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Abstract 

Background 

Motor learning experiments are typically performed in laboratory environments, which can 

be time-consuming and require dedicated equipment/personnel, thus limiting the ability to 

gather data from large samples. To address this problem, some researchers have 

transitioned to unsupervised online experiments, showing advantages in participant 

recruitment without losing validity. However, most online platforms require coding 

experience or time-consuming setups to create and run experiments, limiting their usage 

across the field. 

Method 

To tackle this issue, an open-source web-based platform was developed 

(https://experiments.neurro-lab.engin.umich.edu/) to create, run, and manage procedural 

skill learning experiments without coding or setup requirements. The feasibility of the 

platform and the comparability of the results between supervised (n=17) and unsupervised 

(n=24) were tested in 41 naive right-handed participants using an established sequential 

finger tapping task. The study also tested if a previously reported rapid form of offline 

consolidation (i.e., microscale learning) in procedural skill learning could be replicated with 

the developed platform and evaluated the extent of interlimb transfer associated with the 

finger tapping task. 

Results 

https://experiments.neurro-lab.engin.umich.edu/
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The results indicated that the performance metrics were comparable between the supervised 

and unsupervised groups (all p's > 0.05). The learning curves, average tapping speeds, and 

micro-scale learning were similar to previous studies. Training led to significant 

improvements in mean tapping speed (2.22 ± 1.48 keypresses/s, p < 0.001) and a 

significant interlimb transfer of learning (1.22 ± 1.43 keypresses/s, p < 0.05).  

Conclusions 

The results show that the presented platform may serve as a valuable tool for conducting 

online procedural skill-learning experiments. 

Keywords: Key pressing; offline gains; micro-offline; micro-online; cloud computing; 

machine learning  
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Introduction 

Motor learning is a fundamental and essential part of human behavior, characterized by 

acquiring new motor skills and enhancing the performance of old ones. Investigations 

probing the mechanisms that underlie the way we learn and adapt movements (i.e., motor 

learning studies) have increased dramatically over the past two decades. These studies 

typically use motor learning tasks that can be broadly categorized into one of the following: 

motor adaptation (Izawa, Rane, Donchin, & Shadmehr, 2008; Wei & Kording, 2009) or 

skill acquisition (Higgins, 1991; Krakauer, 2006; Newell, 1991). 

Motor learning experiments are typically conducted in person in a laboratory 

environment to control experimental parameters, but creating this controlled environment 

comes at a cost (Tsay, Lee, Ivry, & Avraham, 2021). In-person experiments require 

specialized equipment and dedicated personnel to recruit participants and administer 

experiments. They also impede the ability to conduct experiments with a large sample size 

because only one participant can be tested at any given time and some participants may be 

unable to attend in-lab sessions due to various constraints (e.g., time, cost, transportation). 

Additionally, in-person experiments typically recruit highly selective participants (e.g., lab 

members or college students), inducing bias and minimizing the generalizability of the 

study results (Tsay et al., 2021). Furthermore, lab environments may not always be feasible, 

such as restrictions imposed by the current global pandemic. Thus, especially given that 

motor learning studies suffer from issues related to small sample size and publication bias 

(Lohse, Buchanan, & Miller, 2016), there is an increasing need to look beyond lab 

experiments. 
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To address these issues, researchers have turned to online experiments (Anglada-Tort, 

Harrison, & Jacoby, 2022; Bonstrup, Iturrate, Hebart, Censor, & Cohen, 2020; Listman, 

Tsay, Kim, Mackey, & Heeger, 2021; Tsay et al., 2021). Running experiments online 

makes study recruitment easier for researchers and involvement easier for participants. As a 

result, investigators can recruit several participants who are more representative of the 

general population (Paolacci & Chandler, 2014). Online experiments have had great 

success in the social sciences, with platforms such as PsychoPy (Peirce, 2007), PsyToolkit 

(Stoet, 2017), Gorilla (Anwyl-Irvine, Massonnié, Flitton, Kirkham, & Evershed, 2020), and 

lab.js (Henninger, Shevchenko, Mertens, Kieslich, & Hilbig, 2022) allowing researchers to 

both create and conduct their studies online. The field of motor learning has also begun 

conducting online experiments, both by developing new platforms for motor adaptation 

studies (Tsay et al., 2021) and by using existing platforms for skill learning studies 

(Bonstrup et al., 2020; Listman et al., 2021). These studies have shown that online 

experiments are valid and replicate findings from in-person experiments (Bonstrup et al., 

2020; Tsay et al., 2021). However, a primary limitation of most current platforms is that 

they require researchers to code the experiments themselves; thus, users need to have some 

programming experience. This requirement creates a barrier to the widespread use of these 

platforms, ultimately limiting the impact of these online tools on the motor learning 

research community. 

The field of motor learning is broad and uses a diverse set of experimental paradigms 

(Ranganathan, Tomlinson, Lokesh, Lin, & Patel, 2021). However, an important 

requirement for running online experiments successfully is that the experimental paradigms 
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must be simple and should not require equipment or resources beyond those typically 

available in a participant’s home (e.g., computer, mouse, keyboard). One paradigm that fits 

this need and has been used over the past decade by numerous motor learning researchers is 

the sequential finger tapping task (Bonstrup et al., 2020; Bonstrup et al., 2019; Korzeczek, 

Cholin, Jorschick, Hewitt, & Sommer, 2020; Van Der Werf, Van Der Helm, Schoonheim, 

Ridderikhoff, & Van Someren, 2009; Witt, Margraf, Bieber, Born, & Deuschl, 2010). In 

this paradigm, a participant repeatedly taps with their hand a 5-element (or more) sequence 

(e.g., 41324) of finger movements as quickly and accurately as possible. Performance in 

this task is typically quantified by the improvements in speed (measured in keypresses/s) 

and/or accuracy (measured by the number of correct sequences tapped during each trial or 

block). The sequential finger tapping task has been well-characterized and used extensively 

in the study of procedural memory formation in the motor learning literature (Bonstrup et 

al., 2020; Censor, Sagi, & Cohen, 2012). For example, this task has been used to analyze 

the role of the hippocampus in sequential learning and consolidation of skill (Buch, 

Claudino, Quentin, Bonstrup, & Cohen, 2021; Diekelmann & Born, 2007), to investigate 

the mechanisms of offline motor learning at a microscale of seconds (Bonstrup et al., 2020; 

Bonstrup et al., 2019), and to study the hemispheric lateralization and interlimb transfer of 

sequence learning (Grafton, Hazeltine, & Ivry, 2002). Researchers typically rely on their 

own custom scripts to run these experiments in the lab or online (e.g., using the Amazon 

Mechanical Turk Platform). However, as mentioned previously, there is a critical need for 

developing a testing platform that provides flexible options to perform sequential finger 

tapping tasks without the need for coding experience to minimize barriers to designing and 

conducting online experiments. 
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Therefore, the purpose of this paper was to develop and test a new open-source, web-

based platform that allows researchers to design, set up, run, and manage sequential finger-

tapping experiments. No coding experience is required, and the experiments can be shared 

in any crowdsourcing platform to recruit participants online. Notably, the platform requires 

no specialized equipment or resources, including the need for web hosting. The 

experimental process is also highly time-efficient because of the ability to quickly create 

and run online experiments and the availability of pre-processed data immediately after the 

completion of the experiment. Additionally, a feasibility study was performed to show that 

1) the results of in-person and online experiments are similar on the platform and 2) these 

results are similar to those from a previous seminal paper on a rapid form of offline 

consolidation in skill learning (Bonstrup et al., 2019). The interlimb transfer (Grafton et al., 

2002; Japikse, Negash, Howard, & Howard, 2003; Lefumat et al., 2015; Parlow & 

Kinsbourne, 1989; Perez, Wise, Willingham, & Cohen, 2007; Jinsung Wang & Robert L 

Sainburg, 2004) of learning and offline consolidation is also reported, to showcase an 

example of the new possibilities that this platform gives to interested researchers. 

Methods 

Web-based Experimental Platform 

An open-source web-based platform (https://github.com/lhcubillos/motorlearningapp) 

was developed to allows researchers in the motor learning field to create and run different 

types of sequential finger tapping task experiments online without any coding or scripting 

requirement. The sequential finger tapping task was chosen because this is one of the most 

commonly used motor learning paradigms that require no specialized equipment for testing 

https://github.com/lhcubillos/motorlearningapp


8 
 

purposes, thereby making it most suitable for online experiments (Bonstrup et al., 2020; 

Bonstrup et al., 2019; Censor et al., 2012; Friedman & Korman, 2016; Korzeczek et al., 

2020; Van Der Werf et al., 2009; Witt et al., 2010). The short sequences used in this task 

also meant that the learning was focused on how participants improve motor performance, 

as opposed to other features of learning such as sequence acquisition (Ghilardi, Moisello, 

Silvestri, Ghez, & Krakauer, 2009).  

The platform was developed using the frameworks Django (version 4.0, Django 

Software Foundation) and Vue (version 3.0, Evan You). Django is a Python-based open-

source framework typically used for the back-end development of web applications (i.e., 

reading and writing to the database, general data processing, etc.). On the other hand, Vue 

is an open-source JavaScript framework for front-end development that was used to 

develop the user interfaces (both researcher and participant). The web application is 

currently hosted on the Google Cloud Platform (GCP) and can be publicly accessed at 

https://experiments.neurro-lab.engin.umich.edu on any browser. A sample experiment to 

test the platform is available online at https://experiments.neurro-

lab.engin.umich.edu/experiment/5FYA. Due to the platform’s open-source nature, 

researchers with some programming experience can also run the application locally and add 

any new features they need for their specific studies.  

The platform has two user interfaces: the researcher interface (Figure 1 top) and the 

participant interface (Figure 1 bottom). The investigators can access the researcher interface 

after logging in with their username and password created during their profile registration. 

After logging in, the researcher interface displays the investigator's profile that contains 

https://experiments.neurro-lab.engin.umich.edu/
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their current studies and options for creating new ones. Within each existing study, the 

investigator can view the number of responses, download recorded data, publish the study 

(make it available to participants), or even delete it when necessary. Existing studies are 

classified as unpublished or published. A study that is unpublished means that its study 

parameters are still being decided upon. In this stage, the study can be edited and tested but 

is unavailable to participants. After the investigator is satisfied with their study, they can 

publish it. When the study is published, it is available to participants and can no longer be 

edited by the investigator. Once the investigator is satisfied with the number of participants, 

or they wish to pause data collection for whatever reason, they can disable the study, 

making it unavailable to participants. A disabled study can be re-enabled at any time if the 

investigator wishes to resume data collection. 
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Figure 1 – Web application flowchart: A schematic of the webpage flow as seen by the 
two types of users: researchers (top) and participants (bottom). Researchers log in to the 
platform and are then presented with a profile page. There, they can create either a study or 
an experiment, manage unpublished and published studies, and test experiments (mock 
examples shown). Participants enter the study, experiment, and group codes given to them 
by the researchers, and then are redirected to the corresponding experiment. 

When creating a new study or editing an unpublished study, the investigator’s user 

interface allows the investigator full control of the study parameters. Within a study, the 

investigator can select the number of groups that will be included in the study and define 

the experiments that each group will do. For example, an investigator could create a simple 

interlimb transfer study with one group that performs two experiments: one experiment 

with their right hand and then a second experiment (e.g., a duplicate of the first) with their 

left. Each experiment is divided into blocks, the number of which is specified by the 

investigator, and each block is defined by a fixed time interval or a fixed number of key-
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pressing sequences. Each key pressing sequence is referenced as a “trial” in the platform 

and all trials in a block have the same sequence. This key sequence can be either manually 

defined or randomly generated by the program. Through the user interface, the investigator 

can also control the participant’s access to performance feedback during the experiment 

(both correctness of the most recently pressed key and improvement across blocks) and the 

rest time (both between blocks and between trials within each block). The platform can also 

facilitate study execution by allowing the investigator to include instructional videos for the 

participants and the informed consent document so that participants can view and sign it 

online. 

In the participant interface, the user is first shown a text box, in which they type a study 

code provided by the investigator. Once the participant submits the code, they are shown 

the study inclusion/exclusion criteria and the informed consent document, which they are 

asked to agree to. After consenting to the study, they are shown a short instructional video 

detailing the experiment instructions, and then redirected to the start of the experiment. 

While participating in the experiment, the key sequence is presented on the screen and the 

participant is instructed to begin typing the sequence as instructed (e.g., “type as quickly 

and as accurately as possible”—these instructions can be customized based on the 

researcher’s need and experimental protocol). Behind each character in the sequence is a 

grey box. The program offers feedback on the number of keys pressed in the current 

sequence by changing the color of the grey box behind the current character in the sequence 

when a key is pressed. If the investigator enables feedback regarding the correctness of the 

keypresses, the box will turn blue when the pressed key is correct or orange when incorrect. 
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If this feedback is disabled, the box will turn blue when a key is pressed, regardless of 

correctness. Once the background color behind a character has been changed, the new color 

is held until the end of the sequence, after which it resets to the default grey. If the 

investigator enables feedback on performance for each block, the participant will see a bar 

graph below the sequence with the number of correct and incorrect trials in the current 

block. Additionally, regardless of the experiment configurations, the participant will see 

their progress in the current experiment and their progress in the current block, as well as a 

short instruction passage to help remind participants what their objective is and what hand 

they should use for the current block (again, these instructions can be removed from display 

if needed). When the participants get to the end of the experiment, they are shown a short 

voluntary survey to fill out. There, the researcher can have the participant fill out some non-

identifiable demographic information about themselves, such as age or gender. 

Once the investigator is satisfied with the number of responses in a certain experiment, 

they can proceed to download the participants’ data. Three different comma-separated-

values (CSV) files can be downloaded, each with different information about the 

experiment. First, the survey data file provides responses of each of the participants to the 

survey questions, as well as the time when they started the experiment. Second, the raw 

data file provides the timestamp and value for each key that the participant pressed, as well 

as if it was correct in the context of the respective trial. Finally, the processed data file 

provides the data aggregated in trials, showing correctness and mean/average tapping speed 

for each trial and participant. 
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Feasibility study 

A feasibility study was conducted to compare supervised and unsupervised learning (i.e., 

participants learning the task in their daily living environment) and to showcase the 

possibilities of the presented platform to conduct other similar motor learning studies. A 

total of 43 naïve adult participants (25 males, 18 females, age 30.46 ± 9.8) participated in 

this feasibility study. All participants were right-hand dominant with no history of 

significant neurological or orthopedic disorders. The study was reviewed and determined to 

be Exempt by the University of Michigan Human Subjects Institutional Review Board. All 

participants agreed to participate in the study with an online consent form before starting 

the experiment. 

Participants were separated into two groups: a “supervised” group and an 

“unsupervised” group. Participants in the “supervised” group (18 participants, 10 males, 8 

females, age 30.1 ± 10.9 years) performed the experiment in a controlled, laboratory 

environment while under the supervision of a study team member. Participants in the 

“unsupervised” group (25 participants, 15 males, 10 females, age 30.8 ± 9.2 years) 

performed the experiment outside of the laboratory (typically in their homes) via the 

internet, without supervision. Participants in the supervised group were mostly recruited 

from the university pool and had relatively similar background (college students), whereas 

participants in the unsupervised group were more diverse and were mostly outside the 

university pool to ensure that they represented a more heterogenous sample that are 

typically observed in the “wild” (i.e., ecologically valid settings). Except for the differing 

levels of supervision, all experimental protocols were identical between the groups.  
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The experiment consisted of two parts with one minute of rest between them. In the first 

part of the experiment, participants were instructed to accurately type the sequence '41324' 

as fast as possible with their non-dominant (left) hand [Figure 2A left]. While a shorter 

sequence like this may seem simple, it is important to note that the primary purpose of this 

study was to evaluate how the speed at which the participants accurately typed the sequence 

improved with practice, not in accuracy itself. Moreover, using a simpler sequence allowed 

participants to focus on motor performance improvements rather than other features of 

learning, such as sequence acquisition (Ghilardi et al., 2009). More importantly, this first 

part of the experiment was a replication of a previous study (Bonstrup et al., 2019) to 

directly compare the proposed platform’s results with previous research without the 

confounding factor of a new experimental design. Each participant received 36 blocks of 

training with each block consisting of 10 seconds of practice and 10 seconds of rest. During 

practice, the participants were instructed to accurately type as many sequences as possible. 

Whenever a key was pressed, the platform informed the participant of the total number of 

keys pressed in each sequence, but not whether they were correct or not. Participants were 

instructed to look at their computer screens (not at their hands) throughout the experiment. 

In the second part of the experiment, participants typed the sequence '70897' as fast and as 

accurately as possible with their right hand [Figure 2A right]. Other than the sequence and 

the hand used for training, the second part of the experiment was identical to the first. The 

addition of the second part of the experiment enabled using the platform to examine the 

interlimb transfer of learning from the first part of the experiment. The sequence was 

chosen to be the mirrored version of the first sequence, as previous research has shown that 

interlimb transfer is present when the second sequence is mirrored from the first (Grafton et 
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al., 2002). Note that the objective of the second part of the experiment was to demonstrate 

the feasibility of the platform’s ability to quickly and easily conduct other forms of motor 

learning studies and answer a variety of motor learning research questions. 

Data Analysis 

All outcome metrics were computed from each participant’s tapping speed in a trial. A 

description of all these variables, along with the mathematical notations to compute them, 

can be found in the supplementary material document. A trial’s tapping speed was found 

using Equation (1) (Bonstrup et al., 2019), and it quantified the rate at which the participant 

was pressing keys: 

𝑇𝑟𝑖𝑎𝑙 𝑡𝑎𝑝𝑝𝑖𝑛𝑔 𝑠𝑝𝑒𝑒𝑑 =
1

1
4

∑ 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑖
4
𝑖=1  
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Figure 2 – Schematic of experimental protocol and data processing: (A) A schematic of 
the experimental protocol. Participants practiced a finger tapping task where they first 
learned to type the sequence '41324' as fast and as accurately as possible with their non-
dominant, left hand. After a one-minute rest following the completion of the task with their 
left hand, they then learned to type the sequence '70897' as fast and as accurately as 
possible with their right hand. Participants received 36 blocks of training for each hand 
with each block consisting of 10 seconds of practice and 10 seconds of rest. (B) A 
schematic for the computation of micro-scale learning (micro-offline and micro-online 
learning). Micro-offline learning quantified the learning that occurred during short periods 
of rest, and micro-online learning quantified the learning that occurred during short periods 
of practice. For block i, micro-offline learning is defined as the difference in tapping speed 
(keypresses/second) between the first trial of block i and the last trial of block i-1. Micro-
online learning is defined as the difference between the last and first trials of block i. Total 
micro-learning at that block is the sum of both quantities. (C) A schematic of the interlimb 
transfer of motor skill learning metrics. Early transfer is calculated as the difference in the 
mean trial tapping speed between the first block of the right and left hand. Late transfer is 
calculated as the difference in mean trial tapping speed between the last block of the right 
and left hand. 
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where 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑖 represents the time interval between keypresses 𝑖 and 𝑖 + 1 in a given 

trial. Tapping speed was only calculated when the trial was correct (i.e., all keys of the 

sequence were pressed in the correct order and within the time frame) (Bonstrup et al., 

2020; Bonstrup et al., 2019).  

The tapping speed was used to compute the following learning metrics: early micro-

online learning, early micro-offline learning, early total micro-learning, and total learning 

across all trials. These metrics were computed for both the right and left hands, generating 

eight learning metrics. The first 11 blocks of training for the hand under consideration were 

used for studying early learning (Bonstrup et al., 2019). Micro-offline learning was defined 

as the difference in tapping speed (keypresses/second) between the first trial of a practice 

block and the last tria l of the previous block (Figure 2B, (Bonstrup et al., 2019)) and 

quantified learning that occurred during short periods of rest. Early micro-offline learning 

was computed as the sum of the micro-offline learning for the first 11 blocks. Micro-online 

learning was defined as the difference in tapping speed between the last and the first trial of 

a practice block (Figure 2B, (Bonstrup et al., 2019)) and quantified learning that occurred 

during short periods of practice. Early micro-online learning was computed as the sum of 

the micro-online learning for the first 11 blocks. Total micro-learning was defined as the 

sum of the micro-offline and micro-online learning and quantified the learning between 

blocks (i.e., from the beginning of one block to the beginning of the next block). Early total 

micro-learning was calculated as the sum of total micro-learning in the first 11 blocks and 

represented all changes in tapping speed during early learning (Bonstrup et al., 2019). Total 
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learning over all trials was calculated as the difference between the mean trial tapping 

speed of the first and the last block of practice.  

To quantify if performance improvements transferred from one limb to the other (i.e., 

interlimb transfer), two transfer metrics were calculated: early transfer and late transfer 

(Figure 2C). Early transfer was calculated as the difference between the mean trial tapping 

speed of the left and right hands on the first block of practice. Late transfer was calculated 

as the difference between the mean trial tapping speed of the left and right hands on the last 

block of practice. 

Data Management and Analyses 

Data from two participants were excluded from the analysis. One participant from the 

unsupervised group was excluded because they did not understand the experimental 

instructions and performed only one trial per block. A participant from the supervised 

group was excluded because they had a very high mean tapping speed and was identified as 

an outlier based on Tukey’s fences (Tukey, 1977).  

An inclusive statistical approach that involved classical (p-value) and Bayesian analyses 

(Bayes Factor) was used when comparing the results of supervised and unsupervised 

learning. Learning and interlimb transfer data were compared between the supervised and 

unsupervised groups using two-tailed two-sample t-tests and two-tailed Bayesian two-

sample t-tests. The Bayes factor (BF01) for the likelihood of the null hypothesis (groups are 

equal) over the alternative hypothesis (groups are different) was used to interpret the results 

from two-tailed Bayesian two-sample t-tests. P-values were adjusted for multiple 

comparisons using the Benjamini-Hochberg procedure (BHP) to control for false discovery 
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rate (FDR) (Benjamini & Hochberg, 1995; Glickman, Rao, & Schultz, 2014; Korthauer et 

al., 2019). If no significant differences were observed between the groups across all 

metrics, the data from all participants were collapsed for each of these metrics and a two-

tailed one-sample t-test was run to test for practice effects on learning and interlimb 

transfer. Again, the Benjamini-Hochberg procedure was used to control for FDR due to 

multiple comparisons. A significance level of α = 0.05 was used for all statistical analyses. 

Additionally, a linear discriminant analysis (LDA) model was trained to classify the 

group for each participant, using the ten learning and interlimb transfer metrics described 

above as features of the LDA model. The output from the LDA classifier was compared to 

that from a random classifier (a random classifier simply ‘guesses’ between the two groups) 

to determine whether the features contained enough information to discriminate between 

the two groups. The comparison between the two classifiers was performed using 

Dietterich’s 5x2-fold cross-validation (CV) test (i.e., 5 iterations of twofold cross-

validation), which is more powerful and less prone to type I errors than paired t-tests when 

comparing classifiers (Dietterich, 1998). This process was iterated 1000 times to get a 

distribution of the accuracy of the classifiers and the p-values. Note that if the null 

hypothesis is true (no difference in accuracy between LDA and random classifiers), then 

the p-values should follow a uniform distribution. 

Results 

All the data for the supervised (code = 5P6U) and unsupervised (code = C6XN) groups are 

available here: https://osf.io/k43qw/. Participants in the supervised group had similar 

learning curves across both hands to those in the unsupervised group (Figures 3A and 3B). 

https://osf.io/k43qw/
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Both groups improved in tapping speeds in the early trials and then tended to stabilize 

towards the end. The initial tapping speed was generally higher on the right hand when 

compared with the left hand in both groups. No significant difference between the groups in 

any of the ten metrics described above were found (all BHP adjusted p-values ≥ 0.65, Table 

1 and Supplemental Figures 1 and 2). The observed effect sizes were also small, and the 

BF01 values were generally favoring the null hypothesis (Table 1). The two classifiers 

(LDA and random) did not show a significant difference (52 ± 5% vs. 50 ± 3% (mean ± 

S.D.); mean p=0.55) when predicting the group of participants (Figure 4). The p-values 

from the Dietterich’s test followed a uniform distribution with a mean p = 0.55 with p-

values exceeding the significance level (α = 0.05) for 97.2% of the time.  

Table 1: Descriptive data for the ten learning metrics in the supervised and unsupervised 
groups.   

Variable Unsupervised  
(Mean ± S.D.) 

Supervised  
(Mean ± S.D.) 

Effect Size 
Cohen’s d 

Bayes Factor 
(BF01) 

Left early total micro-learning 1.21 ± 1.70 2.08 ± 1.24 −0.602 0.80 

Left early micro-offline learning 4.81 ± 4.89 3.75 ± 4.27 0.234 2.60 

Left early micro-online learning −4.10 ± 5.36 −2.10 ± 5.09 −0.384 1.81 

Right early total micro-learning 1.12 ± 1.19 1.41 ± 1.88 −0.174 2.87 

Right early micro-offline learning 2.75 ± 5.13 3.31 ± 5.58 −0.104 3.10 

Right early micro-online learning −2.08 ± 6.22 −2.33 ± 6.80 0.038 3.21 

Total left learning 2.20 ± 1.81 2.24 ± 1.23 −0.022 3.23 

Total right learning 1.02 ± 1.13 1.23 ± 1.54 −0.146 2.97 

Early transfer 1.23 ± 1.57 1.21 ± 1.37 0.013 3.23 

Late transfer 0.05 ± 0.81 0.20 ± 1.01 −0.162 2.91 

S.D. = standard deviation. Note that two-sample t-tests with false discovery rate (FDR) 
corrections for multiple comparisons using the Benjamini-Hochberg procedure (BHP) 
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indicated that none of the variables were significantly different between the groups (all 
BHP adjusted p-values > 0.65). 

 

After collapsing data from both groups, all metrics except late transfer were significant 

(Table 2). On the left hand, micro-offline learning was positive for all early blocks of training, 

while micro-online learning was positive only in the first block and near-zero or negative for 

the remainder of early training (Figure 5A). The decomposition of early learning into micro-

offline and micro-online learning showed that early learning was initially driven by positive 

gains in micro-offline learning but eventually plateaued as gains in micro-offline learning 

were offset by a loss in micro-online learning (Figures 5C and 6 left). On the right hand, early 

learning plateaued earlier, with most learning appearing on the first two blocks (Figure 5 B 

and D, and 6 right). The micro-offline and micro-online learning followed a similar pattern 

as the left hand, except that the extent of micro-offline gains was smaller.  

Table 2:  Descriptive data for the ten learning metrics collapsed between groups  

Variable All participants 
(Mean ± S.D.) 

Effect Size 
Cohen’s d 

Left early total micro-learning 1.72 ± 1.49† 1.155 

Left early micro-offline learning 4.19 ± 4.51† 0.930 

Left early micro-online learning −2.93 ± 5.23† −0.560 

Right early total micro-learning 1.29 ± 1.62† 0.797 

Right early micro-offline learning 3.08 ± 5.34† 0.577 

Right early micro-online learning −2.23 ± 6.49† −0.343 

Total left learning 2.22 ± 1.48† 1.503 

Total right learning 1.14 ± 1.37# 0.831 

Early transfer 1.22 ± 1.43* 0.849 
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Late transfer 0.13 ± 0.93 0.146 

S.D. = standard deviation. Note that one-sample t-tests with false discovery rate (FDR) 
corrections for multiple comparisons using the Benjamini-Hochberg procedure (BHP) 
indicated that all of the variables, except late transfer, were significantly different from 0. 
Daggers (†) denote p<0.001, hashes (#) denote p<0.01, and asterisks (*) denote p<0.05. 
 

Early transfer (i.e., the difference between tapping speed in the left and right hands in the 

first block of training) was significantly different from zero (1.22 ± 1.43 keypresses/s, Mean 

± S.D., BHP adjusted p = 0.038), but late transfer (i.e., the difference between tapping speed 

in the left and right hands in the last block of training) was not significantly different from 

zero (0.13 ± 0.93 keypresses/s, Mean ± S.D., BHP adjusted p = 0.356).  

 

Figure 3 – Tapping speed performance: A scatterplot showing the mean tapping speed 
(keypresses/second) of the supervised and unsupervised groups in each block of practice for 
the (A) left and (B) right hand of the participants. The shaded region indicates the standard 
error of the mean (SEM). Note that the performance on the finger tapping task was similar 
between the supervised and unsupervised groups for both hands. Also, note that the tapping 
speed on the initial block of the right (i.e., transfer) hand was higher than the left (i.e., 
training) hand, indicating the presence of interlimb transfer of procedural skill learning. 
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Figure 4 – Classification using Linear Discriminant Analysis (LDA) model: Scatterplot 
showing the projection of the ten features described in Tables 1 and 2 to the first two 
discriminant coordinates of a linear discriminant analysis (LDA) model. Each marker 
represents a single participant, and the color represents the group they belong to. No clear 
separation can be observed between the two groups, and no significant difference in 
classification accuracy was found between the LDA classifier and a random classifier 
(mean p = 0.55). Note that for visualization purposes only the first two discriminant 
coordinates have been plotted. 
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Figure 5 – Micro-scale learning: A scatterplot showing the mean micro-scale (micro-
offline, micro-online, and total) early learning (first 11 blocks) for the (A) left and the (B) 
right hand across all participants. Micro-offline learning was defined as the difference in 
tapping speed (keypresses/second) between the first trial of a practice block and the last trial 
of the previous block and quantified learning that occurred during short periods of rest. Early 
micro-offline learning was computed as the sum of the micro-offline learning for the first 11 
blocks. Micro-online learning was defined as the difference in tapping speed between the last 
and the first trial of a practice block and quantified learning that occurred during short periods 
of practice. Early micro-online learning was computed as the sum of the micro-online 
learning for the first 11 blocks. Total micro-learning was defined as the sum of the micro-
offline and micro-online learning and quantified the learning between blocks. Early total 
micro-learning was calculated as the sum of total micro-learning in the first 11 blocks and 
represented all changes in tapping speed during early learning. The shaded region represents 
the standard error of the mean (SEM). The horizontal dashed line shows the zero value. Note 
that micro-online learning was negative for most of the blocks, indicating that participants 
had higher tapping speeds at the beginning than at the end of each block. Traces showing the 
mean tapping speed for the (C) left and (D) right hand across all participants for the ten 
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seconds in each block during early learning. The shaded region represents the SEM. Note 
that this plot was created only for visualization purposes and the details for creating this plot 
are provided in the supplementary material. 
 

Discussion 

This paper introduces a novel open-source web-based application that allows researchers 

with no coding experience to create and conduct their own motor sequence learning 

experiments from anywhere in the world. The feasibility of the application was also 

established by showing that (1) the results from unsupervised online experiments were 

comparable to those of supervised in-person experiments and (2) the results were 

qualitatively in close correspondence with previous studies (Bonstrup et al., 2020; Bonstrup 

et al., 2019). Finally, the flexibility of the platform was demonstrated by performing an 

interlimb transfer study to quantify the extent of motor skill transfer between the left and 

right hand. These findings demonstrate that the presented web-based platform could serve 

as a viable tool to conduct online procedural skill learning experiments that involve 

sequential finger tapping. 
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Figure 6 – Distribution of micro-scale learning: Violin plots showing the distributions of 
early micro-offline learning, early micro-online learning, and early total micro-learning for 
the (left) left and (right) right hand across all participants. Early micro-learning (micro-
offline, micro-online, and total) was computed as the sum of the values observed in the first 
11 blocks. Note that the white circles indicate the median values, the filled circles indicate 
individual data points, and the width of the shaded region represents the approximate 
frequency of data points in each region. 

 

Previous studies have evaluated the feasibility of conducting online behavioral 

experiments ranging from reaction time measurements (Semmelmann & Weigelt, 2017) to 

motor learning studies involving sequential finger tapping task (Bonstrup et al., 2020) and 

visuomotor adaptations (Tsay et al., 2021). These studies have found that online 

experiments yield similar results to those performed in-person in the lab and can be a 

suitable alternative to laboratory experiments (Bonstrup et al., 2020; Casler, Bickel, & 

Hackett, 2013). The results presented here are consistent with these studies, as no 

meaningful differences were found in any of the measured parameters between the 

supervised and the unsupervised groups despite differences in background and ethnicity. 

This finding and those of others indicate that a highly structured laboratory environment 
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may not always be necessary to conduct certain types of motor learning experiments, 

particularly when no special instrumentation other than a personal computer is needed for 

the experiment. Furthermore, conducting experiments online is helpful for researchers, as it 

allows them to collect data more efficiently from a broader subject pool that would 

otherwise be impossible due to financial or geographical constraints (Paolacci & Chandler, 

2014). Recruiting from previously inaccessible subject pools makes study results more 

generalizable. Running experiments online also usually decreases the data collection time 

(Bonstrup et al., 2020), as subjects can participate simultaneously and at any time, without 

laboratory space or work hours constraints. 

Participants showed a steep increase in tapping speed in the early blocks, followed by a 

rapid stabilization in the later blocks. When decomposing the early learning into micro-

online and micro-offline learning, the results showed that the initial improvements mostly 

happened at rest rather than during practice. This finding is consistent with Bonstrup et al. 

(Bonstrup et al., 2019), who reported a rapid offline consolidation that contributed to early 

skill learning. While the exact mechanism for this phenomenon is unclear, some have 

argued that the emergence of offline improvements could be due to the loss of inhibitory 

drive or dissipation of fatigue during the short rest intervals (Robertson, 2019). Further 

studies are necessary to understand the mechanisms underlying these results. 

The mean tapping speed on the initial block of the right hand was significantly higher 

than the left hand, indicating a significant interlimb transfer of motor skill learning. Other 

studies have shown similar inter-limb transfer in both adaptation (Lefumat et al., 2015; 

Jinsung Wang & Robert L Sainburg, 2004) and skill learning (Grafton et al., 2002; Japikse 
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et al., 2003; Parlow & Kinsbourne, 1989; Perez et al., 2007) tasks. Previous studies on 

sequential motor learning tasks have shown that inter-limb transfer is present when the 

sequence for the second hand (i.e., transfer hand) is either the same or a mirrored sequence 

of the first hand (i.e., training hand) (Grafton et al., 2002). Thus, the observed interlimb 

transfer in this study may be due to the use of a mirrored sequence between the non-

dominant and dominant hand, as opposed to some other random sequence. However, 

because of the study design, it is unclear whether the increase in tapping speed on the right 

hand was due to interlimb transfer or due to the advantage of the dominant hand. It is to be 

noted that no pre-test evaluations were performed to establish the baseline performance of 

the dominant, right hand because the use of pre-tests in motor learning has been criticized 

for yielding unreliable scores and providing practice of the task, thereby confounding the 

results of the intervention (Ranganathan, Lee, & Krishnan, 2022; Schmidt, Lee, Winstein, 

Wulf, & Zelaznik, 2011). However, when looking at the learning curves (Figure 3), it 

appears that this observation was primarily due to the transfer of the learned skill from the 

left hand, as this was only observed during the initial blocks of training. Further research 

may be needed to determine whether the transfer of learning occurs to the same extent 

when performing the task first with the dominant and then with the non-dominant hand, 

albeit, recognizing that this study design may also have limitations due to the presence of 

asymmetric transfer of learning between hands/hemispheres (Lavrysen et al., 2003; J. Wang 

& R. L. Sainburg, 2004). 

Researchers interested in studying sequential motor learning with a finger tapping task 

will find the introduced software valuable because of its unique advantages over previously 
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developed platforms. Specifically, the proposed platform has four innovative features. First, 

the platform requires no coding experience to create and manage sequential finger-tapping 

experiments online. Second, it is low cost and requires no specialized equipment or 

resources, including the need for web hosting. Third, it makes the experimental process 

highly time-efficient, as the set-up process is made easier by pre-hosting the platform on 

the google cloud platform and the data management process is made easier by pre-

processing the data to extract key variables. Finally, the platform is highly flexible to run 

other forms of sequential finger tapping tasks (e.g., interlimb transfer) without the need for 

writing new scripts or codes to make this feasible. 

Other software, such as PsychoPy (Peirce, 2007), PsyToolkit (Stoet, 2017), Gorilla 

(Anwyl-Irvine et al., 2020), and lab.js (Henninger et al., 2022), provide researchers with a 

common platform to create and/or distribute experiments. The four tools have great 

flexibility in the types of experiments that can be created and provide a way to either 

directly manage experiments or upload them to other management software, such as 

Pavlovia (https://pavlovia.org/). However, they have some limitations. PsychoPy requires 

the researchers to manually set up the necessary tools, which can be a challenge both in 

experiment creation and distribution. PsyToolkit, on the other hand, is a web-based 

platform; and thus, does not require any setup from the investigator. However, it requires 

learning the PsyToolkit scripting code to configure them, which could be a big challenge 

for most researchers. Gorilla overcomes the limitations of the previous tools, but its cost 

structure and closed-source nature could be a barrier and prevent the community from 

being able to actively participate in the development and prioritization of new bug fixes and 

https://pavlovia.org/
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features. Finally, lab.js is a recent open-source tool with great flexibility to create different 

types of motor learning experiments. However, it does not natively allow researchers to 

conduct online experiments and track participants’ responses online, which makes it rely on 

other tools for that purpose. Furthermore, although finger tapping experiments can be 

created using their software, it requires researchers to have an intimate knowledge of the 

platform’s documentation, experimental set-up process, and some amount of programming 

experience.  

The software introduced here is an open-source web-based application that requires no 

setup and allows researchers to create sequential task motor learning experiments with a 

form-like graphical interface. Although it does not allow the creation of any type of motor 

learning or behavioral experiment, it greatly simplifies experiments involving finger 

tapping tasks by allowing the user to choose from an array of options for each possible 

configuration. Thus, it can facilitate online behavioral experiments for multiple research 

groups interested in procedural skill learning through sequential finger tapping tasks (Balas, 

Roitenberg, Giladi, & Karni, 2007; Bonstrup et al., 2020; Bonstrup et al., 2019; Friedman 

& Korman, 2016; Korzeczek et al., 2020; Van Der Werf et al., 2009; Witt et al., 2010) . 

The platform also simplifies the process of conducting experiments by providing a way of 

viewing the number of responses in real-time and allowing the researchers to enable or 

disable each experiment at any given time when satisfied with the number of responses. 

The use of the web-based platform could potentially minimize the variation in tasks 

across studies, thereby reducing task fragmentation across motor learning studies. Scientists 

have argued that a high level of task fragmentation poses significant theoretical and 
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methodological barriers to advancing the field (Ranganathan et al., 2021). The presented 

software addresses this issue by offering researchers a common task in the same platform to 

design and conduct their motor learning studies. This also allows for easier replication of 

motor learning studies. To ease this process further, a new feature will be eventually added 

to the platform that will allow users to export their experiment configurations as a file to be 

shared. Then, other users will be able to import that file and create a replica of the 

experiment created by the original researchers.  

A limitation of the platform is that it can currently be used only to perform experiments 

involving sequential finger tapping tasks, making it less flexible than other similar coding-

based platforms (Anwyl-Irvine et al., 2020; Henninger et al., 2022; Peirce, 2007; Stoet, 

2017). It is to be noted, however, that there is a tradeoff between flexibility and usability. 

While other platforms are flexible to perform several cognitive and behavioral experiments, 

they only cater to the needs of researchers with programming/coding experience. Thus, the 

focus here was on the usability issue, where typical motor learning researchers (e.g., 

kinesiologists and rehabilitation scientists) find it difficult to use platforms that require 

coding experience. However, given the infrastructure developed for the platform, it would 

be relatively simple to expand the software to include other commonly used motor learning 

tasks with similar technical requirements. For instance, serial reaction-time tasks 

(Chambaron, Ginhac, & Perruchet, 2008; Robertson, 2007) could be easily integrated into 

the platform. In these tasks, stimuli must be shown at appropriate times, and the timing of 

the participant’s responses must be recorded, both technical capabilities that the web 

application already possesses. Thus, extending the platform to those tasks would be a 
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natural evolution. Furthermore, the platform is being released as open-source with a GNU 

GPL v3.0 license, allowing researchers to actively participate in the discussion and 

development of new features relating to online motor learning experiments. Another 

limitation is that there are no ready-made templates or a feature to export and import the 

experimental set-up. Given that it is straightforward to set up a new experiment in the 

platform quickly, there was no pressing need for this feature. However, this feature will be 

incorporated if future users of this platform request this ability. 

Conclusion 

In summary, this manuscript provides an open-source web-based platform for 

investigators in the motor learning field to easily create and conduct sequential finger 

tapping task studies. It allows researchers with no coding experience to design and manage 

their experiments completely online, with no setup requirements. The findings presented 

here establish the feasibility of obtaining valid results and pave the way to break the 

barriers to designing and conducting online motor learning experiments.  

Availability of data and materials 

All the data for the supervised (code = 5P6U) and unsupervised (code = C6XN) groups, 

including the supplementary material, are available here: https://osf.io/k43qw/. The full 

code for the platform is Open Source and can be found here: 

https://github.com/NeuRRoLab/motorlearningapp. All codes for post-processing the data 

and creating figures can be found here: https://github.com/NeuRRoLab/Online-Motor-

Learning-Processing.  

https://osf.io/k43qw/
https://github.com/NeuRRoLab/motorlearningapp
https://github.com/NeuRRoLab/Online-Motor-Learning-Processing
https://github.com/NeuRRoLab/Online-Motor-Learning-Processing
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