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AbstractÐRecovering bursts of lost packets in real-time is
crucial to multimedia live-streaming applications’ quality-of-
experience (QoE). Streaming codes optimally handle the unique
aspects of loss recovery for live streaming, including (a) variable-
size messages, (b) a real-time playback deadline, and (c) burst
losses across multiple frames. However, existing models for
streaming codes in this setting only apply to bursts that drop all

data sent for each message. Yet in many real-world applications
only some packets are lost for each message in what we call
a ªpartial burst.º We introduce a new streaming model to
accommodate partial bursts. We then design a building block to
construct a streaming code given any choice of how much parity
to allocate for each message. Next, we present a streaming code
in an offline setting (i.e., where the sizes of future messages are
known) by combining (a) the building block with (b) a linear
program to set the number of parity symbols per message. We
then design a streaming code in an online setting (i.e., without
knowledge of the future) by combining (a) the building block with
(b) a learning-augmented algorithm to set the number of parity
symbols per message. The constructions are approximately rate-
optimal under a natural condition on the nature of feedback.

I. INTRODUCTION

Live streaming is crucial to numerous popular applications

ranging from videoconferencing to cloud gaming. The QoE

of such applications depends on several factors, including

bandwidth, latency, and packet loss recovery. Retransmission

can recover lost packets using minimal redundancy in three

steps: (a) transmission, (b) feedback, and (c) retransmission.

But the latency of three one-way delays is prohibitively high

for long-distance communication. Instead, erasure codes can

be used for loss recovery.

The main drawback of traditional erasure codes like block

codes or random linear convolutional codes is that they are

inefficient at recovering burst losses in real-time. This is

problematic for the many live-streaming applications that ex-

perience bursty losses. The weakness arises from the fact that

conventional approaches recover all lost packets simultane-

ously. If a burst loss encompasses multiple messages, the first

message of the burst is unavailable until after recovering the

lost packets of the final message. This property can cause the

latency to exceed the playback deadline of the first message.

In contrast, ªstreaming codesº are designed to recover each

message in the burst sequentially. Hence, earlier messages are

available to be played sooner. This reduces the latency for

recovering earlier messages in a burst. As such, streaming

codes are better suited for real-time communication.

Streaming codes were first introduced by Martinian and

Sundberg in [1]. Under their streaming model, during each

time slot, i, a message packet, S[i], of k symbols arrives
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Fig. 1: Overview of the proposed streaming model. Multiple

packets are transmitted over the channel for each message

packet. The packet loss channel allows for partial bursts.

at a sender. A channel packet, X[i], of n symbols is sent

over a burst-only packet loss model. Losses occur as bursts

of b consecutive channel packets followed by guard spaces

of at least τ consecutive receptions. Each message packet

must be recovered within τ time slots to satisfy the playback

requirement. Martinian and Sundberg introduced rate-optimal

streaming codes for several parameters, then Martinian and

Trott presented rate-optimal codes for the remaining parame-

ters in [2]. Many other works have studied streaming codes for

various models of communication that fix the sizes of message

packets and channel packets in advance [2]±[12], [12]±[21].

Motivated by the varying sizes of message packets in many

live-streaming applications, such as videoconferencing, a new

streaming model was introduced in [22]. Our paper focuses

on this setting of variable-size message packets. Under this

model, S[i] and X[i] are of sizes ki and ni, respectively,

for non-negative integers ki and ni. Under this model, the

optimal rate is adversely affected by the variability in the

sizes of message packets. Spreading message symbols over

multiple channel packets can mitigate the negative impact of

the variability. However, spreading message symbols increases

the latency to recover message packets when there are no

lossesÐthis is termed the ªlossless-delay.º As such, spreading

across several channel packets may not be acceptable for many

live-streaming applications. Rate-optimal and approximately

rate-optimal streaming codes have been introduced when the

lossless-delay is zero and one in [23] and [24], respectively.

The streaming model for variable message-sizes involves

sending one channel packet per frame which is either received

or lost. The prior works [3], [10], [11] on streaming codes that

send multiple packets per message packet apply to settings

where the sizes of message packets are fixed and bursts

where all consecutive packets are lost. Unlike the existing

literature on theoretical streaming codes, real-world appli-

cations frequently experience what we dub ªpartial burstsº
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losses of only some packets per frame. This was shown in

a recent work [25] by assessing a large corpus of packet loss

traces from Microsoft Teams 1:1 video calls and showing the

prevalence of bursts where only some packets are lost per

frame. The authors also proposed a heuristic-based design of

new streaming codes suitable for such losses, and used these

constructions to showcase the viability and potential benefits

of streaming codes for improving the QoE for real-world live-

streaming applications. The promising observations in [25]

motivate a formal study of streaming codes for partial bursts.

In this paper, we generalize the streaming model for

variable message-sizes to accommodate sending one or more

ªtransmitted packetsº per time slot, where only a fraction

of the transmitted packets may be lost in a burst (termed

partial bursts). The receiver sends occasional feedback to the

sender to inform the choice of parameters associated with

partial bursts. The model is shown in Figure 1Ðthe component

ªside informationº will be introduced later in Section II. In

the literature on streaming codes, arbitrary losses are often

considered along with burst losses. While one could proceed

to account for partial bursts by introducing arbitrary losses

into the loss model, doing so would allow arbitrary losses

over across multiple time slots. Allowing such arbitrary losses

would reduce streaming codes’ potential to exploit the bursty

structure of losses clustered within a few consecutive frames

observed in [25]. Instead, this burst structure can be leveraged

under our new model with partial bursts.

We apply a two-step methodology to design streaming codes

for the new model. First, a building block construction to

design a streaming code given any split of each message

packet into (a) one component guaranteed to be recovered

strictly before its playback deadline (i.e., within (τ − 1) time

slots), and (b) another component guaranteed to be recovered

by its playback deadline (i.e., τ time slots later). Second, a

policy for how to split each message packet into these two

components. Our work uses a linear program to determine

how to split message packets in the offline setting where the

sizes of future message packets are available. Combining the

linear program for splitting frames with the building block

construction yields an approximately rate-optimal code under

a natural condition on the nature of feedback (termed the

ªreset conditionº). Finally, we employ a learning-augmented

algorithm to determine the split to build a construction for

the online setting where the sizes of future message packets

are unavailable which is approximately rate-optimal under the

reset condition. All proofs are available in [26].

II. SYSTEM MODEL

We now extend the streaming model with variable-size

message packets from [22], as illustrated in Figure 1. There

are a positive number, t, of time slots. During the ith time slot,

the sender obtains a message packet, S[i], of ki independent

random symbols of a finite field, F, where ki ∈ {0, . . . ,m}
for some maximum value, m. We call k0, . . . , kt the ªmessage

packet size sequence.º The sender sends ci transmitted packets,

X(0)[i], . . . , X(ci−1)[i], consisting of n
(0)
i , . . . , n

(ci−1)
i sym-

bols, respectively. This change to the model allowing multiple

packets to be transmitted over the channel for each message

packet is a stepping stone toward adding partial bursts to the

loss model. We denote the transmitted packets, number of

symbols sent, and number of parity symbols as

X[i] =
〈

X(0)[i], . . . , X(ci−1)[i]
〉

,

ni =

ci−1
∑

j=0

n
(j)
i

pi = ni − ki,

respectively. The rate is defined as in [22] as the ratio of

message symbols to transmitted symbols:

Rt =

∑t

i=0 ki
∑t

i=0 ni

.

Loss model: The transmitted packets are sent over a channel

with bursty losses (affecting one or more consecutive time

slots) followed by guard spaces where there are no losses. We

introduce a new type of burst loss, called a partial burst. In

each time slot within a partial burst, only a fraction of the

transmitted packets are lost. Formally, for a partial burst of

length b starting at time slot i, for each time slot l within the

partial burst, l ∈ {i, . . . , i + b − 1}, a ℓ ∈ (0, 1] fraction of

the transmitted packets can be lost. That is, an arbitrary ⌈ℓcl⌉
transmitted packets of X[l] are lost.

Further, the length and the fraction of packets lost in

partial bursts are allowed to vary over time in order to enable

using feedback (based on network changes) to tune the code.

Formally, a partial burst starting in time slot i encompasses bi
consecutive time slots, where bi is a positive integer. During

each time slot of the partial burst, j ∈ {i, . . . , i+ bi − 1}, ℓj
fraction of the transmitted packets are lost. Other than perhaps

the few time slots after receiving feedback, ℓj = ℓi. The partial

burst is followed by a guard space of at least τ time slots where

all transmitted packets are received.

For any time slot i, we denote the ci received packets as

Y [i] =
〈

Y (0)[i], . . . , Y (ci−1)[i]
〉

,

where each received packet corresponds to either receiving the

corresponding transmitted packet intact or it being lost. That

is, for j ∈ {0, . . . , ci − 1},

Y (j)[i] =

{

X(j)[i] if X(j)[i] is received

∗ if X(j)[i] is lost
.

Feedback: The sender occasionally receives feedback from

the receiver for updating the burst length and the fraction of

transmitted packets lost. During any time slot i where feedback

is received, bi and all undefined ℓj for j ∈ {i, . . . , i+ bi − 1}
are updated accordingly. If there is no feedback, the param-

eters do not change (i.e., bi and ℓi+bi−1 are set based on

2
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the last received feedback). The feedback can be viewed as

the receiver conservatively estimating how lossy the network

conditions will be based on prior losses. At times, there could

be an underestimation of the losses, and that could lead to

message packets not being recovered. In videoconferencing,

due to compression, video frames are typically dependent on

each other. Hence not recovering a message packet can lead

to several subsequent packets not being useful even though

they are received intact. Thus, the receiver can send additional

feedback to signal that a reset is needed during any time slot.

This is modeled via a binary value ζi. It is 0 by default and

set to 1 to indicate that the τ message packets before the reset

need not be recovered if their transmitted packets are lost;

this ensures that loss recovery does not rely on having already

decoded these previous message packets. Whenever a reset is

triggered, the values of bi and ℓi, . . . , ℓi+bi−1 are also updated.

A. Encoding and Decoding

Defining encoding and decoding requires understanding

what information is available during the ith time slot. In

the ªofflineº setting, the sizes of future message packets and

future feedback from the receiver are assumed to be known

in advance. In contrast, the setting where this information is

unavailable is dubbed ªonline.º We introduce side information,

Oi, to capture the available information. Thus, in the offline

setting, Oi comprises the sizes of future message packets and

future feedback. In the online setting, side information is the

output of a predictive model (see Section V for details). During

time slot i, the sender uses the prior message packets and side

information, Oi, to encode as

X[i] = Enc(S[0], . . . , S[i], Oi).

We consider two types of decoding: (a) decoding when there

are no losses, and (b) decoding when there are losses. First,

when there are no losses (or all losses have already been

recovered), the lossless-delay constraint requires decoding

each message packet, S[i], within the same time slot:

S[i] = Dec(L)
(

S[0], . . . , S[i− 1], Y [i], ki
)

.

Second, when there are losses, the worst-case-delay constraint

stipulates that each message packet is recovered within τ time

slots. Specifically, for any burst starting in time slot j of length

bj that encompasses time slot i,

S[i] = Dec
(

S[0], . . . , S[j − 1], Y [j], . . . , Y [i+ τ ],

k0, . . . , ki+τ

)

.
(1)

We note that under variable-size message packets, the sizes of

the message packets are needed for decoding [22]±[24]. This

is handled by adding a small header containing the sizes of

the previous τ message packets. Also, our constructions do

not require the full memory allowed under the model because

they do not use any information about message packets and

transmitted packets more than 2τ time slots in the past.

B. Notation and Conventions

Let [n] denote {0, . . . , n}. Any vector, V , is a column vector

of length v. For any I = {j1, . . . , ji} ⊆ [n] where j1 <
. . . < ji, the values of V in the positions of I are denoted

as VI = Vj1:ji . For any time slots i ≤ j ∈ [t] and vectors

Z[i], . . . , Z[j], let Z[i : j] = Z[i], . . . , Z[j], and zi, . . . , zj
denote their sizes. Let 0⟨j⟩ be a vector of j zeros.

Next, we define extra notation for bursts. For any time slot,

i, let Bi be the set of time slots, j, for which a burst starting in

time slot j includes time slot i (i.e., i ∈ {j, . . . , j + bj − 1}).

We now introduce some conventions followed in the rest of

the paper. The final (τ + 1) message packets are assumed to

be of size 0, and t is at least (τ + 1); this can be satisfied by

appending (τ+1) message packets of size 0 without affecting

the optimal rate. Because an integral number of transmitted

packets are always sent, for each time slot, i, ℓi can be

restricted to be a rational number qi/hi in simplest form.

To simplify our presentation of constructions and proofs, we

require hi

∣

∣ki and ki ≤ m − hi; this can be accomplished by

zero-padding S[i] and increasing m by at most (hi − 1).

III. A BUILDING BLOCK CONSTRUCTION

This section develops an approximately rate-optimal con-

struction for any parameters, τ and t, message packet

size sequence, K = (k0, . . . , kt), and feedback, L =
(ℓ0, . . . , ℓt), B = (b0, . . . , bt), and Z = (ζ0, . . . , ζt). We

present a building block to construct a code given any splits

of the message packets into (a) a component recovered within

(τ−1) time slots, and (b) a component recovered τ time slots

later. Specifically, for any time slot i ∈ [t − τ ], let wi be

the number of symbols of S[i] to be recovered during time

slot (i + τ), and let W = (w0, . . . , wt−τ ). At a high level,

(ki −wi) symbols of S[i] are received or recovered using the

parity symbols of X[i : i+τ −1]. Then wi parity symbols are

sent in X[i+τ ] to recover the remaining lost symbols of S[i].
The construction is called ª

(

τ, t,K,Z,L, B,W
)

-Split Code.º

Encoding (high-level description). During time slot i, S[i]
is partitioned into S[i] = (U [i], V [i]). Parity symbols P [i]
are defined as P [i] = (P (∗)[i] + P ′[i]) where P ′[i] comprises

symbols that are full-rank linear combinations of the symbols

of V [i − τ ], . . . , V [i] and P (∗)[i] comprises full-rank linear

combinations of the symbols of U [i − τ ]. The key property

of the linear equations and choices of how to split is that for

any j ∈ [i] and burst of length bj starting in time slot j, the

symbols of V [j], . . . , V [j + bj − 1] can be recovered by time

slot (j+τ−1). Finally, the symbols of U [i], V [i], P [i] are each

evenly spread over hi transmitted packets. Figure 2 provides

an overview of encoding.

Recovery (high-level description). Consider a burst starting

in time slot i of length bi where Y [i : i+ bi− 1] are received.

First, for j ∈ Bi, the received symbols of P [j] are combined

with U [j − τ ] (which would have been already received) to

determine P ′[j]. Then the received symbols of P ′[i : i+τ−1]
are used to recover V [i : i+bi−1] by solving a system of linear

equations. Second, for each j ∈ {i + τ, . . . , i + τ + bi − 1},

3
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P ′[j] is computed using V [j − τ : j], yielding P (∗)[j] =
(P [j]− P ′[j]). Combining P (∗)[j] with the received symbols

of U [j − τ ] suffices to recover U [j − τ ].

Code construction (detailed description) time slot i. The

five-step encoding process comprises: (a) initialization, (b)

splitting S[i] into V [i] and U [i], (c) defining P [i] given

V [j], U [j] for j < i, (d) allocating symbols to transmitted

packets, and (e) handling resets from ζi = 1.

Initialization: For any i ∈ [τ−1], U [i] = S[i], vi = 0, pi+τ =
kiℓi, and pi = 0.

Splitting S[i]: For i ∈ {τ, . . . , t− τ}, S[i] splits into S[i] =
(U [i], V [i]) where ui = 0 if ℓi = 0 and otherwise ui = wi/ℓi.
For each j ∈ Bi, l ∈ {j, . . . , j+bj−1}, we define the number

of received parity symbols for recovering V [j : j + bj − 1]
as d(i,j,l) next. Since for any l > i kl is not available, we

pretend that all future message packets are recovered using

parity symbols sent after time slot (i + τ) by setting ul =
kl = 0 (for Equations 2 and 3 below), leading to

d(i,j,l) =

min



(1− ℓl)nl, kl − ulℓ+
l−1
∑

r=j

(

kl − ulℓr − d(i,j,r)
)



.

(2)

To ensure V [j : j+bj−1] are recovered by time slot (j+τ−1),
we require

j+τ−1
∑

l=j+bj

pl +

j+bj−1
∑

l=j

d(i,j,l) ≥

j+bj−1
∑

l=j

(kl − ulℓl). (3)

Next, ui is increased until Equation 3 is satisfied and hi

∣

∣ui.

Then U [i] comprises the first ui symbols of S[i], and V [i]
comprises the remaining symbols. The number of parity sym-

bols of X[i+ τ ] is defined as

pi+τ = ℓiui + padi+τ , (4)

where padi+τ is the smallest integer to ensure hi

∣

∣pi+τ .1 The

symbols of P [i+ τ ] are not defined until time slot (i+ τ).

Defining P [i]: To start, we define matrices that we use to

define parity symbols. Let H0, . . . , Hτ be the parity check

matrices of a systematic [m(τ+1),mτ ] m-MDS convolutional

code [27], [28] (as from [3]). Let A be a m × m parity

check matrix of a [2m,m] systematic MDS code (e.g., Reed-

Solomon). For any i ∈ [τ − 1], pi = 0 by initialization. For

i ≥ τ , P [i] is full-rank linear combinations of the symbols of

V [i− τ : i] and U [i− τ ]:

U∗[i− τ ] = (U [i− τ ], 0⟨m−ui−τ ⟩, )

V ∗[j] = (V [j], 0⟨m−vj⟩)

P (∗)[i] = (AU∗[i− τ ])0:pi−1

P ′[i] =
τ
∑

j=0

HjV
∗[i− τ + j]

1We define pi+τ once ℓi+τ is known and until then pretend there is no
padding for future parity symbols in Equations 2 and 3.

Sender Side
information

Split code

Receiver

Encoding Packetization

for

Fig. 2: Overview of encoding.

P [i] = (P (∗)[i] + P ′[i]). (5)

Allocating symbols to transmitted packets. Let ci = hi. The

symbols of each of V [i], U [i], and P [i] are evenly allocated

over ci transmitted packets. Formally, for each j ∈ [ci − 1],
the jth vi/ci, ui/ci, and pi/ci symbols of V [i], U [i], and P [i],
are called V (j)[i], U (j)[i], and P (j)[i],respectively. Then let

X(j)[i] = (V (j)[i], U (j)[i], P (j)[i]).

Resets . When ζi = 1 the sender treats S[i] as the first message

packet of a length (t− i+1) call and completes initialization.

Next, Theorem 1 shows that the building block construction

satisfies the lossless-delay and worst-case-delay constraints.

Theorem 1: For any τ, t,K,Z,L, B,W , the Split Code

satisfies the lossless-delay and worst-case-delay constraints

over the channel.

IV. OFFLINE CODES

In this section, we design an offline approximately rate-

optimal construction in three steps. First, we present Al-

gorithm 1. The algorithm identifies suitable choices for

w0, . . . , wt using a linear program (LP) whose objective

function is to minimize the number of parity symbols sent,

which maximizes the rate. Second, Algorithm 1 is combined

with
(

τ, t,K,Z,L, B,W
)

-Split Code.

At a high level, the variables of the LP used in Algorithm 1

represent w0, . . . , wt−τ , which equal the number of parity

symbols sent during time slots τ, . . . , t, respectively. Then

(ki + wi−τ ) symbols are modeled as being sent during time

slot i (satisfying the lossless-delay constraint). The message

packets that need not be recovered due to resets are modeled

as having size zero. The LP’s constraints impose the worst-

case-delay constraint as follows. Constraint 1 ensures that no

parity symbols are sent until time slot τ . Constraint 2 ensures

that a non-negative number of parity symbols are sent. For any

burst starting in time slot i, Constraint 3 bounds how much

useful information is received during the burst. Constraint 4

ensures recovery of enough symbols of S[i : i+bi−1] by time

slot (i + τ − 1) that the remaining symbols are recoverable

4
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at their respective deadlines. Finally, Constraint 5 reflects that

wi never exceeds the number of lost symbols of S[i].

Algorithm 1 Computes
〈

wi

∣

∣i ∈ [t]
〉

of an approximately rate

optimal code.

Input: (τ, t,K,Z)
For i ∈ [t− τ ]:

If a reset occurs between time slot (i+ 1) and (i+ τ):
Treat ki as 0 in the below LP.

Minimize
∑t−τ

i=0 p
(LP )
i+τ subject to:

1) ∀j ∈ [τ − 1], p
(LP )
j = 0.

2) ∀j ∈ [t− τ ], p
(LP )
j+τ ≥ 0.

3) ∀i ∈ [t− τ ], l ∈ {i, . . . , i+ bi − 1},

0 ≤ di,l ≤ min((p
(LP )
l + kl)(1− ℓl),

kl − p
(LP )
l+τ +

l−1
∑

r=i

(kr − p
(LP )
r+τ − di,r)

4) ∀i ∈ [t− τ ],

i+τ−1
∑

l=i+bi

p
(LP )
l +

i+bi−1
∑

l=i

di,l ≥

i+bi−1
∑

l=i

(kl − p
(LP )
l+τ ) (6)

5) ∀j ∈ [t− τ ], kjℓj ≥ p
(LP )
j+τ .

For i ∈ [t− τ ]:
If a reset occurs between time slot (i+ 1) and (i+ τ):

Set p
(LP )
i+τ = ℓiki.

Output:
〈

p
(LP )
i

∣

∣i ∈ [t]
〉

Theorem 2 below shows that combining Algorithm 1 with

the building block construction (Section III) yields an approx-

imately rate-optimal code subject to the following condition

on the reset bit in feedback.

Reset condition on feedback : A reset must occur whenever

an increasing fraction of transmitted packets could be lost.

Formally, for any i ∈ [t − τ ] \ {0} where feedback increases

ℓi, ζi must be set to 1.

Theorem 2: For any τ, t,K,Z,L, B, if Algorithm 1 outputs
〈

wi

∣

∣i ∈ [t]
〉

, then the rate of the corresponding Split Code is

less than the optimal rate under the reset condition on feedback

by at most

(

t−τ
∑

i=0

(2τ + qi + hi+τ − 4)
)

/
(

t
∑

i=0

ki
)

. (7)

As an example of applying Theorem 2, consider a videocon-

ferencing call at 2000 kbps and 30 fps. Suppose the field size

is 232, for i ∈ [t]ℓi ∈ {j/8 | j ∈ [8]}, and τ ≤ 5. Then the

rate of the Split Code is within 0.01 of optimal.

V. ONLINE APPROXIMATELY RATE-OPTIMAL CODES

We now present an online approximately rate-optimal

construction, dubbed the ª
(

τ, t,K,Z,L, B,W (O)
)

-Split ML

Code.º During the ith time slot, an ML model provides side

information, Oi = wi, to determine how to split the ith frame

in the building block construction (Section III). If ℓi = 0 then

X[i] is received, so Oi must be 0. Otherwise, to ensure Oi

can be used by the building block construction, we require it

to be (a) sufficiently large (i.e., setting ui = Oi/ℓi satisfies

Equation 3), and (b) padded to be divisible by qi.
Our result requires a few terms. Let the outputs of the ML

model over time slots 0, . . . , (t−τ) be W (O) = O0, . . . , Ot−τ .

For i = 0, . . . , (t−τ), let W
(Opt)
i be the set of optimal values

for p
(LP )
i+τ in Algorithm 1 with additional constraints that the

variables corresponding to earlier time slots are set according

to W (O) (i.e., for j ∈ [i− 1] p
(LP )
j+τ = W

(O)
j ). For i ∈ [t− τ ],

the regret of the outputs of the ML model compared to the

optimal values is

Ri = min
w(Opt)∈W

(Opt)
i

∣

∣Oi − w(Opt)
∣

∣,R[t] = (R0, . . . ,Rt) (8)

For an arbitrary message packet size sequence and feedback

chosen offline without access to W (O), let R(opt) be the

offline optimal rate under the reset condition on feedback

from Section IV and R(on) be a random variable (over the

predictions of the ML model) reflecting the rate of the Split

ML Code.

Theorem 3: Consider any τ, t,K,Z,L, B,W (O) and

ϵ, δ, ϵ† ∈ (0, 1). Suppose for i ∈ [t] that E[Ri] ≤ ϵki and

t > log(1/δ)/(2ϵ2†). Then with probability at least (1− δ),

R(opt)−R(on) ≤ ϵ+
(

t
∑

i=0

ϵ†+2τ+hi+qi−4
)

/
(

t
∑

i=0

ki
)

. (9)

Consider the example of a videoconferencing call discussed

after Theorem 2. If the call is sufficiently long, with probability

(1− δ), R(on) is within (0.01 + ϵ+ 0.00048 · ϵ†) of optimal.

VI. CONCLUSION

Motivated by live-streaming applications experiencing par-

tial bursts of only some packets per message, our work

introduces the first streaming model to accommodate such

losses. We then present a streaming code construction that

is approximately rate-optimal under a natural (reset) condition

in two steps. First, we use a learning-augmented algorithm to

split message packets into (a) a component recovered strictly

before its decoding deadline, and (b) a component recovered

at its decoding deadline. Second, we introduce a building

block construction to design a code given the choice of how

to split message symbols that is approximately rate-optimal

code under the reset condition. Future work can build upon

our results in three main directions: (a) construct explicit

predictive models to split message packets, (b) construct

explicit predictive models to estimate the channel parameters

(i.e., the feedback), and (c) combine our methodology with

that of [24] to spread message symbols over (τL + 1) ≥ 2
time slots to alleviate the negative impact on the rate of the

variability in the sizes of the message packets.
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