
AccessiText: Automated Detection of Text Accessibility Issues in
Android Apps

Abdulaziz Alshayban
School of Information and Computer Sciences

University of California, Irvine , USA

aalshayb@uci.edu

Sam Malek
School of Information and Computer Sciences

University of California, Irvine, USA

malek@uci.edu

ABSTRACT

For 15% of the world population with disabilities, accessibility is

arguably the most critical software quality attribute. The growing

reliance of users with disability on mobile apps to complete their

day-to-day tasks further stresses the need for accessible software.

Mobile operating systems, such as iOS and Android, provide vari-

ous integrated assistive services to help individuals with disabilities

perform tasks that could otherwise be difficult or not possible. How-

ever, for these assistive services to work correctly, developers have

to support them in their app by following a set of best practices

and accessibility guidelines. Text Scaling Assistive Service (TSAS)

is utilized by people with low vision, to increase the text size and

make apps accessible to them. However, the use of TSAS with in-

compatible apps can result in unexpected behavior introducing

accessibility barriers to users. This paper presents AccessiText, an

automated testing technique for text accessibility issues arising

from incompatibility between apps and TSAS. As a first step, we

identify five different types of text accessibility by analyzing more

than 600 candidate issues reported by users in (i) app reviews for

Android and iOS, and (ii) Twitter data collected from public Twitter

accounts. To automatically detect such issues, AccessiText utilizes

the UI screenshots and various metadata information extracted us-

ing dynamic analysis, and then applies various heuristics informed

by the different types of text accessibility issues identified earlier.

Evaluation of AccessiText on 30 real-world Android apps corrob-

orates its effectiveness by achieving 88.27% precision and 95.76%

recall on average in detecting text accessibility issues.

CCS CONCEPTS

· Software and its engineering→ Software testing and debug-

ging; ·Human-centered computing→ Accessibility design

and evaluation methods.

KEYWORDS

Accessibility, Automated Testing, Mobile Application

ACM Reference Format:

Abdulaziz Alshayban and Sam Malek . 2022. AccessiText: Automated De-

tection of Text Accessibility Issues in Android Apps. In Proceedings of

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9413-0/22/11.
https://doi.org/10.1145/3540250.3549118

the 30th ACM Joint European Software Engineering Conference and Sym-

posium on the Foundations of Software Engineering (ESEC/FSE ’22), November

14ś18, 2022, Singapore, Singapore. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3540250.3549118

1 INTRODUCTION

Mobile technology has progressed beyond the scope of communi-

cation and has enabled areas like education, entertainment, and

finance. For 15% of the world population with disabilities [41], ac-

cessibility is arguably the most critical software quality attribute.

The growing reliance of users with disability on mobile apps to com-

plete their day-to-day tasks further stresses the need for accessible

software.

Popular mobile operating systems, such as iOS and Android,

provide various integrated assistive services, such as TalkBack (a

screen reader for users with visual impairment), SwitchAccess (a

service for navigating an app via switches instead of the touch-

screen), or Voice Access (a service for controlling the device with

spoken commands) to help individuals with various disabilities

(e.g., vision, motor) use their phones and perform tasks that could

otherwise be difficult or not possible. However, for these assistive

services to work correctly, developers have to support such services

in their apps by following a set of best practices and accessibility

guidelines [11, 16]. Disappointingly, several studies [8, 36, 38] have

shown lack of accessibility and compatibility of mobile apps with

assistive services.

App developers can significantly improve the accessibility and

readability of text in their apps by considering factors such as con-

trast ratio, font selection, and text resizing. From an accessibility

standpoint, in addition to satisfying the minimum text size require-

ment and providing larger text where possible, it is also essential to

ensure that text can be adjusted according to users’ specific needs.

Users with a variety of visual impairments make this adjustment to

improve their ability to read small text on a small screen. Once this

setting is adjusted, the platform and any apps that have built-in

support for this feature will resize the displayed text within the

app.

One of the most poplar assistive services among mobile app

users is the Text Scaling Assistive Service (TSAS) [1], which is uti-

lized by people with low vision, to increase the default text size

and make apps accessible to them. The web content accessibility

guidelines (WCAG) [40], the recognized standard for digital acces-

sibility, states the requirement that users must have the ability to

adjust the text size, without losing any content or functionality.

However, similar to other assistive services, the use of TSAS with

incompatible apps, i.e., those implemented without accessibility in

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

984

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3540250.3549118
https://doi.org/10.1145/3540250.3549118
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3540250.3549118&domain=pdf&date_stamp=2022-11-09

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Abdulaziz Alshayban and Sam Malek

<TextView

android:id="@+id/textView1"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="Scaleable Text!"

android:textSize="26sp" />

Listing 1: A TextView that defines its size in terms of SP units.

The text displayed will scale based on the user’s preference.

mind, can result in unforeseen behavior in the app user interface

and layout, introducing various accessibility issues for users.

While several recent studies have investigated accessibility issues

affecting mobile apps [8, 18, 19, 38], none has focused on studying

mobile apps support for low-vision users that use TSAS. This is a

rather surprising gap, since TSAS is one of the most widely used

assistive services [1].

To facilitate a proper understanding of text accessibility issues,

this paper presents a study towards characterizing text accessibility

issues in mobile apps, as reported by users. We identify a set of

text accessibility classes encountered by users by analyzing more

than 600 candidate issues reported by users in (i) app reviews for

Android and iOS, and (ii) discussion and issues reported by users

on Twitter. Then, leveraging the identified set of text accessibility

issues, we devise and propose AccessiText, an automated technique

for accurate detection of text accessibility issues. We evaluate our

tool on a set of 30 real-world apps from various categories. Ad-

ditionally, we discuss how the different types of text accessibility

issues impact users, and discuss the causes and provide suggestions

on how developers can improve their apps to mitigate them.

Our findings highlight several important insights, including the

presence of various types of text accessibility issues in mobile apps.

Most importantly, the impact of text accessibility issues is not just

limited to a reduced user experience due to a distorted and less

appealing UI, but can also completely break some of the app func-

tionalities and make it inaccessible for a disabled user relying on

TSAS. For example, in some apps, the user is unable to navigate

from one screen to another, as the UI view responsible for handling

the user interaction becomes completely unreachable, rendering

the corresponding functions inaccessible.

Overall, the paper makes the following contributions:

• As a first step, we identify five different classes of text accessibility

issues by analyzing more than 600 candidate issues reported by

users in (i) app reviews for Android and iOS, and (ii) discussion

and issues reported by users on Twitter.

• Then, leveraging the identified set of text accessibility issues,

we devise and propose AccessiText, an automated technique for

accurate detection of text accessibility issues. We evaluate our

tool on a set of 30 real-world commercial apps.

• We discuss how the different types of text accessibility issues

impact users, and discuss the causes and provide suggestions on

how developers can improve their apps to mitigate them.

The paper is structured as follows: In Section 2 we provide a brief

background. In Section 3, we present our study on identifying the

different types of text accessibility issues. In Section 4, we describe

how our approach, AccessiText, works. In Section 5, we present

our findings. Section 6 discusses the results and outline relevant

insights. We provide a a brief review of prior research efforts in

Section 8.

2 BACKGROUND

The user interface (UI) for an Android app is made up of a series of

View and ViewGroup elements. Generally, an Android app contain

one or more activities (i.e., screens), with each activity consisting of

multiple instances of View and ViewGroup. The ViewGroup class is

a subclass of the View class, and acts as a base class for layouts and

views containers. The role of a ViewGroup is to provide an invisible

container to hold other views and to define the layout properties

that control how their child views are positioned on the screen.

A View is defined as the user interface element which is used to

create interactive UI views such as TextView, ImageView, etc., and

is responsible for drawing and event handling.

In Android, it is fairly simple to initially enable resizable text

views so that they become sensitive to the user’s selected prefer-

ences. As outlined in the Android documentation, the platform

allows dimensional values to be specified in a variety of ways,

however, when it comes to specifying the text sizes, the use of

scale-independent pixels (SP) is recommended as they can be ad-

justed based on the users’ preference. Listing 1 shows an example

of a scaleable Textview UI view component in Android. By setting

the width and height properties of the view to wrap_content, we

ensure that the width or height can expand as needed to contain

the text within it. In iOS, the process of supporting scalable text

size, while still straightforward, requires additional work and is

not enabled by default. Apple encourages the use of their existing

UIFontTextStyle classes, and then enabling properties such as

adjustsFontForContentSizeCategory for the UI view elements

to have an automatic update based on the user selected text size. In

case of developers using custom fonts, the process requires addi-

tional work by the developer.

At first, it may seem effortless to support app text scaling. De-

velopers can simply follow the outlined steps in the platform doc-

umentation to enable that feature without much work. However,

supporting this feature without considering proper layout design

and running tests with larger text sizes, especially in rich and com-

plex UIs, can result in many accessibility issues for users.

According to the Web Content Accessibility Guidelines (WCAG)

[40], the recognized standard for digital accessibility, web and mo-

bile apps should meet some minimum requirements called success

criteria. The Resizable Text success criteria mandate that the app’s

textual content must be resizable (scaleable) up to double the default

size without losing any of the app content or functionality. This

requirement is also outlined in Apple Human Interface Guidelines

[4] and Google Design Guidelines [11].

3 AN EMPIRICAL STUDY OF TEXT-BASED
ACCESSIBILITY ISSUES IN MOBILE APPS

As a first step to our study, we wanted to develop a deeper under-

standing of the types of accessibility problems that ensue when

an app does not properly handle text scaling. In this section, we

provide an overview of our findings, which set the foundation for

our automated testing technique described later in this paper.

985

AccessiText: Automated Detection of Text Accessibility Issues in Android Apps ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

Figure 1: Examples of (a) unresponsive view issue, and (b) missing view issue

3.1 Design and Data Collection

This section introduces the methodology of our study of users’

feedback regarding the use of TSAS. We detail how we extracted

and processed data. To determine the variety of accessibility issues

that can result from text scaling, wemanually analyzed two different

sources of information described below:

• App reviews. These are posts by users of (i) Android apps on

the Google Play store, and (ii) iOS apps on the App Store. App

reviews have been identified as a prominent source of valuable

feedback inmobile apps [26, 27, 29].They can provide information

such as bugs or issues [34], summary of user experience [23],

request for features and enhancements [17]. Our Android reviews

dataset includes reviews from 867 top apps. The App Store dataset

includes reviews from 1,350 top apps.

• Twitter data. These are tweet messages collected from public

Twitter accounts. It is common for users to utilize Twitter public

platform to provide feedback and report issues to developers,

as the majority of apps have a public presence on the platform.

Additionally, feedback posted on Twitter has been found to some-

times be more relevant and informative to app developers than

other sources [33, 34]. Thus, mining Twitter data provides sig-

nificant valuable insights into the types of accessibility issues

experienced by mobile apps users. We used the Twitter Academic

API [2] to collect the public tweets.

For both the Twitter and app stores datasets, our analysis covered

reviews and tweets in English only. We first collected candidate

tweets and reviews by searching both datasets with keywords rele-

vant to the use of TSAS. For Twitter data, we only consider tweets

with images, which are typically screenshots of the app containing

the issue. Sample queries included keywords such as "accessibility",

"large text", "low vision", and "visually impaired". While some users

mentioned the term "accessibility" when describing a text acces-

sibility issue, others addressed and described such issues without

mentioning the term. As using keywords to select user reviews and

tweets related to accessibility may result in many false positives, in

the first iteration, we manually analysed the content of all selected

accessibility reviews and tweets to exclude those that are not re-

lated to accessibility issues. It is important to note that we did not

consider data items tagged as false positive , i.e., discussions not

related to text-based accessibility in mobile apps, in the count of

the documents manually analyzed. At the end, we collected a set

of 412 app reviews, and 235 tweets. Given the limited number, we

considered all of them in our manual analysis.

The data collected from the two sources listed above was manu-

ally analyzed following a procedure inspired by open coding [32].

Our goal was to identify and classify the type of accessibility issue

reported by the user, by analysing the tweet/app review text and

associated image, and extracts any additional information provided.

We were able to classify the type of text accessibility issue re-

ported by users in 135 data items. The remaining data broadly falls

under two categories: (i) request for an additional feature from the

developer to be able to adjust the font size, from which it was not

clear whether it is because the app does not support TSAS or just

because the user is not aware such an assistive service exists, or

(ii) reported a text accessibility issue with the text scaling assistive

service, but did not provide enough information for us to identify

the type of issue, e.g., a user would describe the app UI to be dis-

torted and the text unreadable without providing much detail or a

specific description.

Finally, the output of this step was a set of text accessibility

issues for mobile apps, described in the following section.

3.2 Results

We list and describe a number of text accessibility issues that are

the result of the manual coding process for Twitter and app stores

data.

Unresponsive Views: Issues in this category describe textual

views with a fixed size, that do not respond to text size adjustments

986

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Abdulaziz Alshayban and Sam Malek

Figure 2: Examples of (a) overlapping views issue, and (b) cropped view issue

by TSAS, making this assistive service useless to the user. Figure 1(a)

shows an example of an unresponsive textual view (indicated by

the red dashed line) in the login screen for STC app, an account

management app with more than than 10 millions downloads in the

Play Store. Themain reason for this type of issue is the use of density

independent pixels (dp) for text font sizes, which unlike scale-

independent pixels (sp), do not respond to font size preference

specified by the user. Additionally, images of text can also lead

to the same issue as they cannot be scaled up by users. Both of

these options are sometimes used by developers to easily keep a

consistent look and feel for the app across multiple devices and

configuration, and unfortunately as a result, reducing the level of

accessibility and compatibility with assistive services for the app.

An example of a user feedback on MyVerizon app for this type

of issue: łThe app itself seems fine but does not honor the larger text

size accessibility option. This has been reported to them numerous

times.ž

Missing Views: When the text size increases, it is typical for

views to be rearranged on the screen as other textual views occupy

more space, and as a result, it is not uncommon for some views to

disappear from the visible part of the screen, and become completely

inaccessible by users. Figure 1(b) shows an example of a missing

view in the main dashboard for Health Tracker app where the

number of remaining days in the current challenge (delineated using

the dashed red line on the top right) disappears when adjusting the

text size. The impact of these issues is not just limited to distorting

the UI and making it less appealing, but can also break some of the

app functions and make it inaccessible for a disabled user relying

on TSAS.

An example of a user feedback on Messenger app for this type

of issue: łReally disappointed that the app I use the most has been

ruined in accessible large font. Pictures next to names gone, [...] ž

Overlapping Views: Overlapping happens when two views

on the same screen are rendered fully or partially over each other,

Figure 3: Number of text accessibility issues grouped by plat-

form

resulting in one of the views covering the content of the other.

Figure 2 (a) shows an example of two overlapping textual views in

the STC app. We can observe how the product title is covering the

price text, making it hardly readable. The common reason behind

this category of issues is the limited space and poorly defined

constraints behind these views.

An example of a user feedback on Discord app, for this type of

issue: łI have very poor eye sight due to a genetic condition. I rely on

the accessibility options available on the iPhone and I’m very sad to

see that the app doesn’t play well with large text. All the text is over

lapping making it hard to use the app.ž

Cropped Views: This type of issue happens when the displayed

text grows beyond the constrained height of the containing view,

causing part of the text to be invisible. Figure 2 (b) shows an example

of a cropped view in the Todo List app. The impact of this issue can

987

AccessiText: Automated Detection of Text Accessibility Issues in Android Apps ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

range from aesthetically unpleasant text to a completely unreadable

and inaccessible one, depending on the severity of the cropping.

Typically these kinds of issues are related to hard coding layout

limits. This allows the content to scale to different lengths and sizes.

Figure 4: A cropped view accessibility issue for AnovaCulinary

app as reported by a user.

An example of a user feedback on AnovaCulinary app, as part

of which the user also provided a screenshot of the app, shown in

Figure 4, that clearly demonstrated the issue: łIt’s not easy to set

the timer in your android app when it looks like this. I suspect this is

caused by large settings of Accessibility.ž

Truncated Views: Text truncation, i.e., shortening, typically

happens when the text grows beyond the constrained width of

the containing view. Truncated parts of a text are replaced by an

ellipsis (...). Figure 5 shows an example of a truncated view

in the Insight Timer app. While text truncation is an effective

way to hide additional details and keep the UI design consistent,

it can negatively impact the UI accessibility by hiding important

information from the user.

An example of a user feedback on ANZ bank app, for this type of

issue: łCan you please test your Android app when a phone is using

largest font [...] As when paying another person the bank account

number gets trimmed & can’t see all the numbers. You need to test

applications with large font sizes & accessibility features enabled.ž

Figure 3 shows the number of text accessibility issues grouped by

Android and iOS, the two mobile platforms considered in our study.

The lack of support for text scaling by apps is disappointing, given

that both platforms provide facilities for aiding developers to avoid

these issues. The identified five types of text accessibility issues

are present in both platforms. Unresponsive views, overlapping

views, and cropped views are the most common issues reported by

users. The high number of unresponsive views in iOS is consistent

with the results of a recent survey by Diamond [6], a technology

consulting company. By default, Android development supports

text resize, while iOS requires developers to use built-in fonts and

enable a specific flag in the system, or modify their custom fonts to

accommodate resizing. This difference between the two platforms

may explain the significant increase in unresponsive issues in iOS

compared to Android.

Figure 5: Example of a truncated view

4 APPROACH

Given the insights from our empirical study, we set out to develop an

automated tool for testing and detecting text accessibility issues in

Android. Although iOS can also benefit from such a tool, our current

implementation only supports Android. Extending our work to iOS

will be an area of our future work. Figure 6 shows an overview of our

approach, called AccessiText, consisting of two main components:

(I) Test Runner component that executes a given GUI test script

for an app under two settings, first, with the default text size, and

then, with larger text by activating TSAS. During the test execution,

AccessiText captures a series of screenshots, and collects various

metadata related to the UI view components present on each screen

that was explored during the test execution.

(II) Result Analyzer component that utilizes the information from

the previous component, and applies various checks, i.e., predefined

rules, to detect any text accessibility issues encountered. Finally,

Result Analyzer generates an accessibility report that provides a de-

tailed description of all the accessibility issues and their contextual

information.

We implemented AccessiText using Python programming lan-

guage and utilized Appium testing Framework [15]. In the remain-

der of this section, we describe AccessiText’s two components in

detail.

4.1 Test Runner

Test Runner takes a GUI test script as input and executes it twice,

first with device default text size, and then with the larger text size.

AccessiText uses Android Debug Bridge (adb) tool to control the

text size and activate/deactivate TSAS at each run. A GUI test case

represents an actual use-case provided by the app, and consists of

basically a sequence of steps, where each step typically identifies a

particular UI view, i.e., Button, and specifies an action, e.g., click

or scroll, that is performed on that view.

While executing each step in the test, AccessiText takes a screen-

shot, and extract an XML dump for the currently displayed screen.

XML dump file is parsed to get hierarchical views and properties

988

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Abdulaziz Alshayban and Sam Malek

Figure 6: Overview of AccessiText

details of each UI view in the current screen. Properties details in-

clude information such app-name, view-class, bounds, and text.

Listing 2 shows an example of the list of properties parsed from the

XML dump for a UI view in the hierarchy. View metadata informa-

tion will later be used by Result Analyzer component to compare

the different UI views and identify various text accessibility issues.

AccessiText presumes the test cases are (1) written for each app

using the default text size, and (2) actions in the test cases identify

the UI views through either resource-id or text containment (i.e.,

static attributes). These types of tests are also expected to work

with TSAS activated. AccessiText does not support tests cases in

which UI views are identified using absolute coordinates on the

screen. If a test uses absolute coordinates, it may not work when

TSAS is activated, because the positions of views change due to

the increase in text size. These assumptions are reasonable and

widely applicable. Indeed, developers almost always write tests for

their apps with the default text size. Developers typically do not

write tests with absolute coordinates, because regardless of TSAS,

tests using absolute coordinates cannot be executed on devices with

different screen resolutions.

During the test execution, Test Runner component performs

additional exploration steps that are not defined in the provided test.

For example, when executing a test case with TSAS activated, after

each step, AccessiText will try to identify whether the currently

displayed screen is scrollable either horizontally or vertically. If

so, it will perform a scrolling action, and collect the additional UI

views displayed after scrolling. This step is critical to identifying

additional views that were originally part of the screen under the

original settings (default text size) but have been pushed down (due

to increased text size) and became hidden. This list of additional

views (after scrolling) will enable us to perform an accurate and

complete comparison for all the views rendered with and without

TSAS activated.

In some cases, Test Runner may not be able to execute certain

steps with the TSAS activated. This is likely to happen when a view

index="0"

text="Get started"

resource -id="com.google.android.apps.authenticator2:id/

howitworks_button_get_started"

class="android.widget.Button"

package="com.google.android.apps.authenticator2"

content -desc=""

checkable="false"

checked="false"

clickable="true"

enabled="true" focusable="true"

focused="false"

scrollable="false"

long -clickable="false"

password="false"

selected="false"

bounds="[231 ,1176][488 ,1272]"

Listing 2: UI view properties parsed from the XML dump for

a Button with the text: Get Started

handling the action is missing or inaccessible (e.g., clicking on a

missing TextView). In this case, the accessibility issue is flagged as

a functionality failure. When this occurs, Test Runner component

deactivates TSAS, falls back to the original setting (i.e., the default

text size), executes the step, and then activates TSAS and contin-

ues with executing the remaining steps in the test case. This way

AccessiText is able to identify all text accessibility issues in the use

case exercised by the test.

4.2 Result Analyzer

The Result Analyzer utilizes the information collected by Test Run-

ner, e.g., the list of UI views and their metadata along with the UI

screenshot for each step, and performs a set of checks to detect the

text accessibility issues described in Section 3.

Unresponsive Textual Views: This check identifies textual

views that do not respond to text size changes by TSAS, mak-

ing this assistive service useless to the user. To detect this issue,

first, AccessiText filters textual views, i.e., views of type Button,

989

AccessiText: Automated Detection of Text Accessibility Issues in Android Apps ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

EditText, and TextView based on class property from the meta-

data in the parsed XML. For each view that satisfies this selection

criteria, AccessiText then obtains an image for the view by cropping

the corresponding step screenshot based on bounds property from

the XML. Finally, AccessiText utilizes Tesseract, an open-source

OCR engine, to identify the bounding box for the text inside the

selected view, and calculates the text height.

For the setting S with default text size, and setting S' with TSAS

activated, we can conclude that a textual view is unresponsive if

the view vi under setting S, and vi' under setting S' have the same

text height.

Missing Views: When the text size increases, it is typical for

views to be rearranged on the screen as other textual views occupy

more space. As a result, it is not uncommon for some views to

disappear and become completely inaccessible by users.

To detect such issues, AccessiText ensures that each view vi un-

der setting S, is also present on the same screen under setting S'. It

is worth noting that a view vi' is likely to have different coordinates

than vi and in some cases even not visible on the currently dis-

played part of the screen. However, it can still be found when a user

scrolls down. AccessiText takes into consideration this scenario,

and checks for vi' in the additional views after scrolling as provided

by Test Runner component.

Overlapping Views: Overlapping happens when two views

on the same screen are rendered fully or partially over each other,

resulting in one of the views covering the content of the other.

AccessiText obtains (x, y) coordinates of the upper left corner

and the lower right corner of each view vi from bounds property

from the XML. Overlapping issue happens if two views, vi' and vj'

in the same screen overlap each other under setting S' but not under

S. Intentional overlapping elements such as Floating Action Button

(FAB), or overlapping views that are part of the original design are

ignored and not flagged as issues. The assumption here is that any

unintended overlap between two elements under settings S’ but

not under S, is undesirable and likely to cause accessibility issues.

Cropped Views: This type of issue occurs when the text grows

beyond the constrained height of the containing view, causing

part of the text to be invisible. The impact of this issue can range

from aesthetically unpleasant text to a completely unreadable and

inaccessible one, depending on the severity of the cropping.

To detect this issue, first, AccessiText filters textual views, i.e.,

views of type Button, EditText, and TextView, based on class

property from the metadata in the parsed XML. It then obtains an

image for the view by cropping the corresponding step screenshot

based on bounds property from the XML. Finally, AccessiText uti-

lizes Tesseract to identify the bounding box for the text inside the

view, and calculates the text height. Given the text height under

setting S, we can easily calculate the expected text height under

setting S' by multiplying default text height by the scale factor

provided to TSAS.

For the same view vi under setting S, and vi' under setting S',

if the text height difference between vi multiplied by the scale

factor (expected height) and actual height of vi' is above a specific

threshold, the text within view vi' is determined to be cropped. The

above-mentioned threshold is configurable, allowing the user of

AccessiText to select a threshold that best fits the desired trade-off

between the number of false positives and true negatives reported

by the tool.

Truncated Views: Text truncation, i.e, shortening, typically

occurs when the text grows beyond the constrained width of the

containing view. Truncated parts of a text are represented by an

ellipsis (...). At a minimum, AccessiText ensures that there is

at least one word of non-truncated content in a truncated text.

While this is the default setting, the minimum required number

of non-truncated words is configurable, and would affect the rate

of false positives and true negatives. AccessiText utilizes Tesseract

to extract the text from view’s image, and compares it with text

property from the XML. If the first word is truncated, then that

view is considered to have a truncated text issue.

Finally, AccessiText generates an accessibility report that pro-

vides a description of all the accessibility issues and their contextual

information. Moreover, the report provides additional information

such as the level of overlap between the UI elements for issues of

type Overlapping Views, and the extent of cropping for issues of

type Cropped Views, which developers may utilize to prioritize and

sort the provided accessibility issues based on their severity and

impact.

5 EVALUATION

We have evaluated AccessiText on real-world apps to answer the

following research questions:

• RQ1. How effective is AccessiText for detection of text accessibil-

ity issues? What are the precision and recall for our approach?

• RQ2. How efficient is AccessiText in terms of its running time

for detection of text accessibility issues?

5.1 Experimental Setup

We evaluated our proposed technique using 30 apps. 15 of these

were selected from the set of apps reported by users to have text

accessibility issues, identified in the empirical study in Section 3.We

complemented our data set with another 15 apps randomly selected

from different categories on Google Play (e.g., travel, productivity,

communication).

We created one test case per app using Appium [15], which is an

open-source testing framework. Each test case reflects a sample of

an app’s main use cases (e.g., register an account, add a task, view

a product), as provided in its description. Our experiments were

conducted on a laptop with Intel Core i7-8550U, 1.80GHz CPU, and

16GB of RAM. We used an Android device (Galaxy S8) configured

with API level 28 and 1440 × 2960 pixel display resolution. The

text scaling factor was set to two, allowing TSAS to resize the text

to double default text size. Although TSAS can be set higher, we

believe doubling the text size is an appropriate choice as it follows

the requirements specified by the accessibility guidelines outlined

in WCAG [40], which requires that an app’s textual content be

resizable up to double the default size without losing content or

functionality.

5.2 Effectiveness of AccessiText

To answer this question, we carefully checked each accessibility

issue found by AccessiText to ensure their correctness. Table 1

990

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Abdulaziz Alshayban and Sam Malek

Table 1: The number of detected accessibility issues and running time for each app

Unresponsive
View

Missing View Overlapping
View

Cropped View Truncated View Total
Issues

Running Time
(seconds)

NZCovid Tracer * - 2 1 - - 3 58

Al-chan * 1 1 16 - - 18 46

Accor All * - - - 3 1 4 32

Instagram * 6 - - 4 1 11 68

Uber * - 1 - 3 - 4 47

AnovaCulinary * 9 - 2 11 - 22 90

ABC news * 2 1 4 - - 7 51

CNET * - - 10 1 - 11 37

Chase * 1 1 1 1 - 4 49

MyQ * 1 - 3 - - 4 71

Delta * - - 1 2 - 3 39

Allegiant * 8 - 4 - - 12 50

Rush * 1 1 4 - - 6 64

Pocket Casts * - - 4 4 2 10 36

Medium * - - 1 1 - 2 45

Zoom - - 1 10 1 12 47

StepTracker - 1 3 2 - 6 60

Goal Tracker - - 6 1 - 7 48

GetUpside - 1 5 2 - 8 56

STC 24 - 6 - - 30 83

Insight Timer 1 - - 3 2 6 31

To Do List - - - 2 - 2 53

Vocabulary - 12 8 2 - 22 92

Google Auth 1 - 2 2 - 5 59

Lose it - 3 18 1 - 22 51

AllTrails - 3 - - - 3 63

Roadie - 1 6 4 - 11 95

Fedex 3 - - 5 - 8 49

RecipeKeeper - 1 4 - - 5 80

Investment Portfolio - 2 12 3 4 21 168

Table 2: Precision and recall of AccessiText

of Detected Issues Precision Recall

Unresponsive Views 58 98% 100%

Missing Views 31 80.64% 100%

Overlapping Views 122 89.34% 100%

Cropped Views 67 73.13% 94.23%

Truncated Views 11 100% 84.61%

Total 289 88.27% 95.76%

shows, for each issue type, the number of accessibility issues de-

tected. Apps with a star (*) after the app name are from the set of

apps reported by users to have text accessibility issues, identified

in the empirical study in Section 3. Table 2 demonstrates the effec-

tiveness of AccessiText in terms of correctly detecting accessibility

issues discussed earlier. These results demonstrate that on average,

AccessiText has an overall 88.27% precision and 95.76% recall for

the different types of issues. Thereby, AccessiText is substantially

effective at detecting accessibility issues.

The relatively lower precision score for issues of type Cropped

Views is mainly caused by inaccurate results returned by the OCR

tool. Recall that AccessiText utilizes the tool to measure and com-

pare the text height based the bounding boxes returned by the tool.

Text that has low contrast with its background can be difficult to lo-

calize accurately. This also applies to the results of Truncated Views.

A false positive Missing View can occur when the Test Runner

component is unable to automatically scroll either horizontal or

vertically to reach the view, due to a limitation in the Accessiblity

API utilized by Appium framework for interacting with the app.

Overall, the results in this table show that AccessiText was able

to find accessibility issues in all of the apps in our dataset. The

number of issues detected in each app range from 2 to 30 with an

average of 9.5 issues per app. We can also observe that all the apps,

except two, suffer from two or more types of accessibility issues.

We can see that Overlapping View, Cropped View, and Missing

View are the most common types of accessibility issues, and are

present in 23, 21, and 13 apps, respectively, of the 30 apps in our

dataset. Overlapping views has the highest average number of

occurrences in each app.

Table 1 indicates that a few applications have accessibility issues

of Truncated View. The low number of issues could be attributed

to the conservative approach that AccessiText uses when checking

for issues of type Truncated View, where the presence of only one

word of the original text for the view is sufficient to not be flagged.

Additionally, this issue can only occur in UI views that have their

ellipsize property set to true by the developer (in the layout XML

file), which is not the default option.

5.3 Performance of AccessiText

The last column of Table 1 shows, for each application, the total

running time that AccessiText needed to execute the test case and

produce its analysis results. The running time ranges from 31 sec-

onds to 168 seconds (with an average of 1 minute and median of 51

seconds). Overall, the results for RQ2 show that AccessiText was

able to detect accessibility issues within a short time, as the average

991

AccessiText: Automated Detection of Text Accessibility Issues in Android Apps ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

running time for our approach is around 1 minute. The running

time shown includes running the test case and interacting with

the app, obtaining screenshots and xml dump data for the different

screens, performing the various heuristics to check accessibility

issues, and generating the final report with the list of accessibility

issues.

Several factors affect the running time of our approach, including

the number of screens and the complexity (i.e., number of UI views)

of the UI layout. As the number of screens and the complexity

of those screens grow, AccessiText needs to examine and validate

more UI views for potential accessibility issues.

Another factor is the network delay due to the communication

between AccessiText running on the laptop and Appium running

on the mobile device. To improve the execution time, AccessiText

minimizes the requests sent to the Appium server by fetching the

UI screenshots and their XML layouts in one call, storing them

locally on the laptop, and subsequently processing that information

locally to determine the properties of UI views comprising each

screen. This architecture allows for a faster analysis compared to

sending separate requests to Appium for information about each UI

view. Although not the setup we used in our experiment, running

the test cases in parallel on two devices for the two settings (default

and enlarged text) would further cut the running time by half.

6 DISCUSSION

Here, we elaborate further on findings and observations drawn

from both our empirical study of text accessibility issues and our

experiments with AccessiText:

• The impact of text accessibility issues goes beyond aesthetics. The

impact of text accessibility issues is not just limited to a reduced

user experience due to a distorted and less appealing UI, but

can also completely break some of the app’s functionalities and

make it inaccessible for a disabled user relying on TSAS. For

example, in AllTrails app (recall Figure 1), the user is unable

to navigate to the other tabs on the main on-boarding screen, as

the UI view responsible for handling the swiping event is pushed

off the screen and becomes completely unreachable, rendering

this function inaccessible. Similarly, in cases when the screen has

overlapping UI views, the impact can be very serious, especially

if both UI views are interactive (clickable) with each view per-

forming a different functionality, resulting in one of them to be

inaccessible.

• Various factors influence the severity of text accessibility issues. For

each type of text accessibility issue, there are factors that can

influence its severity. For issues of type Overlapping Views, the

level of overlap between the views is the main factor: the more

area of overlap there is, the higher the chances that one or both

UI views become unreadable or inaccessible. For issues of type

Cropped Views and Truncated Views, the extent of cropping (or

shortening) determines how they affect users. In cases where

the cropping is high, the words can be completely unreadable,

making the view containing the text inaccessible. For issues of

typeMissing Views, the type of view and its content, in addition to

whether it is an interactive UI view or not, determine its impact.

When a view goes missing, it is mainly due to the fact that it

was pushed beyond the bounds of the current screen. Missing

views can be a major issue, as the user is not even aware that

an element on the screen is missing. It is even more significant

when the missing view is an interactive view, i.e., a button or

a clickable text that performs some functionality in the app, as

explained earlier.

• Improperly designed layouts lead to text accessibility issues. An im-

portant consideration when creating large and complex layouts

is to use UI view components that are flexible and responsive,

such that they can gracefully adapt to larger text size, and ensure

that all the UI views are arranged according to the relationships

between sibling views and the parent layout. Missing properly

formulated constraints between neighboring UI views may cause

various text accessibility issues when scaling an app’s text. Ac-

cording to Android documentation, responsive layouts can be

achieved through a number of best practices. These include (1)

avoiding hard-coding specific value for any UI view components

and alternatively using wrap_content or match_parent, which

allow a view to set its size to whatever is necessary to fit the

content within that view or expand as much as possible within

the parent view, respectively, and (2) using ConstraintLayout

to specify the position and size for each view according to spatial

relationships with other views on the screen. This way, all the

views can move and stretch together as the screen size changes.

• Accessibility testing is a challenge for developers. Previous studies

[5, 8, 20] indicate a lack of awareness among developers about

basic access principles. Further exacerbating this general lack

of knowledge about accessibility, testing of software for acces-

sibility is a difficult problem, challenged by the availability of

numerous assistive services (e.g., screen reader, switch access,

TSAS, etc.) and device models (e.g., devices with different screen

sizes). Without proper tools and automated techniques, develop-

ers are simply overwhelmed with the number of settings under

which they have to test accessibility properties of their apps.

• Consistent design vs accessible design. Many instances of text

accessibility issues found in our study are caused by hard-coded

UI view dimensions and font sizes. To ensure that the app looks

and feels consistent, developers are tempted to use specific values

for the width and height attributes when defining the UI views.

These practices may result in apps that are not accessible or

compatible with assistive services, including TSAS.

• Certain lack of empathy. Although it was not a goal of our study

to report how developers respond to user feedback, we noticed

that app developers responded differently to user feedback re-

lated to text accessibility issues. In numerous cases the developer

response to the issue was to recommend that users go back to

the default text size to solve the issue, considering this to be an

unreasonable user expectation, instead of acknowledging this as

an accessibility issue that needs to be fixed. For example, the fol-

lowing is an example response from a developer of PulsePoint,

an app for requesting emergency assistance, to a user feedback:

łIf you’re using a very large default font, the ’agree’ button may be

pushed off of the page. Reduce your font size and try again.ž

• Shifting accessibility to earlier stages of software development. Ac-

cessibility can be better supported when it is deliberately con-

sidered in the early phases of the development life-cycle. User

experience design teams should consider assistive-service users

992

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Abdulaziz Alshayban and Sam Malek

when drafting early artifacts, such as app UI mock-ups. This

would allow developers to determine how the app UI layout

should adjust and behave to variable text size preferences from

the early stages of development.

7 THREATS TO VALIDITY

Our work is prone to several threats to validity:

• Threats to internal validity concern factors internal to our set-

tings that could have influenced our results. This is, in particular,

related to possible errors in the manual process of tagging the

set of text accessibility issues from the various data sources. To

reduce the threat, we followed the widely-adopted open coding

approach [36] and validated all results for consistency. Addition-

ally, to minimize the risk of bias due to implementation errors in

our tool, we have extensively tested our implementation, verify-

ing the results manually to confirm the accuracy of our approach

at finding the accessibility issues.

• Threats to external validity concern the generalizability of our

findings. Tomaximize the generalizability of the categories of text

accessibility issues, we have considered two different data sources

(app reviews and Twitter data), across two mobile platforms (iOS

and Android). However, it is still possible that we could have

missed some accessibility issue types available in sources we did

not consider. Additionally, For experimental setup, we used apps

that have been reported to have confirmed text accessibility issues

by users. We also complemented our data set with additional apps

from different categories like finance, communication, travel and

shopping.

8 RELATED WORK

8.1 Accessibility Testing

Accessibility analysis can be difficult and time-consuming, as it

requires human expertise and judgement to determinewhat barriers

may exist for people with disabilities. Researchers have investigated

various ways of automating the accessibility analysis process [12,

19, 24, 35], which can be broadly categorized into two categories:

static and dynamic accessibility analysis.

Lint [13] is an Android analysis tool for potential issues in var-

ious categories such as security, performance, and accessibility.

However, it can only identify a limited set of accessibility issues

including missing content descriptions and missing accessibility

labels declared directly in the XML layout files. Moreover, as a static

analysis tool, Lint requires access to app source code to find such

issues.

In the context of accessibility, dynamic analysis has hadmore suc-

cess in identifying and detecting issues [19]. Accessibility Scanner

[10], the recommended tool from Google to test apps for acces-

sibility, is based on the Accessibility Testing Framework [22], an

open-source library of various automated checks for accessibility,

and it can detect a wide set of accessibility issues. Alshayban et

al. [8] proposed an automated accessibility testing technique by

implementing a random crawler to simplify the process of accessi-

bility testing. MATE [19] is another tool focused on improved and

more efficient exploration process for accessibility testing. How-

ever, both of theses tools are limited to the same set of accessibility

issues as scanner, as they are based on the same accessibility testing

framework.

Latte [38] is an approach aimed at reusing existing tests written

to evaluate an app’s functional correctness to assess its accessibility

as well. It executes the test cases with the help of two types of assis-

tive services, screen readers and switches, to identify accessibility

failures. A recent work [18] by Chiou et al. utilized a combination of

static and dynamic analyses to detect keyboard accessibility traps

in web apps when using a keyboard interface.

Overall, none of the above-mentioned solutions investigate text

accessibility issues, nor evaluate how the use of TSAS affect the

app UI and introduce accessibility barriers for users.

8.2 GUI Testing

Our approach is also related to the area of GUI testing. Generally,

GUI testing is a form of dynamic analysis to verify the UI function-

ality of the application under test. This type of testing aims to check

whether the UI behaves correctly by executing various test inputs

(e.g., clicking a button, typing in a text field). However, since manual

GUI testing is costly and time-consuming, numerous automated

GUI testing techniques and tools have been proposed to assist de-

velopers in automatically testing app UIs for potential issues and

crashes. While the majority [37] of these tools [9, 14, 25, 30] focus

on the functional aspect of the app by revealing crashes through

testing the app UI with various inputs, some focus on specific issues

that impact the non-functional aspects of the app.

Swearngin et al [39] proposed a deep learning based technique

for uncovering potential usability issues in UI elements tappability.

Seenomaly [43] is an automated technique for detecting GUI anima-

tions effects, such as card movement, menu slide in/out, snackbar

display GUI animation, that degrade the app usability and violate

the platform’s UI design guidelines. Draw [21] helps developers

optimize the UI rendering performance of their mobile apps perfor-

mance by identifying the UI rendering delay problems. TAPIR [28]

is a static analysis tool for identifying inefficient image displaying

(IID), which can impact the app performance and user experience.

UIS-Hunter [42] focuses on detecting UI design smells that violate

Google Material Design Guidelines, for example, illegible buttons

due to lack of contrast, or confirmation dialogs with only a single

action that cannot be dismissed. Additionally, various studies [7, 31]

focused on web apps, specifically, the the detection and repair of

presentation issues that are the result of internationalization or

cross-browser failures.

Overall, none of the above-mentioned solutions investigate the

use of TSAS in mobile apps, and how it can introduce accessibility

barriers for users.

9 CONCLUSION

This paper presents an automated testing technique, called

AccessiText, for text accessibility issues when using text scaling

assistive services. The design and implementation of our approach

is informed by a large analysis of reported issues by users on mobile

app stores and Twitter. Evaluation of AccessiText on real-world

Android apps corroborates its effectiveness. Apart from the ac-

cessibility issue detection, we investigated and discussed possible

993

AccessiText: Automated Detection of Text Accessibility Issues in Android Apps ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

causes of these issues, and how developers can improve their apps

to mitigate such issues.

In our future work, in addition to extending our current imple-

mentation to support the detection of text accessibility issues in

iOS, we will devise automated program repair techniques for text

accessibility issues. We believe it is possible to leverage an approach

similar to AccessiText to evaluate alternative, potentially automat-

ically generated, UI designs that contain fixes to a variety of text

accessibility issues. The challenge lies in ensuring such automati-

cally generated designs conform to the original look and feel of the

app. We also plan to integrate our approach into the development

environments used by developers to support just-in-time analysis

and detection of text accessibility issues and layout violations, al-

lowing developers to immediately see the impact of their decisions

and how they may render the app inaccessible for assistive-service

users.

The research artifacts for this study are available publicly at the

companion website [3].

ACKNOWLEDGMENT

This work was supported in part by award numbers 2211790,

1823262, and 2106306 from the National Science Foundation. We

would like to thank the anonymous reviewers of this paper for their

detailed feedback, which helped us improve the work.

REFERENCES
[1] 2021. Accessibility Research Mobile Apps. https://accessibility.q42.nl/
[2] 2021. Twitter API for academic research | products | twitter developer platform.

https://developer.twitter.com/en/products/twitter-api/academic-research
[3] 2022. Accessitext. https://sites.google.com/view/accessitext/home
[4] 2022. human interface guidelines. https://developer.apple.com/design/human-

interface-guidelines/accessibility/overview/text-size-and-weight/
[5] Hayfa Y Abuaddous, Mohd Zalisham Jali, and Nurlida Basir. 2016. Web ac-

cessibility challenges. International Journal of Advanced Computer Science and
Applications (IJACSA) (2016).

[6] Diamond Accessibility. 2021. 2021 state of Accessibility report: Where do we
stand Today? https://blog.diamond.la/the-state-of-accessibility-report-where-
do-we-stand-today

[7] Abdulmajeed Alameer, Paul T Chiou, and William GJ Halfond. 2019. Efficiently
repairing internationalization presentation failures by solving layout constraints.
In 2019 12th IEEE Conference on Software Testing, Validation and Verification (ICST).
IEEE, 172ś182.

[8] Abdulaziz Alshayban, Iftekhar Ahmed, and Sam Malek. 2020. Accessibility issues
in Android apps: state of affairs, sentiments, and ways forward. In 2020 IEEE/ACM
42nd International Conference on Software Engineering. ICSE, Virtual, 1323ś1334.

[9] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salvatore
De Carmine, and Atif M Memon. 2012. Using GUI ripping for automated testing
of Android applications. In 2012 Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering. IEEE, 258ś261.

[10] Android. 2020. Accessibility Scanner - Apps on Google Play. https:
//play.google.com/store/apps/details?id=com.google.android.apps.accessibility.
auditor&hl=en_US.

[11] Android. 2020. Build more accessible apps. Retrieved August 20, 2020 from
https://developer.android.com/guide/topics/ui/accessibility

[12] Android. 2020. Espresso : Android Developers. Google. Retrieved August 20, 2020
from https://developer.android.com/training/testing/espresso

[13] Android. 2020. Improve your code with lint checks. Google. Retrieved August 20,
2020 from https://developer.android.com/studio/write/lint?hl=en

[14] androidmonkey. 2019. Application Exerciser Monkey:Android Developers. https:
//developer.android.com/studio/test/monkey.html

[15] Appium. 2020. Mobile App Automation Made Awesome. http://appium.io/.
[16] Apple. 2020. Accessibility on iOS. Retrieved August 20, 2020 from https://

developer.apple.com/accessibility/ios/
[17] Laura V Galvis Carreno and Kristina Winbladh. 2013. Analysis of user comments:

an approach for software requirements evolution. In 2013 35th international
conference on software engineering (ICSE). IEEE, 582ś591.

[18] Paul T Chiou, Ali S Alotaibi, and William GJ Halfond. 2021. Detecting and
localizing keyboard accessibility failures in web applications. In Proceedings of

the 29th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 855ś867.

[19] Marcelo Medeiros Eler, José Miguel Rojas, Yan Ge, and Gordon Fraser. 2018.
Automated accessibility testing of mobile apps. In 2018 IEEE 11th International
Conference on Software Testing, Verification and Validation. ICST, Västerås, Sweden,
116ś126.

[20] Andre P Freire, Cibele M Russo, and Renata PM Fortes. 2008. A survey on
the accessibility awareness of people involved in web development projects in
Brazil. In Proceedings of the 2008 international cross-disciplinary conference on
Web accessibility (W4A). 87ś96.

[21] Yi Gao, Yang Luo, Daqing Chen, Haocheng Huang, Wei Dong, Mingyuan Xia, Xue
Liu, and Jiajun Bu. 2017. Every pixel counts: Fine-grained UI rendering analysis
for mobile applications. In IEEE INFOCOM 2017-IEEE Conference on Computer
Communications. IEEE, 1ś9.

[22] Google. 2018. google/Accessibility-Test-Framework-for-Android. https://github.
com/google/Accessibility-Test-Framework-for-Android

[23] Emitza Guzman and Walid Maalej. 2014. How do users like this feature? a
fine grained sentiment analysis of app reviews. In 2014 IEEE 22nd international
requirements engineering conference (RE). Ieee, 153ś162.

[24] Shuai Hao, Bin Liu, Suman Nath, William GJ Halfond, and Ramesh Govindan.
2014. PUMA: programmable UI-automation for large-scale dynamic analysis of
mobile apps. In Proceedings of the 12th annual international conference on Mobile
systems, applications, and services. 204ś217.

[25] Cuixiong Hu and Iulian Neamtiu. 2011. Automating GUI testing for Android
applications. In Proceedings of the 6th International Workshop on Automation of
Software Test. 77ś83.

[26] Claudia Iacob and Rachel Harrison. 2013. Retrieving and analyzing mobile apps
feature requests from online reviews. In 2013 10th working conference on mining
software repositories (MSR). IEEE, 41ś44.

[27] Hammad Khalid, Emad Shihab, Meiyappan Nagappan, and Ahmed E Hassan.
2014. What do mobile app users complain about? IEEE software 32, 3 (2014),
70ś77.

[28] Wenjie Li, Yanyan Jiang, Chang Xu, Yepang Liu, Xiaoxing Ma, and Jian Lü. 2019.
Characterizing and Detecting Inefficient Image Displaying Issues in Android
Apps. In 2019 IEEE 26th International Conference on Software Analysis, Evolu-
tion and Reengineering (SANER). 355ś365. https://doi.org/10.1109/SANER.2019.
8668030

[29] Mario Linares-Vasquez, Christopher Vendome, Qi Luo, and Denys Poshyvanyk.
2015. How developers detect and fix performance bottlenecks in android apps. In
2015 IEEE international conference on software maintenance and evolution (ICSME).
IEEE, 352ś361.

[30] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. 2013. Dynodroid: An input
generation system for android apps. In Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering. 224ś234.

[31] Sonal Mahajan, Abdulmajeed Alameer, Phil McMinn, and William GJ Halfond.
2017. Automated repair of layout cross browser issues using search-based tech-
niques. In Proceedings of the 26th ACM SIGSOFT International Symposium on
Software Testing and Analysis. 249ś260.

[32] Matthew B Miles, A Michael Huberman, and Johnny Saldaña. 2018. Qualitative
data analysis: A methods sourcebook. Sage publications.

[33] Maleknaz Nayebi, Henry Cho, and Guenther Ruhe. 2018. App store mining is
not enough for app improvement. Empirical Software Engineering 23, 5 (2018),
2764ś2794.

[34] Dennis Pagano and Walid Maalej. 2013. User feedback in the appstore: An
empirical study. In 2013 21st IEEE international requirements engineering conference
(RE). IEEE, 125ś134.

[35] Neha Patil, Dhananjay Bhole, and Prasanna Shete. 2016. Enhanced UI Automator
Viewer with improved Android accessibility evaluation features. In 2016 Inter-
national Conference on Automatic Control and Dynamic Optimization Techniques
(ICACDOT). IEEE, 977ś983.

[36] Anne Spencer Ross, Xiaoyi Zhang, James Fogarty, and Jacob O Wobbrock. 2017.
Epidemiology as a framework for large-scale mobile application accessibility
assessment. In Proceedings of the 19th international ACM SIGACCESS conference
on computers and accessibility. ASSETS, Baltimore, MD, USA, 2ś11.

[37] Kabir S Said, Liming Nie, Adekunle A Ajibode, and Xueyi Zhou. 2020. GUI
testing for mobile applications: objectives, approaches and challenges. In 12th
Asia-Pacific Symposium on Internetware. 51ś60.

[38] Navid Salehnamadi, Abdulaziz Alshayban, Jun-Wei Lin, Iftekhar Ahmed, Stacy
Branham, and Sam Malek. 2021. Latte: Use-case and assistive-service driven
automated accessibility testing framework for android. In Proceedings of the 2021
CHI Conference on Human Factors in Computing Systems. 1ś11.

[39] Amanda Swearngin and Yang Li. 2021. Modeling mobile interface tappability
using crowdsourcing and deep learning. In Artificial Intelligence for Human
Computer Interaction: A Modern Approach. Springer, 73ś96.

[40] W3. 2020. Web Content Accessibility Guidelines (WCAG) Overview. World Wide
Web Consortium. Retrieved August 20, 2020 from https://www.w3.org/WAI/
standards-guidelines/wcag/

994

https://accessibility.q42.nl/
https://developer.twitter.com/en/products/twitter-api/academic-research
https://sites.google.com/view/accessitext/home
https://developer.apple.com/design/human-interface-guidelines/accessibility/overview/text-size-and-weight/
https://developer.apple.com/design/human-interface-guidelines/accessibility/overview/text-size-and-weight/
https://blog.diamond.la/the-state-of-accessibility-report-where-do-we-stand-today
https://blog.diamond.la/the-state-of-accessibility-report-where-do-we-stand-today
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor&hl=en_US
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor&hl=en_US
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor&hl=en_US
https://developer.android.com/guide/topics/ui/accessibility
https://developer.android.com/training/testing/espresso
https://developer.android.com/studio/write/lint?hl=en
https://developer.android.com/studio/test/monkey.html
https://developer.android.com/studio/test/monkey.html
http://appium.io/
https://developer.apple.com/accessibility/ios/
https://developer.apple.com/accessibility/ios/
https://github.com/google/Accessibility-Test-Framework-for-Android
https://github.com/google/Accessibility-Test-Framework-for-Android
https://doi.org/10.1109/SANER.2019.8668030
https://doi.org/10.1109/SANER.2019.8668030
https://www.w3.org/WAI/standards-guidelines/wcag/
https://www.w3.org/WAI/standards-guidelines/wcag/

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Abdulaziz Alshayban and Sam Malek

[41] WHO. 2011. World report on disability. Retrieved August 20, 2020 from
https://www.who.int/disabilities/world_report/2011/report/en/

[42] Bo Yang, Zhenchang Xing, Xin Xia, Chunyang Chen, Deheng Ye, and Shanping Li.
2021. Don’t Do That! HuntingDownVisual Design Smells in Complex UIs Against
Design Guidelines. In 2021 IEEE/ACM 43rd International Conference on Software

Engineering (ICSE). 761ś772. https://doi.org/10.1109/ICSE43902.2021.00075
[43] Dehai Zhao, Zhenchang Xing, Chunyang Chen, Xiwei Xu, Liming Zhu, Guoqiang

Li, and Jinshui Wang. 2020. Seenomaly: Vision-based linting of gui animation
effects against design-don’t guidelines. In 2020 IEEE/ACM 42nd International
Conference on Software Engineering (ICSE). IEEE, 1286ś1297.

995

https://www.who.int/disabilities/world_report/2011/report/en/
https://doi.org/10.1109/ICSE43902.2021.00075

	Abstract
	1 Introduction
	2 Background
	3 An empirical study of text-based accessibility issues in mobile apps
	3.1 Design and Data Collection
	3.2 Results

	4 Approach
	4.1 Test Runner
	4.2 Result Analyzer

	5 Evaluation
	5.1 Experimental Setup
	5.2 Effectiveness of AccessiText
	5.3 Performance of AccessiText

	6 Discussion
	7 Threats to validity
	8 Related Work
	8.1 Accessibility Testing
	8.2 GUI Testing

	9 Conclusion
	References

