and understanding individual pieces of information [6] or in-
tegrating individual example code snippets [7], leaving us without a cohesive
picture of the AP learning process overall.

Preprint submitted to Journal of Computer Languages October 3, 2023

Information Code

Log Analysis: Episodes and Navigation Trees Barriers in the phases of
XY ——] sensemaking
:] b I

Pa AN o

[\ Participant Code:

A v Jy

A\ V ~4 i t
React'JS API Reszl.]s,. Crofl}fz()\as‘s is |\10l .1 funct\oln _ import logo E?g:lr :
Learning Task import './App.css’

localhost Ch ar henct o romirerasct
i © 53 sl arsotastan . rasta s var buttonStyle '3

margin: '10px 10

[friend] enter] Qualitative coding using sensemaking
. 7 1210443 FORAGE 4293 5open preserve
22 1425.087 TEST - TEST TEST testc Preserve
12 Student * 1426952 FUP 0.62 25 retum
Programmers 24

1428.186 FORAGE 8.45 19 retumn map-s

Figure 1: Overview figure: We ran a study with 12 student programmers and used a log
analysis method combined with qualitative coding to better understand barriers in API
learning through the lens of sensemaking.

To better understand the use and integration of information sources dur-
ing API learning, we applied a sensemaking lens. Sensemaking models de-
scribe how people seek out information, integrate information, form hypothe-
ses about a previously unknown topic, and attempt to assess their correct-
ness [8, 9, 10]. In contrast to theories like information foraging [11], which
can describe parts of the API learning process, sensemaking can be used to
understand the complete process. Sensemaking provides a way to explore
the obstacles that people encounter and their process in addressing those
obstacles. Rather than considering each information search independently,
sensemaking enables us to consider how different information searches relate
to the programmer’s goals and holistic task process. Understanding what
kinds of information programmers seek to use and the circumstances under
which it is sought can help us to design better documentation and AP learn-
ing support tools. By better articulating the kinds of questions have and the
circumstances under which they occur, we can design learning supports to
meet programmers where they are.

This paper asks two core questions:

1. How do programmers learning an APl move through the sensemaking
process?
2. Where in the sensemaking process does AP learning break down?

To answer these questions, we analyzed data from a study in which twelve

student programmers with little or no experience attempted to complete a
programming task using the React web API 1 in one hour. We grouped
programmers’ actions into sensemaking episodes. Study participants found
relevant information relatively easily but struggled to effectively use that
information. In particular, programmers frequently replaced their starting
code and removed code additions. Code removals and replacements did not
contribute towards task completion and the activities had poor supports for
learning.
This work makes two main contributions:

1. An interpretation and formalization of sensemaking within the specific
context of API learning.

2. A description of the API learning process via sensemaking that identi-
fies ineficiencies in the process.

2. Related Work

This paper builds on prior research in three areas: API learnability, in-
formation seeking while programming, and analysis of logs for understanding
user behavior.

2.1. API Learnability

Prior research in AP learnability has three main themes: API| learning
barriers, AP1 design for learnability, and documentation.

APl Learning Barriers: Research suggests that the common API
learning barriers programmers encounter include: 1) framing appropriate
questions [12, 13], 2) combining multiple API| elements to solve a problem
[4, 5, 12], 3) extracting needed information from documentation [4, 5, 12],
and 4) managing collected learning resources [14, 15]. While identifying these
problems represents an important step towards understanding AP learning,
the picture is far from complete. To design effective supports for these prob-
lems, we need to understand how these problems arise from the process pro-
grammers use. However, much of the research into AP learning barriers has
relied on self-report data such as surveys [4, 5], interviews [4, 5], and analysis
of questions posted online [13]. These techniques, by their nature, cannot
capture the learning and development process. In-person studies have fo-
cused on questions programmers pose and struggle to answer [12], how API
functionality is discovered [16], and the use of external memory throughout

API learning [14]. Our work contributes to AP learning barriers research by
exploring the process by which programmers collect and transfer information
from the search context to the programming context and where that process
can break down.

API| Design for Learnability: A second group of work explores how to
design APIs for learnability with the goal of identifying properties that con-
tribute to learnability. Work in this category takes a variety of approaches
including iteratively improving existing APIs [17, 18, 19], analyzing the cog-
nitive properties of APIs [20, 21], and using controlled studies to identify
the impacts of specific API design choices [22, 23]. Research into API de-
sign for learnability has made important strides towards understanding what
makes an API learnable or not. However, not all API designers will follow
the resulting guidelines.

Documentation: API learners report that documentation is a critical
resource, but that today’s AP| documentation falls short [12, 4, 5]. Re-
search in this area seeks to improve documentation through understanding
the properties of useful documentation by conducting usability studies [24],
programmer interviews [25], and analyses of existing documentation [26].
Guidelines resulting from these efforts emphasize programmers’ preferences
for obtaining API information on-demand and the importance of code ex-
amples. These results are similar to findings in opportunistic programming
[3, 27, 28, 29, 30, 31].

Existing research in API learnability covers a variety of aspects, but it
lacks cohesion. By following the information flow from the search context into
the programming context, we add to the body of knowledge surrounding how
programmers approach learning new APIls and the obstacles they encounter
while doing so.

2.2. Information Seeking while Programming

Two ways researchers have found that programmers seek information is
during opportunistic programming and by foraging for information.

Opportunistic programming research explores the relationship between
information searches and programming behavior. Opportunistic program-
mers often aim to get code up and running quickly by searching for code-
related information on an as-needed basis [3]. Searches are typically moti-
vated by one of three goals: 1) to remind programmers of familiar content, 2) to
clarify or extend a known concept, or 3) to learn new concepts. After past-ing
copied code into an IDE, opportunistic programmers frequently edit that

4

code, but reused code is rarely tested [32]. This style of programming is often
adopted by those who are programming to achieve a goal [33]. Due to their
lack of familiarity with React, participants in our study primarily conducted
searches to learn and searches to extend knowledge. This paper contributes
an analysis of programmers’ processes using a model of sensemaking, and
identifies where and how the sensemaking process breaks down.

Information seeking during programming has also been explored through
the lens of information foraging theory. Information foraging theory concep-
tualizes information seekers as predators, seeking information as prey based
on scents that help the information seekers better find what they need in
larger information patches [34, 35]. Information foraging theory has been
used to design tools to support programmers [36, 37, 38], and more relatedly, to
classify programming behavior [39, 38, 40, 41]. Researchers developed a
novel information foraging model that handles evolving models and cap-
tured programmers’ information foraging over time and showed that this
model could support tool design [42, 43]. However, information foraging
models focus on attempting to predict information needs algorithmically,
rather than explaining the process and barriers in AP| learning. Further,
much of this work has focused on regular programming practices, rather
than programmers learning new APIs. Finally, recent work considered API
learning through the lens of information foraging theory [14, 15]. However,
information foraging theory is limited in understanding the reasoning be-
hind information forages. In this paper, we capture API learning behaviors
through the lens of sensemaking, which supports understanding of the moti-
vation behind information searches.

2.3. Logs for Understanding Behavior

Logs are a popular way to capture user data, especially on the web. New
big data analysis methods make user behavior more valuable by providing
insight into their behavior [44, 45, 46]. For example, log data can provide
critical user information about user behavior that isn’t necessarily observable
otherwise, such as in the context of social networking sites, where many
user interactions are simply browsing, rather than necessarily interacting in
observable interactions [47]. Some work also goes beyond capturing the data
and performing simple analysis to synthesis and summarization, such as in
order to identify suspicious users [48]. Researchers have used several methods
to do this, like looking at transitions between windows to generate PC user
behavior models [49], as well as by analyzing ‘panel’ logs, which capture

randomly selected user behavior, and linking behavior with user searches
[50].

User logs are used in a variety of ways in HCI research [51], such as
understanding user behavior, as well as for comparative analysis. We lever-
aged existing work in logs for understanding behavior and connected our log
behavior with sensemaking stages through qualitative coding.

3. Sensemaking Background

We use sensemaking theory to understand and describe API learners’
processes as they work towards creating specific functionality using an unfa-
miliar API. To date, sensemaking has rarely been incorporated into research
understanding programmer behaviors [52] and has not been leveraged to un-
derstand API learning behaviors. At their core, sensemaking models aim to
describe the process that people go through when trying to interpret, under-
stand, and use complex information. Sensemakers need to recognize which
information is relevant, and then organize that relevant information into a
structure that can address a particular information need. When the sense-
making process breaks down, it is often because programmers do not know
what to do or how to select needed information.

Researchers have proposed a number of sensemaking models for different
information-rich contexts: communication processes [53, 9, 54], information
extraction [10], and expert decision making [55, 8]. Dervin describes the
process of sensemaking through a metaphor in which a person encounters a
situation [53, 9, 54]. That person brings with them a history and experiences.
They perceive a gap in understanding that may manifest as questions, con-
fusion, or even anxiety. To address that gap, they try to build a bridge using
a variety of cognitive tools such as ideas and thoughts and emotional tools
such as feelings and intuitions. The result of that bridging process is the
outcome of sensemaking. In Russell’s model [10], sensemaking is described
as an information-extraction activity that accompanies information foraging
[10] and can be guided by existing schema that information seekers may have
[56]. Klein’s model is largely consistent with Russell’s, but adds a search for
an organizational structure (a frame) and includes the consideration of mul-
tiple frames [8].

We chose to base our sensemaking analysis on the Klein model of sense-
making which is grounded in expert decision making in a variety of domains
(e.g. fire investigation [8] and medical diagnosis [55, 8]). Sensemaking is

presented as an activity embedded in the physical and social world where
sensory experiences play an important role [57, 55]. Sensemaking includes
recognizing which sensory experiences are relevant to an explanation, holding
and comparing multiple potential explanations based on contextual observa-
tions, and determining how best to act by considering contextual knowl-
edge [8]. The Klein model centers around the creation and manipulation of
frames, structures that describe the relationships between entities, similar
to a schema. Klein describes seven activities that center on frames: map-
ping data and frame, elaborating a frame, questioning a frame, preserving a
frame, comparing frames, re-framing, and constructing or finding a frame.
Together these activities allow us to obtain a detailed understanding of the
sensemaking process. We describe the alignment of API| learning behaviors
to Klein’s stages of sensemaking in Section 7.

4. Study

In order to understand how programmers move through sensemaking as
they learn a new API, we analyzed data from a lab study [58] in which
programmers attempted to complete programming tasks with an unfamiliar
APIl. Data from this study has also been analyzed with a model that in-
coorporated Cognitive Load Theory, Information Foraging Theory, and the
use of External Memory in API learning. In this work, we re-examine pro-
grammers’ learning processes via sensemaking in order to understand how
programmers’ information gathering and use informs how they make sense of
a new API. First we describe our study, followed by our approach to using
sensemaking as a lens to understand programmer behavior.

4.1. Participants

We analyzed data from twelve participants. In the original study, there
were fourteen participants, with one data set lost due to a technical error and
one participant for whom logging did not capture the necessary information
for this analysis. Participants were recruited using a mailing list for a Com-
puter Science Department. Eleven of the twelve participants were men and
participants’ ages ranged from 19 to 34 (M = 22,SD = 4). All participants
were students and had programming experience but their programming ex-
perience varied: four had professional experience, while the others had only
programmed for courses. Five participants had no experience with React
or JavaScript, five only had JavaScript but no React experience, and two

C @ localhost:3 > C @ localhost:2

|friend] enter |

[I ®

Figure 2: In a completed task, there is an input area and a disabled button, as shown in
(A). When ‘friend’ is typed into the input area, the button becomes enabled, as shown in

(B).

had used React before, though not extensively. Participants received a $20
Amazon gift card for participating.

4.2. API Learning Task

We analyze data from an API learning task participants worked on for
up to one hour. The programming task involved using React]S, which we
chose because it is a common but dificult to learn API. Participants were
provided with a basic template application. Using this template, participants
attempted to create a text input area and a button, as shown in Figure 2.
According to the task, the button should be disabled initially and become
enabled when a user typed ’‘friend’ into the text area. We chose this task
because previous research has shown that connecting components using APls
is particularly challenging [4, 5, 12]. Participants completed this task using
the Atom code editor and a web browser.

4.3. Data Collection

We collected and analyzed web pages participants visited, participants’
navigation history, and their code changes in the code editor. This data
also includes code testing actions, which took the form of navigation to a
localhost webpage in the web browser. Through the code changes, we are
also able to determine participants’ success on the task, marked by four task
subgoals.

5. Data Analysis Approach

The goal of our data analysis process was to extract meaningful sequences
of user behavior that correspond to sub-goals in their programming task. To
do so, we used a three step, bottom-up process:

B1.v1

i Bavz

Figure 3: This is a navigation tree of a programmer’s web foraging behavior showing two
branches that are each visited twice. Nodes (searches or web sites) in the tree are arranged to
show the sequence in which the programmer visited them. Each branch visit is outlined in
a dotted rectangle. Single lines connecting two nodes indicate that the user followed a link
on the first page to reach the second. For example, the programmer clicked on alink in
S1 to reach P1 and a link in P1 to reach P2, and so on. In this figure, the first branch
(B1) is generated through search S1. The programmer then views pages P1-P3 before
backing up to P2 and then navigating to P4 and then P5. The second branch (B2) is
generated by the search S2. Based on S2’s results, the programmer then views P6 and P7,
returns to P6 and then views P8. After viewing P8, the programmer returns to the results
of branch B1, resulting in a second branch visit (B1.V2) where the programmer re-views
P4 and navigates to P9. Finally, the programmer visits B2 a second time (B2.V2) and re-
views P6.

e Step 1: We group web-page visits into sequences that correspond with
a single information goal (or branch visits).

e Step 2: We use a qualitative coding process to label each branch visit
with a sensemaking stage.

e Step 3: We extract episodes of sensemaking activities (branch visits,
coding, and testing) to capture the process by which task progress
occurred.

6. Branch Visits: Grouping web activity by information goal

The goal of segmenting web-search activity by information goal is to en-
able individual analysis of the role of each information seeking activity. This
is important because information is gathered for different reasons throughout
the development process and contributes to different stages in the sensemak-
ing process. For example, early in the development process, programmers
might look for an example on which to build. Later, programmers might use

searches to understand unexpected behavior or figure out how to combine
different pieces of functionality.

To segment our web search information by goal, we define two constructs:
branches and branch visits. We define a branch of information as all of
the pages a programmer reaches while pursuing a single information target.
Branches bring together all of the information considered in pursuit of a
single information goal. However, branches are sometimes stored and visited
multiple times. In response, we additionally define a branch visit as a set of
pages belonging to a single branch visited during a continuous time interval
(i.e. not interrupted by testing or foraging on a different topic). Note that a
programmer may visit a branch multiple times, resulting in multiple branch
visits.

To extract branches and branch visits we: 1) generate a navigation tree,
2) identify information branches, and 3) extract branch visits.

Generating Navigation Trees We first construct a tree that captures
participants’ full navigation histories based on our log information. The
navigation tree uses link navigation to define a parent-child relationship. If
a programmer on Page A clicks a link to Page B, Page B will appear as a
child of Page A in the navigation tree. As the programmer navigates to new
pages throughout their programming sessions, we record their page visits as
well as the tab and window ownership associated with each using a custom
Chrome plugin. We reassemble this information to create a tree showing the
origin of each page navigation and their children created through navigation.

Identifying Information Branches: Next, we identify information
branches from navigation trees. Information branches are segments of the
navigation trees and include: 1) a seed page and 2) all children reached
through navigation from this seed page and its children. The seed pages
are those pages that the programmer reaches by expressing a new information
target. In most cases, seed pages are search pages that include the informa-
tion target via keyword search terms. In some cases, programmers perform
multiple searches before visiting a single result page. We group all of these
no-navigation searches together with the final one that does result in naviga-
tion as part of one branch. Additionally, a programmer may express a need
for information without articulating the intended target by manually typing
in an address or by navigating to the React documentation via a link in the
template code provided to them. In these non-search cases, we may not know
what the programmer’s information need is, but the action of opening one of
these resources expresses the need for new information. Note that because

10

each page is placed in the tree based on the programmers’ navigation his-
tory, it is possible for two different branches to contain the same page if the
programmer navigated to that same page via different seed pages.

Defining Branch Visits: A branch visit contains an uninterrupted se-
quence of page events that occur within a single information branch (see
Figure 3). To identify branch visits from our recorded log data, we first
extract all of the pages visited in the log files and their access times. We
note that because the running program also appears as a webpage via local-
host, the page visit information includes both information seeking activity
and testing activity. Then, we define a new branch visit. We find the branch
for the first webpage inserted. Afterwards, as long as subsequent webpages
are from the same branch, we add them to the branch visit. Once a webpage is
from a different branch, it ends the current branch visit and begins a new
branch visit (see Figure 3). Testing activity, the creation of a new branch,
or revisiting a page from a previously created branch will all generate a new
branch visit.

6.1. Qualitative Coding Support

To assist in the labeling process, we created: 1) a branch visit visual-
ization that enabled coders to view the webpages visited and code changes
related in time, and 2) a spreadsheet that aligned with the branch visit vi-
sualization to enable labeling of branch visits.

6.1.1. Branch Visit Visualization

The branch visit visualization is a webpage that displays a timeline of
branch visits, as well as the state of the web browser and code editor at the
selected time. Figure 4 shows the components of the branch visit interface.
The interface enables researchers to view each of the webpages visited by a
participant, click links to see the live versions of webpages visited by partic-
ipants, and see which branch the webpages are associated with. Alongside
the webpages, the interface shows the participants’s code at each point in
time, enabling the researcher to see how the information context relates to
participants’ code changes.

6.1.2. Coding Spreadsheet

To reduce the workload associated with our coding process, we auto-
matically generated a coding sheet containing an overview of a given pro-
grammer’s API| learning process by iterating through each branch visit in

11

B

A __ B O{NR Ry

Participant Code:

import React from '
import logo from './logo.svg';
import './App.css’';

var buttonStyle {
margin: "10px 10px 10px 0'
}i

var Button React.createClass |
render: function () {
return (
<button
className="btn btn-defa
style={buttonStyle}
onClick={this.props.han

Previous Web Next Web [u:::::: .l(\pp{) 1
Previous Test Next Test <div className="App">
<header classMName="App-he
<img src={logo} classNa
<p>
Edit <code>src/App.js
</p>

Window 1.0 -

className="RApp-link"
href="https://reactjs
target="_blank"
rel="noopener norefer
>

Learn React
L <fa>
</header>
</div>

Figure 4: We used this branch visit visualization to view the webpages viewed within
branches and corresponding participant code. (A) Branch visit time blocks. (B) Moveable
slider that selects which branch visit to view. (C) Time of current branch visit. (D)
Current webpage based on the selected timepoint. (E) Participant’s current code based
on selected timepoint. (F) Buttons that move the slider to the next webpage visited or
next code test. (G) Currently open webpages with links and branch numbers. Their
background colors match the branch view time block colors in (A).

order. For each branch visit, we recorded the starting time, branch id, and
branch seed (which is either a URL or a set of search terms). This enables
the researcher to focus purely on the sensemaking stages through the coding
process.

It is important to note that not all branch visits actually correspond with

12

foraging behavior. Prior research suggests that some of the page visits that
occur during API learning consist of programmers quickly flipping between
multiple pages without reviewing information on those pages [14]. This be-
havior contrasts with longer page visits in which programmers perform new
foraging activities. To differentiate these two, we also recorded a visit type.
We classified branch visits in which the average page visit length was less
than 2.5 seconds (less than the amount of time necessary to read a sentence)
as flips. Branch visits in which the page visits were longer than 2.5 seconds,
we classified as forages. We excluded flips from this analysis unless they led
to a code change, suggesting that a user visited them for a particular reason.

7. Labeling Branch Visits with Sensemaking Activity Labels

To connect branch visits with stages in sensemaking, we developed a
coding system inspired by Klein et al’s sensemaking model [57, 59]. After
developing an initial coding system, two authors independently labeled all
branch visits and code tests from three pilot users, discussing and iterating
on labels and descriptions until there was consensus on the labels and def-
initions of the labels. Because each data point could have multiple labels,
we used Krippendorff’s alpha with Jaccard’s distance to measure inter-rater
agreement. After the two researchers reached an acceptable inter-rater agree-
ment on the pilot data, a = .801 [60], the two authors labeled the twelve
participants’ branch visits independently.

We briefly describe each of Klein’s sensemaking stages and detail the
labels we used to capture that stage [8]. The labels describe activities that
occur in the information context, the code context, and across both, as shown
in Figure 5. Our high-level labels correspond to six sensemaking stages: map,
seek, elaborate, preserve, reframe, and test. Each label has several variations
that capture the results of the sensemaker’s actions in that stage, resulting
in multiple possible sub-values for each label. In this section, we introduce
the six stages and their variations.

7.1. Activity Labels

Mapping Data to Frame (Map): During this stage in the sensemaking
model, the sensemaker creates a relationship between the data and a frame
that helps to organize and explain that data. In the API learning setting,
the data consists of resources found on the web. The frame consists of a plan
to achieve the learner’s current goal. The existence of code modifications

13

Q Seek (s,cf) ‘n Reframe
Map (5.0,

+ Elaborate
I (s.c.f) | + | | Elaborate - code

Preserve-
Q% information / \6%’ Preserve - code /

Figure 5: Labels for qualitative coding based on sensemaking theory and their contexts.
Seek, and map exclusively occurred in the information context. Reframing occurred ex-
clusively in the code context. Both elaborating and preserving incorporated activities that
could take place in both contexts: information search activities occurred in the informa-
tion context and the code changes related to elaborating and preserving occurred in the
code context.

14

serves as a signal that a frame exists. However, programmers’ understanding
of their code may vary substantially. While some programmers may have a
detailed understanding of each element, others may have a general belief such
as “This code will connect to a database and send a query.” Additionally,
programmers’ beliefs about their code may be incorrect. Regardless of the
correctness of the resulting frame, the mapping process results in a code
modification that programmers hypothesize will cause or contribute to a goal
behavior.

Precondition: The programmer begins the mapping stage without an ex-
isting causal relationship and expresses a specific information need, typically
through search terms.

The mapping stage has three possible end states:

® Success (s): The programmer identified a frame and modified their
starting code.

e Continuance (c): The programmer has added a new term to the subse-
guent search that adds detail to their search process, but has not made
any code modifications.

e Failure (f): The programmer did not identify any usable information.

Seeking Frame (seek): Sometimes sensemakers may not be able to
identify an initial information goal, preventing them from beginning with
the mapping stage. In the programming context, programmers may instead
seek general information that is not related to a particular subtask. For
example, programmers might navigate to the React documentation or search
for a tutorial or introduction. By exploring overview material, programmers
may then be able to articulate an initial information goal and progress to the
mapping stage.

Precondition: The programmer goes into this phase without an existing
frame. If they perform a search as part of this phase, the search contains no
subgoal information related to the task.

The seeking stage has three possible end states:

e Success (s): The programmer identifies a task-related information goal.
Typically, successful seeks are followed by mapping.

e Continuance (c): The programmer identifies a new term that adds
detail to their search process, but does not link to the task.

15

e Failure (f): The programmer does not identify any usable information.
Their next task begins without a defined frame and does not introduce
new terminology.

Elaborating the Frame (elaborate): A starting frame typically ex-
plains some of the observed data, but not all. When elaborating, the sense-
maker expands an existing frame with additional details. None of the details
and theories in their current frame are replaced, but more supporting infor-
mation is added. In the context of programming, elaboration will typically
take the form of a new search with new terminology that relates to exist-ing
knowledge in the frame. For example, a programmer who already has a
textbox in their code might search for React keywords input and setState to
try to figure out how to capture information from a textbox and save it in a
state.

Precondition: The programmer goes into this phase with at least one
existing causal relationship; there is a frame. Their search contains new API
terms with a relationship to the existing frame.

The elaborating stage has four possible end states:

e Success (s): The programmer emerges with a new mapped element that
can be added to their frame.

e Continuance (c): The programmer emerges with another new but re-
lated term that adds detail to their search process, but does not have
a frame. The related term appears in a subsequent mapping action.

e Failure (f): The programmer doesn’t emerge with anything that they
can use. Then, their next search takes a different approach.

e Code: the programmer takes content from the successful elaboration
and modifies their code with it. A code elaboration typically occurs
alongside a successful elaboration, but can also occur independently, as
some programmers may have existing knowledge that they may connect
to their frame.

Preserving the Frame (preserve): In some cases, sensemakers will
notice a mismatch between the data and their current frame. When sense-
makers conclude that the data is the source of these inconsistencies and
explain away data that does not match the frame, this is called preservation.
This can be a legitimate course of action in response to transient or faulty

16

data. At a core level, the sensemaker is choosing to maintain their current
hypothesis. In the programming context, preservation processes begin when
the programmer receives data that suggests that their frame is incorrect or
incomplete in some way. This typically occurs when a programmer has at-
tempted to integrate new code into their project based on found information
and has encountered a problem. The code generates an error or it doesn’t
work as expected. This sets off an attempt to fix the problem, either by edit-
ing the code directly or by initiating a round of information foraging aimed at
troubleshooting the problem, preserving the core solution and the frame that
the programmer has established.
The preserving stage has two possible end states:

e Info: The programmer seeks information to try to resolve the issue with
their frame. The programmer may begin a new search for information
related to their problem or return to the information space where they
originally found their frame. This label can refer to successful or un-
successful information searches.

e Code: The programmer emerges with a modified frame with a potential
code change that may address the error. Code modification can occur
alongside an info action, in which case the preservation likely results
from information found, or independently. Independent changes are
typically based on prior related knowledge.

Reframe: Reframes occur when the programmer determines that their
previous frame is no longer valid and replaces it. The Klein model includes
three stages that explore different aspects of considering multiple frames:
questioning the frame, comparing frames, and re-framing. Broadly, the three
capture the sensemaker’s different levels of certainty regarding the relative
merits of the frames being compared. Given behavioral data, we cannot
determine the sensemaker’s level of confidence in each of frames considered,
so we have grouped these three into a single Reframe stage. In the Reframe
stage, the programmer replaces their existing frame with a new one. In some
cases, a participant puts one frame on hold and while searching for a new
potential frame. Once the programmer finds a new potential frame, they
replace the held frame in their code. While we do not have an explicit label
for this, our reframe labels and their context enable us to determine when
participants put one frame on hold while researching another, behaviors that
correspond to Klein’s stages of questioning the frame and comparing frames.

17

The re-framing stage has four possible end states:

Delete (d): The programmer deletes or comments all of their code, ef-
fectively removing any frame they may have been working on. Because
the frame serves as a skeleton on which the solution is built, deleting
it effectively requires starting fresh.

Original (0): The programmer returns their code state to the original
state of the starting code template for the task, removing any frame
they may have been working on.

New (n): The programmer introduces a new frame that has not previ-
ously been in the code.

Previous (p): The programmer returns their code to a previous state
or re-introduces a frame that they previously worked with.

Code Test (test): While testing is not an explicit part of prior sense-
making models, the act of testing code is an important way that programmers
obtain feedback. The feedback they receive is often what triggers the shift
to a new activity, so we felt that it was important to include explicitly. It
is arguably most closely related to questioning the frame, in which the
sensemaker notices inconsistencies between the data and their current frame,
suggesting an error. In cases where testing reveals an error, the programmer
may not know the source of the error, but the inconsistency serves as a cue
to investigate further.

The code testing stage has four possible end states:

NA: The participant tests the template code without any changes or
other empty code.

Failure (f): The tested code is immediately removed.

Continuance (c): The tested code has problems that the programmer
next tries to address.

Success (s): The tested code appears to work and the programmer
moves next to a new subgoal.

18

8. Defining Sensemaking Episodes

Through our labeling process, we labeled each activity (foraging within
a branch, coding, and testing) programmers performed with a sensemaking
stage. However, these individual activities are often seconds in length and
represent steps within a larger process. Often, when there are multiple of
the same label in a row, the user is working toward one subgoal with mul-
tiple similar actions. To understand the overall sensemaking process, we
grouped individual sensemaking activities into larger sensemaking episodes
that attempt to capture the activity related to a subgoal. These episodes
enable us to explore the high-level process and flow through sensemaking
phases. Generally, sensemaking episodes are made up of sequential activities
of the same type, like multiple seeks in a row or multiple maps in a row.
However, they can also include activities from other sensemaking stages, or
embedded episodes, if they occur before the subgoal concludes. We define
the sensemaking episodes as follows:

8.1. Seeking Episode

A seek episode begins with the first time that a programmer performs
a seek of any type and ends successfully when the programmer identifies a
subgoal that can be used to construct a frame. This is demonstrated with
a map occurring on the same page and a related code modification. Seek
episodes can also end with a transition to another activity such as mapping,
preserving, or elaborating.

8.2. Mapping Episode

A map episode also begins with a map activity of any type. Most of-ten,
this is a search that corresponds to a task subgoal such as creating a React
button. The mapping process ends when the programmer has suc-cessfully
created a map (reified through a new frame) consisting of a code based
hypothesis. For example, a programmer might add a code snippet that he
or she believes will create a new button in the current application. This
hypothesis may or may not be correct. Mapping episodes can also end with
and include the programmers’ transitions to another activity: seeking,
preserving, or elaborating.

19

8.3. Elaborating Episode

An elaborating episode begins with any type of elaboration activity in
which the participant searches for information or adds code related to a new
subgoal. A successful elaboration process ends when the programmer has
modified their code with new functionality. Elaboration episodes can also
end with (and include) a transition to seeking or mapping.

8.4. Preserving Episode

A preservation episode begins when a programmer tests a program that
does not yet work, but does not remove the not-yet-functioning code. Preser-
vation ends when a programmer tests a working version of that code.

9. Results

Our results suggest that there are patterns in how programmers move
through the sensemaking process. These patterns both point to where pro-
grammers need the most help and have implications for how to support pro-
grammers learning an API. Figure 6 shows a summary of how programmers
transitioned through different types of episodes as they worked on their tasks.
We discuss our results in terms of sensemaking episodes, or groupings of the
individual sensemaking labels, that let us talk about the process at a high-
level.

9.1. Summary of programmer sensemaking processes during AP| learning

All programmers’ early tasks included map episodes: goal directed searches
for information that, when successful, resulted in a hypothesis about code
that would accomplish some piece of their target task. 8 of 12 programmers
also incorporated seek episodes early in the task process, before they had
added code. These were non-task directed searches for information, but 5
of the 17 seek episodes led to programmers finding a map. 15 of the 17
seek episodes occurred when programmers’ code was in the starting state
(12 episodes before adding code, 3 after removing unsuccessful code). We
present an aggregate view of the the transitions between sensemaking states
that our programmers made. We selected this aggregate view in order to
highlight the most common kinds of transitions that occurred through the
completion of the React task.

20

Starting Code (12)

/—b

9 J
Seek (17) | ¢ 4

° ” Map (29) H

11

Sy
b\
\ 2

/ Elaborate (33)

Modified Code

S _ <
L c Q
o o o
£ £ £
21 s £
©D o
Preserve (21) Reframe (37) .:J/
] 8
7 1

1

3
Inc. Preserve/ 1 D Elaborate (24
; Reframe (9) ()

Figure 6: Aggregate overview of programmers’ programming process through sensemaking
episode types. Darker arrows indicate more common transitions. Episodes are shown as
blue rectangles with a frequency count. Embedded episodes, episodes that occur within
another episode type, are shown as green ovals.

21

When leaving map episodes, programmers progressed primarily to one of
three episode types: preserve, reframe, and elaborate. Programmers’ behav-
ior after the initial stages largely centers on fixing broken code. Both preserve
and reframe episodes began with broken code that programmers attempted
to fix successfully and unsuccessfully, respectively. However, even 13 of the 33
elaborate episodes began with non-functional code (39%). Thus the issues of
non-functional code arose even as programmers attempted to add new func-
tionality. Programmers’ attempts at debugging this broken code occurred
during preserve and reframe. Behavior during debugging was fairly complex
and included embedded episodes (shown in Figure 6 as ovals rather than
rectangles) corresponding to map, seek, and elaborate behavior. Embedded
episodes are complete episodes of another type that occur within an enclos-
ing episode. Embedded seek episodes occurred as programmers attempted
to understand AP elements in broken code. Embedded map and elaborate
episodes occurred as programmers replaced their existing solutions with new
ones or augmented their code with new capabilities while debugging their cur-
rent solution. Interestingly, while preserve and reframe episodes were about
equally likely to include embedded map episodes, reframe episodes were much
more likely to include seek and elaborate episodes, suggesting that we may
be able to identify debugging behavior that is at risk of not succeeding.

Below we discuss the behaviors associated with each episode type in
greater detail.

9.2. Mapping

Participants completed an average of 2.4 independent map episodes (SD=1.8).
Independent map episodes averaged 2.1 activities (SD=1.5) Additionally,
participants completed an average of 1.6 (SD=1.2) map episodes embedded
in preserve and reframe episodes. Embedded episodes averaged 1.3 activities
(SD=0.9). Maps occurred in two places: 1) at the beginning of the task and
2) as programmers attempted to debug broken code.

Longer mapping attempts were often unsuccessful. Of the 29
map episodes, 19 resulted in successful maps. 9 were the result of new, task-
based information, and 5 included returns to existing task-based information.
Failed map episodes tended to require more steps, averaging 3 as compared
to 1.7 for successful maps, and consulted multiple types of resources in a
single episode. For example, a multiple resource episode might include a new
task-based search and a return to a previously found resource. 8 of the 10

22

failed mapping attempts included a mix of resource visits in a single episode.
Among the successful maps, only 1 of the 19 included multiple resources.
Programmers struggled to build more than half of the initial
maps they made. While participants were successful in creating maps, the
existence of more than 2 successful independent mapping episodes per par-
ticipant means that, on average, participants discarded a successful map and
started again from scratch before they were able to build on their map. While
a map represents a programmers’ hypothesis that a given section of code will
accomplish a target goal, that hypothesis is not always correct. Program-
mers frequently left map episodes with unworkable code due to combining
code with differing syntax, version incompatibilities, or use of non-React
APl elements. When programmers failed to get their code working (through
a subsequent reframe episode), they reframed back to a previous code state.
Embedded maps occurred as part of debugging. Programmers
completed 18 additional map episodes that were embedded in preserve and
reframe episodes. In these episodes, mapping occurred when a programmer
found an alternative code snippet to accomplish a goal and replaced their cur-
rent code. This action suggests that programmers were considering multiple
frames simultaneously and replacing an unsuccessful frame with an alterna-
tive approach. Embedded maps were split nearly equally between preserve (7
episodes) and reframe (8 episodes), with an additional 2 incomplete episodes.

9.3. Seek

Participants completed an average of 1.42 independent seek episodes
(SD=1.38). Independent seek episodes averaged 3.8 sensemaking activities
(SD=2.8). Additionally, participants completed an average of 1 (SD=1.35)
seek episode embedded in preserve and reframe episodes. Embedded episodes
averaged 2.3 sensemaking activities (SD=0.8). A majority of seeks (all but
2) occur in one of two distinct contexts: 1) early in the task process as pro-
grammers build their initial maps and 2) later in the task process as users
struggle to debug broken code.

(1) Programmers used seek when starting. Overall, we found 71% of
seeks occurred when code was unchanged (i.e. programmers had not yet
added any functionality to the starting template). Of these, 12 occurred
before programmers had modified the starting code and 3 occurred after
programmers had reverted back to the starting code. 4 of the 15 were suc-
cessful in leading participants to a mapping attempt. Further, our results
suggest that above average use of seek at the beginning may indicate struggle.

23

Two participants who ultimately made little progress towards the target task
started with and repeatedly attempted seeks. Together, they are responsible
for a combined 8 of the 15 getting started seeks.

Programmers mixed gathering task-focused and overview in-
formation. Programmers sought general information before task-specific
information in most cases. 7 seek episodes of 17 total episodes contain only
foraging in new branches. Thus, all resources were the results of seeking
overview information. An additional 3 seek episodes mix foraging in new
branches with foraging in the results of previous seek episodes. However,
seek was not always programmers’ first step. 7 seek episodes include vis-its
to existing task-focused branches. This suggests that programmers first
searched for task-focused information and then attempted a seek afterwards,
perhaps to gain insight into AP | elements and concepts encountered through
task-focused searches. The approach of mixing task and non-task focused
searches at the beginning was less successful: 0 of the 7 seek episodes that
included returns to task-focuses searches were successful. 4 of the 10 that
focused on overview information ultimately led to a map episode.

Programmers attempted embedded seek episodes when strug-
gling to repair broken code. While nearly all of the independent seek
episodes occurred at the beginning of programmers’ tasks, we saw 18 seek
episodes that were embedded within preserve and reframe episodes. In these
episode types, programmers attempted to repair non-functional code. When
they could not repair their current code, programmers searched for new
frames to replace their existing ones. Interestingly, the use of seek was
substantially more frequent in reframe episodes than in preserve episodes,
occurring 11 times and 1 time in reframe and preserve, respectively. 5 of the
12 embedded seeks were successful in leading to an embedded map episode.
Participants incorporated return visits to information from prior searches in
all but one of these episodes. However, it is notable that episodes with return
visits to non-task focused information were more likely to be successful (4
successful episodes of 6 with returns to non-task focused branches vs. 1 suc-
cessful episode of 5 with returns to task-focused branches). This may indicate
that conceptual information may be more valuable than task-focused infor-
mation during failing repair attempts. Broadly, in our data, the existence of
embedded seek episodes predicted that programmers would ultimately fail to
repair their current non-functional code.

Programmers rarely performed seek episodes after mapping.
Only 2 of the 17 seek episodes occurred after programmers had moved past

24

the starting code state. Neither was successful in leading to a mapping at-
tempt. In both cases, participants had working code. Both episodes include
visits to previously opened task-focused branches, suggesting that, like the
44% of the getting started tasks, programmers used seek to research API
elements and concepts.

9.4. Elaborating

Once programmers have an initial mapping that solves a piece of the
larger task, they attempt to extend their initial program with additional
sub-tasks through elaboration. Elaborations were the most common type
of episodes overall, with a total of 33 independent episodes (M = 2.8, SD
= 2.1) and 24 episodes embedded in preserve and reframe episodes (M=2,
SD=1.3). Independent elaborations averaged 3.5 activities (SD=3.5). Em-
bedded elaborations averaged 1.5 activities (SD=1.2). 19 of the 24 embedded
elaborations occurred in a single activity, a return visit to an existing web
resource. All completed episodes ended with a successful elaboration activity.

Programmers frequently began elaborations with broken code.
39% of independent elaborations and 83% of embedded elaborations began
with broken code. In both cases, this suggests that programmers are seeking
to incorporate new functionality on top of non-functional code. It was unclear
from the behavioral data why participants tried to integrate new functionality
into a broken codebase. However, in the case of embedded elaborations, this
may represent a form of last ditch effort to repair broken code, as elaborates
occurred almost exclusively in reframe episodes.

Elaborations leveraged task-focused resources. Independent and
embedded elaborations both heavily leveraged task-focused resources. 21 of
independent elaborations referenced new task-based resources and 18 ref-
erenced existing task-based resources as compared to 4 existing non-task
based resources and 0 new ones. Embedded elaborations referred to previ-
ously found task-focused resources (19 episodes), with references to newly
found task-focused resources appearing in 5 episodes. Non-task focused re-
source use was rare: 2 episodes referenced previously found non-task focused
resources and 1 referenced a newly found resource.

Mapping example incompatibilities lead to errors. For both single-
activity elaborations and multi-activity elaborations, the code changes made
were frequently incorrect or unusable in the participant’s code. The errors
reflect the kinds of code incompatibilities found in the mapping episodes: dif-
fering syntax style, outdated examples, and use of non-React AP elements.

25

However, we also observed an additional issue: the addition of incomplete
code snippets. For instance, a snippet might show the use of a state variable
to hold information but not include the initialization of that state variable.
These incompatible and incomplete code additions led to subsequent preserve
or reframe episodes.

9.5. Reframing

Reframe episodes represent cases where the programmer attempted to re-
pair non-working code and failed. These episodes ended with the programmer
removing some or all of the non-working functionality. Reframes are partic-
ularly interesting from an API| usability standpoint because they represent
situations where a programmer struggled to achieve a goal and ultimately
gave up. Reframing episodes occurred 37 times, making them the second
most common episode type behind elaborating. Participants’” most com-
monly ended reframing episodes by reframing to a previous frame (reframe-p
32 times). Programmers also reframed to the original frame (reframe-o) 4
times and to a new frame 1 time. Reframing episodes were expensive, requir-
ing an average of 7.5 activities (SD=7.8) to complete. Given that reframing
is both common and time intensive, this represents a high cost to the pro-
grammer, as much of the reframing process is, by its nature, a failure.

Programmers revert to previous code states without attempting
to repair. In 43% of reframing episodes, programmers do not attempt to
repair the code. They simply replace it (6 episodes) or test it and then replace
it (10 episodes). This further emphasizes the high cost of reframing when
programmers do attempt to fix their code (M=12.0 activities, SD=7.6).

Reframe episodes are likely to include embedded episodes, es-
pecially seek and elaborate. The high cost of reframe episodes is in part
due to embedded episodes of other types: map, seek, and elaborate. Reframe
episodes include a unique mix of embedded episodes. 11 of the 12 embedded
seek episodes and 19 of the 24 embedded elaborate episodes occurred during
reframes. In other words, when programmers struggled to fix broken code,
they were more likely to 1) seek general information and 2) attempt to extend
the functionality of their programs. Because of their uneven distribution, the
use of embedded seeks and elaborates suggested that a given episode would
ultimately fail. However, this behavior also suggests that reframing is a point
during which programmers are open to reading material about the concepts
and best practices associated with a given API, assuming that they can find
the right avenue to pursue.

26

Programmers often reframed back to previous non-working states.
It is unclear why programmers elected to reframe to non-working states. It is
possible that, due to the unfamiliar context, programmers do not accurately
remember whether a particular previous code state was functional. Alterna-
tively, this behavior may reflect a foraging-like behavior in the code space.
Programmers may explore one strategy to solve a problem, remove part of
the solution, and try a different approach to complete it. Regardless of the
motivation for reframing back to non-working code, it is important to note
that reframing back to a previous state can include partial progress towards
a sub-task.

Many copied code snippets contain multiple errors. We noted
that many of the code snippets participants copied into their code contained
multiple issues. For example, a code snippet might be both using an in-
compatible or outdated syntax style and referencing a state that does not
exist. In order to see progress, some code issues should be addressed before
others. However, we observed cases in which a programmer selected an issue
to work on that was masked by another existing problem. Thus, even when
they made changes that addressed an existing problem in their code, those
changes did not always immediately change the output of the program. This
seemed to lead some participants to conclude that their actions were not
helping and reframe their code back to a previous state.

9.6. Preserving

Successful code repair attempts (preservation episodes) ended with a test-
s in which the new functionality worked. Participants’ programming sessions
included a total of 21 preservation episodes. Each episode required an average
of 8.6 (SD=7.4) steps to resolve, making it an expensive process. Addition-
ally, there were 36 instances in which programmers successfully tested new
code without needing to make any modifications.

Programmers preferred to resolve code issues with information
rather than exploration. 18 of the 21 preserve episodes relied on informa-
tion to resolve issues with code. 14 returned to existing task-based resources,
9 consulted new task-based resources, and 7 searched for information on error
messages. Only 3 episodes were resolved by testing and editing code alone.

Successful resolution of code issues includes few embedded seek
and reframe episodes. Where reframe episodes included a significant num-
ber of embedded seek and elaborate episodes, these were largely absent when
programmers succeeded in repairing broken code. Preserve episodes included

27

only 1 of the 12 embedded seek episodes and 1 of the 24 elaborate episodes.
Preserve episodes did include 7 embedded map episodes during which pro-
grammers found alternative code to accomplish a goal and replaced their
working code.

10. Discussion and Future Work

Our sensemaking analysis of API learning provides new insight into the
kinds of information programmers search for and how they shift over the
course of attempting to build a simple React program. We discuss reframing
and preservation as the stages of the sensemaking process most in need of
better support and highlight the dificulties around repairing code. We then
summarize implications for documentation, tools, and education. Finally, we
briefly discuss the potential generalizability of our coding scheme.

10.1. Information Needs Vary by Sensemaking Stage

Programmers were most open to AP overview information at two points:
1) when they were first starting, before they had begun to write their own
code and 2) when they were struggling (and failing) to get a version of their
code to work. During the initial period, engagement with overview materials
tended to be short. Programmers appeared to want a sense of React, but
largely skimmed the materials they found. When they returned to overview
material during a debugging process, it seemingly served as a last attempt
to find a path forward.

During other sensemaking episodes, programmers tended to search for
and attempt to use task-based resources. Their approaches were greedy -
programmers appeared to use the first promising-looking resource they found
that addressed their current subgoal. The limited number of activities in
mapping and elaboration suggest these initial uses of found code came with a
shallow understanding of that code. This is further supported by the fact that
both initial and elaborated code were often non-functional and led to lengthy
preserve and reframe episodes. During these episodes, programmers revisited
task-based resources and, in the case of reframes, sought additional overview
information.

Our sensemaking analysis identifies how and when programmers seek out
particular kinds of information as well as the types of tasks on which they
struggle.

28

10.2. Reduce Reliance on User Question Generation During Debugging

Prior work in API learning has suggested that programmers can struggle
to frame a question that leads them to relevant information [12, 13]. In our
study, the dificulties around framing a question coincided with debugging
broken code. Programmers tended to be successful in searching for and find-
ing information about the basic elements of the AP| such as user interface
elements and events. However, in both preserve and reframe episodes, pro-
grammers typically had erroneous code due to combining incompatible code
or the absence of needed setup code. In both cases, framing a helpful ques-
tion was dificult. In the most successful cases, programmers compared their
code with found example code to reason about potential issues, but we note
that programmers failed to repair their broken code nearly twice as often as
they fixed it.

Tools that enable programmers to ask syntactic and structural "What’s
wrong with this?” questions based on faulty code, like the Whyline [61], could
be especially important in early API learning. Given the availability and use
of question-answer sites, enabling automatic creation of bottom-up resources
based on code seems an important challenge for future work.

10.3. Support Needs for Reframe and Preserve

The reframe and preserve episodes were the most expensive of all of the
episodes in terms of programmer activity. Improving the eficiency of both
episode types and increasing the proportion of preserves could dramatically
improve the amount of time it takes programmers to complete a task inan
unfamiliar API. Further, reframing may result in high extraneous cogni-tive
load, limiting the potential for programmers to learn during this phase.
Programmers entered into the reframing process after adding new code via
mapping new frames and elaborations. But, in the reframing process, the
majority of these new code additions were removed without ever reaching
a working state. As a consequence, programmers never figured out what
would have been necessary to get them working and never understood why
their proposed solutions did not work as expected. These proposed solu-
tions are particularly important because they represent an instantiation of a
programmer’s model of how the API is supposed to work. When they are
deleted before reaching a working state, the programmer does not have an
opportunity to revise their underlying model appropriately. Taken together,
this represented a perfect storm of extraneous load. Programmers invested
significant time in solutions that do not contribute towards their task. This

29

time investment likely contributed very little to their API understanding as
the kinds of feedback necessary to achieve a working state were not avail-
able. Future research that explores both how to reduce the amount of time
programmers spent reframing and how to provide better support for learning
when reframes do happen is an important design challenge.

10.4. Programmers Lack Strategies for Repairing Broken Code

Programmers in our study quickly sought example code that contributed
to an initial goal, and spent little time reading content presented alongside
their found example code. Frequently, this copied code did not work. Our
results suggest that programmers may not have an effective set of strategies
for repairing broken example code. Programmers primarily responded to
broken code in one of three ways: by immediately removing it, by viewing
general API information (seeking), and by adding new lines to the program
(elaboration). In all three cases, we believe these actions indicate uncer-
tainly around how to proceed. Immediately removing the code serves as a
tacit acknowledgement that a repair attempt is likely to fail. If failure is the
most likely outcome, the best strategy is to immediately move on to a new
example. Based on our study data, the assumption of failure is a fairly ac-
curate assessment. Seeking general overview information often appeared to
be motivated by a hope that the programmer would encounter information
that might spark a solution. Unfortunately, this rarely happened. In fact,
the presence of an embedded seek activity was a strong signal that the repair
attempt would ultimately fail. Finally, some programmers added new code
to their existing, broken, solution. When doing this, they were most likely to
return to a previously found webpage and the source of the example. In this
case, we suspect that programmers may believe that they have missed some-
thing within the example, rendering the example incomplete. This approach
was also rarely successful.

However, it is also important to note that much of the copied code was
close to working. Code examples with missing code elements (such as dec-
laration or initialization statements) and ones that were out of date were
common. These examples were likely the most problematic for new API
users. More experienced API| users would likely have been able to identify
and correct the issues. But our novice API| users appeared to want to in-
vest mental effort in an example only after they had determined that it did
something useful.

30

10.5. Implications for Documentation

Prior research finds that programmers often struggle to extract needed
information from documentation [4, 5, 12]. In our study, programmers pri-
marily appeared to seek information in two categories: 1) task-related exam-
ples and 2) AP overview information. The contexts and motivations for this
accesses have some implications for the design of future APl documentation.

Programmers in our study were largely successful at finding relevant task-
related examples, typically via search, but struggled to repair broken exam-
ples. Documentation that provides examples first but provides pathways for
further exploration may be helpful. For example, providing connections from
examples to relevant AP| concepts may help programmers to reason about
potential issues in their found code. Additionally, we noted that some of the
problems that programmers encountered were due to outdated examples.
Example troubleshooting materials that aim to help programmers identify
and update deprecated examples may help to address this.

Programmers predominately sought overview information at points when
they were not sure how to take a task-related step. This occurred both at the
beginning of the process, before they had written any task-related code and,
later, when they encountered non-working code that they did not know how
to repair. Thus, materials that define and describe the important concepts
in an API and link them to code examples may help to guide programmers
towards a concrete and productive step to take.

10.6. Implications for Tools

Tool support that helps programmers to repair non-working example code
is an important area for future research. When faced with a non-working ex-
ample, it is dificult to evaluate what issues may be causing the code to
fail, particularly without knowledge of the API. In our study, this struggle
manifested itself through the high cost and low success rates of reframe and
preserve episodes. Future work should explicitly address the challenge of
broken code repair, which has been under-explored. We believe that tools
that leverage information about the necessary structure for API-related pro-
grams, the history of API changes, and the large collections of shared code
may prove valuable in suggesting corrections for non-working code.

10.7. Implications for Education

Much of education research has focused on formal education contexts
in which an instructor guides students through a gradual introduction of

31

concepts and related code. While learning in formal contexts is clearly im-
portant, we also need to understand and effectively support learning that
occurs outside of this context. Research suggests that programmers prefer
just-in-time learning approaches [3]. Our results suggest that programmers
may benefit from learning strategies around code repair, which may include
how to identify relevant AP | concepts from a broken code example. However, it
is important to note that without studies that fully document the causes of
broken code across a range of different APIs, it is not clear that effective,
generalizable strategies for code repair are known.

11. Generalizability of Coding Process

While our coding scheme was developed within the context of novices
learning the React API, we believe that it will capture processes of just-in-
time learning that occur in the context of constructing code across different
APls and different programmers with differing experience levels. We would
expect to see differences in the dominant sensemaking stages and the lengths
of individual stages between different APIs and programmer experiences lev-
els. However, the coding process is labor intensive. Using the branch visu-
alization helped by providing a single context with the web resources being
viewed, the search they originated from, and the changes made to the pro-
grammers’ code. Still, we estimate that we spent about 2-3 hours per hour
of participant time in appropriately labeling code. This is in part due to the
need to understand what the code is doing and whether or not the change
was successful in order to appropriately classify it. Some additional automa-
tion of this process is possible, which may streamline the labor necessary to
test successive code changes made by programmers.

12. Limitations

There are a number of potential threats to the validity of our results.
The results reported in this paper represent a narrow sliver of the overall
programmer population: predominantly male, twelve later stage undergrad-
uate students completing a single task with the React API. It is unclear to
what degree their behavior reflects a broader population of programmers and
range of APls and tasks. Further, the experimental setup may have affected
their behavior. While other research suggests that the task-oriented focus
is common among programmers [3] and that this task-focus is not unique

32

to programming [62], it is possible that our participants may have behaved
differently in an authentic situation such as needing to learn React for a
job. While our results are suggestive, it will be important to perform studies
with a broader set of programmer experience levels, a diverse audience of
programmers, and a variety of different APIs to ensure that the findings here
generalize.

13. Conclusion

This paper uses the lens of sensemaking to explore how a group of twelve
student programmers interacted with information at different stages com-
pleting a task with an unfamiliar APl. Our participant programmers first
attempted to find and use task-focused information with shallow understand-
ing. Attempts to more deeply understand code arose when debugging broken
code, suggesting a need for resources that enable understanding to flow out-
wards from code. While programmers did search for overview information,
they did so briefly when first starting and later when failing to debug broken
code. Further, our methodology enables us to quantify some of the struggles
that programmers encounter. This allows us to identify and prioritize the
challenges that have the greatest potential for impact.

14. Acknowledgements

This paper is based in part upon work supported by the National Science
Foundation under Grant 11S-2128128.”

References

[1] Programmable Web: API directory (2018).
URL https://www.programmableweb.com/category/all/apis

[2] W. Santos, Research shows interest in providing APIs still high —
ProgrammableWeb (2018).
URL https://www.programmableweb.com/news/research-shows-interest-providing-

api

[3] J. Brandt, P. J. Guo, J. Lewenstein, S. R. Klemmer, Opportunistic
programming: How rapid ideation and prototyping occur in practice,
in: Proceedings of the 4th international workshop on End-user software
engineering, ACM, 2008, pp. 1-5.

33

(4]

5]

[6]

(7]

(8]

[9]

[10]

[11]

[12]

M. P. Robillard, R. Deline, A field study of APl learning obstacles,
Empirical Software Engineering 16 (6) (2011) 703-732.

M. P. Robillard, What makes APIs hard to learn? Answers from devel-
opers, |EEE software 26 (6) (2009) 27-34.

J. Stylos, B. A. Myers, Mica: A web-search tool for finding APl com-
ponents and examples, in: Visual Languages and Human-Centric Com-
puting (VL/HCC’06), IEEE, 2006, pp. 195-202.

S. Oney, J. Brandt, Codelets: Linking interactive documentation and
example code in the editor, in: Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems, CHI 12, Association
for Computing Machinery, New York, NY, USA, 2012, p. 2697-2706.
do0i:10.1145/2207676.2208664.

URL https://doi.org/10.1145/2207676.2208664

G. Klein, J. K. Phillips, E. L. Rall, D. A. Peluso, A data—frame theory
of sensemaking, in: Expertise out of context, Psychology Press, 2007,
pp. 118-160.

B. Dervin, Sense-making theory and practice: an overview of user inter-
ests in knowledge seeking and use, Journal of knowledge management
2 (2) (1998) 36-46.

D. M. Russell, M. J. Stefik, P. Pirolli, S. K. Card, The cost structure
of sensemaking, in: Proceedings of the SIGCHI conference on Human
factors in computing systems - CHI ‘93, ACM Press, New York, New
York, USA, 1993, pp. 269-276. doi:10.1145/169059.169209.

URL http://portal.acm.org/citation.cfm?doid=169059.169209

P. Pirolli, S. Card, Information foraging in information access environ-
ments, in: Proceedings of the SIGCHI conference on Human factors in
computing systems, ACM Press/Addison-Wesley Publishing Co., 1995,
pp. 51-58.

E. Duala-Ekoko, M. P. Robillard, Asking and answering questions about
unfamiliar APls: An exploratory study, in: 2012 34th International
Conference on Software Engineering (ICSE), IEEE, 2012, pp. 266-276.

34

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

C. R. Rupakheti, D. Hou, Satisfying Programmers’ Information Needs
in API-Based Programming, in: Program Comprehension (ICPC), 2011
IEEE 19th International Conference on, IEEE, 2011, pp. 250-253.

G. Gao, F. Voichick, M. Ichinco, C. Kelleher, Exploring programmers’
api learning processes: Collecting web resources as external memory,
in: 2020 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), 2020, pp. 1-10.

C. Kelleher, M. Ichinco, Towards a model of APl learning, in: 2019
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), IEEE, 2019, pp. 163-168.

A. Horvath, S. Grover, S. Dong, E. Zhou, F. Voichick, M. B. Kery,
S. Shinju, D. Nam, M. Nagy, B. Myers, The long tail: Understanding
the discoverability of api functionality, in: 2019 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC), IEEE,
2019, pp. 157-161.

M. J. Conway, Alice: Easy-to-learn three-dimensional scripting for
novices, University of Virginia, 1998.

S. G. Mclellan, A. W. Roesler, J. T. Tempest, C. |. Spinuzzi, Building
more usable APIs, |EEE software 15 (3) (1998) 78-86.

M. Piccioni, C. A. Furia, B. Meyer, An empirical study of AP| usability,
in: Empirical Software Engineering and Measurement, 2013 ACM/IEEE
international symposium on, IEEE, 2013, pp. 5-14.

T. R. G. Green, M. Petre, Usability Analysis of Visual Programming
Environments: A ’Cognitive Dimensions’ Framework, Journal of visual
languages and computing 7 (2) (1996) 131-174.

S. Clarke, Describing and measuring API usability with the cognitive
dimensions, in: Cognitive Dimensions of Notations 10th Anniversary
Workshop, Citeseer, 2005, p. 131.

J. Stylos, S. Clarke, Usability implications of requiring parameters in ob-
jects’ constructors, in: Proceedings of the 29th international conference
on Software Engineering, IEEE Computer Society, 2007, pp. 529-539.

35

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

J. Stylos, B. A. Myers, The implications of method placement on API
learnability, in: Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of software engineering, ACM, 2008, pp.
105-112.

S. Y. Jeong, Y. Xie, J. Beaton, B. A. Myers, J. Stylos, R. Ehret,
J. Karstens, A. Efeoglu, D. K. Busse, Improving documentation for
eSOA APIs through user studies, in: International Symposium on End
User Development, Springer, 2009, pp. 86-105.

J. Nykaza, R. Messinger, F. Boehme, C. L. Norman, M. Mace, M. Gor-
don, What programmers really want: results of a needs assessment for
SDK documentation, in: Proceedings of the 20th annual international
conference on Computer documentation, ACM, 2002, pp. 133-141.

W. Maalej, M. P. Robillard, Patterns of knowledge in API reference doc-
umentation, |IEEE Transactions on Software Engineering 39 (9) (2013)
1264-1282.

J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, S. R. Klemmer,
Two studies of opportunistic programming: interleaving web foraging,
learning, and writing code, in: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, ACM, 2009, pp. 1589-1598.

J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, S. R. Klemmer,
Writing code to prototype, ideate, and discover, IEEE software 26 (5)
(2009) 18-24.

B. Dorn, A. Stankiewicz, C. Roggi, Lost while searching: Dificulties in
information seeking among end-user programmers, in: Proceedings of
the 76th ASIS&T Annual Meeting: Beyond the Cloud: Rethinking In-
formation Boundaries, American Society for Information Science, 2013,
p. 21.

B. Dorn, M. Guzdial, Learning on the job: characterizing the program-
ming knowledge and learning strategies of web designers, in: Proceed-
ings of the SIGCHI| Conference on Human Factors in Computing Sys-
tems, ACM, 2010, pp. 703-712.

M. B. Rosson, J. Ballin, H. Nash, Everyday programming: Challenges
and opportunities for informal web development, in: Visual Languages

36

[32]

[33]

[34]

[35]

[36]

[37]

[38]

and Human Centric Computing, 2004 IEEE Symposium on, IEEE, 2004,
pp. 123-130.

A. Ciborowska, N. A. Kraft, K. Damevski, Detecting and characterizing
developer behavior following opportunistic reuse of code snippets from
the web, in: Proceedings of the 15th International Conference on Mining
Software Repositories, MSR ’18, ACM, New York, NY, USA, 2018, pp.
94-97. doi:10.1145/3196398.3196467.

URL http://doi.acm.org/10.1145/3196398.3196467

A. J. Ko, R. Abraham, L. Beckwith, A. Blackwell, M. Burnett, M. Er-
wig, C. Scafidi, J. Lawrance, H. Lieberman, B. Myers, M. B. Rosson,
G. Rothermel, M. Shaw, S. Wiedenbeck, The state of the art in end-
user software engineering, ACM Comput. Surv. 43 (3) (2011) 21:1-21:44.
doi:10.1145/1922649.1922658.

URL http://doi.acm.org/10.1145/1922649.1922658

P. Pirolli, S. Card, Information foraging., Psychological review 106 (4)
(1999) 643.

P. Pirolli, W.-T. Fu, Snif-act: A model of information foraging on
the world wide web, in: International Conference on User Modeling,
Springer, 2003, pp. 45-54.

B. Athreya, C. Scafidi, Towards aiding within-patch information for-
aging by end-user programmers, in: 2014 |[EEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), IEEE, 2014, pp.
13-20.

J. Hsieh, M. X. Liu, B. A. Myers, A. Kittur, An exploratory study of web
foraging to understand and support programming decisions, in: 2018
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), IEEE, 2018, pp. 305-306.

S. K. Kuttal, A. Sarma, G. Rothermel, Predator behavior in the wild
web world of bugs: An information foraging theory perspective, in: 2013
IEEE Symposium on Visual Languages and Human Centric Computing,
IEEE, 2013, pp. 59-66.

[39] J. Lawrance, C. Bogart, M. Burnett, R. Bellamy, K. Rector, S. D. Flem-

ing, How programmers debug, revisited: An information foraging theory

37

[40]

[41]

[42]

[43]

[44]

[45]

perspective, IEEE Transactions on Software Engineering 39 (2) (2010)
197-215.

S. K. Kuttal, A. Sarma, M. Burnett, G. Rothermel, |. Koeppe, B. Shep-
herd, How end-user programmers debug visual web-based programs:
An information foraging theory perspective, Journal of Computer Lan-
guages 53 (2019) 22-37.

D. Piorkowski, S. D. Fleming, C. Scafidi, M. Burnett, I. Kwan, A. Z.
Henley, J. Macbeth, C. Hill, A. Horvath, To fix or to learn? how pro-
duction bias affects developers’ information foraging during debugging,
in: 2015 IEEE International Conference on Software Maintenance and
Evolution (ICSME), IEEE, 2015, pp. 11-20.

J. Lawrance, M. Burnett, R. Bellamy, C. Bogart, C. Swart, Reactive
information foraging for evolving goals, in: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, 2010, pp. 25-34.

D. Piorkowski, S. Fleming, C. Scafidi, C. Bogart, M. Burnett, B. John,
R. Bellamy, C. Swart, Reactive information foraging: An empirical in-
vestigation of theory-based recommender systems for programmers, in:
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, 2012, pp. 1471-1480.

G. Neelima, S. Rodda, Predicting user behavior through sessions using
the web log mining, in: 2016 International Conference on Advances in
Human Machine Interaction (HMI), IEEE, 2016, pp. 1-5.

C. Bernaschina, M. Brambilla, A. Mauri, E. Umuhoza, A big data anal-
ysis framework for model-based web user behavior analytics, in: Inter-
national Conference on Web Engineering, Springer, 2017, pp. 98-114.

[46] X. Niu, X. Fan, Deep learning of human information foraging behav-ior

[47]

with a search engine, in: Proceedings of the 2019 ACM SIGIR In-
ternational Conference on Theory of Information Retrieval, 2019, pp.
185-192.

F. Benevenuto, T. Rodrigues, M. Cha, V. Almeida, Characterizing user
behavior in online social networks, in: Proceedings of the 9th ACM
SIGCOMM Conference on Internet Measurement, 2009, pp. 49-62.

38

[48] N. K. Singh, D. S. Tomar, B. N. Roy, An approach to understand the end
user behavior through log analysis, International Journal of Computer
Applications 5 (11) (2010) 27-34.

[49] R. Saito, T. Kuboyama, Y. Yamakawa, H. Yasuda, Understanding user
behavior through summarization of window transition logs, in: Inter-
national Workshop on Databases in Networked Information Systems,
Springer, 2011, pp. 162-178.

[50] S. Otsuka, M. Toyoda, J. Hirai, M. Kitsuregawa, Extracting user behav-
ior by web communities technology on global web logs, in: International
Conference on Database and Expert Systems Applications, Springer,
2004, pp. 957-968.

[51] S. Dumais, R. Jeffries, D. M. Russell, D. Tang, J. Teevan, Understanding
user behavior through log data and analysis, in: Ways of Knowing in
HCI, Springer, 2014, pp. 349-372.

[52] V. Grigoreanu, M. Burnett, S. Wiedenbeck, J. Cao, K. Rector, I. Kwan,
End-user debugging strategies: A sensemaking perspective, ACM Trans-
actions on Computer-Human Interaction (TOCHI) 19 (1) (2012) 1-28.

[53] B. Dervin, An overview of sense-making research: concepts, methods
and results to date, INTERNATIONAL COMMUNICATIONS ASSO-
CIATION ANNUAL MEETING, 1983.

[54] N. K. Agarwal, Making sense of sense-making: tracing the history and
development of dervin’s sense-making methodology, Int. Perspect. Hist.
Inf. Sci. Technol. Proc. ASIS & T (2012) 13.

[55] K. E. Weick, K. M. Sutcliffe, D. Obstfeld, Organizing and the process
of sensemaking, Organization science 16 (4) (2005) 409-421.

[56] P. Pirolli, S. C. P. of international conference On, undefined 2005,
The sensemaking process and leverage points for analyst technology as
identified through cognitive task analysis, phibetaiota.net.
URL https://www.phibetaiota.net/wp-content/uploads/2014/12/Sensemaking-
Process

[57] G. Klein, B. Moon, R. R. Hoffman, Making sense of sensemaking 1:
Alternative perspectives, |EEE intelligent systems 21 (4) (2006) 70-73.

39

[58]

[59]

[60]

[61]

[62]

G. Gao, F. Voichick, M. Ichinco, C. Kelleher, Exploring pro-
grammers’ api learning processes: Collecting web resources as
external memory, in: 2020 IEEE Symposium on Visual Lan-
guages and Human-Centric Computing (VL/HCC), 2020, pp. 1-10.
d0i:10.1109/VL/HCC50065.2020.9127274.

G. Klein, B. Moon, R. R. Hoffman, Making sense of sensemaking 2: A
macrocognitive model, IEEE Intelligent systems 21 (5) (2006) 88-92.

K. Krippendorff, Measuring the reliability of qualitative text analysis
data, Quality and quantity 38 (2004) 787-800.

A. J. Ko, B. A. Myers, Designing the whyline: a debugging interface
for asking questions about program behavior, in: Proceedings of the
SIGCHI conference on Human factors in computing systems, 2004, pp.
151-158.

J. M. Carroll, M. B. Rosson, Paradox of the active user, in: Interfacing
thought: Cognitive aspects of human-computer interaction, 1987, pp.
80-111.

40

