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Abstract: The probability estimation framework involves direct estimation of the probability of

occurrences of outcomes conditioned on measurement settings and side information. It is a powerful

tool for certifying randomness in quantum nonlocality experiments. In this paper, we present a

self-contained proof of the asymptotic optimality of the method. Our approach refines earlier results

to allow a better characterisation of optimal adversarial attacks on the protocol. We apply these

results to the (2,2,2) Bell scenario, obtaining an analytic characterisation of the optimal adversarial

attacks bound by no-signalling principles, while also demonstrating the asymptotic robustness of the

PEF method to deviations from expected experimental behaviour. We also study extensions of the

analysis to quantum-limited adversaries in the (2,2,2) Bell scenario and no-signalling adversaries in

higher (n, m, k) Bell scenarios.

Keywords: device-independent quantum random number generation; quantum nonlocality; Bell

inequalities; asymptotic equipartition property; min-entropy

1. Introduction

Randomness has proven to be a valuable resource for a multitude of tasks, be it com-
putation or communication. In cryptography, access to reliable random bits is essential,
since the security of various cryptographic primitives is known to be compromised if the
incorporated randomness is of poor quality [1–3]. In the study of random network mod-
elling, being able to sample random graphs uniformly and (reliably) at random is crucial [4].
And, for some problems, randomised algorithms are known to vastly outperform their
deterministic counterparts [5].

A distinction between two notions of randomness, those of process and product, is
discussed in [6] (chapter 8). Although both notions are tightly connected, randomness of a
process refers to its unpredictability, while that of a product refers to a lack of pattern in
it. An unpredictable process will, with high probability, produce a sequence (a string of
bits, say) that is patternless; on the other hand, a seemingly irregular string of bits might
not be unpredictable and instead be a probabilistic mixture of pre-recorded information.
While product randomness suffices for tasks like Monte Carlo simulations, sampling and
those involving randomised algorithms, cryptographic applications involving an adversary
necessitate process randomness.

Process randomness, while being non-existent in the strictest interpretation of any
classical theory, is permissible in quantum mechanics; an important example of this is
quantum nonlocality as manifested in a Bell experiment. Quintessentially, the setup of a
Bell experiment constitutes an entangled quantum system shared between two spatially
separated stations A and B receiving inputs x and y, and recording outcomes a and b,
respectively. If after n successive trials the observed correlations between the outcomes
conditioned on the settings violate a Bell inequality then it can be ruled out that the out-
comes were pre-assigned by some probabilistic mixture of deterministic processes. Also,
the outcomes are (unpredictably) random, not only to the respective users of the devices at
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the two stations but also to an adversary, even to one having a complete understanding
of the Bell experiment. This relationship between nonlocality in quantum mechanics and
its random nature is at the foundation of various device-independent random number
generation protocols.

Device independence is considered a gold standard in cryptographic tasks such as
quantum random number generation and quantum key distribution, in which the respective
users are not required to know or trust the inner machinery of their devices, thus treating
them as mere black boxes to which they can provide inputs and record outcomes. The only
assumption that the experimental setup must satisfy is that the measurement choices of
the devices must be uncorrelated with their inner workings. This is the measurement
independence assumption, which is ultimately untestable but is tacitly assumed, arguably,
in almost all scientific experiments. The no-signalling condition that the outcome recorded
at each station is not influenced by the choice of measurement at the other station holds
throughout the experiment because of the space-like separation between the stations and the
impossibility of superluminal signalling in accordance with the special theory of relativity.
Furthermore, the adversary trying to simulate the observed statistics may be considered
computationally unbounded, a standard that falls under the paradigm of information-
theoretic security. Over the years, technological advancement has facilitated loophole-free
Bell nonlocality experiments, which have not only provided experimental validation to
rule out a classical description of nature [7–10], but have also found practical applications
in device-independent quantum randomness generation and device-independent quantum
key distribution [11–13].

The probability estimation framework is a broadly applicable framework for per-
forming device-independent quantum randomness generation (DIQRNG) upon a finite
sequence of loophole-free Bell experiment data and involves direct estimation of the amount
of certifiable randomness by obtaining high-confidence bounds on the conditional proba-
bility of the observed measurement outcomes conditioned on the measurement settings in
the presence of classical side information [14–16]. Advantageous primarily for its demon-
strated applicability to Bell tests with small Bell violations and high efficiency for a finite
number of trials, it can also accommodate changing experimental conditions and allows
early stoppage upon meeting certain criteria. Also, it can be extended to randomness
generation with quantum devices beyond the device-independent scenario.

The probability estimation framework for DIQRNG is provably secure against adver-
saries who do not possess entanglement with the sources. Security against more general
adversaries, with quantum entanglement with the sources, is possible with the quantum
estimation framework [17], for which the constructions of the probability estimation frame-
work can often be translated to the quantum estimation framework (as was carried out
in [18]), so that progress with the former framework can often be used for the more general
latter framework.

The asymptotic optimality of the probability estimation framework was discussed
in [15]. The specific result of asymptotic optimality is as follows: given a sufficiently
large number of trials sampling from a fixed behaviour (i.e., a set of quantum statistics),
the amount of certified randomness per trial is arbitrarily close to a certain upper limit.
Then [15] argues, appealing to convex geometry and the asymptotic equipartition property
(AEP), that an adversary can always implement a probabilistic mixture of conditional
probability distributions, independent and identically distributed across successive experi-
mental trials, that generates observed statistics consistent with the fixed behaviour while
not needing to generate more than that same upper limit of randomness per trial that is
certified by the probability estimation framework. This is important in the sense that the
framework certifies all the randomness conceded by the adversary in that particular attack,
while also showing that there is no advantage to be gained for the adversary by resorting
to (more sophisticated) memory attacks.

In this paper, we provide a full derivation of the asymptotic optimality of the probabil-
ity estimation framework, filling in some steps omitted by [15], along the way obtaining a
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better characterisation of the adversary’s optimal probabilistic mixture for generating the
observed statistics. Making precise the arguments from convex geometry, we explicitly de-
scribe the optimal attack that an adversary can employ with the minimum required number
of different conditional distributions in convex mixture to simulate the observed statistics.
Our improvement, with a more self-contained approach, upon the result in [15] is to reduce
by one the cardinality of the adversary’s (finite-cardinality) set from which the auxiliary
random variable takes values. This random variable serves as her side-information and
records which conditional distribution occurs in which trial. Specifically, we prove that
the number of possible conditional distributions in her optimal probabilistic mixture at-
tack need not be more than one plus the dimension of the set of admissible distributions of a trial
(Theorem 4). (We assume the set of admissible probability distributions of a given trial to
be closed and convex, where we can take the convex closure when this assumption is not
met; then the dimension dim(C) of a non-empty convex subset C of X is the dimension of
the smallest affine subset containing C.) An earlier result (Theorem 43 in [15] under the
same assumptions) proved only that the cardinality of the value space of the adversary’s
side-information need not be more than two plus the dimension of the set of admissible
distributions of a trial. Besides contributing to a methodological improvement, we have
thus improved the result itself: a better understanding of the optimal attack in the asymp-
totic regime will establish a benchmark that will enable the implementer of the protocol to
defend against these attack modes.

The central results on asymptotic optimality of the method of probability estimation
comprise establishing an upper bound on the randomness per trial more than which the
adversary need not concede (Theorems 3 and 4) and which is certified by the method of
probability estimation (Theorems 5 and 6). Our derivation in Theorem 3 elucidates how
only the classical form of the asymptotic equipartition property is needed for the probabil-
ity estimation framework, allowing a simplified treatment. In addition to strengthening
the result in Theorem 4, we have presented proofs for Theorems 5 and 6 (which have
appeared previously in [15]), including more details and specifications where we deemed
fit. For instance, in the proof for Theorem 6, enlisting the extreme value theorem we avoid
an explicit analytic construction as presented in [15] (see Theorem 41 therein). We also
consider the question of robustness of the probability estimation framework, not consid-
ered in [14,15]; we derive a sufficient condition (Theorem 7) for a probability estimation
factor (optimised at a particular distribution) to certify randomness at a positive rate at a
statistically different distribution.

We apply our results to the (2,2,2) Bell scenario (the scenario of two parties, two mea-
surement settings and two outcomes), obtaining an analytic characterisation of the optimal
attack of an adversary (restricted only by the no-signalling condition) holding classical side
information. We show that the optimal adversarial attack involves a decomposition of the
observed statistics in terms of a single extremal no-signalling (super-quantum) correlation
and eight local deterministic correlations. The proof of optimality relies upon the fact that
equal mixtures of two extremal no-signalling nonlocal super-quantum correlations are
expressible as an equal mixture of four local deterministic correlations. We show that this
result does not generalise to higher scenarios such as the (3,2,2), (2,3,2) and (2,2,3) Bell
scenarios, thereby indicating that the possibility of an optimal attack involving only a single
extremal strategy is only ensured in the minimal (2,2,2) Bell scenario. Furthermore, we
considered the possibility of an adversary holding classical side information (and, hence,
restricted to probabilistic attack strategies) but trying to simulate the observed statistics
using quantum-achievable probability distributions, while conceding as little randomness
as possible. Assuming uniform settings distribution, numerical studies restricted to a
two-dimensional slice of the set of quantum-achievable distributions provided some initial
evidence that the optimal quantum-achievable attack strategy involves only one extremal
quantum correlation, but we were not able to settle this and have phrased it as a conjecture.

The rest of the article is organised as follows: In Section 2, we review the probability
estimation framework where Theorem 1 formalises the central idea and Theorem 2 estab-
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lishes a lower bound on the smooth conditional min-entropy of the sequence of outcomes
conditioned on the settings and side-information. We also present a simplified proof of
Lemma 1, an important result that allows the algorithm to execute the PEF method, com-
pared to the proofs in [14,15]. In Section 3, we present our complete proof of asymptotic
optimality, study the implications for finding an optimal adversarial attack strategy and
derive a robustness result. In Section 4, we apply our results to the (2,2,2) Bell scenario
obtaining an analytic characterisation of the optimal attack strategy for an adversary re-
stricted only by the no-signalling condition. The optimal attack comprises a decomposition
of the observed statistics in terms of a single Popescu–Rohrlich (PR) correlation and (up to)
eight local deterministic correlations. We show that, for a higher number of parties, settings
and/or outcomes, a crucial result from the (2,2,2) Bell scenario concerning equal mixtures
of extremal nonlocal no-signalling correlations does not hold, and infer that the optimal
attack may require more than one nonlocal distribution in general. Returning to the (2,2,2)
scenario, we discuss a conjecture that the optimal strategy to mimic the observed statistics
by means of a probabilistic mixture of quantum-achievable correlations constitutes only a
single extremal quantum correlation and (up to) eight local deterministic correlations.

2. The Probability Estimation Framework

The probability estimation method relies on the probability estimation factor (PEF),
which is a function that assigns a score to the results of a single trial of a quantum experi-
ment, with higher scores corresponding to more randomness. The paradigmatic application
is to a Bell nonlocality experiment comprising multiple spatially separated parties provid-
ing inputs (measurement settings) to measuring devices and recording outputs (observed
outcomes); an experimental trial’s results then consist of both the choice of inputs and the
recorded outputs for that trial. Figure 1 below shows a schematic two-party representation
of such an experimental setting. After many repeated trials the product of the PEFs from
all the trials is used to estimate the probability of outcomes conditioned on the settings.

For the examples considered in Section 4, we will consider the canonical scenario of
two measuring parties Alice and Bob each selecting respective binary measurement settings
X and Y and recording respective binary outcomes A and B, which we refer to as the (2,2,2)
Bell scenario. For now, we treat things in a general manner as is carried out in [14,15],
modelling the trial settings for all parties and outcomes for all parties with single random
variables Z and C, respectively, taking values from respective finite-cardinality sets Z and
C. When applied to the (2,2,2) Bell scenario, C comprises the ordered pair (A, B) and Z
comprises the ordered pair (X, Y).

Figure 1. A schematic representation of the set-up for device-independent randomness generation in

a two-party experiment. The outer rectangular box represents a secure location. The adversary E has

perfect knowledge of the processes inside the secure location but cannot tamper with them. The state

ΨABE represents the resource shared between the two parties. Xk, Yk are the trial inputs and Ak, Bk

are the trial outcomes for the kth trial.

The results of a sequence of n time-ordered trials are represented by the sequences
C = {Ci}n

i=1, Z = {Zi}n
i=1; and, so, (C, Z) realises values (c, z) ∈ Cn ×Zn, where Cn,Zn
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are the n-fold Cartesian products of C,Z . A PEF is then a real-valued function of C and Z
satisfying certain conditions, while the product of PEFs from all trials will be a function
of C and Z. High values of the PEF product will correlate with low values of P(C|Z),
the conditional probability of the outcomes given the settings.

To define PEFs, we introduce the notion of a trial model: a set Π encompassing all
joint probability distributions of settings and outcomes which are compatible with ba-
sic assumptions about the experiment. One important trial model that we consider is
ΠQ, consisting of joint distributions of (C, Z) for which the conditional distribution of
C conditioned on Z can be realised by a measurement on a quantum system. Here, we
introduce the convention, used throughout, of using lower case Greek letters with ran-
dom variables as arguments to denote distributions, i.e., µ(C, Z) and µ(C|Z) denote the
joint distribution of (C, Z) and the conditional distribution of C given Z, respectively.
Another important trial model is ΠNS (NS stands for “no-signalling"), consisting of distri-
butions for which probabilities of measurement outcomes at one location are independent
of measurement settings at the other distant locations. (This is more clearly understood
in considering the Alice–Bob example, where one of the no-signalling conditions is that

∑b µ(A = a, B = b|X = x, Y = y) = ∑b µ(A = a, B = b|X = x, Y = y′) for all a, b, x
and y 6= y′.) A third important trial model is the set ΠL of distributions for which the
conditional distribution of outcomes conditioned on settings are local, which means they
can be expressed as convex mixtures of local deterministic behaviours. In the bipartite
setting, the conditional distribution µLD,λ(A, B|X, Y), also referred to as a behaviour, is
local deterministic if µLD,λ(A = a, B = b|X = x, Y = y) = [[a = f (x, λ)]][[b = g(y, λ)]]
(where the notation [[· · · ]] represents the function that evaluates to 1 if the condition within
holds, 0 otherwise). In words, the outcomes are functions of the local settings and the
local hidden variable λ which can be understood to be a list of outcomes for all possible
settings. A formal definition involving more parties and an arbitrary (albeit same) number
of outcomes and settings for each party can be found in (48). The sets ΠL, ΠQ and ΠNS

satisfy the following strict inclusions:

ΠL ( ΠQ ( ΠNS.

Certain distributions in ΠQ and ΠNS violate a Bell inequality and are known to contain
randomness; they are contained in ΠQ \ ΠL and ΠNS \ ΠL, respectively. It is precisely the
inability to decompose such distributions into deterministic ones, as in ΠL, that implies the
presence of randomness. The objective of the PEF approach is to quantify the randomness
contained in such distributions. As trial models specify the joint distribution µ(C, Z),
and for the above examples of trial models we gave only the conditional distributions
µ(C|Z), one must also specify the marginal distribution of the settings µ(Z). For the discus-
sions of ΠQ and ΠNS in subsequent sections, any fixed distribution satisfying µ(Z = z) > 0
for all z ∈ Z is permitted. An example of a fixed settings distribution is the equiprobable
distribution Unif(Z) defined as Unif(z) = 1/|Z| for all z ∈ Z .

As a discrete probability distribution is effectively an ordered list of numbers in [0, 1]
(the probabilities), trial models are always subsets of RN , where N is fixed by the cardinality
of C and Z . This enables us to use a geometric approach to study these sets, which prove
to be invaluable for some arguments.

We can now define PEFs. We use the notation Eµ[. . .] and Pµ(. . .) to denote expectation
and probability, respectively, with respect to a distribution µ; and for the sake of notational
concision we omit commas in distributions or functions of more than one random variable,
for instance, µ(CZ) and f (CZ) must be understood to mean µ(C, Z) and f (C, Z).

Definition 1 (Probability Estimation Factor). A probability estimation factor (PEF) with power
β > 0 for the model of distributions Π is a function F : C × Z → R+ of the random variables
(C, Z) such that for all σ(CZ) ∈ Π, Eσ[F(CZ)σ(C|Z)β] 6 1 holds.
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In the expression above, σ(C|Z) denotes a random variable that is a function of the
random variables C and Z: σ(C|Z) is the random variable that assumes the standard
conditional probability (according to σ) of C taking the value c conditioned on Z taking
the value z; it is assigned the value zero if the probability σ(Z = z) is zero. The parameter
β can be any positive real value. We then note that the constant PEF F(cz) = 1 for all
(c, z) ∈ C × Z is a valid PEF for any choice of β > 0. We will notice in the subsequent
sections, however, that the parameter does have an effect on the method employed for
choosing useful PEFs for the purpose of randomness certification; and in practice we choose
the value of β that corresponds to the maximum randomness certification.

Prior to defining a PEF we introduced the notion of a trial model. For the application
of probability estimation to the outcomes of an experiment, which is a sequence of n time-
ordered trials, we introduce the notion of an experiment model: it is a set Θ constraining
the joint distribution of C,Z and E, constructed as a chain of individual trial models Π; it
consists of joint distributions µ(CZ|E = e) conditioned on the event {E = e}, where E is
the random variable denoting the adversary’s side information and realising values e from
the finite set E . It satisfies the following two assumptions:

µ(Ci+1Zi+1|C6i = c6i, Z6i = z6i, E = e) ∈ Π, ∀ c6i ∈ C i, z6i ∈ Z i, e ∈ E ,

µ(Zi+1, C6iZ6i|E = e) = µ(Zi+1|E = e)µ(C6iZ6i|E = e), ∀ e ∈ E . (1)

In (1), C6i, Z6i denote the outcomes and measurement settings for the first i ∈ [n] trials,
where [n] := {1, 2, . . . , n}, with c6i, z6i denoting their respective realisations. The random
variables Ci+1, Zi+1 are the outcomes and settings for the (i + 1)’th trial. The first condition
in (1) formalises the assumption that the (joint) probability of the (i + 1)’th outcome and
setting, conditioned on the outcomes and settings for the first i trials and each realised
value E = e of the adversary’s side information, belongs to the (i + 1)’th trial model,
i.e., it is compatible with the conditions dictated by the trial model. The second condition
states that for each E = e the setting for the next trial is independent of the outcomes and
settings of the past and present trials. Our second condition is a stronger assumption than
the corresponding assumption given in [14], which is as follows: the joint distribution
µ of CZE is such that Zi+1 is independent of C6i conditionally on both Z6i and E. It is
a straightforward exercise to check that our stronger assumption implies the one stated
in [14]. While the weaker assumption is sufficient for the following result, we find the
stronger assumption operationally clearer as an assumption that the future settings are
independent of “everything in the past" for each realisation of e.

For the rest of the paper we adopt the abbreviated notation of µy(X) for µ(X|Y = y).
The following theorem, appearing as Theorem 9 in Appendix C in [14], formalises the
central idea behind the framework of probability estimation. We include a proof for this
theorem in Appendix A.1.1 for completeness.

Theorem 1. Suppose µ : Cn ×Zn × E → [0, 1] is a distribution of CZE such that µe(CZ) ∈ Θ

for each e ∈ E . Then, for fixed β, ε > 0

Pµe



µe(C|Z) >
(

ε
n

∏
i=1

Fi(CiZi)

)−1/β


 6 ε (2)

holds for each e ∈ E , where Fi(CiZi) is the probability estimation factor for the i’th trial.

Proof. See Appendix A.1.1.

The distinguishing feature of the framework of probability estimation is the direct
estimation of µe(C|Z) for each e ∈ E by constructing PEFs Fi(CiZi) and accumulating
them trial-wise in a multiplicative fashion. For a fixed error bound ε > 0 and the power

parameter β > 0, the term (ε ∏
n
i=1 Fi(CiZi))

−1/β serves as an estimate for µe(C|Z). It is
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important to note that PEFs are functions of only the measurement outcomes and settings
and not of the side information held by the adversary to which we do not have access.
For a large value of n—the number of trials—the trial-wise product ∏

n
i=1 Fi(CiZi) will be

large if the experiment is well-calibrated and run properly. For the purpose of randomness
generation the inequality (2) in Theorem 1 can then be understood, intuitively, as follows:
Since the trial-wise product ∏

n
i=1 Fi(CiZi) of the PEFs is large and so, for fixed ε, β > 0,

the quantity (ε ∏
n
i=1 Fi(CiZi))

−1/β is small, for each e ∈ E there is a very small probability
(denoted by the outer probability Pµe(·)) that the conditional probability of the sequence of
outcomes C conditioned on the sequence of settings Z (denoted by µe(C|Z)) is more than a
small value. This translates to the measurement outcomes C being unpredictably random
for a given ze. Since this string of experimental outcomes is unpredictable even given the
adversary’s side information, it can be used as a source of certifiable randomness. We stress
that in the method of probability estimation the estimates on the conditional probability of
measurement outcomes given the settings choices and side-information depend solely on
the experimental data.

Conventional methods of randomness extraction, however, involve obtaining a lower
bound on the smooth conditional min-entropy which quantifies the amount of raw ran-
domness from a source. The lower bound then goes as one of the parameters in extrac-
tor functions to extract near-uniform random bits. It is therefore useful to translate the
bound in (2) into a statement about the smooth conditional min-entropy with respect to
an adversary.

We motivate and introduce conditional min-entropy as follows. An adversary’s goal
is to predict C. Conditioned on a particular realisation of the settings sequence z ∈ Zn and
side information e ∈ E , one can measure the “predictability” of the sequence of outcomes
C with the following maximum probability:

max
c∈Cn

µ(c|ze).

It quantifies the best guess of the adversary. The ze-conditional min-entropy of C, corre-
sponding to that particular realisation ze ∈ Zn × E , is the following negative logarithm:

H∞,µ(C|ze) := − log2

(

max
c∈Cn

µ(c|ze)

)

.

The subscript µ in the notation H∞,µ(· · · ) refers to the distribution µ(CZE). The average
ZE-conditional min-entropy is then defined as follows:

H
avg
∞,µ(C|ZE) := − log2

[

∑
ze∈Zn×E

(

max
c∈Cn

µ(c|ze)
)

µ(ze)

]

.

But, information-theoretic security of cryptographic protocols take into account a more
realistic measure of average ZE-conditional min-entropy which involves a smoothing
parameter ε, a type of error bound, and is known as the ε-smooth average ZE-conditional
min-entropy. This quantity is useful for our scenario in which the probability distribution
is not known exactly and its characteristics can only be inferred from observed data, which
introduces the possibility of error. It is defined as follows.

Definition 2 (Smooth Average Conditional Min-Entropy). For a distribution µ : Cn ×Zn ×
E → [0, 1] of C, Z, E the set Bε(µ) of distributions of C, Z, E is defined as

Bε(µ) := {σ : Cn ×Zn × E → [0, 1] | dTV(σ, µ) 6 ε}, (3)

where ε ∈ (0, 1) and dTV(σ, µ) is the total variation distance between σ and µ defined as

dTV(σ, µ) :=
1

2 ∑
cze∈Cn×Zn×E

|µ(cze)− σ(cze)|. (4)
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The ε-smooth average ZE-conditional min-entropy is then defined as follows.

H
avg,ε
∞,µ (C|ZE) := max

σ∈Bε(µ)

[

− log2

[

∑
ze∈Zn×E

(

max
c∈Cn

σ(c|ze)
)

σ(ze)

]

]

. (5)

The lower bound obtained on this quantity goes as one of the inputs to extractor
functions in randomness extraction, whose purpose is to convert random functions with
uneven distributions into shorter, close to uniformly distributed bit strings. We note that
alternative definitions of ε-smooth conditional min-entropy can be used, for instance, the ε-
smooth worst-case conditional min-entropy of [19]. A known result from the literature,
proven in Proposition A1 in Appendix E, justifies our usage of the ε-smooth average
conditional min-entropy without having to be concerned with the stricter ε-smooth worst-
case conditional min-entropy (defined in (A30)): specifically, the two quantities converge
to one another in the asymptotic limit.

The result obtained from Theorem 1 can be translated into a result on smooth average
conditional min-entropy formalised in Theorem 2 below. This theorem appears as Theorem
1 in [14]. We include a proof for this theorem in Appendix A.1.2 for completeness. In the
notation of ε-smooth average ZE-conditional min-entropy in (7), the semicolon followed
by S denotes that this information-quantity is assessed with respect to the distribution µ

after conditioning on the occurrence of the event S defined in the statement of Theorem 2.
It pertains to an abort criterion. The protocol succeeds only if the product of the trial-wise
PEFs exceeds some threshold value, otherwise it is aborted. So we want to establish the
lower bound for smooth conditional min-entropy conditioned on the event that the protocol
succeeds, because it is precisely this scenario in which we extract randomness. Since a
completely predictable local distribution can always have a chance of passing the protocol,
however minuscule (in the order of (3/4)n, where the number of trials n often goes up
to millions)—and µ(c|z) will equal 1 in this case—it is necessary to assume a small but
positive lower bound on the probability of not aborting to derive a useful min-entropy
bound. This can be thought of as another type of error parameter. The assumed lower
bound for the probability of success of the protocol is κ.

Theorem 2. Let µ be a distribution µ : Cn ×Zn × E → [0, 1] of C, Z, E such that, for each e ∈ E ,
the following holds for every ε ∈ (0, 1):

Pµe



µe(C|Z) 6
(

ε
n

∏
i=1

Fi

)−1/β


 > 1 − ε, (6)

where Fi is a PEF with power β for the i’th trial. For a fixed choice of ε ∈ (0, 1) and p > |C|−n, define

the event S :=
{

(ε ∏
n
i=1 Fi)

−1/β
6 p

}

. Then, if κ satisfies 0 < κ 6 Pµ(S), the following holds:

H
avg,ε/κ
∞,µ (C|ZE; S) > log2(κ)− log2(p) (7)

Proof. See Appendix A.1.2.

Under the same conditions of Theorem 2, the main result (7) admits a minor refor-
mulation as follows. This is the formulation that aligns with the statement of Theorem 1
in [14].
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Corollary 1. Let µ : Cn ×Zn × E → [0, 1] be a distribution of CZE and F be a PEF with power
β such that (6) holds for each e ∈ E . For a fixed choice of ε ∈ (0, 1), p > |C|−n and positive

κ 6 Pµ(S) where S =
{

(ε ∏
n
i=1 Fi)

−1/β 6 p
}

, we have

H
avg,ε
∞,µ (C|ZE; S) >

(

1 +
1

β

)

log2(κ)− log2(p). (8)

Proof. Use Theorem 2 with ε′ = κε, p′ = p/κ1/β and κ′ = κ, noting that, since 0 < κ 6 1
and β > 0 hold, we have ε′ ∈ (0, 1) and p′ > |C|−n as required for invoking the theo-

rem. Then, notice the corresponding event S′ =
{

(ε′ ∏
n
i=1 Fi)

−1/β 6 p′
}

aligns with the

event S.

The above results hold when we consider distributions µ : Cn × Zn × En → [0, 1]
of CZE, i.e., where the side information is structured as a sequence of random variables.
The proof remains the same with the exception that we condition on an arbitrary sequence
of realisation e ∈ En of E. We consider this scenario in Section 3 where we define an IID
attack from the adversary.

Theorem 1 does not indicate how to find PEFs. One way to find useful PEFs is to
first notice that the success criterion of the protocol is the event S that the inequality
(ε ∏

n
i=1 Fi)

−1/β 6 p holds, which can be equivalently expressed as

n

∑
i=1

log2(Fi)/β + log2(ε)/β > − log2(p), (9)

where ε, β and p are pre-determined quantities to be chosen in advance of running the
protocol. Then, considering an anticipated trial distribution ρ(CZ) based on observed
results and calibrations from previous trials, in the limit of sufficiently large n the difference
between the term on the left hand side of (9) (which consists of the trial-wise sum of (base-2)
logarithm of PEFs) and nEρ[log2(F(CZ))/β] will be either greater or less than zero with
roughly equal probability. This follows from the Central Limit Theorem if the distribution
remains roughly stable from trial to trial. Since it is desirable to have the largest value of
− log2(p) possible, one can then perform the following constrained maximisation using
any convex programming software owing to the concavity of the objective function and the
linearity of the constraints.

Maximise: Eρ[(n log2(F(CZ)) + log2(ε))/β]

Subject to: Eν[F(CZ)ν(C|Z)β] 6 1, for all ν(CZ) ∈ Π,

F(cz) > 0, for all (c, z) ∈ C × Z (10)

Since n, ε and β are fixed, it is sufficient to maximise Eρ[log2(F(CZ))] subject to the
same constraints. In practice, one can consider a range of values of β and perform the
constrained maximisation with the objective Eρ[log2(F(CZ))], then plug in the maximum
value in the expression Eρ[(n log2(F(CZ)) + log2(ε))/β] and obtain a plot with respect to
the considered range of β values (see, for example, Figure 2 in [16]; a similar pattern is
observed in Figure 2 in Section 2).

The following lemma (from [14], see Lemma 15)—for which we provide a more
direct proof—enables us to restrict the satisfiability constraints of the optimisation rou-
tine in (10) to the extremal distributions of the model Π under the condition that the
model is convex and closed. So, the first line of constraints in (10) can be replaced with
Eν[F(CZ)ν(C|Z)β] 6 1, ∀ν(CZ) ∈ Πextr, where Πextr is the set of extremal distributions of
Π. If the model Π is not convex and closed, we take its convex closure. In words, the lemma
states that, if F(CZ) is a PEF with power β > 0 for the distributions σ1(CZ) and σ2(CZ),
then it is a PEF with the same power for all distributions that can be expressed as a convex
combination of σ1 and σ2.
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Lemma 1. For distributions σi(CZ) ∈ Π satisfying Eσi
[F(CZ)σi(C|Z)β] 6 1, for i = 1, 2,

if σ(CZ) ∈ Π is expressible as σ(CZ) = λσ1(CZ) + (1 − λ)σ2(CZ) for λ ∈ [0, 1], then it
satisfies Eσ[F(CZ)σ(C|Z)β] 6 1.

Proof. For z such that σ1(z), σ2(z) > 0, we have σ(z) > 0 as well and, from σ(CZ) =
λσ1(CZ) + (1 − λ)σ2(CZ), straightforward algebra shows that σ(c|z) = δσ1(c|z) + (1 −
δ)σ2(c|z) for any (c, z) ∈ C × Z , where δ = λσ1(z)/σ(z) ∈ [0, 1]. Since, for α > 1, xα is
convex for x > 0, we can write

σ(c|z)1+β 6 δσ(c|z)1+β + (1 − δ)σ2(c|z)1+β

⇒ σ(c|z)1+βσ(z) 6 λσ1(c|z)1+βσ1(z) + (1 − λ)σ2(c|z)1+βσ2(z). (11)

Turning to cases where σ1(z) and/or σ2(z) may equal zero, we can also demonstrate (11)
under the convention of taking σi(c|z) to be zero when σi(z) = 0. Then, the inequality
holds as an equality when σ1(z) = σ2(z) = 0 (which implies σ(z) = 0 as well); for
0 = σ2(z) < σ1(z) one can verify (11) after noting σ(cz) = λσ1(cz) and σ(z) = λσ1(z),
and the 0 = σ1(z) < σ2(z) case follows symmetrically. Now, multiplying both sides of (11)
by F(cz) and summing over (c, z) ∈ C ×Z gives

∑
c,z

F(cz)σ(c|z)1+βσ(z) 6 λ ∑
c,z

F(cz)σ1(c|z)1+βσ1(z) + (1 − λ)∑
c,z

F(cz)σ2(c|z)1+βσ2(z)

⇒ Eσ[F(CZ)σ(C|Z)β] 6 λEσ1
[F(CZ)σ1(C|Z)β] + (1 − λ)Eσ2 [F(CZ)σ2(C|Z)β]

6 λ + (1 − λ) = 1.

We remark that the result of Lemma 1 can also be obtained through specialisation of
known quantum results to classical distributions; however, this requires a more technical
argument with additional machinery. To elaborate, the proof for Lemma 1 involves showing
the joint convexity of σ(C|Z)1+βσ(Z) which can be seen as a special case of the joint
convexity of sandwiched Rényi powers. To be more specific, it arises as a special case

of the joint convexity of eβD1+β(σ||ω) for β > 0 when the distribution ω(CZ) is taken to
be ω(cz) = σ(z)/|C|, ∀(c, z) ∈ C × Z . Notice that D1+β(σ||ω) is the (classical) Rényi
divergence of order (1 + β) ∈ (1, ∞) of σ(CZ) with respect to ω(CZ). The functional

eD1+β(σ||ω) can also be seen as a specialisation (to classical states) of the same functional,
defined in terms of (quantum) density states σ and ω, whose joint convexity was proven in
proposition 3 of [20] with an extended technical argument.

3. Asymptotic Performance

The results of the previous section give us a method for certifying randomness. In this
section, we assess the asymptotic performance of the method. Our figure of merit is the
amount of randomness certified per trial, as measured by the average conditional min-
entropy divided by the number of trials n. We will see in this section that the PEF method is
asymptotically optimal, in the following sense: given a fixed observed distribution, the PEF
method can asymptotically certify an amount of per-trial conditional min-entropy that is
equal to the actual per-trial conditional min-entropy generated by an adversary replicating
the observed distribution with as little randomness as possible.

To elaborate on this, consider that the adversary’s goal is to minimise the follow-
ing quantity:

1

n
H

avg
∞,µ(C|ZE).

We assume that the adversary has complete knowledge of the distribution µ, and can have
access to not just the realised value of E but also the realised value of Z in guessing C.
This access to Z aligns with the paradigm, as discussed in [11], of “using public (settings)
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randomness to generate private (outcome) randomness”. The adversary is constrained,
however, in that the statistics when marginalised over E must appear to be consistent with
an expected observed trial distribution ρ(CZ) for the protocol to not abort. Technically,
all that is necessary for the protocol to pass is that the observed product of the PEFs
must exceed some threshold value chosen by the experimenter—which could be possible
with high probability with many different distributions µ—but, as the experimenter’s
threshold value will likely be chosen based on a full behaviour that they expect to observe,
we study attacks that match the expected observed trial distribution exactly. We will
find attacks meeting this criterion that are asymptotically optimal for minimising the
conditional min-entropy.

Given an expected observed distribution, how can the adversary generate observed
statistics consistent with it while yielding as little randomness as possible? She can employ
a strategy of preparing multiple different states to be measured that will yield different
distributions, each one consistent with the trial model Π, whose convex mixture is equal
to the observed distribution. If she has an auxiliary random variable E realising values
from the finite-cardinality set E and recording which state was prepared on which trial, she
can predict better the outcome conditioned on her side information E = e, in conjunction
with the settings Z. Indeed, some of her e-conditional distributions could be deterministic—
specifically, the product of a fixed settings distribution and a deterministic behaviour
(conditional distribution of the outcomes conditioned on settings), in which case she does
not yield any randomness to Alice and Bob on a trial where E takes that value. But, if the
overall observed statistics are nonlocal, then she is forced to prepare at least some states
that contain randomness even conditioned on e; this, in essence, is because the information
that she possesses with E is a local hidden variable.

3.1. I.I.D. Attacks

Given a convex decomposition of the observed distribution, the adversary’s simplest
form of an attack is to select e from some finite-cardinality set E in an i.i.d manner on each
trial according to the distribution that recovers the observed distribution ρ(CZ). A more
general attack would allow her to use memory of earlier trials but we will see later that,
asymptotically, this does not yield meaningful improvement.

Operationally, we do not like to think of the adversary accessing the devices in between
trials to provide a choice of ei for each trial. Instead, one can imagine her randomly
sampling from the distribution of E for all trials, coming up with a choice e that encodes
all the choices of ei for each trial and then supplying this choice to the measured system,
in advance, to determine its behaviour in each trial. She keeps a record of e to help her
predict C later. Through this sampling process there is a small chance that she will sample
an atypical “bad” e that results in statistics deviating from the observed distribution but the
probability that her e is typical is asymptotically high. Our figure of merit for the adversary
now is:

1

n
H

avg
∞,µ(C|ZE),

which she wants to minimise with a distribution that, marginalised over E, is consistent
with i.i.d sampling from an expected observed distribution ρ. We formally define the set
Σ

ρ
E of distributions ω : C × Z × E → [0, 1] of C, Z, E mimicking ρ through such a convex

decomposition as follows, where e is shorthand for the event {E = e}:

Σ
ρ
E :=

{

ω(CZE) : ω(CZ|e) ∈ Π ∀e ∈ E , ∑
e∈E

ω(CZ|e)ω(e) = ρ(CZ)
}

. (12)

Then, an IID attack can be defined as follows.
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Definition 3 (IID Attack). Given a distribution ω(CZE) ∈ Σ
ρ
E, we define an IID attack (with ω)

to be the distribution φ consisting of n independent and identical realisations of random variables
Ci, Zi, Ei distributed according to ω; i.e., the joint distribution of the sequence of random variables
C, Z, E is φ : Cn ×Zn × En → [0, 1] such that φ(CZE) = ∏

n
i=1 ω(CiZiEi).

As mentioned earlier, the adversary randomly samples from the distribution of E

which represents their knowledge of all trials; e ≡ (e1, e2, . . . , en) ∈ En encodes the indi-
vidual choices ei for trial i ∈ {1, 2, . . . , n}. The IID attack satisfies the two assumptions
of the experiment model discussed earlier (see (1) and the short discussion that follows
immediately). Namely, the (joint) probability of the (i + 1)’th trial outcome and input
setting, conditioned on each realisation of the outcomes and settings for the first i trials and
each realisation e ∈ En of the side information, satisfies the conditions of the trial model;
and, conditioned on each e ∈ En, the settings for the (i + 1)’th trial are (unconditionally)
independent of the outcomes and settings of the past and present trials (i.e., the first i trials).
This is formally stated and proved in Lemma 2 below.

Lemma 2. The IID attack as defined in Definition 3 satisfies the following conditions.

φ(Ci+1Zi+1|c6iz6ie) ∈ Π, ∀ c6i ∈ C i, z6i ∈ Z i, e ∈ En (13)

φ(Zi+1C6iZ6i|e) = φ(Zi+1|e)φ(C6iZ6i|e), ∀ e ∈ En (14)

Proof. Consider the distribution φ(CZ|e) conditioned on a realisation E = e, where
φ(CZE) = ∏

n
i=1 ω(CiZiEi). Notice that φ(CZ|e) = ∏

n
i=1 ω(CiZi|ei). Marginalising over

the random variables Ci+2, Ci+3, . . . , Cn, Zi+2, Zi+3, . . . , Zn we obtain:

φ(Ci+1Zi+1C6iZ6i|e) =
i+1

∏
j=1

ω(CjZj|ej) (15)

Corresponding to a particular realisation c6i ∈ C i, z6i ∈ Z i, we then have φ(Ci+1Zi+1c6iz6i|e) =
ω(Ci+1Zi+1|ei+1)∏

i
j=1 ω(cjzj|ej); and, since φ(c6iz6i|e) = ∏

i
j=1 ω(cjzj|ej), we have

φ(Ci+1Zi+1c6iz6i|e)
φ(c6iz6i|e)

= φ(Ci+1Zi+1|c6iz6ie) = ω(Ci+1Zi+1|ei+1). (16)

ω(Ci+1Zi+1|ei+1) belongs to the set Π for all values of ei+1 ∈ E (by construction of the
set ΣE, see (12)). Since (16) is true for all realisations c6i ∈ C i, z6i ∈ Z i, e ∈ En we
conclude (13) holds. Next, marginalising (15) over Ci+1 we have:

φ(Zi+1C6iZ6i|e) = ω(Zi+1|ei+1)
i

∏
j=1

ω(CjZj|ej) = φ(Zi+1|e)φ(C6iZ6i|e) (17)

In (17), ω(Zi+1|ei+1) = φ(Zi+1|e) can be observed by marginalising (15) over the random
variables C1, . . . , Ci, Ci+1, Z1, . . . , Zi and φ(C6iZ6i|e) = ∏

i
j=1 ω(CjZj|ej) (from marginalis-

ing (15) over Ci+1, Zi+1); (17) is true for all e ∈ En; hence, we conclude (14).

Next, the adversary would like to implement an attack that “generates as little ran-
domness as possible”. One measure of the randomness is the conditional Shannon entropy
of the outcomes C conditioned on the inputs Z and the side information E.

Definition 4 (Conditional Shannon Entropy). For a distribution µ : C × Z × E → [0, 1] of
C, Z, E the conditional Shannon entropy of the outcomes C conditioned on the settings Z and the
side information E is defined as

Hµ(C|ZE) = −∑
cze

log2 µ(c|ze)µ(cze) = Eµ[− log2 µ(C|ZE)]. (18)
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The Greek letter µ in the subscript of Hµ(·|·) refers to the distribution µ(CZE) with
respect to which the conditional Shannon entropy is defined.

Theorem 3 below shows that Hω(C|ZE) is an asymptotic upper bound on the per-trial
conditional min-entropy that the adversary generates with an IID attack employing a
trial distribution ω that is consistent with the observed distribution ρ. This result was
discussed but not demonstrated explicitly in [15]. The proof of Theorem 3 involves one
of the fundamental technical tools from information theory, the (classical) asymptotic
equipartition property (AEP), or equivalently the notion of typical sequences which has the
weak law of large numbers at its core.

Suppose µ, the distribution of all trials, is obtained as n i.i.d. copies of a single-trial
distribution ω. Then, for εa ∈ (0, 1), δ > 0 there exists N(εa, δ) such that n > N(εa, δ) en-
sures Eµ(ZE)[Pµ(C|ZE)(µ(C|ZE) > γ)] > 1 − εa, where γ = 2−nHω(C|ZE)−nδ and Hω(C|ZE)
is the conditional Shannon entropy. We refer to this as the AEP condition; it holds by a
conditional form of the classical AEP (see, for instance, Section 14.6 in [21]). The set Bεs(µ)
of distributions of C, Z, E that are within a TV distance of εs from µ and the sets Aze are as
defined below:

Bεs(µ) := {σ : Cn ×Zn × En → [0, 1] | dTV(µ, σ) 6 εs}, (19)

Aze := {c ∈ Cn | µ(c|ze) > γ}, (20)

where Aze is defined for any ze for which µ(ze) > 0. Note that the case εs = 0 reduces to a
bound on the standard (non-smooth) average conditional min-entropy. We now state the
result as follows.

Theorem 3. Let µ be an IID attack with ω. For εs > 0, εa, δ > 0 and εa + 2εs < 1, there exists
N(εa, εs, δ) such that for n > N(εa, εs, δ)

1

n
H

avg,εs
∞,µ (C|ZE) 6 Hµ(C|ZE) +

1

n
log2

1

1 − εa − 2εs
+ δ. (21)

Proof. Throughout, we follow the convention that σ(c|ze) = 0 for all c ∈ Cn for any
ze ∈ Zn × En with σ(ze) = 0. We begin with the inequality dTV(σ, µ) 6 εs that any
σ ∈ Bεs(µ) must satisfy and proceed as follows:

2εs > ‖µ − σ‖1 = ∑
cze∈Cn×Zn×En

|µ(cze)− σ(cze)|

> ∑
ze:µ(ze)>0

∑
c∈Aze

|µ(cze)− σ(cze)| (22)

>

∣

∣

∣

∣

∣

∣

∑
ze:µ(ze)>0

∑
c∈Aze

(µ(cze)− σ(cze))

∣

∣

∣

∣

∣

∣

(23)

=

∣

∣

∣

∣

∣

∣

Eµ(ZE)[Pµ(C|ZE)(µ(C|ZE) > γ)]− ∑
ze:µ(ze)>0

∑
c∈Aze

σ(cze)

∣

∣

∣

∣

∣

∣

> Eµ(ZE)[Pµ(C|ZE)(µ(C|ZE) > γ)]− ∑
ze:µ(ze)>0

∑
c∈Aze

σ(cze).

The inequality in (22) follows as a result of the sum containing fewer terms; the inequality
in (23) follows from the triangle inequality. Now from the AEP condition mentioned above
we have the following:

∑
ze:µ(ze)>0

∑
c∈Aze

σ(cze) > Eµ(ZE)[Pµ(C|ZE)(µ(C|ZE) > γ)]− 2εs > 1 − εa − 2εs. (24)
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For any σ ∈ Bεs(µ), we define Mσ
ze for any ze ∈ Zn × En as Mσ

ze := maxc∈Cn σ(c|ze).
The average conditional maximum probability is then expressed as M̄σ := ∑ze Mσ

zeσ(ze).
Because 1 6 ∑c∈Aze

µ(c|ze) 6 γ|Aze|, we have |Aze| 6 1/γ for each ze and we can write:

∑
ze:µ(ze)>0

∑
c∈Aze

σ(cze) = ∑
ze:µ(ze)>0

∑
c∈Aze

σ(c|ze)σ(ze) 6 ∑
ze:µ(ze)>0

∑
c∈Aze

Mσ
zeσ(ze)

= ∑
ze:µ(ze)>0

|Aze|Mσ
zeσ(ze) 6

1

γ ∑
ze

Mσ
zeσ(ze) =

M̄σ

γ
. (25)

Using (24) and (25) we obtain M̄σ > γ(1 − εa − 2εs) from which (21) follows using
the definition of smooth average conditional min-entropy.

Having shown that the per-trial min-entropy generated by an IID attack is asymptoti-
cally bounded by the conditional Shannon entropy, we give the following definition of an
optimal attack.

Definition 5 (Optimal IID Attack). The distribution µ(CZE) of the sequence of random variables
C, Z, E is an optimal IID attack if µ is obtained through an IID attack based on a single-trial
distribution ω whose conditional Shannon entropy achieves the infimum defined below:

hmin(ρ) := inf
ω(CZE)∈Σ

ρ
E

Hω(C|ZE) (26)

Additional motivation for naming the attack of Definition 5 optimal is provided by
later results in this section, which show that the adversary must generate at least hmin(ρ)
of per-trial conditional min-entropy asymptotically with any attack that replicates the
observed distribution ρ.

In the theorem that follows, we formalise the claim that the infimum in (26) is achieved.
This theorem corresponds to Theorem 43 in [15]; in comparison, the comprehensive proof
provided here explicitly works out more of the steps. Crucially, this explicit approach also
allowed us to provide an improvement upon the result of Theorem 43 in [15], decreasing
the required value of |E | by one, thereby better characterising the adversary’s optimal
attack. Results in Section 4.2 will illustrate that no further improvement, i.e., a decrease in

|E |, is possible.

Theorem 4. Suppose Π is closed and equal to the convex hull of its extreme points. Then, there is
a distribution µ(CZE) ∈ Σ

ρ
E with |E | = 1 + dim Π such that Hµ(C|ZE) = hmin(ρ).

Proof. See Appendix B.1.1.

Theorem 4, in conjunction with the bound in Theorem 3, sets a benchmark for how
well the adversary can perform with an IID attack that replicates the observed distribution
ρ(CZ). Specifically, the adversary’s goal is to minimise the amount of per trial conditional
min-entropy and this shows there exists a strategy to replicate the observed statistics while
conceding no more min-entropy per trial than hmin(ρ), asymptotically.

3.2. Optimal PEFs

We now show that PEFs can asymptotically certify a min-entropy of hmin(ρ) per trial
from an observed distribution ρ. This is notable since it shows that an IID attack can be
asymptotically optimal: since the PEF method certifies the presence of hmin(ρ) min-entropy
per trial against any attack, this means no attack can generate observed statistics consistent
with ρ while conceding a smaller amount of randomness. This furthermore demonstrates
that there is nothing to be gained (asymptotically) by the adversary employing a more
sophisticated memory-based attack, since the PEF method allows for the possibility of
memory attacks. Conversely, the below results show that the PEF method is asymptotically
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optimal: no (correct) method can certify more min-entropy per trial from ρ than the amount
that is present in an explicit attack.

To formalise and prove these claims, we use the following technical tool, called an
“entropy estimator” as in [15].

Definition 6 (Entropy Estimator). An entropy estimator of the model Π is a function K(CZ) of
the random variables C, Z such that Eσ[K(CZ)] 6 Eσ[− log2(σ(C|Z))] holds for all σ(CZ) ∈ Π.

Given an entropy estimator K(CZ), we say that its entropy estimate at a distribution
σ(CZ) is Eσ[K(CZ)]. We will see below that an entropy estimator can be used to construct
PEFs certifying per-trial min-entropy arbitrarily close to its entropy estimate, underlying
the significance of the following result:

Theorem 5. Suppose Π satisfies the conditions of Theorem 4 and ρ is in the interior of Π. Then,
there exists an entropy estimator whose entropy estimate at ρ is equal to hmin(ρ).

Proof. See Appendix B.1.2.

The assumption that ρ is in the interior of Π will generally hold if ρ is estimated
from real data, as the boundary of Π is a measure zero set. If the assumption is removed,
a weaker version of the theorem can still be obtained, which is discussed in the proof in
Appendix B.1.

The entropy estimator K(CZ) whose existence is guaranteed by the above theorem
can be used to show the existence of a family of PEFs that can become arbitrarily close to
certifying hmin(ρ) amount of per-trial min-entropy. However, for a precise formulation of
this claim we need a way to measure the asymptotic rate of min-entropy using PEFs. Recall
from (8) that we can lower-bound the per-trial min-entropy certified by a PEF as:

1

n
H

avg,ε
∞,µ (C|ZE; S) >

1

n

(

1 +
1

β

)

log2(κ)−
1

n
log2(p). (27)

As in [15], we ignore the log2(κ) term in the asymptotic regime, as the completeness
parameter κ can be thought of as a “reasonable” lower bound on the probability that the
protocol does not abort, a type of error parameter that one might try to decrease somewhat
for longer experiments but not at the exponential decay rate required to make this term
asymptotically significant. Focusing then on the −(1/n) log2(p) term, recall that success

of the protocol is determined by the occurrence of the event S :=
{(

ε ∏
n
i=1 Fi

)−1/β
6 p

}

,

the inequality in which can be expressed equivalently as:

1

nβ

n

∑
i=1

log2(Fi) +
1

nβ
log2(ε) > − 1

n
log2(p).

The expression on the left hand side of the above inequality is the negative base-2 logarithm
of the upper bound on µe(C|Z) for each e ∈ En (refer to (2) and the comments following
Corollary 1) and so is a rough measure of the amount of randomness, up to an error
probability of ε, present in the outcome data. More concretely, since p will be chosen
to make −(1/n) log(p) as large as reasonably possible to optimise min-entropy certified
by (27), the anticipated value of the left hand side quantity can be used as a measure
of certifiable randomness. For a stable experiment (i.e., one with each trial having the
same distribution σ belonging to the same model Π), the quantity (1/n)∑

n
i=1 log2(Fi)/β

approaches Eσ[log2(F(CZ))]/β in the limit n → ∞, while the term (1/nβ) log2(ε) goes
to zero for any fixed value of β and ε. Hence, we introduce the following quantity as a
measure of per-trial min-entropy certified by a PEF.
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Definition 7 (Log-Prob Rate). The log-prob rate of a PEF F(CZ) with power β at a distribution
ρ(CZ) is defined as Oρ(F; β) = Eρ[log2(F(CZ))]/β.

We say that a PEF certifies randomness at a distribution ρ if the quantity Oρ(F; β)
is positive. We note that this definition is consistent with our expectation that only non-
local distributions allow the certification of randomness, as the log-prob rate for a local
distribution is a non-positive number, i.e., OσL

(F; β) 6 0: a local behaviour is a convex
mixture of (finitely many) local deterministic behaviours σLD(C|Z). Hence, with a fixed
settings distribution π(z) > 0, the defining condition Eσ[F(CZ)σ(C|Z)β] 6 1 of a PEF
for a distribution defined as σ(cz) = σLD(c|z)π(z), for all c, z, is equivalently expressed
as Eσ[F(CZ)] 6 1, since σLD(c|z) is either 0 or 1 for all c, z. Due to the concavity of log
function, we then have Eσ[log2(F(CZ))] 6 log2(Eσ[F(CZ)]) 6 0 using Jensen’s inequality.
Hence, no device-independent randomness can be certified at a local-realistic distribution.

Theorem 6. Given an entropy estimator K(CZ) and an observed distribution ρ(CZ), for any
ε ∈ (0, 1/2) there is a PEF whose log-prob rate at ρ is greater than Eρ[K(CZ)]− ε.

Our proof follows the general approach of Theorem 41 in [15], though we are able to shorten
the argument.

Proof. Given an entropy estimator K(CZ) and ε ∈ (0, 1/2) from the statement of the
theorem, for any γ > 0 we can define a function

F(CZ) = 2(K(CZ)−ε)γ (28)

We will show that there exists a (small) positive value of γ for which F(CZ) is a PEF with
power β = γ; the asymptotic log-prob rate of this PEF at ρ will then beEρ[log2(F(CZ))]/β =
Eρ[K(CZ)]− ε as desired. So, our task is to find a value of γ such that the following in-
equality holds for all σ ∈ Π:

Eσ[F(CZ)σ(C|Z)γ] 6 1

We study the left side of the above expression as a function of γ; specifically, define
a function

fσ(γ) = Eσ[F(CZ)σ(C|Z)γ] = ∑
c,z:σ(cz)>0

[

2K(cz)−εσ(c|z)
]γ

σ(cz)

which is, for any fixed choice of σ and K(CZ), a convex combination of positive constants
raised to the power of γ and so is infinitely differentiable at all γ ∈ R. (Note that we never
encounter the problematic form 00 because the argument of [·]γ will always be strictly
positive, as the sum defining fσ extends only over values of c, z for which σ(cz) is positive,
and hence σ(c|z) > 0.) We can thus Taylor-expand fσ about γ = 0, obtaining via the
Lagrange remainder theorem that, for any positive γ, there exists a k ∈ (0, γ) making the
following equality hold:

fσ(γ) = fσ(0) + f ′σ(0)γ +
f ′′σ (k)

2
γ2 (29)

The first term in the expansion satisfies fσ(0) = ∑cz 1 · σ(cz) = 1. The coefficient of γ

in (29) satisfies:

f ′σ(0) = ∑
c,z:σ(cz)>0

[

2K(cz)−εσ(c|z)
]0

σ(cz) ln
[

2K(cz)−εσ(c|z)
]

= ∑
c,z:σ(cz)>0

σ(cz)[K(cz)− ε + log2(σ(c|z))] ln(2)

= ln(2)(Eσ[K(CZ)]−E[− log2(σ(c|z))]− ε) 6 −ε ln(2)
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where the inequality follows from the condition Eσ[K(CZ)] 6 Eσ[− log2(σ(C|Z))] in the
definition of an entropy estimator. Hence, (29) yields

fσ(γ) 6 1 − εγ ln(2) +
f ′′σ (k)

2
γ2 (30)

for some k ∈ (0, γ). Now, it is given that a fixed γ, k may be different in (30) for different
choices of σ; however, it must always lie in the interval (0, γ), so if we can show that there
is a choice of γ such that for any σ the following inequality holds for all k ∈ (0, γ)

f ′′σ (k)

2
γ2 6 εγ ln(2) (31)

then, for that value of γ, we will know that F(CZ) as defined in (28) is a valid PEF satisfying
the conditions of the theorem. To find the needed value of γ making (31) hold and complete
the proof, we calculate

f ′′σ (k) = ln2(2) ∑
c,z:σ(cz)>0

[

2K(cz)−εσ(c|z)
]k[

log2

(

2K(cz)−εσ(c|z)
)]2

σ(cz)

6 ln2(2)Mk ∑
cz:σ(cz)>0

σ(c|z)k+1[K(cz)− ε + log2(σ(c|z))]
2σ(z)

where M = maxcz 2K(cz). We now assert that each quantity σ(c|z)k+1[K(cz)− ε + log2(σ(c|z))]
2

is bounded above by a constant Ncz for all k > 0 and Ncz is independent of σ. This fol-
lows because, for any fixed choice of c and z, this quantity is strictly smaller than the

expression gcz(x) = x[K(cz)− ε + log2(x)]2 for the choice of x = σ(c|z) ∈ (0, 1] (note that
since σ(c|z) ∈ (0, 1], σ(c|z)k+1 6 σ(c|z) holds for any k > 0). Then, two applications
of l’Hôpital’s rule demonstrate that limx→0 gcz(x) exists and so gcz can be extended to
a continuous function on [0, 1] where it has a maximum by the extreme value theorem.
Invocation of the extreme value theorem, rather than computing an explicit bound, is what
primarily allows us to shorten the proof compared to the argument proving Theorem 41
in [15]. Referring to this maximum as Ncz and letting N = maxcz Ncz, we obtain the desired
bound as shown below.

f ′′σ (k) 6 ln2(2)Mk ∑
z:σ(z)>0

σ(z) ∑
c:σ(c,z)>0

N 6 ln(2)Mk ∑
z:σ(z)>0

σ(z)|C|N = ln(2)Mk|C|N. (32)

This shows that, if Mkγ 6 2ε/|C|N holds, then (31) holds, from which it follows that a
sufficiently small choice of γ > 0 makes (31) hold for all k ∈ (0, γ).

The combination of Theorem 5, which shows the existence of an entropy estimator
with entropy estimate hmin(ρ), and Theorem 6, which enables the construction of a family
of PEFs with log-prob rate arbitrarily close to this entropy estimate, demonstrates the
asymptotic optimality of the PEF method.

3.3. Robustness of PEFs

We want to consider a question not considered in the previous PEF papers: can a
PEF optimised for ρ(CZ) certify randomness for a distribution different from ρ, where
the difference is measured in terms of the total variation distance between them; in other
words, how robust is the PEF? We will see in the next section that, in the (2,2,2) Bell scenario,
for any behaviour corresponding to ρ violating the CHSH–Bell inequality, PEFs can be (up
to any desired ε-tolerance) asymptotically optimal in terms of log-prob rate at ρ while also
generating randomness at a positive rate for any behaviour (corresponding to a distribution
of outcomes and settings) that violates the CHSH–Bell inequality by a fixed positive amount,
which can be chosen to be as small as desired.
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The following theorem gives a useful sufficient condition for a distribution different
from ρ to have a positive log-prob rate and demonstrates that any nontrivial (i.e., non-
constant) PEF will have at least some degree of robustness.

Theorem 7. Let F(CZ) = G(CZ)β be a non-constant positive PEF with power β > 0 for Π.
The log-prob rate Oσ(F; β) at a distribution σ(CZ) ∈ Π is related to the log-prob rate Oρ(F; β) at
ρ(CZ) ∈ Π and the total variation distance between ρ and σ as

∣

∣Oρ(F; β)−Oσ(F; β)
∣

∣ 6 (L − l)dTV(ρ, σ), (33)

where L = maxcz log2(G(cz)) and l = mincz log2(G(cz)). Consequently, assuming that
Oρ(F; β) is positive, the following upper bound on the total variation distance between ρ(CZ) and
σ(CZ) is a sufficient condition for F to have a positive log-prob rate at σ(CZ)

dTV(ρ, σ) < Eρ[log2(G)]/(L − l). (34)

Proof. Using the definition of log-prob rate at a given distribution we have

∣

∣Oρ(F; β)−Oσ(F; β)
∣

∣ =

∣

∣

∣

∣

∣

∑
cz

1

β

[

log2(G(cz)β)
(

ρ(cz)− σ(cz)
)

]

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑
cz

(

log2(G(cz)) +
L + l

2
− L + l

2

)

(ρ(cz)− σ(cz))

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑
cz

(

log2(G(cz))− L + l

2

)

(

ρ(cz)− σ(cz)
)

+
L + l

2 ∑
cz

(

ρ(cz)− σ(cz)
)

∣

∣

∣

∣

∣

6 ∑
cz

∣

∣

∣

∣

log2(G(cz))− L + l

2

∣

∣

∣

∣

|ρ(cz)− σ(cz)|

6 (L − l)
1

2 ∑
cz

|ρ(cz)− σ(cz)| = (L − l)dTV(ρ, σ)

Hence, we have

Oρ(F; β)− (L − l)dTV(ρ, σ) 6 Oσ(F; β) 6 Oρ(F; β) + (L − l)dTV(ρ, σ).

Assuming that Oρ(F; β) is positive, a sufficient condition for Oσ(F; β) to be positive is
Oρ(F; β) > |L − l|dTV(ρ, σ) or, equivalently, the following bound on dTV(ρ, σ):

dTV(ρ, σ) < Oρ(F; β)/(L − l) = Eρ[log2(G)]/(L − l).

We will see in Section 4.2 that the bound (33) can be saturated and so is tight.

4. Application to the (2,2,2) Bell Scenario

Here, we explore the application of the results of the previous section to the (2,2,2)
Bell scenario (that of two parties, two measurement settings and two outcomes). First,
working within the trial model of no-signalling distributions ΠNS, we show that PEFs can
be simultaneously asymptotically optimal and robust by means of an explicit construction
of a sequence of PEFs that approaches the optimal log-prob rate for the target distribution
while simultaneously generating randomness at a positive rate for any other distribution
violating the CHSH inequality.

In the course of this exercise, we will observe that the optimal adversarial attack—
one generating the observed statistics (consistent with an expected trial distribution ρ)
while asymptotically yielding hmin(ρ) amount of per-trial randomness—is always achieved
through a single-trial distribution that marginalises to ρ through a convex combination of a
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single extremal no-signalling nonlocal distribution and a local realistic distribution (which
itself consists of a convex mixture of up to eight extremal local deterministic distributions).
This is a notable feature, revealing that the adversary never needs to prepare more than
one nonlocal distribution to simulate the observed distribution with as little min-entropy
as possible. Later in this section, we explore the potential for generalisation of this feature
to the (2,2,2) scenario restricted to quantum distributions (ΠQ); if true, this would be an
important finding, outlining the optimal approach of a (more realistic) quantum-limited
adversary attacking the PEF protocol. The general observation that preparing a single
nonlocal state is preferable to preparing multiple ones underlies the significance of the
answer to this question. We find some evidence that the feature—only requiring one
extremal nonlocal distribution in the convex combination attack—may hold for ΠQ in the
(2,2,2) Bell scenario but this may be a difficult question to resolve due to the complicated
geometry of the quantum set. We also explore possible generalisations of this feature to
no-signalling trial models for (n, m, k) Bell scenarios where n, m or k exceed 2, and find that
it does not hold in any of these cases—so the question of whether this holds in a given Bell
scenario and trial model is non-trivial in general.

We begin with a brief review of the (2,2,2) Bell scenario and some features of the set
ΠNS of no-signalling distributions in this scenario.

4.1. A Brief Review of the (2,2,2) Bell Scenario

The (2,2,2) Bell scenario is the minimal Bell scenario, comprising two spatially sep-
arated parties Alice and Bob, each having two measurement settings and two possible
outcomes corresponding to each setting. The measurement settings for Alice and Bob
are represented by the RVs X, Y realising values x, y ∈ {0, 1} and the measurement
outcomes are represented by the RVs A, B realising values a, b ∈ {0, 1}. With σs(XY)
representing a fixed settings distribution, we refer to the sets ΠNS, ΠQ and ΠL as no-
signalling, quantum and local models, respectively, when they comprise of distributions
µ(ABXY) := µ(AB|XY)σs(XY), where the conditional probabilities µ(AB|XY), referred
to as behaviours, are constrained by the no-signalling, quantum and local realism principle,
respectively. Henceforth, all distributions µ(ABXY) belonging to a model are defined as
µ(ABXY) := µ(AB|XY)σs(XY), and we associate a model with its constituent behaviour
µ(AB|XY) or distribution µ(ABXY), indistinctively, since the settings distribution is fixed.
Recall that the model ΠNS is a polytope, the extremal points of which consist of the be-
haviours µextr(AB|XY) ≡

{

µextr(ab|xy) : a, b, x, y ∈ {0, 1}
}

defined below.

µ
αβγ
PR (ab|xy) :=

{

1
2 : a ⊕ b = xy ⊕ αx ⊕ βy ⊕ γ

0 : otherwise
(35)

µ
αβγδ
LD (ab|xy) :=

{

1 : a = αx ⊕ β, b = γy ⊕ δ

0 : otherwise
(36)

where α, β, γ, δ ∈ {0, 1} and ⊕ denotes addition modulo 2; (35) and (36) are known as
the Popescu–Rohrlich (PR) behaviours [22] and the local deterministic (LD) behaviours,
respectively. The CHSH–Bell inequalities shown below are known to be the only non-
trivial facet inequalities delimiting the local polytope which is the convex hull of the LD
behaviours [23]. Corresponding to each choice of α, β, γ ∈ {0, 1}, the inequalities represent
a version of the canonical CHSH–Bell inequality.

Bαβγ := (−1)γE00 + (−1)β+γE01 + (−1)α+γE10 + (−1)α+β+γ+1E11 6 2, (37)

where Exy := ∑
1
a,b=0(−1)a+bµ(ab|xy) for x, y ∈ {0, 1}. The nonlocal algebraic maximum

for the expression Bαβγ is 4. The local maximum is obtained by eight µ
αβγδ
LD (AB|XY) be-

haviours for each Bαβγ. The sets LDi, i ∈ {1, 2, . . . , 8}, each comprise of eight LD behaviours
that saturate—i.e., achieve a value of 2—exactly one Bαβγ. A result proven in [24] (see
Theorems 2.1 and 2.2 therein) states that any behaviour violating (37) can be represented as
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a convex combination of one PR box achieving the nonlocal maximum for Bαβγ and (up to)
eight LD behaviours of the corresponding LDi set saturating it. In fact, the geometry of the
no-signalling polytope in this Bell scenario is such that there is a one-to-one correspondence
between the nonlocal no-signalling extremal points, the PR boxes, in (35) and the non-trivial
facets of the local polytope described by (37), with exactly one extremal point violating
it up to the algebraic maximum of four for each choice of (α, β, γ) ∈ {0, 1}3. Hence, any
nonlocal behaviour—that violates a given version of the CHSH–Bell inequality—is con-
tained in a nonlocal 8-simplex whose vertices are the one PR box that maximally violates that
particular version and the eight LD behaviours that saturate it. Recall that a p-simplex is a
p-dimensional polytope which is the convex hull of its p + 1 vertices. More formally, if the
set C := {~a0,~a1, . . . ,~ap} ⊂ Rn of p + 1 points are affinely independent, then the p-simplex
determined by them is the following set of points:

∆p :=

{

p

∑
k=0

θk~ak

∣

∣

∣

∣

p

∑
k=0

θk = 1, θk > 0 for k = 0, 1, . . . , p

}

.

The affine independence condition means that the only admissible choice of θk ∈ R such
that ∑

p
k=0 θk~ak =~0 and ∑

p
k=0 θk = 0 are satisfied is θk = 0 for all k; this holds if and only if

the vectors~ak −~a0 are linearly independent for k = 1, 2, . . . , p.
One can check that the PR box that achieves the nonlocal maximum for a given version

of the CHSH–Bell expression Bαβγ and the eight LD behaviours that achieve the local
maximum for it are affinely independent. Since a, b, x, y ∈ {0, 1} and |{0, 1}4| = 16, we
can represent the behaviours µ(ab|xy) in this Bell scenario as vectors ~µ ∈ R16 as shown in
Table 1. Then, the affine independence is apparent: letting the PR box behaviour be~a0 and
the LD behaviours be the other~ak, each~ak −~a0 term has a unique column where it contains
a “1” while all of the other terms contain “0”, ensuring linear independence.

Table 1. These probability vectors in R16 are the PR box ~µPR,1 ≡ µ000
PR that achieves the nonlocal

maximum of 4 and the eight LD behaviours ~µLD,1, . . . ,~µLD,8 that achieve the local maximum of 2

for the standard CHSH–Bell expression B000, with the LD behaviours corresponding to the eight

probability tables numbered 1, 4, 5, 8, 9, 12, 14 and 15 in Table A2 of [24], and also given in the first row

of Table 2. One can verify the affine independence of the nine vectors above by verifying that the eight

vectors obtained by subtracting the first vector from the remaining eight are linearly independent.

xy
00 01 10 11

ab ab ab ab
00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11

~µPR,1 1/2 0 0 1/2 1/2 0 0 1/2 1/2 0 0 1/2 0 1/2 1/2 0
~µLD,1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
~µLD,2 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
~µLD,3 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0
~µLD,4 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0
~µLD,5 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0
~µLD,6 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0
~µLD,7 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0
~µLD,8 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0

It is known that a behaviour belonging to ΠNS \ ΠL violates exactly one of the eight
CHSH–Bell inequalities. The impossibility of simultaneously violating a specific pair of
CHSH–Bell inequalities can be seen as presented in [25]: suppose a behaviour in ΠNS \ ΠL

violates both inequalities corresponding to (α, β, γ) = (0, 0, 0) and (α, β, γ) = (1, 0, 0), then
E00 + E01 + E10 − E11 > 2 and E00 + E01 − E10 + E11 > 2 holds for the same behaviour.
Adding these two inequalities we have 2(E00 + E01) > 4, i.e., E00 + E01 > 2, which is not
possible to satisfy since the correlations Exy satisfy

∣

∣Exy

∣

∣ 6 1.
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Table 2 lists the eight versions of the Bell expression Bαβγ and the eight nonlocal
8-simplices ∆8

PR,i containing points that violate the corresponding CHSH–Bell inequality.
Any nonlocal no-signalling behaviour ultimately belongs to exactly one such simplex.

4.2. Robust PEFs and Optimal Adversarial Attacks in the (2,2,2) Bell Scenario

We now examine the robustness of PEFs that are optimal for an anticipated distribution
ρ and a fixed number of planned trials n. We first review how we find optimal PEFs in
this scenario. The constrained maximisation routine in (10) provides a method to find
useful PEFs with respect to an anticipated trial distribution, with Lemma 1 showing that
the feasibility constraints in (10) can be restricted to only the distributions corresponding to
the eight PR and sixteen LD behaviours (with a fixed settings distribution σs(XY) > 0).

In practice, the number of trials n will affect the choice of β and the PEF that opti-
mises the quantity Eρ[(n log2(F(CZ)) + log2(ε))/β], a quantity which (per the discussion
surrounding (10)) can be thought of as the anticipated amount of raw randomness from
running the experiment whose trial distribution is expected to be ρ. If we divide this
quantity by n, we arrive at a measure of expected randomness per trial for the optimal PEF
at a given value of β, called the net log-prob rate: the function (maxF Oρ(F; β)) + log2(ε)/nβ.
Figure 2 shows a plot of the net log-prob rates corresponding to two different values of n,
as well as the supremum of the log-prob rate, for β varying from 0.001 to 0.1 and ε fixed at
the value 10−4. The value of β, and the corresponding PEF that maximises the curve, is
then the best choice for the given planned number of trials n.

Table 2. The eight nonlocal 8-simplices containing behaviours that violate the corresponding version

of the CHSH–Bell inequality. We identify each 8-simplex ∆8
PR,i with a PR box which solely contributes

to the nonlocality of the behaviour violating the CHSH–Bell inequality.

Bαβγ
∆

8
PR,i

B000 ∆8
PR,1 := conv

{

µ000
PR , µ0000

LD , µ0101
LD , µ0010

LD , µ0111
LD , µ1000

LD , µ1101
LD , µ1011

LD , µ1110
LD

}

B001 ∆8
PR,2 := conv

{

µ001
PR , µ0001

LD , µ0011
LD , µ0100

LD , µ0110
LD , µ1001

LD , µ1010
LD , µ1100

LD , µ1111
LD

}

B010 ∆8
PR,3 := conv

{

µ010
PR , µ0000

LD , µ0010
LD , µ0101

LD , µ0111
LD , µ1001

LD , µ1010
LD , µ1100

LD , µ1111
LD

}

B011 ∆8
PR,4 := conv

{

µ011
PR , µ0001

LD , µ0011
LD , µ0100

LD , µ0110
LD , µ1000

LD , µ1011
LD , µ1101

LD , µ1110
LD

}

B100 ∆PR,5 := conv
{

µ100
PR , µ0000

LD , µ0011
LD , µ0101

LD , µ0110
LD , µ1000

LD , µ1010
LD , µ1101

LD , µ1111
LD

}

B101 ∆8
PR,6 := conv

{

µ101
PR , µ0001

LD , µ0010
LD , µ0100

LD , µ0111
LD , µ1001

LD , µ1011
LD , µ1100

LD , µ1110
LD

}

B110 ∆8
PR,7 := conv

{

µ110
PR , µ0001

LD , µ0010
LD , µ0100

LD , µ0111
LD , µ1000

LD , µ1010
LD , µ1101

LD , µ1111
LD

}

B111 ∆8
PR,8 := conv

{

µ111
PR , µ0000

LD , µ0011
LD , µ0101

LD , µ0110
LD , µ1001

LD , µ1011
LD , µ1100

LD , µ1110
LD

}

The plot illustrates some notable features of PEFs. First, it was proved in Appendix
D of [14] that assuming a stable experiment (with each trial distribution ρ) the function
supF Oρ(F; β) is monotonically non-increasing in β > 0 which implies that the global
supremum of the log-prob rates supβ>0 supF Oρ(F; β), for all PEFs with positive powers, is
achieved in the limit β → 0. We observe this with the top curve. For a fixed ε, the net log-
prob rate converges upwards to supF Oρ(F; β) for each β as n → 0 but, for any fixed value
of n, log2(ε)/nβ diverges to −∞ as β → 0. Hence, in a finite trial regime the supremum of
the log-prob rates (attainable by PEFs with positive powers) is not achieved—the maximum
value of the net log-prob rate is achieved at a β away from 0. The general trend is that for a
value of n the net log-prob rate achieves a higher value corresponding to a lower value of β;
the net log-prob rate is improved by a reduction in power and an increase in the number of
trials. This is observed in Figure 2 for the two choices of n = 1.5× 105 and n = 2.4× 105. As
a side note, the proof that β′ < β implies supF Oρ(F; β′) 6 supF Oρ(F; β) is straightforward:
write β′ = γβ with 0 < γ < 1; then, for any F in the scope of supF Oρ(F; β), it turns out Fγ

is a PEF with power β′, for which the equality Oρ(Fγ; β′) = Oρ(F; β) follows immediately
from the definition of log-prob rate—hence, the supremum of log-prob rates cannot be
smaller at β′. Fγ is a PEF with power β′ as Eρ(Fγσ(c|z)βγ) 6 Eρ(Fσ(c|z)β)γ 6 1γ = 1,
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with the first inequality holding by Jensen’s inequality ( f (x) = xγ is concave) and the
second because F is a PEF with power β.

Figure 2. A plot showing the net log-prob rates for n = 1.5× 105 (the dashed curve) and n = 2.4× 105

(the dash–dotted curve) with ε = 10−4 and β varying in the interval (0.001, 0.1). The dotted

curve is the log-prob rate supF Oρ(F; β), an upper bound for the net log-prob rate in the limit

as n → ∞. We selected 200 equally spaced points in the interval (0.001, 0.1) for β and performed the

maximisation maxF Eρ[log2(F(ABXY))] constrained by: (1) the non-negativity of PEFs and (2) the

defining condition Eµ[F(ABXY)µ(AB|XY)β] 6 1 at all distributions µ corresponding to the eight PR

and sixteen LD behaviours with a fixed uniform settings distribution µ(xy) = 1/4 for all x, y ∈ {0, 1}.

The anticipated distribution ρ used here was the one corresponding to the behaviour given in Table I

in [15]. We observe that the maximum value for the net log-prob rate—indicated by the solid vertical

lines—is achieved at a lower value of β for a higher value of n.

The arguments above illustrate how it is necessary to consider a range of β values to
find the optimal choice. We remark there is an upper limit to the range of β values that
must be considered: it was noted in [14] (see Appendix F therein) that there exists a certain
threshold value βNS

th such that, for all β > βNS
th , the optimisation problem in (10) will return

the same PEF independent of the choice of β and [14] cites numerical evidence that this
bound is βNS

th ' 0.4151. The following result, whose proof we give in the appendix, derives
this threshold analytically, finding it to have the exact value log2(4/3).

Proposition 1. For the set of behaviours ΠNS, the PEF optimisation in (10) is independent of the
power β for β > log2(4/3).

Proof. See Appendix F.

We now ask how optimal PEFs for lower and lower values of β (and correspondingly
higher values of n) compare on the question of robustness, in the following sense: can a PEF
optimised with respect to a distribution ρ violating the standard CHSH–Bell inequality
be used to certify randomness of distributions that are different from ρ, provided they
violate the same CHSH–Bell inequality? This question is relevant because, in practice,
the observed experimental distribution will never be exactly the same as the anticipated
one and may be somewhat different depending on many potential factors. Figure 3 gives
an illustration of the matter of robustness. Comparing the two plots of the log-prob rate for
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quantum-realisable distributions on the two-dimensional slice (shown in Figure 4b) above
the standard CHSH–Bell facet, we observe that the level set denoting a zero amount of
certified randomness in the right hand plot (which corresponds to a lower value of β than
that on the left) is pushed further down to (almost touching) the standard CHSH–Bell facet.

This suggests that the asymptotic optimality of a PEF need not entail a trade-off with
its robustness; indeed, we observed that, in many cases, as β > 0 assumes smaller and
smaller values, the PEF optimised for a fixed ρ violating the standard CHSH–Bell inequality
becomes more and more robust in the sense that it certifies randomness at a positive rate
(asymptotically) for increasingly statistically different σ.

We show that this is a general feature. To this end, we define a sequence of PEFs that is
both asymptotically optimal with respect to the log-prob rate and is asymptotically robust
in the sense that, given any distribution violating the standard CHSH–Bell inequality, all
the PEFs beyond a point in the sequence certify randomness at a positive rate. To construct
this PEF sequence, we first define the function K∗(ABXY) as shown below:

K∗(abxy) := 4[[a ⊕ b = xy]]− 3, (38)

where a, b, x, y ∈ {0, 1} and the function [[·]] evaluates to 1 if the condition within holds,
0 otherwise. The function defined in (38) is an entropy estimator for the distributions in
the no-signalling polytope when the settings are equiprobable, i.e., σs(xy) = 1/4 for all
choices of x and y. To see this, recalling Definition 6 we can check—by direct evaluation—
whether K∗ satisfies the inequality Eσ[K(CZ)] 6 Eσ[− log2(σ(C|Z))] when σ is each of
the extremal points of the no-signalling polytope. It is sufficient to check this condition
for the extremal points of the no-signalling set, i.e., the PR behaviours and the LD be-
haviours. This is because if σ is expressible as σ = λσ1 + (1 − λ)σ2 then, for any function
K satisfying Eσi

[K(ABXY)] 6 Hσi
(AB|XY), we have Eσ[K] = λEσ1

[K] + (1 − λ)Eσ2 [K] 6
λHσ1

(AB|XY) + (1 − λ)Hσ2(AB|XY) 6 Hσ(AB|XY). Hence, if the condition holds for the
extremal points, it will hold for all points in the set. To see that it does, we confirm by
inspection that Eσ[K∗] attains the value 1 for the PR behaviour achieving the no-signalling
maximum for the standard CHSH function, the value −3 for the PR behaviour achieving −4
and the value −1 for each of the PR behaviours that achieve the value 0, which are all less
than or equal to the conditional Shannon entropy of the respective PR behaviours, which is
1. Likewise, we can check that K∗ is a valid entropy estimator for all the LD behaviours;
it takes the value zero for the eight local deterministic distributions appearing in Table 1
and −2 for the other eight, while H(AB|XY) = 0 for these distributions. Hence, we have
verified that K∗ satisfies the entropy estimator condition for all the extremal behaviours
and by extension all behaviours in the no-signalling polytope.

Having shown K∗ is a is an entropy estimator, we next consider a sequence of functions
{Fk}∞

k=1 where Fk is defined according to the construction in Theorem 6:

Fk(ABXY) = 2(K∗(ABXY)−e−k)βk , (39)

where we choose a positive βk making Fk a PEF for each k, whose existence is guaranteed
by the theorem. By construction, for each k the function Fk is a valid PEF with power βk > 0
for the set of no-signalling distributions. The log-prob rate of Fk at σ is:

Oσ(Fk; βk) =
1

βk
Eσ

[

log2

(

2(K∗−e−k)βk

)]

= Eσ[K∗]− e−k. (40)

We show robustness of the sequence in the following sense: for any σ ∈ ΠNS violating
the standard CHSH–Bell inequality, the log-prob rate of the sequence of PEFs {Fk}∞

k=1 is
eventually positive. To see this, recall that, as discussed in our brief review of the (2,2,2)
Bell scenario, behaviours violating the standard CHSH–Bell inequality are contained in the
nonlocal 8-simplex ∆8

PR,1 (see Table 2). Hence, σ is expressible as a convex combination of

the vertices of ∆8
PR,1:



Entropy 2023, 25, 1291 24 of 45

σ(ab|xy)σs(xy) = λPR,1µPR,1(ab|xy)σs(xy) +
8

∑
i=1

αiµLD,i(ab|xy)σs(xy), (41)

where λPR,1 + ∑
8
i=1 αi = 1. This decomposition allows us to express the log-prob rate in

terms of the standard CHSH–Bell function, which we define as

S(ABXY) := (−1)XY(−1)A+B/σs(XY),

where σs(XY) is the fixed settings distribution. We see that λPR,1 = (Sσ − 2)/2 in (41),
where Sσ is the expected standard CHSH–Bell value according to the distribution
σ(ABXY) = σ(ab|xy)σs(xy). This follows by computing the expectation of S according
to the PR box distribution µPR,1 = µPR,1(abxy) = µPR,1(ab|xy)σs(xy), which is 4, and the
expectation of S according to the local distribution µL,i = µL,i(abxy) = µLD,i(ab|xy)σs(xy),
which is 2. The log-prob rate Oσ(Fk; βk) for Fk at σ is then expressed as:

Oσ(Fk; βk) =

(

Sσ − 2

2

)

EµPR,1
[K∗] +

8

∑
i=1

αiEµLD,i
[K∗]− e−k. (42)

Since EµLD,i
[K∗] evaluates to zero for each µLD,i and EµPR,1

[K∗] evaluates to 1, the expression

for Oσ(Fk; βk) reduces to Oσ(Fk; βk) = Sσ−2
2 − e−k. As k → ∞, Oσ(Fk; βk) = (Sσ − 2)/2

and so the quantity is eventually strictly positive provided Sσ > 2, i.e., provided σ violates
the standard CHSH–Bell inequality.

Figure 3. A heat map illustrating the robustness of PEF with log-prob rate as the figure of merit, evalu-

ated for behaviours σ(ab|xy) on the two-dimensional slice of the set of quantum behaviours (shown in

Figure 4b) above the standard CHSH–Bell facet. The behaviours on the two-dimensional slice shown

above are parameterised by S and S ′ as shown in (46) with the added restrictions S2 + (S ′)2 6 8

and 2 6 S 6 2
√

2, −2 6 S ′ 6 2 (see also Table 3). Assuming a uniform distribution for the settings,

σs(xy) = 1/4 for all x, y, we plot the log-prob rate ∑abxy[log2 F∗(abxy)σ(ab|xy)σs(xy)]/β for all

distributions in the slice. The black dot corresponds to the behaviour (and hence the distribution)

with respect to which we perform the PEF optimisation for a fixed n and ε to obtain F∗. The coor-

dinates for the black dot are (S ′,S) ≡ (0, 2.6). (a) Top figure: Heat map with F∗ obtained from the

PEF optimisation in (10) with respect to the fixed distribution (corresponding to the black dot in

the figures), fixed n, ε and β = 0.1. Below S ' 2.22145 no device-independent randomness can

be certified. (b) Bottom figure: Heat map with F∗ obtained from the PEF optimisation in (10) with

respect to the fixed distribution (corresponding to the black dot in the figures), fixed n, ε and β = 0.01.

Below S ' 2.02072 no device-independent randomness can be certified.
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Continuing our discussion on robustness, a different perspective on it would be to
ask: given a PEF F with power β > 0 optimised with respect to the distribution ρ, how far
in terms of total-variation distance can another distribution σ be such that the same PEF
(with the same power) can be used to certify randomness? Theorem 7 provides a sufficient
condition for the robustness of a positive, non-constant PEF F = Gβ with power β in the
following sense: assuming the log-prob rate of F at ρ is positive, the log-prob rate of F at a
different distribution σ is positive if dTV(ρ, σ) is within a certain bound (as given in (34)).
For the sequence {Fk}∞

k=1 of PEFs the upper bound on dTV(ρ, σ) is computed as follows:

Notice that in the sequence {Fk}∞
k=1 of PEFs, Fk is of the form Fk = G

βk
k , where Gk = 2K∗−e−k

.

The upper bound on dTV(ρ, σ) (as given in (34)) is then Eρ[Gk]/(L − l) = 1
4

(

Sρ−2
2 − e−k

)

. It

is worthwhile to observe that, given a standard CHSH–Bell inequality violating distribution
ρ, this upper bound approaches the strength of nonlocality for ρ which is expressed as
(Sρ − 2)/8. The strength of nonlocality is defined in terms of how far the nonlocal no-
signalling distribution ρ is from the local set ΠL [26]. It is defined as follows:

dNL(ρ) :=
1

|X ||Y|
1

2
min
τ∈ΠL

∑
abxy

|ρ(ab|xy)− τ(ab|xy)|, (43)

where the minimum is over all distributions τ belonging to the local set ΠL. In the definition
of dNL(ρ) in (43) we have assumed a uniform settings distribution as is evident from the
factor 1/|X ||Y|, where |X | and |Y| denote the number of the measurement settings choices
for Alice and Bob, respectively (which for the (2,2,2) Bell scenario is 2 for Alice and 2 for
Bob). A theorem in [24] (see Theorem 3.1) provides a condition for the local distribution τ

such that the minimum (1/2)minτ∈ΠL ∑abxy |ρ(ab|xy)− τ(ab|xy)| in (43) is achieved and
that the minimum comes out to be the weight (Sρ − 2)/2 on the PR box in the expression
of ρ as the convex combination of the vertices of ∆8

PR,1; and so per the definition in (43)

dNL(ρ) = (Sρ − 2)/8. Thus, the bound 1
4

(

Sρ−2
2 − e−k

)

from Theorem 7 approaches
Sρ−2

8

which is the strength of nonlocality dNL(ρ) for ρ. This illustrates that a bound of this form
cannot be improved, in the sense that increasing the total variation distance from ρ by any
positive amount will encompass local distributions which cannot certify randomness.

Thus, {Fk}∞
k=1 is fully robust as k → ∞. Next, we confirm that {Fk}∞

k=1 is asymptot-
ically optimal in terms of min-entropy per trial (i.e., log-prob rate), for any distribution
σ violating the standard CHSH inequality. Since ΠNS is closed and equal to the convex
hull of its extremal points, Theorem 4 implies that, given such a σ, the adversary has a
strategy obtained through an IID attack based on a single-trial distribution whose condi-
tional Shannon entropy is equal to the infimum defined in (26). We can identify this attack.
The optimisation in (26) can be expressed as follows:

hmin(σ) = min
{

Hν(AB|XYE) : νe ∈ ΠNS, ∑
e

ν(e)νe = σ
}

, (44)

where νe = ν(ABXY|e). We compute Hν(AB|XYE) for the decomposition of σ given
in (41), where we have noted λPR,1 = (Sσ − 2)/2. Since the conditional Shannon entropy is
one for PR boxes and zero for LD behaviours, we obtain Hν(AB|XYE) = (Sσ − 2)/2 and,
hence, hmin(σ) is no larger than this value. But since this expression is the same as that
of the asymptotic log-prob rate of the sequence {Fk}∞

k=1 of valid PEFs, we can say hmin(σ)
is also no smaller than this value and so hmin(σ) = (Sσ − 2)/2. This demonstrates the
asymptotic optimality of the sequence {Fk}∞

k=1 in the sense that the PEFs in the sequence
become arbitrarily close to certifying an asymptotic randomness rate of hmin(σ).

In our proof of the asymptotic optimality of the sequence {Fk}∞
k=1, we identified the

optimal attack by an adversary: it is to prepare the decomposition in (41) with each e
corresponding to one of the (up to) nine extremal behaviours, with respective ν(e) weights
of λPR,1 and αi. This can be seen to be the unique attack achieving hmin(σ), through an
argument we sketch as follows: (1) any ν-decomposition of σ can be improved upon (i.e., re-
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ducing Hν(AB|XYE)) by considering only extremal νe, by the concavity of conditional
Shannon entropy; (2) any decomposition including positive weights on more than one
PR box can be strictly improved upon by one with weights on a single PR box, by Theo-
rem 2.1 of [24], which shows how to replace equal mixtures of two PR boxes with mixtures
of a single PR box and local deterministic distributions; (3) this decomposition can be
further strictly improved via Theorem 2.2 of [24] by removing any local deterministic
distributions not saturating the CHSH–Bell inequality with those that do (the improvement
being obtained by decreasing the weight on the sole remaining PR box). The resulting
decomposition—that of (41)—is thus the unique optimiser of (44). It witnesses the bound
of 1 + dim ΠNS = 1 + 8 = 9 on the set E (as shown in Theorem 4). In general, positive
weight on all nine extremal boxes may be necessary, due to their affine independence which
was noted in Section 4.1. One can confirm this visually from Table 1: weight on the (only)
nonlocal distribution, the PR box, is necessary to violate the CHSH–Bell inequality and any
distribution with non-zero probabilities for each possible outcome (a property possessed by,
for example, the quantum distribution saturating Tsirelson’s bound) will require positive
weight on all the local deterministic behaviours, as each LD behaviour corresponds to a
distinct sole appearance of the number “1” in a column otherwise populated by zeroes in
Table 1. This witnesses that further reduction of the 1+dim ΠNS bound on |E | in Theorem 4
is impossible and so this bound is optimal.

It is an important observation that the adversary needs to prepare only one non-
classical state in her realisation of the optimal attack, since the preparation of a non-classical
state is likely the most difficult aspect of the attack. We now explore possible generalisations
of this feature to other trial models.

4.3. Characterising the Optimal Attack in Different Scenarios

We start by exploring the possibility of arriving at a similar analytic characterisation
of the optimal adversarial attack when the adversary is limited to only quantum-realisable
distributions. Suppose now that our trial model is the set ΠQ of quantum-achievable
distributions for the (2,2,2) scenario. The adversary is still constrained to performing
probabilistic attacks to simulate the trial statistics, while generating the least amount of
randomness possible; however, she now tries to mimic the trial statistics using quantum-
achievable distributions. The optimisation routine depicting this goal is:

h̃min(σ) = min
{

Hω(AB|XYE) : ωe ∈ ΠQ, ∑
e

ω(e)ωe = σ
}

, (45)

where ωe = ω(ABXY|e). The set ΠQ is compact and convex, but, unlike ΠNS, is not a
polytope and so there is a continuum of extremal points.

We conjecture that the minimum in (45) is achieved at a distribution that marginalises
to the observed trial distribution through a convex combination of (only) one quantum
extremal distribution violating the standard CHSH–Bell inequality and no more than eight
local deterministic distributions that saturate the same inequality.

An attempt to prove this will require an understanding of the geometry of the quantum
set and in particular its extremal points. We do not yet have a complete characterisation of
the set of behaviours ΠQ (in the true R8 space), although a recent work has conjectured an
analytic criterion for extremality in the CHSH scenario [27]. However, a characterisation
does exist when we make the assumption of unbiased marginals: µ(A = 0|x) = µ(A =
1|x) = 1/2 for all x ∈ {0, 1} and µ(B = 0|y) = µ(B = 1|y) = 1/2 for all y ∈ {0, 1},
in which case the set of behaviours is four dimensional. The unbiased marginal case has
been completely characterised, a detailed exposition of which can be found in [25] (see
Theorem 1 therein).

A key enabling step in the direction of characterising the optimal attack in the unbiased
marginals case would be to see if the following two conditions hold simultaneously: first,
a convex combination of any two extremal quantum behaviours can be expressed equiv-
alently as a different convex combination of one extremal quantum behaviour (different
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from the previous two) and classical noise (mixtures of the local deterministic behaviours),
i.e., for extremal quantum behaviours ~µ1,~µ2, the convex combination λ~µ1 + (1 − λ)~µ2

can be re-expressed as the convex combination δ~µ3 + (1 − δ)~µ0, where λ, δ ∈ (0, 1), ~µ3

is a third extremal quantum behaviour and ~µ0 is a mixture of the local deterministic be-
haviours; and, second, λHµ1

(AB|XY) + (1 − λ)Hµ2(AB|XY) > δHµ3(AB|XY), where the
term (1 − δ)Hµ0(AB|XY) that might be expected to appear on the right vanishes due to the
concavity of conditional Shannon entropy and the fact that it is zero for local deterministic
behaviours, into which ~µ0 can be decomposed.

A numerical inspection to check—by means of an exhaustive search—whether these
two conditions hold simultaneously (in the uniform marginals case) introduces a lot of
free variables. If we add more symmetry to the behaviours with uniform marginals and
constrain ourselves to the two-dimensional slice as shown in Figure 4a, one can perform a
numerical search to see whether the two conditions mentioned above hold simultaneously
and we did observe it to hold in some initial numerical investigations comparing the ~θ
decompositions against the~ν decompositions as depicted in Figure 4b. The behaviours in
the two-dimensional are represented by the formula:

~µ =
S
4
~µPR,1 +

S ′

4
~µPR,2 +

(

1 − S + S ′

4

)

~µ0, S ,S ′ ∈ [−4, 4], (46)

where ~µ0 is the maximally random behaviour obtained as the equal mixtures of all 16
local deterministic behaviours. The disk S2 + (S ′)2 6 8 represents the set of quantum
behaviours. Table 3 depicts a tabular representation of the behaviours expressible as (46).
(As a side note, one way to add more symmetry to the behaviours with uniform marginals
is as follows: a behaviour with uniform marginals can be completely specified by the
correlators (E00, E01, E10, E11), where −1 6 Exy 6 1, ∀x, y; see the line following (37) for the
definition of Exy. To obtain behaviours in the two-dimensional slice as shown in Figure 4a

one can restrict attention to distributions of the form µ(ab|xy) = 1
4 (1 + (−1)a+bCxy) where

C00 = −C11 = E00−E11
2 and C01 = C10 = E01+E10

2 .)

(a) (b)

Figure 4. (a) A two-dimensional slice of the set of no-signalling behaviours (containing the quantum

and the local set). The behaviours can be parameterised as the CHSH–Bell values S and S ′ obtained

by two different versions of the CHSH–Bell expression in (37). Any behaviour on the slice can be

represented as in (46). (b) The portion of the two-dimensional slice containing the no-signalling (in-

cluding quantum-achievable) behaviours above the standard CHSH–Bell facet. For a fixed behaviour

~µQ in the interior of the quantum region, the darker shaded region corresponds to possible ways of

expressing ~µQ as a convex combination of a behaviour on the quantum boundary and a behaviour

on the local boundary (for example, ~µQ = λ~νQ + (1 − λ)~νL, λ ∈ (0, 1)). For the same behaviour ~µQ,

the lighter shaded region represents possible ways of expressing it as a convex combination of two

behaviours on the quantum boundary (for example, ~µQ = δ~θQ,1 + (1 − δ)~θQ,2, δ ∈ (0, 1)).
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Going beyond the minimal Bell scenario, we considered the possibility of a similar
characterisation of optimal no-signalling adversarial attack in higher (n, m, k) Bell scenarios.
In the (2,2,2) Bell scenario the analytical characterisation of the optimal adversarial attack
crucially relied upon the geometric features of the no-signalling polytope, namely Theo-
rems 2.1 and 2.2 in [24]: that equal mixtures of two PR behaviours are expressible as equal
mixtures of four distinct LD behaviours and, consequently, a behaviour violating any of
the eight versions (up to local relabelling of the outcomes and settings) of the CHSH–Bell
inequality is expressible as a convex combination of the one PR behaviour achieving the
nonlocal maximum and (up to) eight LD behaviours achieving the local maximum of the
corresponding CHSH–Bell expression. These geometric features, however, do not extend
to the no-signalling polytopes of higher (n, m, k) Bell scenarios. Membership of equal
mixtures of extremal no-signalling nonlocal behaviours in the local polytope holds solely
in the (2,2,2) Bell scenario.

Table 3. Tabular representation of the no-signalling behaviours on the two-dimensional slice shown in

Figure 4a. The behaviours have uniform marginals, i.e., the probability of observing an outcome con-

ditioned on a measurement setting is 1/2 for each party for all outcomes and settings. The behaviours

are further constrained in having the third and fourth row completely determined by the first and sec-

ond, which need not hold in general for uniform marginal distributions, and brings the dimensionality

down from four to two. Any behaviour represented as above is parameterised as the values S and S ′

of the two versions of the CHSH–Bell expression E00 + E01 + E10 − E11 and −E00 + E01 + E10 + E11, re-

spectively: s1 = (4+ S −S ′)/16, s2 = (4+ S ′ −S)/16, s3 = (4+ S + S ′)/16, s4 = (4−S −S ′)/16,

where for the no-signalling set −4 6 S ′ + S 6 4, −4 6 S ′ − S 6 4 and for the quantum set

S2 + (S ′)2 6 8.

ab

00 01 10 11

xy

00 s1 s2 s2 s1

01 s3 s4 s4 s3

10 s3 s4 s4 s3

11 s2 s1 s1 s2

Below, we provide examples of equal mixtures of no-signalling nonlocal extremal
behaviours in the (2, 2, 3), (2, 3, 2) and (3, 2, 2) Bell scenarios that do not belong to the local
polytope. One can use linear programming to check the nonlocality of such examples.
Assessment of the locality of a behaviour is an instance of the membership problem of the
local polytope. Since the local deterministic (LD) behaviours are the extremal points of
the local polytope, we can formulate our problem as a feasibility linear program. Suppose
{

~µLD,1,~µLD,2, . . . ,~µLD,#LD

}

is the set of LD behaviours for some Bell scenario. The vector

~µLD,i ∈ Rd denotes the joint probability of outcomes conditioned on the input choices and
d is the dimension of the ambient space in which the vector lies. The feasibility linear
program has the variable ~x ∈ R#LD . The inequality constraints comprise xi > 0, i ∈ [#LD]

and the equality constraints are ∑
#LD
i=1 xi = 1 and the following:

1

2

−→
NSextr +

1

2

−→
NS′extr =

#LD

∑
k=1

xk~µLD,k (47)

where
−→
NSextr is a nonlocal no-signalling extremal behaviour. The details on formulating the

dual of this linear program can be found in section E.2.1 of the Appendix of [6].
Before presenting the counter-examples we briefly review the (n, m, k) Bell scenario:

This scenario consists of n spatially separated parties, where each party i ∈ [n] has a choice
of m different k-outcome measurements. For X ≡ {0, 1, . . . , m− 1} and A ≡ {0, 1, . . . , k − 1}
the joint probability µ(a1a2 . . . an|x1x2 . . . xn) of obtaining the outcomes (a1, a2, . . . , an) ∈ An
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conditioned on the inputs (x1, x2, . . . , xn) ∈ X n can be viewed as a probability vector
~µ ∈ Rd, where d = (|A||X |)n.

The extremal points of the no-signalling polytope comprise the local deterministic
(LD) behaviours and the nonlocal extremal behaviours. The LD behaviours consist of all
possible assignments ΛLD = {{λ1x1

}x1∈X ; {λ2x2
}x2∈X ; . . . ; {λnxn}xn∈X }, where λixi

∈ A
for i ∈ [n]. The number of such assignments is #LD = (|A|)n|X |. Corresponding to each
assignment λ ∈ ΛLD the LD probabilities are expressed as

µLD,k(a1a2 . . . an|x1x2 . . . xn) = [[a1 = λ1x1
]][[a12 = λ2x2

]] · · · [[an = λnxn ]] (48)

where [[·]] is the function that evaluates to 1 if the condition within holds, 0 otherwise.

A behaviour ~µL is local if it can be expressed as ~µL = ∑
#LD
k=1 qk~µLD,k, where qk > 0 and

∑
#LD
k=1 qk = 1.

(2, 2, 3) Bell scenario: This scenario is an instance of the more general (2, 2, k) scenario,
also known in the literature as the CGLMP scenario [28], for k = 3. In this bipartite scenario
the parties have two three-output choices of settings. The extremal behaviours for the no-
signalling polytope for the CGLMP scenario have been fully described in [29]. The nonlocal
no-signalling extremal behaviours for the (2, 2, 3) scenario, up to relabelling of inputs and
outcomes, are given by the following formula:

NLext(ab|xy) :=

{

1
3 : b − a ≡ xy (mod 3)

0 : otherwise
(49)

where a, b ∈ {0, 1, 2} and x, y ∈ {0, 1} are the outputs and inputs for the parties, respectively.
We found that (47) does not necessarily hold for all equal mixtures of a pair of distinct
nonlocal extremal behaviours. Among the several examples we found that violate (47),
Table 4 shows one such example.

Table 4. Two nonlocal extremal behaviours for the CGLMP scenario with 3 outcomes whose equal

mixtures are nonlocal. The inputs x, y ∈ {0, 1} and the outcomes a, b ∈ {0, 1, 2} with x′ = x ⊕ 1, y′ =
y ⊕ 1 and a′ = a ⊕3 1, a′′ = a ⊕3 2, b′ = b ⊕3 1, b′′ = b ⊕3 2. The symbol ⊕ denotes addition modulo

2 and ⊕3 denotes addition modulo 3. The missing entries correspond to 0. The top behaviour comes

directly from (49) while the bottom behaviour is obtained through the relabelling x ↔ x′ and y ↔ y′.
An equal mixture of these two boxes lies outside the local polytope.

ab ab′ ab′′ a′b a′b′ a′b′′ a′′b a′′b′ a′′b′′

xy 1/3 1/3 1/3
xy′ 1/3 1/3 1/3
x′y 1/3 1/3 1/3
x′y′ 1/3 1/3 1/3

xy 1/3 1/3 1/3
xy′ 1/3 1/3 1/3
x′y 1/3 1/3 1/3
x′y′ 1/3 1/3 1/3

(2, 3, 2) Bell scenario: More generally, the extremal behaviours of (2, k, 2) no-signalling
polytope, with k > 2, have been completely characterised in [30,31], of which (2, 3, 2)
is an instance. Following Table II of [31], we can obtain Tables 5 and 6 which are two
representative examples of nonlocal no-signalling extremal behaviours, equal mixtures of
which lie outside the local polytope. In Table 5 all input choices, x, y ∈ {0, 1, 2}, for Alice
and Bob have uniform probabilities of outcomes; in Table 6 all inputs for Alice and inputs
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y ∈ {0, 1} for Bob have uniform probabilities of outcomes, with the exception that Bob’s
outcome for y = 2 is deterministic.

p(00|xy) p(01|xy)

p(10|xy) p(11|xy)
with

? ≡ 1/2 0

0 1/2
or

0 1/2

1/2 0

There are 16 possible mixtures of the two behaviours in Tables 5 and 6 corresponding
to each ‘?’ in each table being a perfect correlation or a perfect anti-correlation, all of which
represent mixtures of extremal nonlocal boxes [31] and all lie outside the local polytope.
The nonlocality of the mixtures is confirmed by noting that the four cells in the upper
left corner, corresponding to restricting the settings choices to x, y ∈ {0, 1}, is the PR box
distribution which is of course nonlocal.

(3, 2, 2) Bell scenario: This is a tripartite scenario with each party having binary input
choices and outcomes. The no-signalling polytope consists of 46 inequivalent classes of
extremal behaviours, of which one is the class comprising 64 LD behaviours. A complete
characterisation can be found in [32]. As an example violating (47) we can refer to the
observation made in Section 2.3 of [32] that equal mixtures of two behaviours in Class 46
(see Table 1 of [32]) are a GHZ correlation which is expressed (entirely in terms of correlators
〈AxByCz〉) as PGHZ(abc|xyz) = 1

8 (a + abc〈AxByCz〉). ~PGHZ is a nonlocal behaviour which

is obtained by measuring 1√
2
(|000〉+ |111〉) in suitable local bases [33].

Table 5. Nonlocal no-signalling extremal behaviour with all input choices x, y ∈ {0, 1, 2} for Alice

and Bob having uniform probabilities of outcomes.

y

0 1 2

x

0
1/2 0 1/2 0 1/2 0

0 1/2 0 1/2 0 1/2

1
1/2 0 0 1/2 ?

0 1/2 1/2 0

2
1/2 0 ? ?

0 1/2

Table 6. All inputs for Alice and inputs y ∈ {0, 1} for Bob have uniform probabilities of outcomes,

while Bob’s outcome for y = 2 is deterministic.

y

0 1 2

x

0
1/2 0 1/2 0 1/2 0

0 1/2 0 1/2 1/2 0

1
1/2 0 0 1/2 1/2 0

0 1/2 1/2 0 1/2 0

2
1/2 0 ? 1/2 0

0 1/2 1/2 0

5. Conclusions

In this work, we revisited the probability estimation framework with the goal of
presenting a complete and self-contained proof of its optimality in the asymptotic regime
and obtaining a better characterisation of optimal adversarial attack strategies on the
protocol. We obtained in Theorem 4 an improved and tight upper bound on the cardinality
of the set of states needed in the optimal attack, and studied the implications of this
result for specific scenarios in Section 4. We also considered the question of robustness
for the PEF method, finding that asymptotic optimality of PEFs (in terms of randomness
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generation rate) need not entail a trade-off with robustness to small deviations from
expected experimental behaviour.

In proving the optimality of the framework, our results show that there remains
nothing to be gained, asymptotically, for an adversary implementing memory attacks—
an i.i.d. attack is asymptotically optimal. However, in real world applications this may
not hold. The number of trials in a Bell experiment is finite, albeit large, and there are
unavoidable correlations between the successive trials (referred to as memory effects). We
leave to future work considerations of side-channel attacks in the non-asymptotic (finite
trials) regime for the probability estimation framework.
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Appendix A

Appendix A.1. Proofs for Theorems 1 and 2

Appendix A.1.1. Proof for Theorem 1

Theorem. Suppose µ : Cn ×Zn × E → [0, 1] is a distribution of CZE such that µe(CZ) ∈ Θ for
each e ∈ E . Then, for fixed β, ε > 0

Pµe



µe(C|Z) >
(

ε
n

∏
i=1

Fi(CiZi)

)−1/β


 6 ε (A1)

holds for each e ∈ E , where Fi(CiZi) is the probability estimation factor for the i’th trial.

Proof. The sequence of random variables C, Z represent the time-ordered sequence of n
trial results. For the remainder of the proof we omit conditioning on E = e since the result
holds for each realisation. Hence, µ(· · · ), Pµ(· · · ) and Eµ[· · · ] must be understood to mean
µe(· · · ), Pµe(· · · ) and Eµe [· · · ].

Observe that for any i ∈ {1, ..., n − 1} we have

µ(C6i+1|Z6i+1) = µ(Ci+1|C6iZ6i+1)µ(C6i|Zi+1Z6i) = µ(Ci+1|C6iZ6i+1)µ(C6i|Z6i) (A2)

where the first equality is an elementary manipulation of conditional probabilities and the
second equality follows from

µ(C6i|Zi+1Z6i) = µ(C6iZi+1Z6i)/µ(Zi+1Z6i)

= µ(C6iZ6i)µ(Zi+1)/µ(Zi+1)µ(Z6i)

= µ(C6i|Z6i),

with the second step above following from the second condition in (1), applied directly in
the numerator and in the denominator via



Entropy 2023, 25, 1291 32 of 45

µ(zj+1z6j) = ∑
c6j

µ(zj+1c6jz6j) = µ(zj+1)∑
c6j

µ(c6jz6j) = µ(zj+1)µ(z6j).

Now, consider the sequence Qi = µ(C6i|Z6i)
β ∏

i
j=1 Fj, for i > 1, where we note Qi is a

random variable that is determined by C6i, Z6i. We begin by showing that conditioned on
C6i, Z6i the expectation of Qi+1 is at most Qi for all i ∈ {1, ..., n − 1}. Applying (A2), we
can write

Qi+1 = Fi+1µ(Ci+1|Zi+1C6iZ6i)
βµ(C6i|Z6i)

β
i

∏
j=1

Fj

= Fi+1µ(Ci+1|Zi+1C6iZ6i)
βQi,

⇒ Eµ[Qi+1|C6iZ6i] = QiEµ

[

Fi+1µ(Ci+1|Zi+1C6iZ6i)
β

∣

∣

∣

∣

C6iZ6i

]

6 Qi (A3)

where the fact that Qi is determined by C6i, Z6i allows us to pull it out of the conditional
expectation and the inequality follows from the fact that Eµ[Fi+1µ(Ci+1|Zi+1c6iz6i)

β] 6 1 for
all realisations c6i, z6i of C6i, Z6i, as ensured by Definition 1. We remark that Qi is a super-
martingale as indicated by the inequality in (A3): the term Fiµ(Ci|ZiZ6i−1C6i−1)

β is non-
negative, is determined by C6i, Z6i and satisfies Eµ[Fiµ(Ci|ZiC6i−1Z6i−1)

β|C6i−1Z6i−1] 6
1. Now, using the law of iterated expectation we obtain:

Eµ[Qi+1] = Eµ

[

Eµ[Qi+1|C6iZ6i]
]

6 Eµ[Qi] (A4)

Since Q1 equals µ(C1|Z1)
βF(C1Z1), it satisfies Eµ[Q1] 6 1 directly from Definition 1 and

so repeated applications of (A4) yield Eµ[Qn] 6 Eµ[Qn−1] 6 · · · 6 Eµ[Q1] 6 1. Since

Qn = µ(C|Z)β ∏
n
i=1 Fi is non-negative, we can use Markov’s inequality and obtain the

required result as shown below.

Pµ

(

µ(C|Z)β
n

∏
i=1

Fi > 1/ε

)

6 εEµ

[

µ(C|Z)β
n

∏
i=1

Fi

]

6 ε

⇒ Pµ



µ(C|Z) >
(

ε
n

∏
i=1

Fi

)−1/β


 6 ε.

Appendix A.1.2. Proof for Theorem 2

Theorem. Let µ be a distribution µ : Cn ×Zn × E → [0, 1] of CZE such that, for each e ∈ E , the
following holds for every ε ∈ (0, 1):

Pµe



µe(C|Z) 6
(

ε
n

∏
i=1

Fi

)−1/β


 > 1 − ε, (A5)

where Fi is a PEF with power β for the i’th trial. For a fixed choice of ε ∈ (0, 1) and p > |C|−n,

define the event S :=
{

(ε ∏
n
i=1 Fi)

−1/β
6 p

}

. Then, if κ is a positive number for which Pµ(S) > κ,

the following holds:

H
avg,ε/κ
∞,µ (C|ZE; S) > log2(κ)− log2(p) (A6)

Proof. The goal is to construct a distribution ω of CZE such that it is within ε/κ TV
distance from µ(CZE|S) and such that the average conditional maximum probability of
C conditioned on (and averaged over) ZE is bounded below by p/κ. We will construct
ω to satisfy ω(Cze|S) = 0 for all values of z and e for which µ(ze|S) = 0. Hence, for the
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rest of the construction, we will restrict attention to cases where µ(ze|S) > 0. We will use
expressions such as Pµe(S) and µe(S) interchangeably.

We start by defining the event

R :=







µe(C|Z) 6
(

ε
n

∏
i=1

Fi

)−1/β






,

whose occurrence or non-occurrence is determined by the particular realisation of e, c and
z. The event R corresponds to the desired probability bound holding; (A5) ensures that
this event occurs with high probability and we will construct our distribution ω to, in an
intuitive sense, extend this desirable behaviour from R∩ S to all of S.

We begin the construction by defining, for each fixed e satisfying µe(S) > 0, a non-
negative function f : Cn ×Zn → R+ as shown below.

f (cz) =

{

µe(cz)/Pµe(S), S∩ R holds

0, otherwise
(A7)

The weight w of f , defined as w( f ) = ∑c,z f (cz), satisfies w( f ) 6 1 as shown below:

w( f ) = ∑
c,z

f (cz) = ∑
c,z

µe(cz)[[S∩ R]]/Pµe(S) 6 ∑
c,z

µe(cz)[[S]]/Pµe(S) = Pµe(S)/Pµe(S) = 1,

where [[·]] is equal to 1, if the condition or expression within holds, 0 otherwise. (Note
that f is a sub-probability distribution on cz: a set of non-negative numbers whose sum
is less than or equal to 1. Defining a sub-probability distribution is a standard trick to
construct a distribution by invoking certain lemmas.) Below we show that w satisfies
w( f ) > 1 − ε/Pµe(S).

w( f ) = 1 − 1 + ∑
c,z

µe(cz)[[S]][[R]]/Pµe(S)

= 1 − ∑
c,z

µe(cz)[[S]]/Pµe(S) + ∑
c,z

µe(cz)[[S]][[R]]/Pµe(S)

= 1 − ∑
c,z

(µe(cz)− µe(cz)[[R]])[[S]]/Pµe(S) > 1 − ∑
c,z

(µe(cz)− µe(cz)[[R]])/Pµe(S)

= 1 −
(

1 − Pµe(R)
)

/Pµe(S) > 1 − ε/Pµe(S), (A8)

where in (A8) we have used the fact that Pµe(R) > 1 − ε holds for each e ∈ E , as follows
from (A5). Next, we define a non-negative function f̃z : Cn → R+ for each z ∈ Zn for
which µe(z|S) > 0:

f̃z(c) = f (cz)/µe(z|S) (A9)

We show below that, for each such z, f̃z(c) is bounded by µe(c|z, S), ∀c ∈ Cn. We have:

f̃z(c) = µe(cz)[[S]][[R]]/(Pµe(S)µe(z|S)) = µe(cz, S)[[R]]/µe(z, S)

6 µe(cz, S)/µe(z, S) = µe(c|z, S), (A10)

where the equality µe(cz)[[S]] = µe(cz,S) makes sense because whether or not S holds is
determined by cz. Since (A10) holds for all c, we conclude f̃z(C) 6 µe(C|z, S). This proves
that f̃z(C) is dominated by µe(C|z, S). From the definition of f̃z we also have another upper
bound for all c:

f̃z(c) = µe(c|z)µe(z)[[S∩ R]]/µe(z, S) 6 pµe(z)/µe(z, S).

Above, we have used the fact that the event S∩ R implies µe(C|Z) 6 (ε ∏
n
i=1 Fi)

−1/β
6 p.

The bound pµe(z)/µe(z, S) > p > |C|−n also holds, since µe(z)/µe(z, S) > 1. Hence, using
the lemmas in Appendix D we can construct, for each z under consideration, a distribution
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µ′
z(C) such that µ′

z(C) > f̃z(C), µ′
z(C) 6 pµe(z)/µe(z,S) and TV(µ′

z(C), µe(C|z,S)) 6

1 − w( f̃z), where w( f̃z) 6 1 is the weight of f̃z(C). Now we are ready to define the
distribution ω(CZE) as

ω(cze) =

{

µ′
z(c)µe(z|S)µ(e|S) if µ(ze|S) > 0

0 if µ(ze|S) = 0

We show that the total variation distance between ω and µ(CZE|S) is bounded by ε/κ and
that the average ze-conditional maximum probability of C is bounded by p/κ. First,

dTV(ω(CZE), µ(CZE|S)) = 1

2 ∑
cze

|ω(cze)− µ(cze|S)|

=
1

2 ∑
e:µ(e|S)>0

∑
z:µe(z|S)>0

∑
c

∣

∣µ′
z(c)− µ(c|ze, S)

∣

∣µe(z|S)µ(e|S) (A11)

6
1

2 ∑
e:µ(e|S)>0

∑
z:µe(z|S)>0

∑
c

(

µ′
z(c)− f̃ (c) + µ(c|ze, S)− f̃ (c)

)

µe(z|S)µ(e|S) (A12)

=
1

2 ∑
e:µ(e|S)>0

∑
z:µe(z|S)>0

µe(z|S)µ(e|S)
(

1 − ∑
c

f̃ (c) + 1 − ∑
c

f̃ (c)

)

(A13)

=
1

2 ∑
e:µ(e|S)>0

2
(

1 − ∑
cz

f (cz)
)

µ(e|S) (A14)

= ∑
e:µ(e|S)>0

(1 − w( f ))µ(e|S) 6 ∑
e:µ(e|S)>0

ε

Pµe(S)
µ(e|S) = ∑

e:µ(e|S)>0

εµ(e)

µ(S)
6 ε/Pµ(S) 6 ε/κ (A15)

The equality in (A11) follows because ω(cze) = µ(cze|S) = 0 for values of e, z removed
from the sums and µ′

c(c) is defined for the remaining values of e, z. In (A12) we add
and subtract with f̃ (c) inside the absolute value expression in the previous step and
use the triangle inequality, following which we use the facts established above that
both µ′

z(C) and µ(C|ze,S) = µe(C|z,S) dominate f̃z(C); (A13) follows from the fact that
µ′

z(c)µe(z|A) and µ(c|ze,S) sum to 1 over c (being distributions), and (A14) follows from
f̃z(c) = f (cz)/µe(z|S) and the fact that f (cz) = 0 in cases where µe(z|S) = 0. Finally,
the first inequality in (A15) follows from (A8) and the last inequality follows from Pµ(S) > κ.
Next, we show the upper bound on the average conditional maximum probability.

∑
ze

(

max
c

ω(c|ze)
)

ω(ze) = ∑
ze

(

max
c

µ′
z(c)

)

µe(z|S)µ(e|S)

6 ∑
ze

µe(z)p

µe(z, S)
µe(z|S)µ(e|S) = ∑

ze

µe(z)p

µe(S)
µ(e|S)

= ∑
e

p

Pµe(S)
µ(e|S) = p

Pµ(S)
6

p

κ
(A16)

⇒ − log2

[

∑
ze

(

max
c

ω(c|ze)
)

ω(ze)

]

> log2(κ)− log2(p) (A17)

Hence, we have obtained an upper bound on the average conditional maximum
probability in (A16). Since by definition the ε/κ-smooth average conditional min-entropy
involves a maximum (over the set Bε/κ(µ)) of the quantity on the left hand side of (A17),
the final result follows.

Appendix B

Appendix B.1. Proofs Using Convex Geometry

Here we prove Theorems 4 and 5 using arguments from convex geometry.
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Appendix B.1.1. Proof for Theorem 4

Theorem. Suppose Π is closed and equal to the convex hull of its extreme points. Then, there is a
distribution ω(CZE) ∈ ΣE with |E | = 1 + dim Π such that Hµ(C|ZE) = hmin(ρ(CZ)).

Proof. We will be analysing hmin(·) as a function with domain Π. It is useful to re-write
hmin(·) in the form

hmin(ρ) = inf
{σi}i∈I

∑
i

pi Hσi
(C|Z),

where the infimum is taken over all finite subsets {σi}i∈I ⊆ Π for which ∑i∈I piσi = ρ for some
collection of non-negative pi summing to 1. This is equivalent to the earlier definition if we set
ω(CZ|ei) = σi(CZ) and ω(ei) = pi, yielding Hω(C|ZE) = ∑i,j Hω(C|zj ,ei)

(C)ω(zj, ei) =

∑i

(

∑j Hω(C|zj ,ei)
(C)ω(zj|ei)

)

ω(ei) = ∑i

(

∑j Hσi(C|zj)
(C)σi(zj)

)

pi = ∑i pi Hσi
(C|Z). We

first observe that the scope of the infimum can be reduced to consider only sets of σi

belonging to Πextr, the set of extreme points of Π. This follows from the fact that condi-
tional Shannon entropy is concave. (The proof of Theorem 43 in [15] correctly notes that the
concavity of conditional Shannon entropy can be obtained as a specialisation of the concav-
ity of the quantum conditional entropy. It is worth noting, however, that the classical-only
result can be obtained much more quickly and directly as shown in Appendix C.) Hence,
any expression in the scope of the infimum defining hmin can always be decreased (or
at least unchanged) by replacing each σi in the expression with a convex combination of
extremal behaviours replicating σi.

Π is a subset of RN where N = |Z| × |C| is the number of conditional probabilities
appearing in the behaviour. In general, N is strictly larger than dim Π: the constraint
that certain elements of Π need to form valid probability distributions reduces the di-
mension and no-signalling equalities can reduce the dimension further. So, we seek to
re-parameterise the elements of Π using only the number of coordinates necessary based
on its dimension. The (affine) dimension of Π is by definition the dimension of the smallest
affine space containing it—that is, the intersection of all affine subspaces of RN containing
Π, which is itself affine space. Let us call this smallest affine space A. If dimA = m, then

there is a set of m linearly independent vectors ~vi and a displacement/base vector~b such
that any σ ∈ A has a unique representation as

σ =~b +
n

∑
i=1

ci~vi. (A18)

For any σ ∈ Π ⊆ A, then, we can uniquely represent σ as a vector of these coefficients,
(c1, c2, ..., cm).

Our approach now makes explicit the arguments only alluded to in the proof of
Theorem 43 in [15] through general referral to existence and extension theorems in convex
analysis, and takes full advantage of the fact that we are always working in a large ambient
Rn, allowing us to harness the strength of linear algebra. We would like to construct an
affine-linear map g : RN → Rm whose restriction to A maps the N-coordinate vector σ to
its m-coordinate representation (c1, c2, ..., cm). Our affine-linear map will be represented by

a matrix M and a vector~k such that g(σ) = Mσ +~k = (c1, ..., cm). To construct M and~k, let
A be the N × m matrix whose m columns are the vectors ~vi appearing in (A18). Since the
columns of A are linearly independent, AT A is invertible as its kernel consists only of the
zero vector:

AT A~v =~0 ⇒ ~vT AT A~v = 0 ⇒ (A~v)T A~v = 0 ⇒ ‖A~v‖ = 0 ⇒ A~v =~0 ⇒ ~v =~0

We can thus define M = (AT A)−1 AT which will satisfy MA = I (M is a pseudo-inverse of

A), and so M maps the vectors ~vi to the standard basis vectors in Rm. Setting~k = −M~b
yields the desired g(·).
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We point out a couple of properties of g that we will use in our arguments. First, it
commutes with convex combinations: for a set of non-negative pi satisfying ∑i pi = 1 and
a collection of elements σi of A,

∑
i

pig(σi) = g

(

∑
i

piσi

)

, (A19)

which follows directly from expressing g as M(·) +~k and noticing that ∑i pi
~k =~k. Second,

M is injective when restricted to A, so consequently g is a bijection between A and Rm,
and in particular

g
(

∑ piσi

)

= g(σ) ⇔ ∑ piσi = σ. (A20)

The following development is inspired by the arguments in the appendix of [34],
though the assumptions and conclusions differ somewhat. Let us consider the following
subset of Rm+1,

Ξextr = {(g(σ), Hσ(C|Z)) : σ ∈ Πextr},

where the first m coordinates of an element of Ξextr are the coordinates of g(σ) and the
m + 1 coordinate is Hσ(C|Z). Define

Ξ = conv(Ξextr),

where ‘conv’ denotes the convex hull. Ξextr and Ξ are artificial constructions but by studying
their geometry we can prove the existence of a convex combination achieving the infimum
defining hmin(ρ).

We first confirm that Ξextr is indeed the set of extremal points Ξ (as suggested by our
choice in names), i.e., we confirm that Ξextr contains only trivial convex combinations of
its elements. To see this, note if ∑i pi(g(σi), Hσi

(C, Z)) = (g(σ), Hσ(C, Z)) holds for some
σi, σ ∈ Πextr and non-negative pi satisfying ∑i pi = 1, then we must have ∑i pig(σi) = g(σ)
and so ∑i piσi = σ by (A19) and (A20). This can only be a trivial convex combination (i.e.,
all σi with nonzero pi coefficient must equal σ) as the σi and σ are assumed to be in Πextr.

Second, we show that the point (g(ρ), hmin(ρ)) is on the boundary of Ξ, i.e., that
(g(ρ), hmin(ρ)) is a limit point of Ξ and also a limit point of ΞC. To see that we can
converge to this point from within the set, note that, for any set of σi ∈ Πextr satisfying

∑i piσi = ρ, we have by definition ∑i pi(g(σi), Hσi
(C|Z)) ∈ Ξ which can be re-expressed

as (g(ρ), ∑i pi Hσi
(C|Z)) ∈ Ξ by invoking (A19). By the nature of the infimum defining

hmin(ρ), there must be a sequence of such elements of Ξ whose last component forms a
non-increasing sequence converging to hmin(ρ); since the first m components are identically
g(ρ), this sequence converges to (g(ρ), hmin(ρ)) as desired. Similarly, one can also converge
to (g(ρ), hmin(ρ)) from outside the set Ξ: (g(ρ), hmin(ρ)− ε) /∈ Ξ for all ε > 0; this is because
all elements of Ξ take the form

∑
i

pi(g(σi), Hσi
(C|Z)) =

(

∑
i

pig(σi), ∑
i

pi Hσi
(C|Z)

)

,

for some collection σi ∈ Ξextr and if the first m coordinates are equal to g(ρ), then by (A19)
and (A20) we must have ∑i piσi = ρ and so the m + 1 coordinate is a term contributing to
the infimum defining hmin(ρ); it cannot be less than hmin(ρ).

We now would like to demonstrate that (g(ρ), hmin(ρ)) is contained in Ξ. As a first
step, we show that

(g(ρ), hmin(ρ)) ∈ conv(Ξextr), (A21)

where conv(Ξextr) denotes the convex hull of the closure of Ξextr. To see this, first note
that Ξextr is bounded—for the m + 1 coordinate, Shannon entropy is non-negative with a
maximum value set by the cardinality of the value space of C and, for the first m coordinates,
these are contained in the image of the set Πextr through the continuous map g—and since
Πextr is contained in the compact set P = [0, 1]n (P contains all probability distributions), its
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image must be contained in the compact (and thus bounded) set g(P). As Ξextr is bounded,
its closure, denoted Ξextr, must be bounded as well and so is compact. It is a known fact
that the convex hull of a compact set in Rn is compact, so conv(Ξextr) is compact—and
so, in particular, closed. Finally conv(Ξextr) clearly contains Ξ = conv(Ξextr), the convex
hull of a smaller set; as a closed set containing Ξ, it will contain the Ξ-boundary point
(g(ρ), hmin(ρ)).

Now we show that this implies containment in Ξ proper. Since the map

h(ρ) := (g(ρ), Hρ(C|Z))

with image in Rm+1 is continuous on the domain of n-dimensional probability distributions

and Πextr is bounded, we have h(Πextr) ⊆ h(Πextr). (For any bounded subset S in Rn

like Πextr and continuous h, we have h(S) ⊆ h(S), the proof of which is as follows: Any

x ∈ h(S) must be the limit of a sequence in h(S); let {si}∞
i=1 ⊆ S satisfy h(si) → x. Since

S is compact, {si}∞
i=1 ⊆ S ⊆ S has a convergent sub-sequence {sj}∞

j=1 with limit in S; let

s ∈ S be this limit. By continuity, h(sj) → h(s); considered as a sub-sequence of {h(si)}∞
i=1,

we also have h(sj) → x and so uniqueness of limits implies x = h(s) ∈ h(S).)
Now, since by definition Ξextr = h(Πextr), we write

Ξextr ⊆ h(Πextr). (A22)

Next, using (A21), (A22), the definition of h(·) and finally (A19), we can write

(g(ρ), hmin(ρ)) = ∑
i

pi~wi for some {~wi}i∈I ⊆ Ξextr

= ∑
i

pih(τi) for some {τi}i∈I ⊆ Πextr

= ∑
i

pi(g(τi), Hτi
(C|Z)) for some {τi}i∈I ⊆ Πextr

=

(

g

(

∑
i

piτi

)

, ∑
i

pi Hτi
(C|Z)

)

for some {τi}i∈I ⊆ Πextr. (A23)

Comparing the first expression in the above sequence to the last and applying (A20)
implies that ∑i piτi = ρ. Now, since by assumption Π is closed, Πextr ⊆ Π implies
Πextr ⊆ Π, so Π = conv(Πextr) implies that elements of Πextr can be expressed as convex
combinations of elements of Πextr. Thus, in the expression ∑i piτi, if there are any non-
extremal τi elements they can be replaced with convex combinations of elements of Πextr

to yield a convex combination ∑j qjσj equalling ρ where the concavity of conditional
Shannon entropy implies that ∑j qjHσj

(C|Z) is not larger than ∑i pi Hτi
(C|Z). However,

by (A23), ∑i pi Hτi
(C|Z) = hmin(ρ) and, since ∑j qjHσj

(C|Z) cannot be smaller than hmin(ρ),

it must equal hmin(ρ). As ∑j qjσj = ρ and ∑j qj Hσj
(C|Z) = hmin(ρ), one more application

of (A19) yields

(g(ρ), hmin(ρ)) =

(

g

(

∑
j

qjσj

)

, ∑
j

qj Hσj
(C|Z)

)

for some {σj}j∈J ⊆ Πextr

= ∑
j

qj

(

g(σj), Hσj
(C|Z)

)

for some {σj}j∈J ⊆ Πextr,

which is in Ξ.
The argument thus far demonstrates the existence of a convex combination of Πextr

elements explicitly achieving the infimum in the definition of hmin(ρ). We continue with
our argument to further demonstrate that the number of required Πextr elements in such
an optimal decomposition is not greater than m + 1.
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We first note that, since (g(ρ), hmin(ρ)) is on the boundary of the convex set Ξ, the sup-
porting hyperplane theorem says there is a supporting hyperplane Hρ with (g(ρ), hmin(ρ)) ∈
Hρ and Ξ entirely on one side of Hρ. Now, notice that if we decompose (g(ρ), hmin(ρ)) as
a convex combination of Ξextr elements, these elements must all lie in the hyperplane Hρ:
this is because any elements strictly on one side of Hρ would have to be counterbalanced
by elements strictly on the other side of Hρ—but, since one side of Hρ is disjoint from
Ξ, this is not possible. Applying the same observation to any other element of Hρ ∩ Ξ,
it follows that Hρ ∩ Ξ is contained in the convex hull of Hρ ∩ Ξextr. As the reverse inclu-
sion follows from the convexity of Hρ and the fact that Ξ = conv(Ξextr), we can write
conv(Hρ ∩ Ξextr) = Hρ ∩ Ξ. Now, since Hρ ∩ Ξ is at most m dimensional (Hρ, as a hyper-
plane, has one fewer dimension than the ambient (m + 1)-dimensional space), we can
invoke Carathéodory’s theorem to see that at most m + 1 points of Hρ ∩ Ξextr are required
to replicate (g(ρ), hmin(ρ)) as a convex combination. Thus, we have

(g(ρ), hmin(ρ)) = ∑
i

pi~wi for some {~wi}i∈I ⊆ Ξextr, |I| 6 m + 1

and so, recalling the definition of Ξextr and invoking (A19) one last time, we can write that,
for some integer m∗ satisfying 1 6 m∗ 6 m + 1,

(g(ρ), hmin(ρ)) =
m∗

∑
i=1

pi(g(σi), Hσi
(C|Z)) for some {σi}m∗

i=1 ⊆ Πextr

=

(

g

(

m∗

∑
i=1

piσi

)

,
m∗

∑
i=1

pi Hσi
(C|Z)

)

for some {σi}m∗
i=1 ⊆ Πextr.

By (A20), ∑
m∗
i=1 piσi = ρ and so {σi}m∗

i=1 induces the desired distribution ω(CZE) by setting
ω(CZ|ei) = σi(CZ) and ω(ei) = pi.

Appendix B.1.2. Proof for Theorem 5

Theorem. Suppose Π satisfies the conditions of Theorem 4 and ρ is in the interior of Π. Then,
there exists an entropy estimator whose entropy estimate at ρ is equal to hmin(ρ).

Proof. We continue from where we left off in the proof of Theorem 4 and show that
the supporting hyperplane Hρ discussed in that proof can be used to construct an affine
function that is the desired entropy estimator. Recall that the dimension of Π, which is
embedded in a higher dimensional vector space RN , is defined as the affine dimension
of A, the smallest affine subspace containing Π. Given this context, the assumption that
ρ is in the interior of Π means that there exists an open ε-ball U in RN such that U ∩ A,
which is open in the subspace topology, is contained in Π. (If this assumption is removed,
a weaker form of the theorem demonstrating the existence of entropy estimators with
estimate ε-close to hmin(ρ) can be proved with a similar argument to that of the current
proof by invoking Exercise 3.28 of [35].)

First, we note that g(ρ) is in the interior of g(Π). To see this, consider the restriction
g�A of g to A, which is a bijection with affine-linear inverse map (g�A)

−1 : Rm → A given

by A(·) +~b (recalling the construction following (A18) in the proof of Theorem 4). This
ensures that the set g�A (U ∩A) must be open, as it is equal to the inverse image of U ∩A
under the map (g�A)

−1 which is equal to the inverse image of the open set U under the

(continuous) map A(·) +~b : Rm → RN . Hence, g(ρ) is contained in the open set g(U ∩A)
which is a subset of g(Π) as U ∩A ⊆ Π.

Now, we take a closer look at Hρ, the supporting hyperplane touching Ξ at (g(ρ), hmin(ρ)).
As a hyperplane, Hρ will be equal to the set of ~x satisfying an equation of the form~a ·~x = b
for some fixed~a ∈ Rm+1 and b ∈ R, where · denotes the dot product, and the condition

ξ ∈ Ξ ⇒~a · ξ > b (A24)
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expresses algebraically the notion that Ξ is on one side of Hρ. We argue that the fact that
g(ρ) is in the interior of g(Π) implies the m + 1 component of~a, denoted~am+1, must be
nonzero. Assume~am+1 = 0 for a proof by contradiction: since (g(ρ), hmin(ρ)) is the point
of contact of the supporting hyperplane Hρ, we have~a · (g(ρ), hmin(ρ)) = b, which implies
~a[m] · g(ρ) = b where~a[m] ∈ Rm denotes the vector consisting of the first m coordinates of
~a. Since the previous paragraph demonstrated there is an open subset of g(Π) containing
g(ρ), this means g(ρ)− c~a[m] for a sufficiently small positive c is equal to g(φ) for some
φ in Π. By construction, φ will satisfy ~a[m] · g(φ) < b but since ~am+1 = 0 this requires
~a · (g(φ), hmin(φ)) < b as well. This would imply (g(φ), hmin(φ)) /∈ Ξ; however, this is a
contradiction as the arguments of Theorem 4 show that, for any φ ∈ Π, (g(φ), hmin(φ))
belongs to Ξ (the arguments of Theorem 4 demonstrated this for ρ but they apply to any
element of Π).

Having demonstrated~am+1 6= 0, we can define a function fρ : Rm → R as follows:

fρ(~x) =
b −~a[m] ·~x

~am+1
. (A25)

Composing this function with g, we find that fρ ◦ g(ρ) = hmin(ρ). Furthermore, for general
φ ∈ Π the fact that (g(φ), hmin(φ)) ∈ Ξ ensures fρ ◦ g(φ) 6 hmin(φ), and hmin(φ) 6

Hφ(C|Z) by concavity of conditional Shannon entropy, so the map fρ ◦ g, applied to any
φ ∈ Π, satisfies

fρ ◦ g(φ) 6 Hφ(C|Z) = Eφ(− log2[φ(C|Z)]).
We now use fρ ◦ g to construct the desired entropy estimator as follows. We have

fρ ◦ g(φ) =
b −~a[m] · (Mφ +~k)

~am+1
= ~n · φ + d

where d = (b−~a[m] ·~k)/~am+1 is a constant and~n = −(1/~am+1)MT~a[m] is an N-dimensional
vector; that is, it has one component for each possible distinct outcome pair c, z for the
random variable pair C, Z. Now we can define K(c, z) := ~ncz + d to obtain a function of
C, Z satisfying

Eφ[K(CZ)] = ~n · φ + d = fρ ◦ g(φ) 6 Eφ(− log2[φ(C|Z)]),

and thus K is an entropy estimator satisfying the conditions of the theorem.

Appendix C

Concavity of Conditional Shannon Entropy

It is known that conditional Shannon entropy is concave. For completeness, we
provide a brief proof of how this follows from the concavity of (unconditional) Shannon
entropy. Let ν be a convex combination of ν1 and ν2, so that for all (c, z) ∈ C ×Z we have
ν(c, z) = λν1(c, z) + (1 − λ)ν2(c, z) for some λ ∈ [0, 1]. Then, it follows that ν(C|z) is a
convex mixture of ν1(C|z) and ν2(C|z) for each fixed z for which ν(z) > 0:

ν(C|z) = λ
ν1(z)

ν(z)
ν1(C|z) + (1 − λ)

ν2(z)

ν(z)
ν2(C|z), (A26)

where it is straightforward to check that the coefficients of ν1(C|z) and ν2(C|z) are non-
negative numbers summing to one. Then, using (A26) and the concavity of (unconditional)
Shannon entropy we have the following.

Hν(C|Z) = ∑
z

Hν(C|z)ν(z) > ∑
z

(

λ
ν1(z)

ν(z)
Hν1

(C|z) + (1 − λ)
ν2(z)

ν(z)
Hν2(C|z)

)

ν(z)

= ∑
z

(λHν1
(C|z)ν1(z) + (1 − λ)Hν2(C|z)ν2(z)) = λHν1

(C|Z) + (1 − λ)Hν2(C|Z) (A27)
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Appendix D

Useful Lemmas

The following lemmas are used for arguments in Appendices A.1.1 and E.

Lemma A1. If the distributions µ(X) and µ′(X) dominate the non-negative function f : X → R+

with weight w( f ) = ∑x∈X f (x) = 1 − ε for ε ∈ [0, 1], i.e., µ(x) > f (x), µ′(x) > f (x), for all
x ∈ X , then dTV(µ, µ′) 6 ε.

Proof. Using the definition of TV distance we have the required result as shown below.

dTV(µ, µ′) =
1

2 ∑
x∈X

∣

∣µ(x)− f (x) + f (x)− µ′(x)
∣

∣

6
1

2 ∑
x∈X

(

|µ(x)− f (x)|+
∣

∣µ′(x)− f (x)
∣

∣

)

= 1 − w( f ) = ε.

Lemma A2. Suppose the function f : X → R+ has weight w( f ) = ∑x∈X f (x) = 1 − ε where
ε ∈ [0, 1] and satisfies f (x) 6 p, ∀x ∈ X for some fixed p > 1/|X |. Then, there exists a
distribution µ′(X) such that f (x) 6 µ′(x) 6 p holds for all x ∈ X .

Proof. If ε = 0, it suffices to take µ′(x) = f (x). If ε > 0, we construct a distribution
satisfying the two properties as follows. Define a function µλ with domain X as

µλ(x) = (1 − λ) f (x) + λp (A28)

Then, for any fixed λ ∈ [0, 1], µλ(x) is a convex combination of non-negative numbers and
thus non-negative for any choice of x. We show that there exists a λ ∈ [0, 1] for which

∑x µλ(x) = 1, making µλ a distribution. It is easy to verify that for λ′ = ε/(p|X |+ ε − 1)
the above function adds up to unity when summed over x ∈ X . We just need to ensure that
ε/(p|X |+ ε − 1) ∈ [0, 1] holds. To see this, note that p|X | > 1 so we have p|X |+ ε − 1 > ε

and since ε > 0 the quotient must indeed lie in [0, 1]. Finally, µλ′(X) satisfies the bounds in
the lemma: since f (x) 6 p for all x ∈ X , for any λ ∈ [0, 1] we have

p > p + (1 − λ)( f (x)− p) = (1 − λ) f (x) + λp = f (x) + λ(p − f (x)) > f (x), ∀x ∈ X (A29)

and the middle term above is µλ′(X) for λ = λ′.

Appendix E

Inequalities Relating Smooth Average Conditional Min-Entropy and Smooth Worst-Case
Conditional Min-Entropy

Here we state and prove a known inequality that relates two notions of smooth
conditional min-entropy. We present this result without structuring random variables
as stochastic sequences, i.e., instead of considering distributions of C, Z, E we consider
distributions of X, Y. The result and its proof can be adapted to the more general case
involving sequence of random variables.

For a distribution µ : X ×Y → [0, 1] of X, Y and the set Bε(µ) of distributions of X, Y
defined as Bε(µ) := {σ : X ×Y → [0, 1] | dTV(µ, σ) 6 ε}, the ε-smooth average conditional
min-entropy is:

H
avg,ε
∞,µ (X|Y) := max

σ∈Bε(µ)

[

− log2

(

∑
y∈Y

max
x∈X

σ(x|y)σ(y)
)

]

.
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A stricter definition of smooth conditional min-entropy than the one stated above is the
ε-smooth “worst-case” conditional min-entropy, introduced in [19]. It reads as follows:

Hwst,ε
∞,µ (X|Y) = max

σ∈Bε(µ)

[

− log2

(

max
x∈X ,y∈Y

σ(x|y)
)

]

. (A30)

For purposes of randomness extraction or scenarios involving predictability of an adversary,
the smooth average conditional min-entropy suffices. One can show that the notions of
average-case and worst-case are equivalent up to an additive factor [36]. This is formalised in
Proposition A1.

Proposition A1. For a distribution µ : X × Y → [0, 1] of X, Y and 1 > ε > 0, 1 > ε′ > 0,
the smooth worst case conditional min-entropy and smooth average case conditional min-entropy
are related by the following inequalities:

Hwst,ε
∞,µ (X|Y) 6 H

avg,ε
∞,µ (X|Y) 6 Hwst,ε+ε′

∞,µ (X|Y) + log2(1/ε′) (A31)

Proof. The first inequality holds immediately, since for every σ(X, Y) ∈ Bε(µ) we have

max
x∈X ,y∈Y

σ(x|y) > ∑
y∈Y

(

max
x∈X

σ(x|y)
)

σ(y). (A32)

Taking − log2 of both sides we obtain Hwst
∞,σ(X|Y) 6 H

avg
∞,σ(X|Y), where Hwst

∞,σ(X|Y) is
the bracketed quantity in (A30) and, since this inequality holds for every σ ∈ Bε(µ),
we have Hwst,ε

∞,µ (X|Y) 6 H
avg,ε
∞,µ (X|Y). For the second inequality of (A31), we want to

show that Hwst,ε+ε′
∞,µ (X|Y) > H

avg,ε
∞,µ (X|Y) − log(1/ε′) holds. Suppose the distribution

ν(X, Y) ∈ Bε(µ) witnesses H
avg,ε
∞,µ (X|Y), i.e., Havg,ε

∞,µ (X|Y) = H
avg
∞,ν(X|Y). The existence of

such a witness follows from the compactness of Bε(µ) and the continuity of Havg
∞,µ(X|Y).

It suffices to construct a distribution σ(X, Y) ∈ Bε′(ν) such that maxx,y σ(x|y) 6 p/ε′

holds, where p = ∑y maxx ν(x|y)ν(y) = Eν(Y)[maxx∈X ν(x|Y)]. We begin by defining the
sub-probability distribution ν̃(X, Y) as shown below.

ν̃(x, y) = ν(x, y)[[max
x∈X

ν(x|y) 6 p/ε′]], (A33)

where the notation [[· · · ]] represents the function that evaluates to 1 if the enclosed condition
holds and zero if it does not. Basically, the definition of ν̃ in (A33) involves discarding
ν corresponding to those y ∈ Y for which maxx ν(x|y) > p/ε′ holds. An application of
Markov’s inequality then shows that the weight w(ν̃) of ν̃ is at least 1 − ε′:

w(ν̃) = ∑
x,y

ν̃(x, y) = ∑
y∈Y : maxx ν(x|y)6p/ε′

∑
x

ν(x, y)

= Pν(Y)

(

max
x∈X

ν(x|Y) 6 p/ε′
)

> 1 − ε′ (A34)

Since p = Eν(Y)[maxx ν(x|Y)], (A34) follows. One way to now construct a distribution

σ ∈ Bε′(µ) satisfying maxx,y σ(x|y) 6 p/ε′ is to scale ν̃, i.e., we define σ(X, Y) as σ(x, y) =
ν̃(x, y)/w(ν̃). Note that, since w(ν̃) > 1 − ε′ and ε′ ∈ (0, 1), w(ν̃) is positive; also, σ > ν̃

holds since w(ν̃) 6 1. Together with the fact that ν > ν̃, we can use Lemma A1 to
show that dTV(σ, ν) 6 1 − w(ν̃) 6 ε′. By definition of σ we have σ(x, y) 6 pσ(y)/ε′

for all choices of x, y, where σ(y) = ν(y)
w(ν̃)

[[maxx ν(x|y) 6 p/ε′]] for each y. With the

convention that σ(x|y) is assigned the value 0 when σ(y) = 0, we then have σ(x|y) 6 p/ε′

for all choices of x, y. Membership of σ in the set Bε+ε′(µ) follows from the triangle
inequality dTV(µ, σ) 6 dTV(µ, ν) + dTV(ν, σ) 6 ε + ε′. And so we have constructed a

distribution in Bε+ε′(µ) such that maxx,y σ(x|y) 6 p/ε′. Taking − log2 on both sides, we
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obtain Hwst
∞,σ(X|Y) > H

avg
∞,ν(X|Y)− log2(1/ε′). As mentioned earlier, ν ∈ Bε(µ) witnesses

H
avg,ε
∞,µ (X|Y); hence, we have shown:

Hwst
∞,σ(X|Y) > H

avg,ε
∞,µ (X|Y)− log2(1/ε′) (A35)

Since, by definition, the smooth worst-case conditional min-entropy involves a maximum

of the left hand side of (A35) over the set Bε+ε′(µ), this shows that Hwst,ε+ε′
∞,µ (X|Y) >

H
avg,ε
∞,µ (X|Y)− log2(1/ε′) holds, from which the second inequality in (A31) follows.

In the asymptotic limit of a large number n of trials, constant factors vanish in measur-
ing per-trial min entropy and, since ε′ can be made arbitrarily small, (A31) enables us to
consider either definition when considering asymptotic performance.

Appendix F

Proof of Proposition 1

Proposition. For the set of behaviours ΠNS, the PEF optimisation in (10) is independent of
the power β for β > log2(4/3).

Proof. For a fixed value of n and ε the optimisation problem in (10) is equivalent to the
following:

Maximise: Eρ[log2(F(ABXY))]

Subject to: Eµi
PR
[F(ABXY)µi

PR(AB|XY)β] 6 1, for all i ∈ {0, 1}3,

E
µ

j
LD

[F(ABXY)µ
j
LD(AB|XY)β] 6 1, for all j ∈ {0, 1}4,

F(abxy) > 0, ∀a, b, x, y ∈ {0, 1}, (A36)

where the constraints range over the extremal points of ΠNS as given in (35) and (36). We
show that, for β > log2(4/3), the above constraints are equivalent to

E
µ

j
LD

[F(ABXY)µ
j
LD(AB|XY)] 6 1, for all j ∈ {0, 1}4,

F(abxy) > 0, ∀a, b, x, y ∈ {0, 1}, (A37)

noticing that β does not appear in (A37).
It is immediate to see that the constraints of (A36) imply (A37): since µ(AB|XY) is

always zero or one for local deterministic distributions, in this case we have µ(AB|XY)β =

µ(AB|XY) and thus for each choice of j we have E
µ

j
LD

[F(ABXY)µ
j
LD(AB|XY)β] 6 1 im-

plying the non-β counterpart E
µ

j
LD

[F(ABXY)µ
j
LD(AB|XY)] 6 1 in (A37). Now, we demon-

strate the reverse implication. First, the argument just given also works in the opposite
direction to show that the the non-β constraints of (A37) imply the corresponding con-
straints (with β) in (A36). We thus need only to show that the Eµi

PR
[· · · ] 6 1 in (A36)

are implied as well. We give a specific argument for the PR box given in Table 1; sym-
metric arguments apply for the other PR boxes. Since any distribution µ(ABXY) is the
behaviour µ(AB|XY) times a fixed settings distribution σs(XY), we can express the product
F(abxy)σs(xy) as F′(abxy) for all choices of (a, b, x, y) when the expectation functional E[·]
is written out in full. The constraints (A37) then imply, by summing over the eight of them
corresponding to the eight local deterministic distributions appearing in Table 1 (a set we
denote LD1), that

∑
a,b,x,y

F′(abxy) ∑
µLD∈LD1

µLD(ab|xy)2 6 8. (A38)
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Noticing that the inner sum above is always 3 or 1 (this corresponds to the number of 1s
appearing in each column of Table A1, with the result given in Table A2), we can now
rewrite (A38) as 3M + N 6 8, where M = F′(0000) + F′(0001) + F′(0010) + F′(0111) +
F′(1011) + F′(1100) + F′(1101) + F′(1110) and N = F′(0011) + F′(1111) + F′(1001) +
F′(0101) + F′(0110) + F′(1010) + F′(0100) + F′(1000).

Table A1. Tabular representation for µPR,1(AB|XY)1+β.

ab

00 01 10 11

xy

00 1
21+β 0 0 1

21+β

01 1
21+β 0 0 1

21+β

10 1
21+β 0 0 1

21+β

11 0 1
21+β

1
21+β 0

Table A2. Tabular representation of the values of the sum ∑
µLD∈LD1

µLD(ab|xy)2.

ab

00 01 10 11

xy

00 3 1 1 3

01 3 1 1 3

10 3 1 1 3

11 1 3 3 1

Since M, N are both non-negative, we can drop N to find that 3M + N 6 8 implies
M 6 8/3 = 21+log2(4/3) which in turn implies M 6 21+β whenever β > log2(4/3).
Since EµPR,1

[F(ABXY)µPR,1(AB|XY)β] is equal to M(1/2)1+β (see Table A1) the constraint
EµPR,1

[· · · ] 6 1 follows.

We remark that this inequality condition β > log2(4/3) is tight in the following
sense: there exists a non-negative function F(abxy) violating the PR box constraint of µPR,1

appearing in (A36) for any β < log2(4/3), while satisfying (A37) for any positive β—and
consequently satisfying all the constraints of (A36) for β > log2(4/3) per the argument in
the above proof. Thus, the feasible set of (A36) always excludes this particular choice of F for
β < log2(4/3) and includes it for β > log2(4/3). This function is F(abxy) = (1/3)[[a ⊕ b =
xy]]σs(xy)−1; fixing β = log2(4/3)− ε for some choice of ε in the interval (0, log2(4/3), we
can check that all the LD boxes satisfy the inequality ∑a,b,x,y F′(abxy)µLD(ab|xy)1+β 6 1;
the value of the expression is always either 1/3 or 1. However, for the PR box µPR,1 in
Table 2 we obtain ∑a,b,x,y F′(abxy)µPR,1(ab|xy)1+β = 2ε > 1, which is a violation.
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