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Abstract— Polymerase chain reaction (PCR) has long been
the mainstay in genetic sequencing and identification. Irre-
spective of whether short read or long read technologies are
adopted, PCR methods are generally time consuming and
expensive. Recently, an all-electronic approach, the so-called
Single Molecule Break Junction (SMBJ) method, has been
proposed as a possible alternative to PCR. In this article, we
evaluate the performance of four different classifier models on
the current signatures of ten short strand sequences, including
a pair that differs by a single mismatch. We find that a gradient
boosted tree classifier model achieves impressive accuracies,
ranging from approximately 96% for molecules differing by
a single mismatch to 99.5% otherwise.

I. INTRODUCTION

Identification of single molecules based on the value
of their conductance is important for applications such as
biomarker identification, disease detection, and chemical
sensing. Conductance spectra through single molecules are
however extremely noisy because of the stochastic and com-
plex interactions between the substrate, sample, environment,
and the measuring system. A large standard deviation in
conductance values can obfuscate the ability to identify
different molecules. In this talk, we discuss our recent effort
in using machine learning methods to identify DNA strands
based on the measured conductance [1] and subsequent effort
in moving to smaller sample sizes.

Current traces are obtained from Single Molecule Break
Junction (SMBJ) [1] measurements. Figure 1(a) shows a
conceptual schematic of the SMBJ experimental setup. The
experiment commences with the scanning microscope tip
probing the conducting substrate, hopefully making contact
with the DNA strand on the substrate. The tip is then
gradually pulled away from the substrate. Given an appro-
priate voltage bias, the current between the tip and substrate
is recorded as a function of time. Figures 1(b) and (c)
show representative current traces with and without DNA
binding between the tip and the substrate. Without any
molecular binding, the current trace exhibits a predominantly
exponential decay, as illustrated in Figure 1(b). Deviations
from this behavior, as illustrated in Figure 1(c), are generally
indicative of a successful molecular binding and a ‘valid’
experiment. Our hypothesis is that unique signatures of the
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Fig. 1: (a) Schematic of the single-molecule break junction
(SMBJ) experimental approach. (b) Sample current trace
with no DNA binding between the gold electrode and the
substrate. (c) Sample current trace with DNA binding. Figure
from [2].

DNA molecule exist in the conductance (ratio of current to
applied voltage) traces, specifically, conductance probability
distributions (histograms), and automated classification of
DNA strands should be possible using statistical and/or
machine learning (ML) based approaches.

II. DATA AND CLASSIFICATION METHODOLOGIES

We use ten datasets, numbered S1 to S10, of experimen-
tally obtained current traces to evaluate our classifiers. Each
dataset contains a mix of valid (with molecular bonding)
and invalid (without molecular bonding) traces. Some salient
features of the datasets are as follows. First, although S2, S6,
S7, S8, and S9 are of the same strand, current measurements
were recorded using three different bias voltages, 0.01V,
0.10V, and 0.20V. It is known that a variation in the applied
bias induces a lateral shift in the conductance distributions.
Second, S4 and S5 are mismatches of S3, which corresponds
to mRNA from E.coli:O157:H7 with its fully matched DNA
duplex and is known to produce both Shiga toxins (Stx) 1
and 2. S4 and S5 have the same DNA complement as S3.
The mRNA from S4 corresponds to E.coli:O175:H28, has a
single mismatch at base 14 of S3 (A is substituted by G), and
is known to lead to Stx 2. The mRNA from S5 corresponds
to E.coli:E1a, has a single mismatch at base 8 of S3 (C is
substituted by T) and is nontoxic as it does not produce either
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Fig. 2: Flow diagram of our approach for DNA sequence classification.

Stx 1 or 2. Complete details of the ten datasets can be found
in [2].

Our current experimental data was generated from B-form
DNA molecules with an average height of 4.08 nm, not
including the carbon linkers at the two ends. All sequences in
our current data are 12 bp or 15 bp long. It is known that AT
rich sequences and those with a longer length tend to exhibit
lower conductivity. The impact of these three parameters
on classifier performance will be addressed in a subsequent
paper.

We trained our classifier models using two different target
class labeling schemes. In the first scheme (TLS-1), unique
DNA strands were assigned different class labels, irrespective
of the voltage bias used for current measurement during
SMBJ experiments, resulting in six target classes. In the sec-
ond scheme (TLS-2), the datasets are assigned unique class
labels based on the (strand, voltage bias) tuple, resulting in
eight classes. Additional details and justification for using the
different labeling schemes are available in the Supplementary
section of [2].

Figure 2 illustrates our approach for DNA sequence iden-
tification. Some pre-processing was necessary to filter out the
invalid traces and reduce the noise in the raw current traces.
Details of the pre-processing stage can be found in [2]. The
histograms for each target class can be constructed either
from the set of conductance vs. time traces, {g(t)}, or the set
of corresponding conductance magnitude spectra, {|G(ω)|},
where |G(ω)| is the magnitude of the Fourier Transform
of g(t). Henceforth, we will refer to |G(ω)| simply as the
conductance spectrum. We evaluate the performance of four
different classifier models: leftmargin=*

• Approach−1: Extreme gradient boosting (XGboost) on
600-bin histograms constructed from H time traces
sampled randomly from the set {g(t)}.

• Approach−2: XGboost on 600-bin histograms con-
structed from H conductance spectra sampled randomly
from the set {|G(ω)|}.

• Approach−3: Multilayer perceptron (MLP with two hid-
den layers, 600−64−8(6)−8(6) with ReLu activation;
numbers within parentheses refer to TLS-1) on 600-
bin histograms constructed from H time traces sampled
randomly from the set {g(t)}. From our experience,
shallower networks tended to perform better than deeper
networks, possibly due to the inherently noisy nature of
the conductance traces.

• Approach−4: A distance based classification scheme on
600-bin histograms constructed from H time traces sam-
pled randomly from the set {g(t)}. For each target class,
one ‘large sample template histogram’ is constructed

using all training data for that class. A test histogram
(constructed from H samples), say t, is assigned to
class i if the Euclidean distance between t and Hi is
the smallest, where Hi is the large sample template
histogram of the ith class.

As we will see shortly, the parameter H plays a critical
role in classifier accuracy. This is because, for relatively
large values of H (say 30), the inherent noise in individ-
ual conductance traces (or in the conductance spectra) is
smoothed considerably, leading to more accurate histograms
and enhanced classifier accuracy. Figure 3 shows the how the
‘quality’ of conductance distributions can differ depending
on the value of H. From a practical perspective, achieving
high accuracies with small H is highly desirable in order to
minimize the time and cost associated with data collection.

Fig. 3: Representative conductance histograms: (Left) H =
30, (Right) H = 10.

XGboost [3] is a fast and scalable implementation of
a gradient boosted decision tree framework [4]. Gradient
boosting is an ensemble learning method wherein weak
base learners (usually decision trees) are added sequentially,
one at each iteration, to minimize a suitably defined loss
function evaluated on the previous learner. For details on
gradient boosting, we refer the reader to [5]. We used the
Python implementation of the XGboost package [6], with
Nest = 200 and Dest = 2, where Nest denotes the number
of trees/estimators and Dest denotes the depth of each
tree/estimator.

III. SIMULATION RESULTS

Figure 4 shows the overall accuracies of the classifiers
(excluding the MLP approach) as a function of H. First,
we observe that the accuracy of all four approaches drops
sharply for lower values of H. Second, Approach−1 is the
most accurate and offers > 95% accuracy for all classes
for both labeling schemes. Third, for the finer 8-class la-
beling scheme (TLS-2), the simple distance based method
(Approach−4) is only slightly outperformed by XGboost op-
erating on conductance spectra (Approach−2). However, for
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(a) Plot of overall classifier accuracy vs. H for target labeling scheme TLS-1: (Left) Approach−1, (Middle) Approach−2, (Right)
Approach−4. In the middle panel, the plots for S2/S6/S7/S8/S9 (blue) and S10 (cyan) are virtually indistinguishable.

(b) Plot of overall classifier accuracy vs. H for target labeling scheme TLS-2: (Left) Approach−1, (Middle) Approach−2, (Right)
Approach−4. In the middle panel, the plots for S2/S6/S7/S8/S9 (blue) and S10 (cyan) are virtually indistinguishable.

Fig. 4: Plot of overall accuracy vs. H for three classifiers with two different target labeling schemes.

the coarser 6-class labeling scheme (TLS-1), Approach−4
performs poorly for class S10, irrespective of the value of
H, although the accuracies of the other five classes are
surprisingly good.

Figure 5 shows the detailed confusion matrices for all four
classifier models and both labeling schemes, when H = 30.
Interestingly, the MLP model (Approach−3) struggles to
distinguish between S4 and S5, which are both mismatches
of S3. Another major source of confusion for the MLP,
as well as the distance method (Approach−4), is between
the strand corresponding to datasets S2/S6/S7/S8/S9 and the
strand corresponding to S10. In our simulations, we have ob-
served that boosted trees consistently outperform multilayer
perceptrons. We conjecture that this is possibly due to noisy
characteristics of the data. From Figure 5, we also observe
that XGboost operating with histograms constructed from
the conductance spectra (Approach−2) perform reasonably
well, except for S1 (which is the molecule ’octanedithiol’
and not a DNA/RNA strand) vs. S5. A possible reason why
Approach−2 doesn’t work quite as well as Approach−1 is
that, since we are using only the magnitude spectrum, the
information content in {|G(ω)|} is less than the information
content in {g(t)}.

IV. CONCLUSION

In this paper, we have demonstrated that DNA molecules
can be classified extremely accurately using ML methods
operating on experimental quantum transport data. Typical

classification accuracies for molecules which are structurally
different exceed 99.9%. Even in the case of DNA-RNA
hybrids with a single base pair mismatch, our best method
is able to differentiate between the classes with an overall
accuracy of over 96%. Our analysis demonstrates the po-
tential of combining current spectra and ML methods as a
diagnostic tool for real-time detection and classification of
genetic sequences.

REFERENCES

[1] Li, Y., Artés, J.M., Demir, B. et al. Detection and identification of
genetic material via single-molecule conductance. Nature Nanotech
13, 1167–73 (2018). https://doi.org/10.1038/s41565-018-0285-x

[2] Wang, Y., Alangari, M., Hihath, J. et al. A machine learning approach
for accurate and real-time DNA sequence identification. BMC Ge-
nomics 22, 525 (2021). https://doi.org/10.1186/s12864-021-07841-6

[3] Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System.
Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., vol.
42, pp. 785–94, 2016. doi:10.1145/2939672.2939785

[4] Friedman J. H. Greedy function approximation: A gradient boosting
machine. Ann Stat, 29:1189–232, 2001. doi:10.1214/aos/1013203451

[5] Hastie T, Friedman J, Tibshirani R. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. New York, NY:
Springer New York; 2001. doi:10.1007/978-0-387-21606-5

[6] XGboost Python Package — xgboost 1.3.0-SNAPSHOT documenta-
tion n.d. https://xgboost.readthedocs.io/en/latest/
python/index.html (accessed September 18, 2020)

335

Authorized licensed use limited to: University of Washington Libraries. Downloaded on November 11,2022 at 20:06:54 UTC from IEEE Xplore.  Restrictions apply. 



(a) Confusion matrices for Approach−1. (Left) For TLS-1, (Right) For TLS-2.

(b) Confusion matrices for Approach−2. (Left) For TLS-1, (Right) For TLS-2.

(c) Confusion matrices for Approach−3. (Left) For TLS-1, (Right) For TLS-2.

(d) Confusion matrices for Approach−4. (Left) For TLS-1, (Right) For TLS-2.

Fig. 5: Confusion matrices for four different classifiers with two different target labeling schemes, H = 30.
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