Verified Density Compilation for a Probabilistic
Programming Language

JOSEPH TASSAROTTI, NYU, USA
JEAN-BAPTISTE TRISTAN, AWS, USA

This paper presents ProbCompCert, a compiler for a subset of the Stan probabilistic programming language
(PPL), in which several key compiler passes have been formally verified using the Coq proof assistant. Because
of the probabilistic nature of PPLs, bugs in their compilers can be difficult to detect and fix, making verification
an interesting possibility. However, proving correctness of PPL compilation requires new techniques because
certain transformations performed by compilers for PPLs are quite different from other kinds of languages.
This paper describes techniques for verifying such transformations and their application in ProbCompCert. In
the course of verifying ProbCompCert, we found an error in the Stan language reference manual related to
the semantics and implementation of a key language construct.

CCS Concepts: » Theory of computation — Program verification; - Software and its engineering —
Compilers; « Mathematics of computing — Markov-chain Monte Carlo methods.

Additional Key Words and Phrases: compilers, probabilistic programming, formal verification

ACM Reference Format:
Joseph Tassarotti and Jean-Baptiste Tristan. 2023. Verified Density Compilation for a Probabilistic Programming
Language. Proc. ACM Program. Lang. 7, PLDI, Article 131 (June 2023), 23 pages. https://doi.org/10.1145/3591245

1 INTRODUCTION

Probabilistic programming languages (PPLs) help users perform statistical analyses of data. A data
analyst uses the language to write a program that describes a statistical model for a data set. A
compiler then generates code from this model that can make statistical inferences about the model’s
unknown parameters. The compiler’s task is often quite different from a conventional compiler
because the purpose of the generated code is not to execute the model description directly. Instead,
the compiler translates the program into functions that are called by a statistical inference algorithm.
As a result, compilers for probabilistic programming languages perform transformations that would
appear invalid for a traditional compiler to do, but which are nevertheless correct because of
how the generated code is used. These differences lead to new challenges in implementing and
debugging compilers for PPLs.

To describe these challenges more concretely, we consider the Stan probabilistic programming
language [Carpenter et al. 2017]. Stan is one of the most widely used PPLs, with widespread
applications in both academia and industry across multiple scientific fields. A simple example Stan
program for analyzing flips of a biased coin is shown in Figure 1a. Stan programs are structured
into blocks. First, the data block (lines 1-3) describes the data set to be analyzed, which in this
example is just flips, an array of integer values giving the outcomes of the coin flips, represented
as Os or 1s. Next, the parameter block specifies the unknown variables which the analyst wants

Authors’ addresses: Joseph Tassarotti, jt4767@nyu.edu, NYU, New York, USA; Jean-Baptiste Tristan, trjohnb@amazon.com,
AWS, Boston, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/6-ART131

https://doi.org/10.1145/3591245

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 131. Publication date: June 2023.

https://doi.org/10.1145/3591245
https://doi.org/10.1145/3591245

131:2 Joseph Tassarotti and Jean-Baptiste Tristan

to make inferences about. Here, the sole parameter is mu, declared on line 5, which represents the
probability that a flip of the biased coin returns 1. This variable is a floating point value, indicated
by the type real in its declaration. The declaration further specifies a constraint of the form
<lower=0.0,upper=1.0> specifying that the value of mu must lie in the interval (0, 1). As in this
example, Stan allows data variables to be discrete integer values or continuous floating point values
(or arrays of such values), while parameters are required to be continuous variables.

Finally, the core of the program is the model block, which describes how to compute the proba-
bility of observing an assignment of values for the parameters and data. In this case, the analyst
first states that they have a prior belief about the distribution that the mu parameter was drawn
from, here expressed on line 8 using the sampling statement ~. We read mu ~ uniform(@,1) as
saying that mu is sampled from the uniform distribution on the interval (0, 1). Then, the for loop
on lines 9-11 postulates that each coin flip was generated by sampling from a Bernoulli distribution,
using mu as the probability of returning a 1.

Although the model block here looks as though it is describing how to randomly generate the
parameters and data using the ~ sampling statement, in actuality, the model block is specifying
how to compute a probability density function.! Stan allows users to write the model block in an
alternate style where this computation is made more explicit. An equivalent version of the same
program in this alternate style is shown in Figure 1b. In place of the sampling statement, this version
increments a special floating point variable called target. This variable is implicitly initialized to 0
and accumulates the logarithm of the model’s probability density value. The code adds to target
the log probability density of mu (lines 8-9) and flips[i] (lines 11-12) according to the probability
functions for the uniform and Bernoulli distributions, respectively. At the conclusion of the block,
this target variable is implicitly returned. In fact, the ~ sampling statement used in Figure 1a is
just syntactic sugar that translates to incrementing the target variable as in Figure 1b.

Once the user has specified a model, the Stan compiler supports several different types of
statistical analyses. The main supported analysis is to do Bayesian inference. Specifically, in this
example, the analyst had a prior belief that the parameter mu is equally likely to be any value
in (0,1). After observing some data about the coin flips, the Bayesian paradigm specifies that
according to Bayes’ rule, the analyst should update their priors to a different distribution called the
posterior distribution. In general, calculating the posterior distribution is intractable. Instead, the
compiler for Stan generates code that draws samples that approximate the posterior. By generating
enough samples, the analyst can form an approximate summary of the posterior distribution.

How are the samples generated? Stan, like many other PPLs, uses a Markov chain Monte Carlo
(MCMC) algorithm. Figure 2 represents schematically the components of the implementation of
these MCMC algorithms. The core “runtime” of the language is a loop that iterates steps of a Markov
chain. The states of this Markov chain are assignments of values for the parameter variables of
the model. At each iteration, the runtime queries a proposal generator, generated by the compiler,
which randomly suggests a new state for the chain to potentially move to. This new state is a
set of values for the parameter variables called a proposal candidate. The runtime calculates the
probability density of these proposed parameter values and the data. This calculation is done by a
density function, which is produced by the compiler. The runtime similarly calculates the probability
for the parameter values of the current state of the chain. The ratio of the proposed and current
probabilities is called the “acceptance ratio”. The runtime then randomly either transitions to the
proposed state, called “accepting” the proposal, or stays at its current state, “rejecting” the proposal,
where the probability of acceptance is calculated using the acceptance ratio.

1'We sometimes write “probability” when it is clear from context that we mean a “probability density” or “probability mass”.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 131. Publication date: June 2023.

Verified Density Compilation for a Probabilistic Programming Language 131:3

1 data { 1 data {

2 int flips[100]; 2 int flips[100];

3 3} 3 3}

4 parameters { 4 parameters {

5 real<lower=0.0,upper=1.0> mu; 5 real<lower=0.0,upper=1.0> mu;

6 3} 6 3}

7 model { 7 model {

8 mu ~ uniform(@,1); 8 target +=

9 for (i in 1:100) { 9 uniform_lpdf(mu | 0,1);

10 flips[i] ~ bernoulli(mu); 10 for (i in 1:100) {

11 3 11 target +=

12 3} 12 bernoulli_lpmf(flips[i] | mu);
13 3

(a) Coin flip model written in generative 14 3

style.
(b) Equivalent model written in non-generative style.

Fig. 1. Two equivalent Stan programs for analyzing coin flips. The data block describes the data used to
do inference, while the parameter block describes the unknown variables that the analyst wishes to make
inferences about. The model block defines the logarithm of the probability density function of the model.

The states that the Markov chain passes
Density through as this algorithm is run are returned to
Program - ---» Function the user as a list of generated samples. At a high
| level, the guarantee provided by this algorithm
| | is that in the limit, as more and more samples
- Accept / are drawn, the distribution of the d
5 s generate
Proposal Sampler |~ samples converges to the posterior distribution.
Generator Runtime |- _ That is the intention, at least. In practice, the
T . .
Reject X compiler and runtime can have bugs that lead

to violations of this guarantee, thus subtly bias-
ing statistical analyses. In this set up, both the

Fig. 2. Schematic overview of components of an . .
' 1€ overview P proposal generator and the density function cal-

MCMC sampler. The source program is compiled into a lati . h Jer th
proposal generator and density function evaluator. The % ation use code emitted by the compiler that

runtime queries these two components to determine 1S derived from the model. Both of these gener-
whether to probabilistically accept or reject states. ated components have different requirements
in order for the overall sampling algorithm to
function correctly. For example, if a parameter
value is in the support of the posterior distribution, meaning it has some non-zero probability of
occurring, then the proposal generator must be able to generate that state with non-zero probability.
Meanwhile, the code generated to compute the density function must correctly calculate these
densities. Doing so is made complicated by the fact that the compiler performs transformations to
the density function, both to optimize calculations and to make the task of the proposal generator
easier. For instance, Stan’s density compilation performs a reparameterization that removes con-
straints on parameter variables, such as the lower=0, upper=1 in the example from Figure 1a, so
that the proposal generator does not have to construct proposals satisfying these constraints.
When bugs occur in compilation, they can be difficult to diagnose. First, even for simple examples,
the true posterior distribution is difficult to compute, so it is hard for a user to notice that there
is an error. Second, since the guarantee provided by the MCMC algorithm is about convergence

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 131. Publication date: June 2023.

131:4 Joseph Tassarotti and Jean-Baptiste Tristan

to the true distribution in the limit, even when the user suspects there is something wrong, they
have trouble telling whether there is a bug or they just need to run the chain for more steps. As
a result, bugs can go undetected for a long time. For example, Stan versions 2.10-2.13 had a bug
that caused small biases in statistical estimates [Becker 2016]. Even though this bug manifested on
almost every program, the effect was small enough in most cases that it took more than 6 months
for someone to notice that there was a systematic bias.

Formal verification for probabilistic programming. The difficulty of implementing and debugging
compilers for probabilistic programming languages makes formal verification of such compilers
an interesting possibility. Although the semantics of these languages and their compilation are
quite different from those of a conventional language, it should still be possible to prove that the
compiler preserves the semantics of compiled programs, just as the CompCert [Leroy 2009] and
CakeML [Kumar et al. 2014] verified compilers do for C and CakeML, respectively.

This paper describes the formal verification of an important part of the compilation pipeline
for a PPL. We introduce ProbCompCert, a new compiler for a subset of the Stan programming
language written in Coq. ProbCompCert compiles Stan programs to C and connects to CompCert
for compilation down to assembly code. We have verified the correctness of three key passes
performed by the compiler as part of density compilation. Specifically, these are the compilation
passes that perform transformations whose correctness relies on the probabilistic semantics of
the language. That is, they change the code in ways that would appear incorrect for a traditional
compiler to do, but which are necessary in order for the generated code to lead to correct and
efficient sampling behavior.

Our proof shows that these passes of the density compiler are semantics preserving with respect
to a new mechanized semantics of Stan. Following the structure of the pencil-and-paper formal
semantics proposed by Gorinova et al. [2019], this semantics is split into two parts. First, the
operational layer gives a small-step description of how expressions and statements are executed,
similar in style to CompCert’s semantics of C. Next, the denotational layer maps programs to
probability distributions over parameter values, obtained as an integral of the density function.
Semantics preservation then says that this probability distribution is unchanged by compilation.

ProbCompCert’s proofs of semantics preservation follow this same two layer structure. For each
pass, we first prove a simulation that relates the operational behavior of the input of the pass to its
output. These proofs use the forward simulation proof technique used by CompCert. However, in
CompCert, simulations essentially show that the exact input/output behavior of compiled code is
preserved. In contrast, our simulations typically show that the input/output behavior of the code is
transformed according to some mathematical function. In the second part of each proof, we show
that this transform preserves the probability measure defined by the program. This latter proof
typically exploits some property of integrals, such as a change-of-variables formula or linearity.

In the course of verifying one of these passes, we discovered an error in the Stan language
reference manual. The manual claimed that Stan’s optimized implementation of the “~” statement
had equivalent behavior to writing a target+= statement of a particular form. In fact, this equiva-
lence only holds under certain conditions. ProbCompCert implements checks to use this optimized
implementation only in cases where the equivalence holds.

In summary, the contributions of this paper are as follows:

e A mechanized semantics for a subset of the Stan programming language that models features
not considered in prior work, such as constraints, that play an important role in compilation.

e A methodology for verifying compiler passes for which the justification of correctness relies
on the probabilistic semantics of the language.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 131. Publication date: June 2023.

Verified Density Compilation for a Probabilistic Programming Language 131:5

e A compiler design and implementation for Stan that is structured as a series of small, well-
defined passes to make it amenable to verification using this methodology.

Although ProbCompCert handles a large enough subset of the Stan language to cover a range of
examples adapted from the Stan user manual, it has limitations. We have focused on features whose
compilation is quite different from things seen in other compilers and that therefore pose new
verification challenges. Consequently, ProbCompCert does not yet support vectorized operations,
nor nested arrays. The current version also does not support all forms of constraints. Furthermore,
the proposal generator is a simple Gaussian random walk, which has much lower sample efficiency
than Stan’s more complex NUTS sampler [Hoffman and Gelman 2014]. Finally, the proposal
generator and the runtime are not verified. It would be interesting future work to verify these
components and integrate their proofs.

The remainder of the paper is structured as follows. First, we give an overview of the compiler’s
structure and the passes of the density compiler (§2). Next, we describe the formal semantics of
the subset of Stan supported by ProbCompCert (§3). From there, we explain the specification of
semantics preservation used by ProbCompCert and describe our methodology for proving semantics
preservation for compiler passes (§4). The next two sections describe how this methodology is
applied to prove the correctness for two important passes (§5 and §6). Our evaluation (§7) compares
the performance of ProbCompCert’s generated code with that of Stan’s official compiler and
discusses the relative effort of different parts of verification. Finally, §8 describes related work in
the implementation and semantics of probabilistic programming languages.

2 SYSTEM OVERVIEW

As described in §1 (illustrated in Figure 2), Prob-
CompCert is divided into three components:

1 state = load_initial_params(); . i
2 for (int i = 0; i < num_samples; ++i) { runtime, proposal generator compiler, and den-
3 propose(state,candidate); sity compiler. Although the focus of this paper
4 1p_candidate = model(data,candidate); is the verified passes of the density compiler,
5 lp_state = model(data,state); we give an overview here of the entire system
6 lu = log(rand_uniform(e, 1)); to provide context for the design choices and
7 verification challenges in the density compiler.
8 if (lu <= 1lp_candidate - lp_state) {
9 copy_params(state,candidate); 2.1 Runtime
10 3

The main task of the runtime is to drive the
Markov chain Monte Carlo algorithm that
generates samples. ProbCompCert uses an
Fig. 3. Code for symmetric Metropolis-Hastings. MCMC algorithm called symmetric Metropolis-
Hastings.? The core of the algorithm is the loop
described at a high level in the introduction.

11 output_sample(state);
12 3

A simplified C implementation of this loop is shown in Figure 3. In this code, the current state of
the Markov chain is stored in state. Each iteration of the loop begins by querying the proposal
generator to suggest a new state which is stored in candidate. Next, the probability density of
the candidate and current state are computed by calling the model function generated by the

2The official Stan compiler’s MCMC algorithms are Hamiltonian Monte Carlo [Betancourt 2018] and No U-Turn Sam-
pling [Hoffman and Gelman 2014], which are instances of asymmetric Metropolis-Hastings and use a much more sophisti-
cated proposal generator than ProbCompCert. However, the role of the density compiler—the subject of verification in
ProbCompCert—is similar in ProbCompCert and these more sophisticated MCMC algorithms.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 131. Publication date: June 2023.

131:6 Joseph Tassarotti and Jean-Baptiste Tristan

Parsin Sampling Reparam
------ £ > Stanlight Stanlight Stanlight
Additive
Target Var Alloc Lower y Const
CStan J« CStan |« —{CStan }« Stanlight
Backend
Y CompCert
(CompCert’s Clight} ____________ >

Fig. 4. Density compilation pipeline for ProbCompCert. The three highlighted passes are verified.

density compiler. An optimization that both Stan and ProbCompCert use is to actually compute
the logarithm of these densities, hence the 1p in the prefix of the corresponding variables. Next, a
random value is sampled from the uniform distribution on the interval (0, 1), and its logarithm is
stored in lu.

If 1uis smaller than 1p_candidate - lp_state, the candidate is said to be accepted and becomes
the new state of the chain, carried out by copying candidate to state. Regardless of whether the
candidate is accepted or not, the state at the end of the iteration is output to the user as a sample.

2.2 Proposal Generator Compiler

The precise properties required of the proposal generator to ensure overall correctness of the
algorithm are technically involved and beyond the scope of this paper. However, one complicating
factor in designing a proposal generator that will be relevant in what follows is that, in Stan,
parameters can have constraints, such as the <lower=0.0,upper=1.0> constraint on mu in the
example from Figure 1a. Respecting these constraints would require that the parameters generated
only have values in the specified range.

To handle this issue, both the Stan reference compiler and ProbCompCert perform a reparame-
terization transform to the model block, effectively removing the constraints, so that the proposal
generator and runtime operate over an unconstrained parameter space. The proposal generator
used by ProbCompCert is a simple Gaussian random walk proposal. To generate a candidate, it
samples an independent Gaussian with mean 0 and standard deviation 1 for each parameter value,
and adds it to the corresponding parameter’s value in the current state.

2.3 Density Compiler

The density compiler translates the model block into executable code to compute the densities

needed by the runtime’s MCMC loop. The compilation pipeline used by ProbCompCert’s den-

sity compiler is shown in Figure 4, with the three verified passes highlighted. These passes are

particularly interesting because they involve explicit reasoning about probabilistic semantics.
Compilation proceeds through three intermediate representations:

e Stanlight: This IR represents the subset of Stan supported by the compiler. It is produced by
unverified OCaml code that performs a simple elaboration pass to add type information to
the parsed Stan program. Stanlight supports Stan’s constraint annotations on parameters, the
“~” sampling statement we saw in the model from Figure 1, and treats arrays as a first-class
primitive. §3 describes the syntax and semantics in more detail.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 131. Publication date: June 2023.

Verified Density Compilation for a Probabilistic Programming Language 131:7

e CStan: This lower-level representation no longer has several Stan specific features from
Stanlight: all parameters are unconstrained, sampling statements are replaced by probability
density calculations, and array indexing is replaced by pointer offsetting.

e Clight: This is one of the C-like internal representation used by CompCert.

The translation between each of these internal representations is done through several smaller
intermediate steps that simplify or compile away some of the features that are not found in later
stages. A high-level description of the three verified passes is as follows:

« %

e Sampling: The underlying semantics of the “~” statement in Stan is to increment the target
variable that we saw in Figure 1b. This pass compiles away the “~” sampling statement by
replacing it with an explicit increment to the target variable.

e Reparameterization: As alluded to in the previous subsection, this pass simplifies the proposal
generator’s task by allowing the parameters passed to the model block to be unconstrained.
To do so, it replaces all uses of a constrained parameter in the model with a call to a constraint
function that remaps the unconstrained representation used by the proposal generator into a
constrained value. Taken alone, this remapping would affect the probability distribution that
the model block represents. To adjust for this, the pass also adds a correction term called a
Jacobian to the target variable.
Additive Constants: In §2.1 we saw that after calculating the log probabilities of the candidate
and current states, the runtime only performs a comparison involving the difference of these
two probabilities, 1p_candidate - lp_state. In other words, the magnitude of the density
function does not matter, only the differences between the densities assigned to different
parameter values. This means it is sound for the compiler to shift the probabilities computed
by the model block up to addition by a constant. This pass exploits this fact to optimize code
by dropping addition of constants to the target variable. For example, it can remove certain
statements of the form target += ¢ when c is a constant, and similarly simplifies arithmetic
expressions to remove such additions.

Two of these passes, Reparameterization and Additive Constants, are particularly interesting
because they do not preserve the input/output behavior of the density code. That is, these passes
perform transformations that would be invalid for a typical compiler to do, but are correct in this
context because of the probabilistic meaning of Stan programs. In the next section, we describe a
formal semantics that justifies the correctness of these transformations.

3 SEMANTICS OF STANLIGHT

This section describes the syntax and semantics of Stanlight, the subset of the Stan programming
language supported by the density compiler. The semantics is divided up into two layers: an
operational layer and a denotational layer.

3.1 Operational Layer

The operational layer of the semantics specifies how to execute the code in the model block so as
to compute the log density of a given data and parameter assignment. The semantics is specified
in a small-step style, similar to the small step semantics of CompCert’s Clight internal language.
Figure 5 presents the syntax for expressions, statements, and other syntactic categories used in the
semantics. We write an overhead arrow ~ to indicate lists of a corresponding syntactic category.
Most expressions and statements have behavior analogous to C-like equivalents, with a few
exceptions. We have already discussed how the “~” statement implicitly increments the target
variable. This target variable cannot be set directly, and can only be modified through the “~”
statement and through an addition statement of the form target += e. Although this += syntax

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 131. Publication date: June 2023.

131:8 Joseph Tassarotti and Jean-Baptiste Tristan

Values (Val) Types (Typ)
vu= i integer T = int
| r float | real
| ptr(b, off) pointers | array(z,size)
| undef undefined
| --- Statements (Sitmt)
s u= skip
Expressions (Expr) | e1 =€ assignment
eux= | integer const. | s1582 sequencing
| r float const. | if(e) {s1} else {s»}
| id variable access | for(idine;:e)) {s}
| ele] array access | target +=¢ target add
| call(es,€) math function call | e~ f(e) sampling
| op(e) arithmetic operation
| target read target value Programs (SProg)
pu={
Constraints (Constraint) functions:...;
c = none no constraint vars:...;
| lower =r data_ids : List (Id);
| upper =r param_ids : List (Id X (Expr — Expr));
| lower = ry, upper =ry }

Fig. 5. Syntax of Stanlight

resembles the syntax for adding an expression to the current value of a variable in C-like languages,
it is treated as a distinct statement in Stanlight, as in Stan.

A complete program p is a record consisting of (1) function definitions and their signatures, (2)
a list of variables with their types and constraints (if any), (3) a list of ids for data variables, and
(4) a list of ids for parameters as well as output functions that map the unconstrained internal
representation of a parameter to a (possibly) constrained representation expected by the user.

During execution, a program state ¢ has one of three following forms:

1. Start fstenompm 2. Running fstkenvmpm 3. Returnt
where f is the declaration of the model function and its signature, s is the current statement being
executed, t is the value of the special target variable, m is the global memory, env is the model
block’s local variable environment, pm is a map storing the values of each parameter variable for
which the density is being calculated, and k is a stack of continuations.

The global memory m uses CompCert’s memory model, which supports pointer-based indexing.
However at this stage its primary role is for storing external functions and the value of fixed global
variables, such as data variables. Local environments env and parameter mappings pm, on the other
hand, are indexed directly by an identifier and offset and do not support pointer-based accesses.

Given lists of values d and y, initial(p, d, y, o) holds when o is of the form Start f s t env m pm,
with (1) s equal to the model block’s body; (2) t = 0; and (3) m and pm are initialized with d and y
loaded for the values of data and parameter variables. These variables are assigned according to
the order their ids are listed in the data_ids and param_ids fields of the program.

Finally, the relation ¢ — ¢’ holds when ¢ can take a single step to ¢’. We omit most rules for this
relation, as they are similar to rules for analogous statements in CompCert’s C-like intermediate

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 131. Publication date: June 2023.

Verified Density Compilation for a Probabilistic Programming Language 131:9

representations. One exception is the following rule for the sampling statement ~ in Stanlight:*

elo eq | 0y external_call(g, v :: 0, m, r)

Running f (e ~ g(€;)) t k eno m pm — Running f skip (r +t) k eno m pm

Executing the statement e ~ g(é,) first evaluates e and each expression in €,, and passes the
resulting values as arguments to the density function g. If the return value of the external call to g
is a float r, the value of the target variable is updated from t to r + .

Stanlight programs can have undefined behavior, represented by reaching a non-Return state
that cannot take a step. Non-termination is another source of undefined behavior. The reason this
is made undefined is that if execution of the model were to diverge during the MCMC loop, the
program would be unable to generate further samples, so it is unclear how to assign semantics to
such a program. Given lists d and y, we say that is_safe(p, d, y) holds if p does not get stuck and
terminates when run from any state o satisfying initial(p, d, y, o).

The step relation — in Stanlight is deterministic. This is because, although the program describes
a probabilistic model, the calculation of probability densities performed by the model block itself
does not involve randomness.

3.2 Denotational Layer

The operational semantics described in the previous subsection defines evaluation of the model block
as a state machine: an assignment of parameter and data values is set in the initial state, the system
takes some number of steps, and (potentially) terminates, returning the target variable value. The
denotational layer uses this state machine to define a probability distribution on parameter values.

The first step is to derive a density function from the state machine. Given a program p, we define
a function logdensity(p) : List Val x List Val — R, where logdensity(p, d, y) would return the log
density calculated by the model block when run on an initial state with data d and parameters y.
Once the density function is defined, we want to obtain a probability measure on parameter values
by taking an integral over the density. However, there are two major difficulties in defining the
density function and this integral that must be resolved.

Floating points and reals. The first issue is that the operational semantics (and the compiled code)
uses IEEE floating point values to represent parameters and target values, not real numbers. Yet the
Stan reference manual and the compilation passes that Stan and ProbCompCert perform appeal
to an idealized semantics in which the probability measures defined by programs are obtained by
integrating over mathematical real numbers.

How can we reconcile this? One approach would be to confront the fact that calculations are
done with floating points and carefully track the effect of round-off errors in translations done by
the compiler and the rest of the MCMC. There has been some prior theoretical analysis of how
rounding errors can affect MCMC convergence [Roberts et al. 1998], but those results do not cover
the kinds of transformations performed by Stan.

The solution we adopt instead is pragmatic: in defining the denotational semantics and proving
correctness of passes, we treat these floating point numbers as if they behaved like real numbers
and all computations were exact.

Specifically, the Coq development postulates two coercion functions IFR : float — R and
IRF : R — float, along with axioms stating that they are inverses that commute with floating
point arithmetic operations. Figure 6 contains a subset of these axioms. In the following, we omit
writing these coercions when it is clear from context that they are needed.

3The presentation of the rule here is simplified to omit looking up the function g in CompCert’s environment model.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 131. Publication date: June 2023.

131:10 Joseph Tassarotti and Jean-Baptiste Tristan

Axiom IFR_IRF_inv : Assuming the existence of such a pair of co-
forall x, IFR (IRF x) = x. ercions may seem problematic, as these axioms
Axiom IRF_IFR inv : are not true. On the other hand, as we men-
forall ;’ I&F (IFR x) = X. tioned, several of the transformations that Stan
Axiom float_add_irf: forall a b, and other compilers for probabilistic program-
(Float.add (IRF a) (IRF b)) ming languages perform in practice are only

= IRF (a + b). semantics preserving if one assumes that the

program is doing computations with exact reals.
Fig. 6. Axioms for treating floating point calculations Thus, to prove properties of these compilation
as if they were exact real arithmetic. strategies, one has to express a similar assump-
tion at some point in the proof.

One may wonder whether admitting such axioms undermines the guarantees of formal veri-
fication. As a precaution, we isolate these axioms to a specific module and only use them when
proving passes that would require treating floating point arithmetic as if it were exact. Moreover,
CompCert is structured so that the float type is generally treated opaquely beyond a carefully
delineated APIL Thus, it is unlikely one would inadvertently exploit a contradiction from these
axioms in the course of a proof.

Nevertheless, these axioms do reduce the implied guarantees of ProbCompCert’s correctness
proof. In particular, it means that verification in ProbCompCert will not rule out bugs related to
numerical stability or round-off error. However, verification will prevent bugs or miscompilations
that are invalid with respect to this idealized, exact real arithmetic model. In the past, bugs in Stan,
such as the one described in the introduction, and an issue we will discuss in §6, have occurred at
this level and thus would be caught with ProbCompCert’s verification approach.

Measure spaces and theory of integration. The second issue in setting up the denotational semantics
is the choice of what theory of integration should be used. In the modern measure-theoretic approach
to probability theory, probability distributions are defined on the so-called measurable subsets of a
measure space, and Lebesgue integration is used to derive distributions from density functions.

Fortunately, certain restrictions in the Stan language mean that we do not require the full
flexibility of measure theory and Lebesgue integration. In particular, in Stan, parameters must be
reals (or arrays of reals), so there is no mixture of continuous and discrete parameters or more
complicated measure spaces that we need to define measures on.

This means that for purposes of defining the denotational semantics of programs, we do not
need to define a measure space on a program’s parameters or assign probabilities to all measurable
subsets of that space. Instead, we only define the probabilities of (open) rectangular subsets of the
parameter space, which can be done using improper Riemann integration. We call a set D € R”
rectangular if it can be written as the Cartesian product of open intervals. For example, for a
program with two unconstrained parameters, the denotational semantics will assign probabilities
to all rectangular subsets of the form (as, b1) X (ag, b2), where the end-points of the intervals may
also be +00 and —c0.*

Using Riemann integration simplifies the machine-checked proofs, as we can reuse results about
Riemann integration developed in Coq in the Coquelicot library [Boldo et al. 2015].

Defining the probability measure. With these design choices in place, we first define a predicate

returns_target(p, d, y,t) = Jo. initial(p,d, y, t) A ¢ =" (Return t)

4In some sense, there is no harm in only assigning probabilities to these subsets, since the Carathéodory extension theorem
implies that this can be (uniquely) extended to a measure on all Borel subsets of the parameter space.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 131. Publication date: June 2023.

Verified Density Compilation for a Probabilistic Programming Language 131:11

indicating whether a program will return a log density value of t for a given assignment of data
and parameter values. This is a partial relation, in the sense that there may not be a t such that
returns_target(p, d, y, t) holds. We use Hilbert’s epsilon operator, and the fact that execution is
deterministic, to convert this to a function get_target(p, d, y). This function has the property that
if there exists a t such that returns_target(p, d, y, t) holds, then get_target(p, d, y) = t. Otherwise,
if no such t exists, then get_target(p,d,y) = 0. Observe that when no such ¢ exists, that means
the program triggers undefined behavior at the operational layer, in the sense we described in the
previous section, so we are licensed to assign this arbitrary value of 0. We convert the output of
this function to a real using IFR to obtain logdensity(p, d, y) = IFR(get_target(p,d, y)).

To obtain the intervals that each parameter variable can range over, Stanlight constraints are
mapped into open interval subsets of R as follows:

(=00,) ¢ = none
IFR 1 =
interval_of_constraint(c) = (IFR(a),) ¢ = (lower =a)
(=00, IFR(D)) ¢ = (upper =b)

(IFR(a), IFR(b)) ¢ = (lower = q,upper = b)

By applying this function to each element of the list of parameter constraints of a program p,
we obtain a list of intervals that we call the parameter rectangle, written rect(p). The parameter
rectangle is said to be well-formed if for every interval (a, b) in the list, we have a < b. We define
the dimension of p as dim(p) = |rect(p)|. A list [of real numbers is said to be in a list L of intervals,
written [€ L if the two lists have the same length, and for all i, the ith element of [(a real number)
is in the ith element of L (an open interval).

Next, we define a notion of iterated integration over a list of intervals. Given a function f :
(ListR) — R, and a non-empty list L of open intervals, we recursively define

b
L f([x])dx L=[(aDb)]
-l
L (fQLfees))dx L=(ab):1
The integral fL f is said to exist if all of the 1-dimensional integrals involved exist.

Recall that for each parameter variable v, the program defines an output map to convert the
internal representation of v used in execution into a constrained format expected by the user. For
a list [of real numbers such that |I| = dim(p), we write outmap(p, !) for the list that results by
applying the ith parameter’s variable map to the ith element of I, coercing the result into a real
number using IFR.

As discussed in §2, Stan model blocks only specify the log density of the program up to addition

by a constant. Given a list of data values d and a list of intervals y, we say that the unnormalized
probability U(p,d, L) of y is

U(p,d,L) = / (Al exp(logdensity(p,d, 1)) - [outmap(p,]) € L])
rect(p)

where [outmap(p,]) € L] is an instance of Iverson bracket notation, meaning that it equals 1 if
outmap(p,!) € L and 0 if outmap(p,) ¢ L. That is, we integrate over the whole parameter space of
the program p, but only parameter values [that would fall in L when output to the user contribute
to the probability.

To obtain the normalized probability, we must divide by the so-called normalizing constant, so
that given a data assignment d, the integral over the whole space of parameters has probability 1.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 131. Publication date: June 2023.

131:12 Joseph Tassarotti and Jean-Baptiste Tristan

The normalizing constant Z(p, d) is

Z(p,d) :/ o (Al exp(logdensity(p, d,1)))
rect(p

and we assume that this integral exists and is non-zero. A program’s behavior is undefined if
these assumptions do not hold. Under these assumptions, we can finally define the probability
distribution corresponding to a program p and a list of data values d:

U(p,d,L)
Z(p,d)

4 SPECIFICATION AND PROOF TECHNIQUE

This section defines formally what it means for the density compiler to be correct, and then provides
an overview of our proof technique for establishing correctness. The basic strategy is to decompose
each proof into two proofs, one at the operational layer and one at the denotational layer. For the
operational layer, we re-use CompCert’s forward simulation proof style. At the denotational layer,
the proofs follow from standard mathematical results about properties of integration.

Pr(p,d,L) =

4.1 Semantic Preservation

The key correctness condition for compilation is preservation of the denotational semantics of
a Stanlight model block. As usual with such semantic preservation definitions, when the source
program has undefined behavior, the output of the compiler is licensed to have arbitrary behavior.
To that end, we define the notion of a safe data assignment, safe_data(p, d):

safe_data(p,d) = VIl € rect(p) = is_safe(p,d,)

That is, a data assignment d is safe whenever execution with that data would be safe for all parameter
values in the program’s parameter rectangle.

Definition 4.1 (Refinement). Program p; refines p,, written p; E p, if, assuming rect(p;) is
well-formed, the following all hold:®

(1) dim(p;) = dim(p,) and rect(p;) is well-formed.
(2) For all d, if safe_data(pz, d) then safe_data(ps, d).
(3) For all d, if safe_data(p,, d) then VL. Pr(py,d, L) = Pr(p,, d, L).

At a high level, this definition requires that if p, is well-defined, then p; is well-defined and they
assign the same probabilities to rectangular subsets of the parameter space. In other words, the
probability distribution represented by the original program is preserved.

The correctness specification for the compiler is that compiled programs refine their source:

Definition 4.2 (Compiler Correctness). A Stanlight to Stanlight density compiler C is correct if for
all programs p, the refinement C(p) E p holds.

A key property is that refinement is transitive.
Theorem 4.1 (Transitivity of Refinement). If p; E p, and p, E ps, then p; T ps.
This means each pass of the compiler can be verified separately:

Theorem 4.2 (Composition of Compiler Correctness). If C; and C, are correct Stanlight to Stanlight
density compilers, then C; o C; is correct.

>Our mechanized proofs further require that p, and p; are linked with all of the standard math libraries that are used by
Stanlight programs, and that the library functions have their intended semantics.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 131. Publication date: June 2023.

Verified Density Compilation for a Probabilistic Programming Language 131:13

As in CompCert itself, this justifies decomposing the compiler into a series of small passes that
can each be verified independently. But how do we verify each of those passes? Before explaining
our technique for doing so, we recall how those proofs are carried out in CompCert.

4.2 Background: Forward Simulation in CompCert

Recall that a standard (operational) characterization of correctness for a compiler C is that, if p is a
well-defined program, then (1) C(p) should be well-defined, and (2) if C(p) has some executable
behavior B, then the source program p should have behavior B as well.

One way to establish this form of correctness is to inductively construct a backward simulation
between execution of C(p) and p.° In its simplest form, this technique involves defining a simulation
relation R between states of C(p) and p with the following properties:

(1) If o, and o5 are initial states of C(p) and p, respectively, then R(o, o5) holds.

(2) For all states o, and o5 such that R(o,, o5) holds, if o, steps to o/, then there exists o, such
that oy —* o/ and R(0., 07).

(3) If R(o¢, 05) holds and o, is a final state (i.e. it is a return value that cannot take any more
steps), then oy is a final state with an equivalent return value.

The intuition behind the name “backward” is that in (2) above, for each step of the compiled program,
we must exhibit matching step(s) by the pre-compiled program, hence backwards with respect to
the compilation pipeline. However, it can be difficult to construct a backward simulation this way,
since C(p) is often more low-level than p. Variants of this technique allow for optionally showing
stuttering steps in part (2), where the compiled program takes some bounded number of steps
before having to construct a matching step of the pre-compiled program. Even then, reconstructing
steps of p from steps of C(p) is not always easy.

Fortunately, when working with programs expressed in a deterministic programming language, a
backward simulation can instead be derived from a forward simulation. The process for constructing
a forward simulation is similar to the above, but crucially, property 2 above becomes:

(2’) For all states o, and o5 such that R(o,, o5) holds, if o steps to o7, then there exists o, such
that o, —* o/ and R(0., 0)).

That is, given a step in the source program, we exhibit matching steps in the compiled program,

which is often easier to do. CompCert exploits this approach heavily, using deterministic interme-
diate languages to justify doing so.

4.3 Forward Simulation in ProbCompCert

Recall from §3.1 that although the MCMC loop in ProbCompCert’s runtime is randomized, the
execution of the model block is deterministic. Thus, we may also use forward simulation in Prob-
CompCert to establish properties about the operational behavior of the compiled model block.

However, CompCert’s simulation relations show that the exact input/output behavior of the
program is preserved, in the sense that the final return value of the compiled program will be the
same as the source program. But some of the compilation passes performed by ProbCompCert,
such as Reparameterization and Additive Constant optimization, change the density function being
computed, even though they preserve the overall denotational semantics of the program.

We can accommodate this by varying the steps of constructing a forward simulation proof
described above. The idea is to allow for remapping the input parameters and output target value
when constructing the simulation. The general pattern is as follows:

6The terms “backward” and “forward” for simulations are sometimes used in a different sense by other authors. Here, we
follow the conventions from CompCert.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 131. Publication date: June 2023.

131:14 Joseph Tassarotti and Jean-Baptiste Tristan

Definition 4.3. Let T : List Val — List Val - R — R and ¢ : List Val — List Val be maps such
that for all d, [, and r, there exists r’ such that T(d,[,r") = r. A (T, ¢)-forward simulation between
two Stanlight programs p. and p; is a relation R on Stanlight states with the following properties:

(1) Ifinitial(ps, d, y, o5) and initial(p, d, $(y), o) then R(o,, o5) holds.

(2) For all states o, and o5 such that R(o,, o5) holds, if o5 steps to o7, then there exists o, such

that o, —* o/ and R(0., 0)).
(3) If R(o,, 05) holds and o5 = Return t then o, = Return T(d, y, t).

Constructing such a simulation implies a relation between the logdensity of the two programs:

Theorem 4.3. If there is a (T, ¢)-forward simulation between p. and ps, then for all d and y such
that is_safe(ps, d, y) we have

logdensity(p., d, ¢(y)) = T(d, y, logdensity(ps, d, y))

Once we have constructed a (T, ¢)-forward simulation for appropriate choice of T and ¢, all
of the operational reasoning about the compilation pass is done. We then just need to show that
the integrals defining Pr(p., d, L) and Pr(ps, d, L) are equivalent, using this theorem to relate the
logdensity term that appears in each integrand.

In the simplest cases, where a pass does not modify the logdensity function being computed,
such as the initial Sampling pass in ProbCompCert, we can take ¢ to be the identity map and let
T(d,y,r) = r. With that choice, the properties for (T, ¢)-forward simulation are equivalent to the
standard form of forward simulation used in CompCert, and Theorem 4.3 specializes to saying that

logdensity(p., d, y) = logdensity(ps, d,y)

Assuming the pass does not modify the parameter list, this equation implies that p, refines p, as
the integrals defining Pr(p,, d, L) and Pr(ps, d, L) are equivalent.

In other words, a “standard” forward simulation from CompCert implies denotational refinement.
This means that although ProbCompCert’s correctness proof does not yet formally connect to the
correctness proof for CompCert, it should be possible to adapt CompCert’s existing simulation
proof to eventually achieve an end-to-end result for semantic preservation.

In the next two sections, we turn to discussing passes for which the more general notion of
(T, ¢)-forward simulation is required to prove semantic preservation.

5 REPARAMETERIZATION

The Reparameterization pass transforms the model block in order to remove constraints from
parameter variables. This simplifies the job of the proposal generator, as it now no longer needs to
worry about constructing proposals that would satisfy these constraints.

To accommodate unconstrained parameter values in the model block, at each use of a parameter
that originally had a constraint c, the compiler inserts code to apply a function f. that maps the
unconstrained value into a value satisfying the constraint. The mappings used by ProbCompCert
for the three constraints supported by Stanlight are:

Constraint ¢ Mapping f.(x)
lower =a exp(x) +a
upper = b b —exp(—x)

lower = a,upper = b a+ (b - a) - expit(x)

where expit(x) = 1/(1 + exp(—x)). For each constraint ¢ and x € R, we have that f.(x) €
interval_of_constraint(c).

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 131. Publication date: June 2023.

Verified Density Compilation for a Probabilistic Programming Language 131:15

1 data { 1 data {

2 int flips[100]; 2 int flips[100];

3 3 3 3

4 parameters { 4 parameters {

5 real<lower=0.0,upper=1.0> mu; 5 real mu;

6 % 6 3}

7 model { 7 model {

8 target += 8 target +=

9 uniform_lpdf(mu | 0,1); 9 uniform_lpdf ((0+(1-0)*expit(mu) | ©,1);

10 for (i in 1:100) { 10 for (i in 1:100) {

11 target += 11 target +=

12 bernoulli_lpmf(flips[i] | mu); 12 bernoulli_lpmf(flips[i] | (@+(1-@)*expit(mu)));

13 3 13 3

14 3 14 target +=
15 log((1 - @) * expit(mu) * (1 - expit(mu)));
16 3}

Fig. 7. Example of before (left) and after (right) the Reparameterization pass

However, just re-mapping the variables to a constrained form is not sufficient. Since the model
block represents a density function that is integrated to obtain a probability distribution, remapping
in this way amounts to a change of variables in the integral, and so we need to insert a correction
factor to account for this.

To see why, recall from calculus that if g : R — R is a monotone and continuously differentiable
function on the interval (a, b), and h is integrable on (g(a), g(b)), then

9(b) b
[hax= [g omtgeons B
g9(a) a
(If a or b are —co or +o0, one can instead use lim,_,, g(x) and lim,_,; g(x) instead of g(a) and g(b)
in the limits of integration for the integral on the left.) The crucial part is that in the integral on the
right, we must adjust the integrand by scaling by ¢’ (x), the so-called Jacobian of the transform.
In our setting, g is f;, h is the integrand defining U(p, d, L) and Z(p, d), and a and b are —co and
+00. Thus we must adjust the target calculation by the Jacobian as well. Since the model block
is returning the logarithm of the density, we add log(f; (x)) instead of multiplying. The pass will
insert a statement for each parameter to add this value to target at the end of the model block.
Figure 7 shows the result of applying the reparameterization transform to the example from
Figure 1b from §1. The left side of the figure reproduces the code of that example and the right
hand side shows the output of the transform. On line 5 on the right, we see that the constraint on
the parameter mu is removed. The uses of mu on lines 9 and 12 are remapped according to f, for
¢ = (lower = 0.0, upper = 1.0). Finally, lines 14-15 add the Jacobian f7(mu) to the target variable.
This example involves just one constrained parameter. If there are multiple constrained parame-
ters, each is re-mapped according to the corresponding f.. Since each re-mapping is independent
of the others, the overall Jacobian is just the sum of the Jacobians for each variable.
To prove the correctness of this pass, we first construct a (T, ¢)-forward simulation. The mapping
T adds the Jacobian for each parameter value, while ¢ applies the inverse of f; for each variable -
i.e. it unconstrains the parameter values from the source side of the simulation. The simulation
relation R is straightforward: the key invariant is that if pmg and pm, are the parameter maps in
the source and compiled program states, respectively, then for each variable i with constraint c,

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 131. Publication date: June 2023.

131:16 Joseph Tassarotti and Jean-Baptiste Tristan

model {

real mu;

1 model { 1

2 real mu; 2

3 target += normal_lpdf(alpha | 0,1); 3 target += normal_lupdf(alpha | 0,1);

4 target += normal_lpdf(beta | 0,1); 4 target += normal_lupdf(beta | 0,1);

5 for (i in 1:10) { 5 for (i in 1:10) {

6 6 mu = alpha + beta *x x[il;

7 7 target += normal_lupdf(y[i] | mu, 1);
8 8 target += 0.0;

9 9

mu = alpha + beta * x[i];
target += normal_lpdf(y[i]l | mu, 1);
target += 3.0;
}
10 3} 10 3

}

Fig. 8. Example of before (left) and after (right) the additive constant optimization pass.

we have pm; (i) = f.(pm.(i)). Otherwise, the states are essentially the same until the very end of
executing the model block, in which we add the Jacobian on the output side.

Applying Theorem 4.3 to this simulation, we are left to prove that the resulting integrals over pa-
rameter space are equivalent. This follows by applying the change-of-variables theorem inductively
for each parameter variable.

6 ADDITIVE CONSTANT OPTIMIZATION

The Additive Constant optimization pass simplifies the density calculation by removing addition of
constants to the target variable. For example, under certain conditions it can remove statements of
the form target += c for a constant c. Similarly, for statements of the form target += f(...),
where f is a standard library function, it may replace f with a more optimized version of the
function that omits such constants.

Figure 8 gives an example of the results of applying this pass to a simple example. The original
model block, on the left, implements a simple linear regression model. The details of the original
model are not important, but we see that it has four target statements, three of which increment
by the log density of the normal distribution, normal_lpdf, and one which adds the constant 3. 0.
On the right, the normal_lpdf calls have been replaced by normal_lupdf and the constant 3.0
has been replaced by @.0.” The function normal_lupdf is a library function that computes the
logarithm of the PDF of the normal distribution but with certain normalizing constants dropped. In
particular, normal_lpdf and normal_lupdf compute the following mathematical functions:

_ 2
normal_lpdf (ylu, o) :Iog(\/%_fr ' ieXp (_ (yzaf)))

1 (y-p°
normal_lupdf(y|y, o) = log (; exp (th))
so that their difference is log(1/V27x).

The optimizations on lines 7 and 8 in this example occur within the body of a loop that runs for
10 iterations. Thus, if the changes on lines 7 and 8 drops constants ¢; = log(1/vV27) and ¢, = 3.0,
respectively, the net effect is to decrease the overall density by 10(c; + ¢3). Crucially, the number of
iterations of the loop here does not have any dependency on the parameters of the model. If such a
dependency existed, then dropping constants from the body of the loop might nevertheless shift
the overall density by a non-constant amount.

Subsequent standard optimization passes in CompCert can then entirely remove this addition of 0.0.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 131. Publication date: June 2023.

Verified Density Compilation for a Probabilistic Programming Language 131:17

To avoid this kind of control-flow dependency and related problems, the pass implements several
checks and restrictions:

(1) The target variable must only be used as part of target + = statements, otherwise the
optimization performs no changes.

(2) Bodies of loops are altered only when the loop bounds are constant and the body does not
modify the loop iterator.

(3) Branches of conditional statements are not optimized.

Some of these restrictions could be loosened by doing a more careful dataflow analysis. For example,
it should be possible to allow loop bounds to be non-constant so long as they only have dependency
on data variables.

Why is this optimization pass correct? Recall in §2 that we gave intuition for why by observing
that the MCMC loop only cares about the difference between the log density of the chain’s current
state and a candidate’s log density. Thus, shifting the log density by addition of a constant would
not change this relative difference, and so would preserve the behavior of the program.

We can now also see that such a transformation is semantics preserving from the perspective
of the denotational semantics introduced in §3.2. The integral defining a program’s probability
distribution is scaled by a normalizing constant Z(p, d). Thus if we have two programs p. and p;
with the property that logdensity(pc, d, y) + r = logdensity(ps, d, y) for all y, then, assuming the
parameters of p. and ps are the same, we have:

U(ps,d,L) = / (M. exp(logdensity(ps, d, 1)) - [outmap(ps,[) € L])
rect(ps)
= / - (Al. exp(logdensity(pe, d, 1) +r) - [outmap(p,,) € L])
rect(pc

=exp(r) - o (Al. exp(logdensity(pc, d, 1)) - [outmap(pe, 1) € L])
rect(pc

=exp(r) - U(pe,d, L)
Similarly, Z (ps, d) = exp(r) - Z(pe, d), so that

U(ps,d, L) 3 exp(r) - U(pe, d, L)
Z(ps,d) exp(r) - Z(pe, d)

That outlines the denotational proof. For the operational part, we first inductively define a
function drop such that for a statement s, drop(s) is equal to the total constant that would be dropped
when running the optimization on s. Then, we construct a (T, ¢)-simulation with T(x) = x — r
and ¢ as the identity. To define the simulation relation R, we define a relation matchStmt(s, s’, z)
which holds when (among other things) executing s adds z more to the target variable than
executing s’ does. Similarly, matchCont(k, k’, z) says that executing the remaining statements in
the continuation stack k will add z more to target than executing the continuation stack k’.

A key part of the invariant captured by the simulation relation R is that if the source state
is Running f s t k env m pm and the compiled state is Running f’ s’ ' k' eno’ m’ pm’ then
matchStmt(s,s’, z;) and matchCont(k, k’, z,) hold for some z; and z, such that t —t' = r — z; — z5.
When the program finishes running, before transitioning to Return states, this relation will hold
with z; = 0 and z; = 0, so that we get t —t’ = r, as desired.

Pr(ps,d, L) = =Pr(p.,d,L)

Comparison with the Stan compiler. The current compiler for Stan does not implement an additive
constant optimization pass. Instead, when translating a sample statement x ~ normal(mu, sigma),
rather than replacing it with target += normal_lpdf(x | mu, sigma) as ProbCompCert does,

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 131. Publication date: June 2023.

131:18 Joseph Tassarotti and Jean-Baptiste Tristan

Stan translates it to target += normal_lupdf(x | mu, sigma), with the lupdf indicating the
version of the normal density function that drops the additive constant log(1/v/27). Other distri-
butions are similarly compiled to use analogous lupdf versions of their density functions. Thus,
many of the changes that ProbCompCert’s additive constant optimization would perform happen
automatically in Stan as part of compiling away the ~ statement.

A key difference is that Stan’s compiler will always use the lupdf version when compiling a ~
statement, whereas ProbCompCert will only replace an 1pdf with lupdf in a target increment
statement when conditions (1) through (3) mentioned above hold. Currently, the Stan reference
manual (version 2.31) claims that although ~ is always compiled using lupdf versions of density
functions, this will “lead to the same sampling behavior” as using 1pdf [Stan Development Team
2023, Section 7.4]. However, this is not necessarily true when conditions (1) through (3) are violated.®
In personal communication with the Stan developers, we have shown them counter-examples to
this claim, which they have confirmed, and they have mentioned possible changes to correct the
phrasing in the manual.’

7 EVALUATION

Proof development size and relative effort. Figure 9 gives a listing of the lines of proof and code
for the various components of ProbCompCert. For each pass, we give a breakdown of the lines
of proof required for operational reasoning versus denotational reasoning. The Sampling pass’s
denotational proof is generic for any pass that does not change the logdensity being calculated and
is reusable, whereas the other two are specific to the pass.

The operational proofs are typically larger. That is because operational proofs are done by
induction over possible steps in the simulation, so their size is roughly proportional to the number
of cases in the operational semantics and the extent of changes in the code. Meanwhile, the hard
work of the denotational proofs are in the underlying mechanized proofs of integration lemmas,
which we either re-use from Coquelicot [Boldo et al. 2015] or proved in a math library.

Performance evaluation. We evaluate the per-
formance of ProbCompCert’s generated density
code as compared to that produced by the official
Sampling 320 (O) + 240 (D) 30 Stan compiler (v.2.30.1). In general, comparing the

Proof/Spec. Code

Rzpéa}rém. 3,160 (O) + 270 (D) 300 performance of PPLs is subtle, because one must
A ttive Constant 1,500 (0) + 270 (D) 200 consider both the speed with which samples are
Semantics 1,060 - . .

Math Library 3000 _ generated as well as the rate at which the chain

converges to the posterior distribution. For exam-
ple, a system may generate samples more slowly
than another, yet because it uses an algorithm with
faster convergence, fewer samples are required
overall to produce good statistical estimates. Since
ProbCompCert’s unverified runtime and proposal
generator are quite different from Stan’s, this sort of comparison would be difficult to interpret.
To avoid this, we use BridgeStan [Roualdes et al. 2023], a library that exposes a C API for
Stan’s compiled output. Using BridgeStan, we are able to link Stan’s generated density code
into ProbCompCert’s runtime. We run both ProbCompCert’s normal compiled output and the
BridgeStan-linked version on a collection of benchmarks and measure the time taken to generate a

Fig. 9. Lines of proof, specification, and code for
verified components. The label “O” is for operational
proofs, “D” is for denotational proofs.

8Stan does have a warning mode that checks for branching on parameter values, since this can introduce discontinuities in
the density function that lead to poor MCMC performance for other reasons. This would flag many such examples.
%https://github.com/stan-dev/docs/issues/588.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 131. Publication date: June 2023.

https://github.com/stan-dev/docs/issues/588

Verified Density Compilation for a Probabilistic Programming Language 131:19

B ProbCompCert Density =[] Stan Density

a0

coin lin_reg log_reg hierarch irt

Relative
running time

Fig. 10. Average relative running time of standard ProbCompCert and ProbCompCert linked with Stan’s
density code. Lower is better. Results are normalized so that the Stan-linked version has value 1. Error bars
are shown but small, as standard deviation was below 5 percent of the average for each configuration.

fixed number of samples. With this setup, the difference between the two systems is in the density
model code, so this enables a more direct assessment of the performance of the density code.

We use five benchmarks: the coin flipping example from the introduction, a linear regression
similar to Figure 8, a logistic regression, a hierarchical linear regression, and a simple item response
theory (IRT) model. For each experiment, we time how long it takes to run 1 million iterations of
the MCMC loop, saving every 10,000th state as a sample. Each experiment is run five times. The
models have between 2-30 parameters and 100-400 observed data variables. The experiments were
run on a laptop with an Intel 7-6600U CPU @ 2.60GHz processor, running Ubuntu 18.04.

Figure 10 shows the results of these experiments, normalized so that the Stan density version has
average value 1 for each benchmark. On 4 of the 5 benchmarks, the ProbCompCert average is less
than 85% of the running time of the Stan-linked version. These results should not be interpreted as
a definitive claim about the performance of Stan. For example, Stan’s generated code and libraries
implement various checks for opportunities to apply vectorized operations. In these benchmarks,
these just add overhead, but in more sophisticated models they offer opportunities for vast speed-ups.
Rather, the conclusion we draw from these results is that for the subset of Stan that ProbCompCert
supports, its density code’s performance is comparable to that of Stan.

In contrast to the other benchmarks, on the coin flipping benchmark, ProbCompCert has worse
performance. The reason is that, as we saw in Figure 7, after Reparameterization, ProbCompCert
produces code that re-constrains the mu parameter of this model at every use of mu, including in the
main for loop. In contrast, Stan computes the constrained version once and stores it in a separate
variable which is re-used. The repeated re-computation of the constrained value in the loop ends
up being a significant fraction of the total work done for this simple example.

We confirmed this by changing the model to add a local variable mu2, setting mu2 = mu, and
replacing uses of mu with mu2. Then, after Reparameterization, the inserted re-constraining happens
only when setting mu2 = mu. This change made ProbCompCert’s performance about the same as
the Stan-linked form. CompCert’s common sub-expression elimination cannot make this change
automatically, as it does not know that the expit function calls computing the constrained value
are pure. This could be addressed by adding expit, and the other math routines ProbCompCert
uses, as intrinsics to CompCert. It should also be possible to add a pass before Reparameterization
to introduce variables like we did with mu2, without changing Reparameterization’s proof.

8 RELATED WORK

Compilation of probabilistic programming languages. Stan’s latest OCaml compiler is organized
in sequences of transformations between 3 intermediate representations. ProbCompCert uses many

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 131. Publication date: June 2023.

131:20 Joseph Tassarotti and Jean-Baptiste Tristan

more intermediate passes to ease the task of verification. Besides Stan, several other probabilsitic
programming languages come with compilers, as opposed to interpreters, including the one for
Infer.net [Kazemi and Poole 2016], Swift [Wu et al. 2016], Gen [Cusumano-Towner et al. 2019], or
the Reactive PPL [Baudart et al. 2020]. Some compilers target GPUs [Tristan et al. 2014; Huang
et al. 2017] and FPGAs [Banerjee et al. 2019] in order to exploit parallelism in inference.

Bhat et al. [2013] develop a density compiler for the Fun PPL [Borgstrom et al. 2011] and prove
its correctness on paper. Eberl et al. [2015] later produced a machine-checked proof of this result in
Isabelle. These works use the term density compiler in a different sense than we have here. There,
the compiler takes as input a program describing a generative process and emits a function in a
high-level language to calculate the density of that model using a numerical integration primitive.
In contrast, in Stan, the model block input to the compiler is already a direct description of how to
calculate the density, and the compiler generates low-level code for computing that density.

Semantics of probabilistic programs. Early work on program semantics involving probabilities
was focused on modeling uses of randomness for applications like randomized data structures,
as opposed to probabilistic programming languages for statistical modeling and inference. Kozen
[1981] gave a very early semantics of programs with randomized behavior. A number of domain-
theoretic denotational models [Saheb-Djahromi 1980; Jones and Plotkin 1989] were developed for
higher-order languages with recursion and probabilistic choice.

More recent work has developed semantics for languages for statistical inference. Ramsey
and Pfeffer [2002] present a monadic semantics, using the Giry monad [Giry 1982], to model a
stochastic lambda calculus. Staton [2017] gives a denotational semantics for a first-order probabilistic
programming language and uses it to prove the correctness of swapping the order of statements in
a model. The difficulty of justifying such a seemingly simple transformation hints at the complexity
of probabilistic programming languages and their semantics. Culpepper and Cobb [2017] proved a
similar result using operational semantics and logical relations, subsequently extended by Wand
et al. [2018] to support recursion. Borgstrom et al. [2016] prove an equivalence between two forms
of semantics for probabilistic programming languages, one which ascribes weights to traces of
executions, and a more extensional version that describes programs as distributions over return
values. Multiple approaches to denotational models for higher-order PPLs have been developed in
the past several years [Heunen et al. 2017; Ehrhard et al. 2017; Huang and Morrisett 2016]. Scibior
et al. [2018] use such a semantics to prove on paper the correctness of inference procedures for a
higher-order language. Lew et al. [2020] extend this approach and develop a type system for safe
and provably correct composition of inference procedures.

Gorinova et al. [2019] give a semantics to Stan, and present a Stan-like language called SlicStan
that removes some restrictions of Stan, such as the need to segment programs into blocks. They
translate SlicStan into Stan, and prove the correctness of this translation. As mentioned, their
semantics highly influenced design choices for the semantics in ProbCompCert. ProbCompCert
adds semantics of constraints, which is needed to prove the correctness of Reparameterization.

Bugs in PPLs. Dutta et al. [2018] conduct a bug study of PPLs, including Stan, and develop a PPL
fuzzer. Their results allow for some assessment of the decision in §3 to use idealized real semantics
for the denotational layer. Many bugs they mention appear to be semantics violating even with
exact real arithmetic, and hence would be ruled out if the entire system were verified with this
semantics. However, they also describe serious bugs related to numerical issues that would not be.

9 CONCLUSION

This paper described ProbCompCert and the verified passes it uses for density compilation. Prob-
CompCert’s density compilation is decomposed into several discrete passes to enable modular

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 131. Publication date: June 2023.

Verified Density Compilation for a Probabilistic Programming Language 131:21

verification. Its layered semantics makes it possible to verify passes by splitting their proofs into
operational and denotational parts.

It would be interesting future work to verify other parts of the compiler and address the limitations
of ProbCompCert described earlier in §1. The remaining unverified passes of the density compiler
can be handled with the techniques described here, particularly because they do not modify the
logdensity of the model further. Certain other features, such as supporting nested arrays, could also
be handled by the methodology presented here. However, verifying features like Stan’s multivariate
constraints would require substantial proofs in mechanized multivariate analysis or linear algebra.

A more conceptual challenge lies in verifying an improved proposal generator, such as the one
used in Stan itself, or the MCMC algorithm runtime. In both cases, the semantics used so far
for ProbCompCert’s density compiler should be complementary in specifying the behavior and
interactions of these other components.

Finally, it would be interesting to explore verified compilation of probabilistic language features
not found in Stan, such as higher-order functions or mixtures of continuous and discrete parameters.
Modeling these language features would require a more sophisticated denotational semantics, such
as ones used in the work cited in §8. Nevertheless, it may still be possible to use the two-layer
approach described here to verify certain parts of compilation even in such languages.

ACKNOWLEDGMENTS

We thank the paper’s shepherd, Yizhou Zhang, as well as the anonymous reviewers. The authors are
also grateful to the anonymous PLDI artifact evaluators for their careful assessment and feedback
on the artifact accompanying this paper. We would further like to thank Brian Ward, Bob Carpenter,
Sam Stites, and Xavier Leroy for their help. This material is based upon work supported by the
National Science Foundation under Grant No. 2106559.

ARTIFACT AVAILABILITY

An artifact accompanying this paper is available [Tassarotti and Tristan 2023], which includes
the source code for ProbCompCert, as well as scripts for reproducing the experiments shown in
Figure 10. The source code for ProbCompCert is also available in a public repository [ProbCompCert
Development Team 2023], where active development continues.

REFERENCES

Subho S. Banerjee, Zbigniew T. Kalbarczyk, and Ravishankar K. Iyer. 2019. AcMC 2 : Accelerating Markov Chain Monte Carlo
Algorithms for Probabilistic Models. In Proceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems (Providence, RI, USA) (ASPLOS °19). Association for Computing
Machinery, New York, NY, USA, 515-528. https://doi.org/10.1145/3297858.3304019

Guillaume Baudart, Louis Mandel, Eric Atkinson, Benjamin Sherman, Marc Pouzet, and Michael Carbin. 2020. Reactive
Probabilistic Programming. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design
and Implementation (London, UK) (PLDI 2020). Association for Computing Machinery, New York, NY, USA, 898-912.
https://doi.org/10.1145/3385412.3386009

Matthew R. Becker. 2016. NUTS Sampler Broken (stan-dev/stan issue #2178). https://github.com/stan-dev/stan/issues/2178.

Michael Betancourt. 2018. A Conceptual Introduction to Hamiltonian Monte Carlo. arXiv:1701.02434 [stat.ME]

Sooraj Bhat, Johannes Borgstrom, Andrew D. Gordon, and Claudio Russo. 2013. Deriving Probability Density Functions from
Probabilistic Functional Programs. In Tools and Algorithms for the Construction and Analysis of Systems, Nir Piterman and
Scott A. Smolka (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 508-522.

Sylvie Boldo, Catherine Lelay, and Guillaume Melquiond. 2015. Coquelicot: A User-Friendly Library of Real Analysis for
Coq. Math. Comput. Sci. 9, 1 (2015), 41-62.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 131. Publication date: June 2023.

https://doi.org/10.1145/3297858.3304019
https://doi.org/10.1145/3385412.3386009
https://github.com/stan-dev/stan/issues/2178
https://arxiv.org/abs/1701.02434

131:22 Joseph Tassarotti and Jean-Baptiste Tristan

Johannes Borgstrom, Andrew D. Gordon, Michael Greenberg, James Margetson, and Jurgen Van Gael. 2011. Measure Trans-
former Semantics for Bayesian Machine Learning. In Programming Languages and Systems - 20th European Symposium
on Programming, ESOP 2011, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS
2011, Saarbriicken, Germany, March 26-April 3, 2011. Proceedings (Lecture Notes in Computer Science, Vol. 6602), Gilles
Barthe (Ed.). Springer, 77-96.

Johannes Borgstrom, Ugo Dal Lago, Andrew D. Gordon, and Marcin Szymczak. 2016. A lambda-calculus foundation for
universal probabilistic programming. In Proceedings of the 21st ACM SIGPLAN International Conference on Functional
Programming, ICFP 2016, Nara, Japan, September 18-22, 2016, Jacques Garrigue, Gabriele Keller, and Eijiro Sumii (Eds.).
ACM, 33-46.

Bob Carpenter, Andrew Gelman, Matthew Hoffman, Daniel Lee, Ben Goodrich, Michael Betancourt, Marcus Brubaker,
Jigiang Guo, Peter Li, and Allen Riddell. 2017. Stan: A Probabilistic Programming Language. Journal of Statistical Software,
Articles 76,1 (2017), 1-32. https://doi.org/10.18637/jss.v076.101

Ryan Culpepper and Andrew Cobb. 2017. Contextual Equivalence for Probabilistic Programs with Continuous Random
Variables and Scoring. In Programming Languages and Systems - 26th European Symposium on Programming, ESOP 2017,
Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April
22-29, 2017, Proceedings (Lecture Notes in Computer Science, Vol. 10201), Hongseok Yang (Ed.). Springer, 368-392.

Marco F. Cusumano-Towner, Feras A. Saad, Alexander K. Lew, and Vikash K. Mansinghka. 2019. Gen: a general-purpose
probabilistic programming system with programmable inference. In PLDI 2019: Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation. ACM, 221-236.

Saikat Dutta, Owolabi Legunsen, Zixin Huang, and Sasa Misailovic. 2018. Testing probabilistic programming systems. In
Proceedings of the 2018 ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/SIGSOFT FSE 2018, Gary T. Leavens, Alessandro Garcia, and Corina S. Pasareanu (Eds.).
ACM, 574-586.

Manuel Eberl, Johannes Hélzl, and Tobias Nipkow. 2015. A Verified Compiler for Probability Density Functions. In
Programming Languages and Systems, Jan Vitek (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 80-104.

Thomas Ehrhard, Michele Pagani, and Christine Tasson. 2017. Measurable Cones and Stable, Measurable Functions: A
Model for Probabilistic Higher-Order Programming. Proc. ACM Program. Lang. 2, POPL, Article 59 (Dec. 2017), 28 pages.
https://doi.org/10.1145/3158147

Michele Giry. 1982. A Categorical Approach to Probability Theory. In Categorical Aspects of Topology and Analysis (Lecture
Notes in Mathematics, Vol. 915), B. Banaschewski (Ed.). 68-85.

Maria I. Gorinova, Andrew D. Gordon, and Charles Sutton. 2019. Probabilistic Programming with Densities in SlicStan:
Efficient, Flexible, and Deterministic. Proc. ACM Program. Lang. 3, POPL, Article 35 (Jan. 2019), 30 pages. https:
//doi.org/10.1145/3290348

Chris Heunen, Ohad Kammar, Sam Staton, and Hongseok Yang. 2017. A Convenient Category for Higher-Order Probability
Theory. In Proceedings of the 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (Reykjavik, Iceland) (LICS
’17). IEEE Press, Article 77, 12 pages.

Matthew D. Hoffman and Andrew Gelman. 2014. The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian
Monte Carlo. Journal of Machine Learning Research 15, 47 (2014), 1593-1623. http://jmlr.org/papers/v15/hoffmani4a.html

Daniel Huang and Greg Morrisett. 2016. An Application of Computable Distributions to the Semantics of Probabilistic
Programming Languages. In Programming Languages and Systems - 25th European Symposium on Programming, ESOP
2016, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven, The
Netherlands, April 2-8, 2016, Proceedings. 337-363.

Daniel Huang, Jean-Baptiste Tristan, and Greg Morrisett. 2017. Compiling Markov Chain Monte Carlo Algorithms for
Probabilistic Modeling. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’17). Association for Computing Machinery.

C. Jones and G. Plotkin. 1989. A Probabilistic Powerdomain of Evaluations. In Proceedings of the Fourth Annual Symposium
on Logic in Computer Science (Pacific Grove, California, USA). IEEE Press, 186-195.

S. Kazemi and D. Poole. 2016. Knowledge Compilation for Lifted Probabilistic Inference: Compiling to a Low-Level Language.
In KR.

Dexter Kozen. 1981. Semantics of Probabilistic Programs. J. Comput. Syst. Sci. 22, 3 (1981), 328-350.

Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. 2014. CakeML: A Verified Implementation of ML.
In Principles of Programming Languages (POPL). ACM Press, 179-191. https://doi.org/10.1145/2535838.2535841

Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun. ACM 52, 7 (2009), 107-115.

Alexander K. Lew, Marco F. Cusumano-Towner, Benjamin Sherman, Michale Carbin, and Vikash K. Mansinghka. 2020.
Trace types and denotational semantics for sound programmable inference in probabilistic languages. Proceedings of the
ACM on Programming Languages 4, POPL, Article 19 (Jan. 2020), 32 pages.

ProbCompCert Development Team. 2023. ProbCompCert Git Repository. https://github.com/jtassarotti/probcompcert

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 131. Publication date: June 2023.

https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.1145/3158147
https://doi.org/10.1145/3290348
https://doi.org/10.1145/3290348
http://jmlr.org/papers/v15/hoffman14a.html
https://doi.org/10.1145/2535838.2535841
https://github.com/jtassarotti/probcompcert

Verified Density Compilation for a Probabilistic Programming Language 131:23

Norman Ramsey and Avi Pfeffer. 2002. Stochastic lambda calculus and monads of probability distributions. In POPL. 154-165.

Gareth O Roberts, Jeffrey S Rosenthal, and Peter O Schwartz. 1998. Convergence properties of perturbed Markov chains.
Journal of applied probability 35, 1 (1998), 1-11.

Edward Roualdes, Brian Ward, Seth Axen, and Bob Carpenter. 2023. BridgeStan: Efficient in-memory access to Stan programs
through Python, Julia, and R. https://doi.org/10.5281/zenodo.7760173

N. Saheb-Djahromi. 1980. Cpo’s of measures for nondeterminism. Theoretical Computer Science 12, 1 (1980), 19 - 37.
https://doi.org/10.1016/0304-3975(80)90003- 1

A. Scibior, Ohad Kammar, Matthijs Vakar, S. Staton, H. Yang, Yufei Cai, K. Ostermann, Sean K. Moss, C. Heunen, and Z.
Ghahramani. 2018. Denotational validation of higher-order Bayesian inference. Proceedings of the ACM on Programming
Languages 2 (2018), 1 - 29.

Stan Development Team. 2023. Stan Language Reference Manual (v. 2.31). https://mc-stan.org/docs/2_31/reference-manual/

Sam Staton. 2017. Commutative Semantics for Probabilistic Programming. In Proceedings of the 26th European Symposium
on Programming Languages and Systems - Volume 10201. Springer-Verlag, Berlin, Heidelberg, 855-879. https://doi.org/10.
1007/978-3-662-54434-1_32

Joseph Tassarotti and Jean-Baptiste Tristan. 2023. Verified Density Compilation for a Probabilistic Programming Language
(Artifact). https://doi.org/10.5281/zenodo.7709874

Jean-Baptiste Tristan, Daniel Huang, Joseph Tassarotti, Adam C Pocock, Stephen Green, and Guy L Steele. 2014. Augur:
Data-Parallel Probabilistic Modeling. In Advances in Neural Information Processing Systems 27, Z. Ghahramani, M. Welling,
C. Cortes, N. D. Lawrence, and K. Q. Weinberger (Eds.). Neural Information Processing Systems Foundation.

Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew Cobb. 2018. Contextual Equivalence for a
Probabilistic Language with Continuous Random Variables and Recursion. Proc. ACM Program. Lang. 2, ICFP, Article 87
(July 2018), 30 pages. https://doi.org/10.1145/3236782

Yi Wu, Lei Li, S. Russell, and Rastislav Bodik. 2016. Swift: Compiled Inference for Probabilistic Programming Languages. In
IJCAL

Received 2022-11-10; accepted 2023-03-31

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 131. Publication date: June 2023.

https://doi.org/10.5281/zenodo.7760173
https://doi.org/10.1016/0304-3975(80)90003-1
https://mc-stan.org/docs/2_31/reference-manual/
https://doi.org/10.1007/978-3-662-54434-1_32
https://doi.org/10.1007/978-3-662-54434-1_32
https://doi.org/10.5281/zenodo.7709874
https://doi.org/10.1145/3236782

	Abstract
	1 Introduction
	2 System Overview
	2.1 Runtime
	2.2 Proposal Generator Compiler
	2.3 Density Compiler

	3 Semantics of Stanlight
	3.1 Operational Layer
	3.2 Denotational Layer

	4 Specification and Proof Technique
	4.1 Semantic Preservation
	4.2 Background: Forward Simulation in CompCert
	4.3 Forward Simulation in ProbCompCert

	5 Reparameterization
	6 Additive Constant Optimization
	7 Evaluation
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

