2023 IEEE International Symposium on Information Theory (ISIT) | 978-1-6654-7554-9/23/$31.00 ©2023 IEEE | DOI: 10.1109/ISIT54713.2023.10206559

2023 IEEE International Symposium on Information Theory (ISIT)

Learning-augmented streaming codes for
variable-size messages under partial burst losses

Michael Rudow and K.V. Rashmi

Abstract—Recovering bursts of lost packets in real-time is
crucial to multimedia live-streaming applications’ quality-of-
experience (QoE). Streaming codes optimally handle the unique
aspects of loss recovery for live streaming, including (a) variable-
size messages, (b) a real-time playback deadline, and (c) burst
losses across multiple frames. However, existing models for
streaming codes in this setting only apply to bursts that drop all
data sent for each message. Yet in many real-world applications
only some packets are lost for each message in what we call
a “partial burst.”” We introduce a new streaming model to
accommodate partial bursts. We then design a building block to
construct a streaming code given any choice of how much parity
to allocate for each message. Next, we present a streaming code
in an offline setting (i.e., where the sizes of future messages are
known) by combining (a) the building block with (b) a linear
program to set the number of parity symbols per message. We
then design a streaming code in an online setting (i.e., without
knowledge of the future) by combining (a) the building block with
(b) a learning-augmented algorithm to set the number of parity
symbols per message. The constructions are approximately rate-
optimal under a natural condition on the nature of feedback.

I. INTRODUCTION

Live streaming is crucial to numerous popular applications
ranging from videoconferencing to cloud gaming. The QoE
of such applications depends on several factors, including
bandwidth, latency, and packet loss recovery. Retransmission
can recover lost packets using minimal redundancy in three
steps: (a) transmission, (b) feedback, and (c) retransmission.
But the latency of three one-way delays is prohibitively high
for long-distance communication. Instead, erasure codes can
be used for loss recovery.

The main drawback of traditional erasure codes like block
codes or random linear convolutional codes is that they are
inefficient at recovering burst losses in real-time. This is
problematic for the many live-streaming applications that ex-
perience bursty losses. The weakness arises from the fact that
conventional approaches recover all lost packets simultane-
ously. If a burst loss encompasses multiple messages, the first
message of the burst is unavailable until after recovering the
lost packets of the final message. This property can cause the
latency to exceed the playback deadline of the first message.
In contrast, “streaming codes” are designed to recover each
message in the burst sequentially. Hence, earlier messages are
available to be played sooner. This reduces the latency for
recovering earlier messages in a burst. As such, streaming
codes are better suited for real-time communication.

Streaming codes were first introduced by Martinian and
Sundberg in [1]. Under their streaming model, during each
time slot, i, a message packet, S[i], of k symbols arrives

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on

978-1-6654-7554-9/23/$31.00 ©2023 IEEE

10

S[i] Sond X[for j € [e; — 1] | packet loss
Message ender Transmitted Packets” | channel
Packet Oli] T xO [4] or *¢
) Side i Receiver
information

Decode S[i — T]l

Fig. 1: Overview of the proposed streaming model. Multiple
packets are transmitted over the channel for each message
packet. The packet loss channel allows for partial bursts.

at a sender. A channel packet, X[i], of n symbols is sent
over a burst-only packet loss model. Losses occur as bursts
of b consecutive channel packets followed by guard spaces
of at least 7 consecutive receptions. Each message packet
must be recovered within 7 time slots to satisfy the playback
requirement. Martinian and Sundberg introduced rate-optimal
streaming codes for several parameters, then Martinian and
Trott presented rate-optimal codes for the remaining parame-
ters in [2]. Many other works have studied streaming codes for
various models of communication that fix the sizes of message
packets and channel packets in advance [2]-[12], [12]-[21].
Motivated by the varying sizes of message packets in many
live-streaming applications, such as videoconferencing, a new
streaming model was introduced in [22]. Our paper focuses
on this setting of variable-size message packets. Under this
model, S[i] and X[i] are of sizes k; and n;, respectively,
for non-negative integers k; and n;. Under this model, the
optimal rate is adversely affected by the variability in the
sizes of message packets. Spreading message symbols over
multiple channel packets can mitigate the negative impact of
the variability. However, spreading message symbols increases
the latency to recover message packets when there are no
losses—this is termed the “lossless-delay.” As such, spreading
across several channel packets may not be acceptable for many
live-streaming applications. Rate-optimal and approximately
rate-optimal streaming codes have been introduced when the
lossless-delay is zero and one in [23] and [24], respectively.
The streaming model for variable message-sizes involves
sending one channel packet per frame which is either received
or lost. The prior works [3], [10], [11] on streaming codes that
send multiple packets per message packet apply to settings
where the sizes of message packets are fixed and bursts
where all consecutive packets are lost. Unlike the existing
literature on theoretical streaming codes, real-world appli-
cations frequently experience what we dub “partial bursts”

](-)ctober 03,2023 at 18:16:38 UTC from IEEE Xplore. Restrictions apply.

2023 IEEE International Symposium on Information Theory (ISIT)

losses of only some packets per frame. This was shown in
a recent work [25] by assessing a large corpus of packet loss
traces from Microsoft Teams 1:1 video calls and showing the
prevalence of bursts where only some packets are lost per
frame. The authors also proposed a heuristic-based design of
new streaming codes suitable for such losses, and used these
constructions to showcase the viability and potential benefits
of streaming codes for improving the QoE for real-world live-
streaming applications. The promising observations in [25]
motivate a formal study of streaming codes for partial bursts.

In this paper, we generalize the streaming model for
variable message-sizes to accommodate sending one or more
“transmitted packets” per time slot, where only a fraction
of the transmitted packets may be lost in a burst (termed
partial bursts). The receiver sends occasional feedback to the
sender to inform the choice of parameters associated with
partial bursts. The model is shown in Figure 1—the component
“side information” will be introduced later in Section II. In
the literature on streaming codes, arbitrary losses are often
considered along with burst losses. While one could proceed
to account for partial bursts by introducing arbitrary losses
into the loss model, doing so would allow arbitrary losses
over across multiple time slots. Allowing such arbitrary losses
would reduce streaming codes’ potential to exploit the bursty
structure of losses clustered within a few consecutive frames
observed in [25]. Instead, this burst structure can be leveraged
under our new model with partial bursts.

We apply a two-step methodology to design streaming codes
for the new model. First, a building block construction to
design a streaming code given any split of each message
packet into (a) one component guaranteed to be recovered
strictly before its playback deadline (i.e., within (7 — 1) time
slots), and (b) another component guaranteed to be recovered
by its playback deadline (i.e., 7 time slots later). Second, a
policy for how to split each message packet into these two
components. Our work uses a linear program to determine
how to split message packets in the offline setting where the
sizes of future message packets are available. Combining the
linear program for splitting frames with the building block
construction yields an approximately rate-optimal code under
a natural condition on the nature of feedback (termed the
“reset condition”). Finally, we employ a learning-augmented
algorithm to determine the split to build a construction for
the online setting where the sizes of future message packets
are unavailable which is approximately rate-optimal under the
reset condition. All proofs are available in [26].

II. SYSTEM MODEL

We now extend the streaming model with variable-size
message packets from [22], as illustrated in Figure 1. There
are a positive number, ¢, of time slots. During the ith time slot,
the sender obtains a message packet, S[i], of k; independent
random symbols of a finite field, F, where k; € {0,...,m}
for some maximum value, m. We call kg, . .., k; the “message
packet size sequence.” The sender sends c; transmitted packets,

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded

1

X O], ..., X =[], consisting of ngo), e ,ngci_l) sym-

bols, respectively. This change to the model allowing multiple
packets to be transmitted over the channel for each message
packet is a stepping stone toward adding partial bursts to the
loss model. We denote the transmitted packets, number of
symbols sent, and number of parity symbols as

X[i] = <X<0>[i],...,X<6H)m>,

c;i—1
E : ()
n; = n;
Jj=0
pi = ng — ky,

respectively. The rate is defined as in [22] as the ratio of
message symbols to transmitted symbols:

ZE:O ki
t

Dimo M
Loss model: The transmitted packets are sent over a channel
with bursty losses (affecting one or more consecutive time
slots) followed by guard spaces where there are no losses. We
introduce a new type of burst loss, called a partial burst. In
each time slot within a partial burst, only a fraction of the
transmitted packets are lost. Formally, for a partial burst of
length b starting at time slot ¢, for each time slot [within the
partial burst, [€ {i,...,i+b— 1}, a £ € (0,1] fraction of
the transmitted packets can be lost. That is, an arbitrary [{c;]
transmitted packets of X[I] are lost.

Further, the length and the fraction of packets lost in
partial bursts are allowed to vary over time in order to enable
using feedback (based on network changes) to tune the code.
Formally, a partial burst starting in time slot ¢ encompasses b;
consecutive time slots, where b; is a positive integer. During
each time slot of the partial burst, j € {i,...,i +b; — 1}, ¢;
fraction of the transmitted packets are lost. Other than perhaps
the few time slots after receiving feedback, ¢; = ¢;. The partial
burst is followed by a guard space of at least 7 time slots where
all transmitted packets are received.

For any time slot ¢, we denote the c; received packets as

Y[i] = <Y(°) [, .. ,Y(Ci‘l)[i]>,

R, =

where each received packet corresponds to either receiving the
corresponding transmitted packet intact or it being lost. That
is, for j € {0,...,¢; — 1},

Y(j)[z'] — {

Feedback: The sender occasionally receives feedback from
the receiver for updating the burst length and the fraction of
transmitted packets lost. During any time slot 7 where feedback
is received, b; and all undefined ¢; for j € {¢,...,i+b, — 1}
are updated accordingly. If there is no feedback, the param-
eters do not change (i.e.,, b, and ¢;;5,_1 are set based on

X[if XU [4] is received
if XU)[i] is lost '

*

(rjé)ctober 03,2023 at 18:16:38 UTC from IEEE Xplore. Restrictions apply.

2023 IEEE International Symposium on Information Theory (ISIT)

the last received feedback). The feedback can be viewed as
the receiver conservatively estimating how lossy the network
conditions will be based on prior losses. At times, there could
be an underestimation of the losses, and that could lead to
message packets not being recovered. In videoconferencing,
due to compression, video frames are typically dependent on
each other. Hence not recovering a message packet can lead
to several subsequent packets not being useful even though
they are received intact. Thus, the receiver can send additional
feedback to signal that a reset is needed during any time slot.
This is modeled via a binary value ;. It is O by default and
set to 1 to indicate that the 7 message packets before the reset
need not be recovered if their transmitted packets are lost;
this ensures that loss recovery does not rely on having already
decoded these previous message packets. Whenever a reset is
triggered, the values of b; and ¢, ..., ¢;1, 1 are also updated.

A. Encoding and Decoding

Defining encoding and decoding requires understanding
what information is available during the :th time slot. In
the “offline” setting, the sizes of future message packets and
future feedback from the receiver are assumed to be known
in advance. In contrast, the setting where this information is
unavailable is dubbed “online.” We introduce side information,
O;, to capture the available information. Thus, in the offline
setting, O; comprises the sizes of future message packets and
future feedback. In the online setting, side information is the
output of a predictive model (see Section V for details). During
time slot 7, the sender uses the prior message packets and side
information, O;, to encode as

X[i] = Enc(S[0],...,S[i],0y).

We consider two types of decoding: (a) decoding when there
are no losses, and (b) decoding when there are losses. First,
when there are no losses (or all losses have already been
recovered), the lossless-delay constraint requires decoding
each message packet, S[i], within the same time slot:

S[i] = Dec'™) (S[0],...,S[i — 1], Y[i], k;).

Second, when there are losses, the worst-case-delay constraint
stipulates that each message packet is recovered within 7 time
slots. Specifically, for any burst starting in time slot j of length
b; that encompasses time slot g,

S[i] = Dec(S[0],...,8[j —1,Y[j],...,Y[i + 7],
k‘o, .. .,kJH_.,-).

We note that under variable-size message packets, the sizes of
the message packets are needed for decoding [22]-[24]. This
is handled by adding a small header containing the sizes of
the previous 7 message packets. Also, our constructions do
not require the full memory allowed under the model because
they do not use any information about message packets and
transmitted packets more than 27 time slots in the past.

ey

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded

1

B. Notation and Conventions

Let [n] denote {0, ...,n}. Any vector, V, is a column vector
of length v. For any I = {j1,...,5;} C [n] where j; <
... < Ji, the values of V in the positions of I are denoted
as V; = Vj,.;,. For any time slots ¢ < j € [t] and vectors
Zt), ..., Z[j], let Z[i : j] Zlt), ..., Z[j], and z;, ...
denote their sizes. Let 09) be a vector of j zeros.

Next, we define extra notation for bursts. For any time slot,
i, let B; be the set of time slots, j, for which a burst starting in
time slot j includes time slot ¢ (i.e., s € {4,...,j+b; —1}).

We now introduce some conventions followed in the rest of
the paper. The final (7 + 1) message packets are assumed to
be of size 0, and ¢ is at least (7 + 1); this can be satisfied by
appending (7 + 1) message packets of size 0 without affecting
the optimal rate. Because an integral number of transmitted
packets are always sent, for each time slot, i, ¢; can be
restricted to be a rational number ¢;/h; in simplest form.
To simplify our presentation of constructions and proofs, we
require hi’ki and k; < m — hy; this can be accomplished by
zero-padding S[i] and increasing m by at most (h; — 1).

s %j

III. A BUILDING BLOCK CONSTRUCTION

This section develops an approximately rate-optimal con-
struction for any parameters, 7 and ¢, message packet
size sequence, K (ko,...,k:), and feedback, L
(60,... ,€t>7B = (b07...,bt), and Z = (COv“'?Ci)‘ We
present a building block to construct a code given any splits
of the message packets into (a) a component recovered within
(7 —1) time slots, and (b) a component recovered 7 time slots
later. Specifically, for any time slot ¢ € [t — 7], let w; be
the number of symbols of S[i] to be recovered during time
slot (i + 7), and let W = (wyp,...,ws—.). At a high level,
(ki —w;) symbols of S[i] are received or recovered using the
parity symbols of X[i : i+ 7 — 1]. Then w; parity symbols are
sent in X [i + 7] to recover the remaining lost symbols of S[i].
The construction is called “(7,t, K, Z, £, B, W)-Split Code.”

Encoding (high-level description). During time slot i, S[i]
is partitioned into S[i] = (U[i], V[i]). Parity symbols P[i]
are defined as P[i] = (P*)[i] + P'[i]) where P'[i] comprises
symbols that are full-rank linear combinations of the symbols
of Vi —7],...,V[i] and P®)[i] comprises full-rank linear
combinations of the symbols of U[i — 7]. The key property
of the linear equations and choices of how to split is that for
any j € [i] and burst of length b; starting in time slot j, the
symbols of V[j],...,V[j + b; — 1] can be recovered by time
slot (j+7—1). Finally, the symbols of U[é], V[i], P[i] are each
evenly spread over h; transmitted packets. Figure 2 provides
an overview of encoding.

Recovery (high-level description). Consider a burst starting
in time slot ¢ of length b; where Y[i : i +b; — 1] are received.
First, for j € B;, the received symbols of P[j] are combined
with U[j — 7] (which would have been already received) to
determine P’[j]. Then the received symbols of P'[i : i4+7—1]
are used to recover V[i : i+b; —1] by solving a system of linear
equations. Second, for each j € {i +7,...,i + 7+ b; — 1},

(rjé)ctober 03,2023 at 18:16:38 UTC from IEEE Xplore. Restrictions apply.

2023 IEEE International Symposium on Information Theory (ISIT)

P'[j] is computed using V[j — 7 : j], yielding P™[j] =
(P[j] — P'[4]). Combining P*)[j] with the received symbols
of U[j — 7] suffices to recover U[j — 7].

Code construction (detailed description) time slot . The
five-step encoding process comprises: (a) initialization, (b)
splitting S[i] into V[i] and Uli], (c) defining P[i] given
V[jl,Ulj] for j < i, (d) allocating symbols to transmitted
packets, and (e) handling resets from (; = 1.

S[i]vvi = 07pi+T =

Initialization: For any i € [T —1], U[{]
kifi, and Pi = 0.

Splitting S[i]: For i € {r,...,t — 7}, S[i] splits into S[i] =
(Ui], V[i]) where u; = 0 if ¢; = 0 and otherwise u; = w;/¥;.
For each j € B;,l € {j,...,j+b; —1}, we define the number
of received parity symbols for recovering V[j : j + b; — 1]
as d("J1) next. Since for any [> i k; is not available, we
pretend that all future message packets are recovered using
parity symbols sent after time slot (i + 7) by setting w;
k; = 0 (for Equations 2 and 3 below), leading to

A3 —

-1
min | (1 —4)ny, ki —wl+ Z
r=j

kl — ulfr — d(i’j’r))

(
(@)

To ensure V[j : j+b;—1] are recovered by time slot (j+7—1),
we require

j+r—1 Jj+bj—1 J+b;—1
Z p+ Z d®ih > Z (ki —wily). (3)
I=j+b; j

Next, wu; is increased until Equation 3 is satisfied and hl|u1
Then U[i] comprises the first u; symbols of S[i], and V[i]
comprises the remaining symbols. The number of parity sym-
bols of X[i+ 7] is defined as

“4)

where pad; . is the smallest integer to ensure hi}pHT.l The
symbols of P[i+ 7] are not defined until time slot (i + 7).

Defining P[i]: To start, we define matrices that we use to
define parity symbols. Let Hy,..., H. be the parity check
matrices of a systematic [m(7+1), m7] m-MDS convolutional
code [27], [28] (as from [3]). Let A be a m x m parity
check matrix of a [2m, m| systematic MDS code (e.g., Reed-
Solomon). For any i € [r — 1],p; = 0 by initialization. For
i > 1, P[i] is full-rank linear combinations of the symbols of

Ditr = Liu; + padiy -,

Vii—7:i] and U[i — 7]
Uli—71] = (U[Z—T] olm—ui-r))
V*[j] = (V[j),00ma)
i) = (AU*[i = 7))op, 1
P’[z]: HV*[i—1+7j]

'We define Di++ once ¢; 1 is known and until then pretend there is no
padding for future parity symbols in Equations 2 and 3.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded

1

S[i]
—>

oli]

Sid
Ide

. . Receiver
information

Sender

(S[i], Ofa], F'[i])

| (2, (), b0, 0, for - - -1l bi1, bi1, Fity- -) — Split code |

Packetization

X[forj € [e; — 1][1]

Tt B ’

! Sl L Vel
U] — So:p; —1[4] U9[i— Uju fes:(+1)uifci-1[5] [
Pli] — Pop;1[i] | PO[i]— Pipyfes(i+1)pi/ei-111] |

Fig. 2: Overview of encoding.

P[i] = (P™[i] + P'[i]). 5

Allocating symbols to transmitted packets. Let c¢; = h;. The
symbols of each of V[i],U[i], and P[i] are evenly allocated
over ¢; transmitted packets. Formally, for each j € [¢; — 1],
the jth v;/¢;, u;/c;, and p;/c; symbols of V[i], U[i], and PJi],
are called VW [i], U)[i], and PY)[i],respectively. Then let

x @ [i] = (V(j)[i], U(j)[i],P(j)[i}).

Resets . When (; = 1 the sender treats S|i] as the first message
packet of a length (¢ —i+ 1) call and completes initialization.
Next, Theorem 1 shows that the building block construction
satisfies the lossless-delay and worst-case-delay constraints.
Theorem 1: For any 7,t,K,7Z,L, B,W, the Split Code
satisfies the lossless-delay and worst-case-delay constraints
over the channel.

IV. OFFLINE CODES

In this section, we design an offline approximately rate-
optimal construction in three steps. First, we present Al-
gorithm 1. The algorithm identifies suitable choices for
wo, ..., wy using a linear program (LP) whose objective
function is to minimize the number of parity symbols sent,
which maximizes the rate. Second, Algorithm 1 is combined
with (7‘, t,K,Z,L, B, W)-Split Code.

At a high level, the variables of the LP used in Algorithm 1
represent wy, ...,w;—,, which equal the number of parity
symbols sent during time slots ,..., ¢, respectively. Then
(ki + w;—,) symbols are modeled as being sent during time
slot 7 (satisfying the lossless-delay constraint). The message
packets that need not be recovered due to resets are modeled
as having size zero. The LP’s constraints impose the worst-
case-delay constraint as follows. Constraint 1 ensures that no
parity symbols are sent until time slot 7. Constraint 2 ensures
that a non-negative number of parity symbols are sent. For any
burst starting in time slot ¢, Constraint 3 bounds how much
useful information is received during the burst. Constraint 4
ensures recovery of enough symbols of S[i : i+b; —1] by time
slot (i + 7 — 1) that the remaining symbols are recoverable

64October 03,2023 at 18:16:38 UTC from IEEE Xplore. Restrictions apply.

2023 IEEE International Symposium on Information Theory (ISIT)

at their respective deadlines. Finally, Constraint 5 reflects that
w; never exceeds the number of lost symbols of S|i].

Algorithm 1 Computes (w;i € |
optimal code.
Input: (7,¢, K,7)
Fori e [t—r7]:
If a reset occurs between time slot (i + 1) and (i 4 7):
Treat k; as O in the below LP.
Minimize Zl 0 p7(+f) subject to:

t]) of an approximately rate

) Vjelr—1],p (g“’) 0.
2) Vjelt—r], p]_H) > 0.
3y Viet—1],le{i,...,i+b; —1},
0 < diy < min((p“7 + kl)(l —),
P+ Z (ke =Py = diy)
4) Vie[t—T],
it —1 it+b;—1 i4bi—1
>+ Z dig > Z (k= pi5) ©
I=i+b;
5) Vj € [t— 7], kit; > pli).
Fori € [t—7]:
If a reset occurs between time slot (i + 1) and (i 4 7):
(LP) _
Set p;/." = Lik;.

Output: < iLP)‘z €| >

Theorem 2 below shows that combining Algorithm 1 with
the building block construction (Section III) yields an approx-
imately rate-optimal code subject to the following condition
on the reset bit in feedback.

Reset condition on feedback : A reset must occur whenever
an increasing fraction of transmitted packets could be lost.
Formally, for any i € [t — 7] \ {0} where feedback increases
4;, ¢; must be set to 1.

Theorem 2: For any 7,t, K, 7, L, B, if Algorithm 1 outputs
(w; |z € [t]), then the rate of the corresponding Split Code is
less than the optimal rate under the reset condition on feedback
by at most

t—

(2(27 + q; + hi+7— —4
=0

T t

/(D ki) (7)
i=0

As an example of applying Theorem 2, consider a videocon-

ferencing call at 2000 kbps and 30 fps. Suppose the field size

is 232, for i € [t]¢; € {j/8 | j € [8]}, and 7 < 5. Then the

rate of the Split Code is within 0.01 of optimal.

V. ONLINE APPROXIMATELY RATE-OPTIMAL CODES

We now present an online approximately rate-optimal
construction, dubbed the “(T,t,K, Z,L, B, W(O))-Split ML
Code.” During the ith time slot, an ML model provides side
information, O; = wy;, to determine how to split the ith frame

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded

1

in the building block construction (Section III). If ¢; = 0 then
Xi] is received, so O; must be 0. Otherwise, to ensure O;
can be used by the building block construction, we require it
to be (a) sufficiently large (i.e., setting u; = O,/¢; satisfies
Equation 3), and (b) padded to be divisible by g;.

Our result requires a few terms. Let the outputs of the ML
model over time slots 0, . . ., Et—r) be W =0y,...,0_-.
Fori=0,...,(t—71), let W, %) be the set of optimal values
for pgif) in Algorlthm 1 with additional constraints that the
variables corresponding to earlier time slots are set according
to W) (ie., for j € [i —1] pﬁf) =W Forielt—r],
the regret of the outputs of the ML model compared to the
optimal values is

RZ‘ = |Ol — w(Opt) ’, R[t] =

min
w(Opt)eWi(OPt)

(Ro,...,Re) (8)
For an arbitrary message packet size sequence and feedback
chosen offline without access to W), let R(PY) be the
offline optimal rate under the reset condition on feedback
from Section IV and R(°™ be a random variable (over the
predictions of the ML model) reflecting the rate of the Split
ML Code.

Theorem 3: Consider any 7,t,K,7Z, L,B,W(©) and
€,0,¢; € (0,1). Suppose for i € [t] that E[R;] < ek; and
t > log(1/8)/(2€3). Then with probability at least (1 —),

(iki).)

Consider the example of a videoconferencing call discussed
after Theorem 2. If the call is sufficiently long, with probability
(1—10), RC™ is within (0.01 + €+ 0.00048 - €;) of optimal.

t
ROPD_RO™ < e (D e+27+hi+qi—4)/
=0

VI. CONCLUSION

Motivated by live-streaming applications experiencing par-
tial bursts of only some packets per message, our work
introduces the first streaming model to accommodate such
losses. We then present a streaming code construction that
is approximately rate-optimal under a natural (reset) condition
in two steps. First, we use a learning-augmented algorithm to
split message packets into (a) a component recovered strictly
before its decoding deadline, and (b) a component recovered
at its decoding deadline. Second, we introduce a building
block construction to design a code given the choice of how
to split message symbols that is approximately rate-optimal
code under the reset condition. Future work can build upon
our results in three main directions: (a) construct explicit
predictive models to split message packets, (b) construct
explicit predictive models to estimate the channel parameters
(i.e., the feedback), and (c) combine our methodology with
that of [24] to spread message symbols over (7 + 1) > 2
time slots to alleviate the negative impact on the rate of the
variability in the sizes of the message packets.

ACKNOWLEDGMENT

This work was funded in part by an NSF grant (CCF-
1910813).

(rjé)ctober 03,2023 at 18:16:38 UTC from IEEE Xplore. Restrictions apply.

(1]

(2]

(3]

[4]

(31

(6]

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

2023 IEEE International Symposium on Information Theory (ISIT)

REFERENCES

E. Martinian and C. . W. Sundberg, “Burst erasure correction codes with
low decoding delay,” IEEE Transactions on Information Theory, vol. 50,
no. 10, pp. 2494-2502, Oct 2004.

E. Martinian and M. Trott, “Delay-optimal burst erasure code construc-
tion,” in 2007 IEEE International Symposium on Information Theory,
June 2007, pp. 1006-1010.

A. Badr, P. Patil, A. Khisti, W. Tan, and J. Apostolopoulos, “Layered
constructions for low-delay streaming codes,” IEEE Transactions on
Information Theory, vol. 63, no. 1, pp. 111-141, Jan 2017.

S. L. Fong, A. Khisti, B. Li, W. Tan, X. Zhu, and J. Apostolopoulos,
“Optimal streaming codes for channels with burst and arbitrary era-
sures,” IEEE Transactions on Information Theory, vol. 65, no. 7, pp.
4274-4292, July 2019.

M. N. Krishnan and P. V. Kumar, “Rate-optimal streaming codes for
channels with burst and isolated erasures,” in 2018 IEEE International
Symposium on Information Theory (ISIT), June 2018, pp. 1809-1813.
M. N. Krishnan, D. Shukla, and P. V. Kumar, “Rate-optimal streaming
codes for channels with burst and random erasures,” IEEE Trans. Inf.
Theory, vol. 66, no. 8, pp. 4869-4891, 2020.

E. Domanovitz, S. L. Fong, and A. Khisti, “An explicit rate-optimal
streaming code for channels with burst and arbitrary erasures,” vol. 68,
no. 1, 2022, pp. 47-65.

A. Badr, A. Khisti, and E. Martinian, “Diversity embedded streaming
erasure codes (de-sco): Constructions and optimality,” IEEE Journal on
Selected Areas in Communications, vol. 29, no. 5, pp. 1042-1054, May
2011.

N. Adler and Y. Cassuto, “Burst-erasure correcting codes with optimal
average delay,” IEEE Transactions on Information Theory, vol. 63, no. 5,
pp. 2848-2865, May 2017.

D. Leong and T. Ho, “Erasure coding for real-time streaming,” in 2012
IEEE International Symposium on Information Theory Proceedings, July
2012, pp. 289-293.

D. Leong, A. Qureshi, and T. Ho, “On coding for real-time streaming
under packet erasures,” in 2013 IEEE International Symposium on
Information Theory, July 2013, pp. 1012-1016.

S. L. Fong, A. Khisti, B. Li, W.-T. Tan, X. Zhu, and J. Apostolopoulos,
“Optimal streaming erasure codes over the three-node relay network,”
IEEE Transactions on Information Theory, vol. 66, no. 5, pp. 2696—
2712, 2020.

A. Badr, A. Khisti, W.-t. Tan, X. Zhu, and J. Apostolopoulos, “Fec
for voip using dual-delay streaming codes,” in IEEE INFOCOM 2017 -
IEEE Conference on Computer Communications, 2017, pp. 1-9.

Z. Li, A. Khisti, and B. Girod, “Correcting erasure bursts with minimum
decoding delay,” in 2011 Conference Record of the Forty Fifth Asilomar
Conference on Signals, Systems and Computers (ASILOMAR), Nov
2011, pp. 33-39.

Y. Wei and T. Ho, “On prioritized coding for real-time streaming under
packet erasures,” in Communication, Control, and Computing (Allerton),
2013 51st Annual Allerton Conference on. 1EEE, 2013, pp. 327-334.
P-W. Su, Y.-C. Huang, S.-C. Lin, I.-H. Wang, and C.-C. Wang, “Random
linear streaming codes in the finite memory length and decoding deadline
regime—part i: Exact analysis,” IEEE Transactions on Information
Theory, vol. 68, no. 10, pp. 6356-6387, 2022.

S. Emara, F. Wang, 1. Kaplan, and B. Li, “Ivory: Learning network
adaptive streaming codes,” pp. 1-10, 2022.

S. Emara, S. L. Fong, B. Li, A. Khisti, W.-T. Tan, X. Zhu, and
J. Apostolopoulos, “Low-latency network-adaptive error control for
interactive streaming,” IEEE Transactions on Multimedia, vol. 24, pp.
1691-1706, 2021.

M. N. Krishnan, G. K. Facenda, E. Domanovitz, A. Khisti, W.-T. Tan,
and J. Apostolopoulos, “High rate streaming codes over the three-node
relay network,” in 2021 IEEE Information Theory Workshop (ITW).
IEEE, 2021, pp. 1-6.

E. Domanovitz, A. Khisti, W.-T. Tan, X. Zhu, and J. Apostolopoulos,
“Streaming erasure codes over multi-hop relay network,” in 2020 IEEE
International Symposium on Information Theory (ISIT). 1EEE, 2020,
pp. 497-502.

M. Haghifam, M. N. Krishnan, A. Khisti, X. Zhu, W.-T. Tan, and
J. Apostolopoulos, “On streaming codes with unequal error protection,”
IEEE J. Sel. Areas Inf. Theory, 2021.

M. Rudow and K. Rashmi, “Streaming codes for variable-size mes-
sages,” IEEE Transactions on Information Theory, pp. 1-1, 2022.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded

1

[23]

[24]

[25]

[26]

[27]

(28]

n O
06

——, “Online versus offline rate in streaming codes for variable-size
messages,” 2023, pp. 1-1.

——, “Learning-augmented streaming codes are approximately optimal
for variable-size messages,” in 2022 IEEE International Symposium on
Information Theory (ISIT), 2022, pp. 474-479.

M. Rudow, F. Y. Yan, A. Kumar, G. Ananthanarayanan, M. Ellis,
and K. Rashmi, “Tambur: Efficient loss recovery for videoconferencing
via streaming codes,” in 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23). Boston, MA:
USENIX Association, Apr. 2023, pp. 953-971. [Online]. Available:
https://www.usenix.org/conference/nsdi23/presentation/rudow

M. Rudow and K. Rashmi, “Learning-augmented streaming
codes for variable-size messages under partial burst losses,”
http://www.cs.cmu.edu/~rvinayak/papers/learning_augment_streaming_
codes_under_partial_bursts_ISIT_2023.pdf, 2023.

E. Gabidulin, “Convolutional codes over large alphabets,” in Proc. Int.
Workshop on Algebraic Combinatorial and Coding Theory, 1988, pp.
80-84.

H. Gluesing-Luerssen, J. Rosenthal, and R. Smarandache, “Strongly-
mds convolutional codes,” IEEE Transactions on Information Theory,
vol. 52, no. 2, pp. 584-598, 2006.

ctober 03,2023 at 18:16:38 UTC from IEEE Xplore. Restrictions apply.

