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Online Versus Offline Rate
for Variable-Size

in Streaming Codes
Messages
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Abstract—One pervasive challenge in providing a high quality-
of-service for live communication is to recover lost packets in
real-time. Streaming codes are a class of erasure codes that are
designed for such strict, low-latency streaming communication
settings. Motivated by applications that transmit messages whose
sizes vary over time, such as live video streaming, this paper
considers the setting of streaming codes under variable-size
messages. In practice, streaming codes operate in an “online”
setting where the sizes of the future messages are unknown.
“Offline” codes, in contrast, have access to the sizes of all
messages, including future ones. This paper introduces the first
online rate-optimal streaming codes for communicating over a
burst-only packet loss channel for two broad parameter regimes.
These two online codes match the rates of optimal offline codes
for the two settings despite the apparent advantage of the
offline setting. This paper further establishes that online codes
cannot attain the optimal rate for offline codes for all remaining
parameter settings.

Index Terms— Streaming codes, erasure coding, live-streaming
applications, videoconferencing, packet loss.

I . INTRODUC T I ON

EAL-TIME communication with a high quality-of-
service is critical for many pervasive streaming appli-

cations, including VoIP and videoconferencing. These live
streaming applications rely on transmitting packets of infor-
mation and contend with packet losses during transmission.
Although lost packets can be recovered via retransmission, this
solution is often infeasible due to strict latency constraints [2].
Therefore, real-time streaming applications often use forward
error correction to provide robustness to packet losses. How-
ever, using traditional coding schemes to comply with the
real-time delay constraint penalizes the rate.

Coding schemes explicitly designed for live streaming com-
munication can attain significantly higher rates than traditional
ones, such as maximal distance separable block codes. This
improved performance was demonstrated in [3], where the
authors proposed a new “streaming model” for real-time com-
munication shown in Figure 1. Under this streaming model,
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Fig. 1.     Overview of the streaming model.

at each time slot i, a sender receives a “message packet”
S [i] and transmits a “channel packet” X [ i ]  over a packet
loss channel to a receiver. The message packet S [i] is to
be decoded at the receiver within delay τ , i.e., by time slot
( i  +  τ ). The authors established an upper bound on the rate,
and they introduced a rate-optimal construction for certain
settings. Later, a rate-optimal construction for all remaining
settings was presented in [4]. Numerous subsequent works
have also studied variants of the streaming model (discussed
in Section II) [1], [5], [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18], [19], [20], [21], [21], [22], [23],
[24], [25], [26], [27].

The streaming model proposed in [3] and studied further in
several subsequent works [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14], [15], [16], [17], [18], [19], [20], [21], [21], [22],
[23], [24], [25], [26], [28] considers a setting where all
message packets comprise some fixed number of symbols.
However, many applications must send a stream of variable-
size message packets. For example, video calls consist of
compressed video frames of fluctuating sizes. Consequently, a
new streaming model incorporating variable-size message
packets was introduced in [27].

The streaming model with variable-size message packets
differs from that of fixed-size message packets in two key
ways: First, the sequence of sizes of message packets affects
the optimal rate. In fact, the variability in the sizes of mes-
sage packets negatively impacts the optimal rate, which is
never higher than that of the setting where message packets
have fixed sizes [27]. Second, while there are rate-optimal
schemes that send each message packet in the corresponding
channel packet for the setting of fixed-size message packets,
spreading message symbols over multiple channel packets is
advantageous in the setting of variable-size message packets.
This is because sending a large message packet within a
single channel packet leads to many lost symbols when that
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channel packet is lost. Spreading message symbols intelli-
gently reduces the maximum number of message symbols lost
in a burst—a lower bound on how much redundancy is needed.
In contrast, when all message packets are the same size and
are sent in the corresponding channel packets, all bursts drop
the same number of message symbols. As such, spreading
message symbols over multiple channel packets does not offer
an advantage.

When the transmission is lossless, sending message symbols
over multiple channel packets increases the latency compared
to sending each message packet within the corresponding
channel packet. In [27], the authors introduce a new delay
constraint that captures the trade-off between the rate and the
decoding delay in lossless transmission, called the lossless-
delay constraint. Specifically, when there are no losses, the
receiver must decode each message packet with a delay of τ L

time slots, where τ L  is less than τ .1

One key challenge in realizing the benefits of spreading is
determining how to best spread message symbols over one
or more channel packet(s) despite the fact that future message
packets’ sizes are inherently variable and unknown. For exam-
ple, a large message packet should be sent in the corresponding
channel packet when the next several message packets are even
larger to reduce the variability in the sizes of channel packets.
In contrast, message symbols of a large message packet should
be spread over multiple channel packets when the subsequent
several message packets are small. Thus, the optimal strategy
for encoding depends on the sizes of future message packets.
To capture this dependency introduced by the variability in
the size of message packets, the coding schemes can be clas-
sified into two classes: (a)“offline” schemes and (b) “online”
schemes. Offline coding schemes have access to the sizes of
message packets of future time slots, whereas online schemes
do not have access to such information. Online constructions
are of practical interest, as the sizes of future message packets
are typically unknown in live streaming applications. By using
future information, optimal offline constructions can always
match, and potentially significantly exceed, the rate of online
ones. Therefore, a natural question is: “can online coding
schemes match the rate of offline coding schemes?”
Main contributions. In this paper, we design the first
rate-optimal online coding schemes for two classes of parame-
ter settings. In “Regime 1,” b and τ may take any values while
τ L  =  0, necessitating that all constructions recover each mes-
sage packet immediately under lossless conditions—a useful
property exhibited by existing rate-optimal constructions [3],
[4] for the streaming model where all message packets have
the same size. This broad regime is well-suited for applications
that require minimal latency during lossless conditions and
can tolerate extra latency only during occasional losses. Our
rate-optimal construction is systematic, and it sends each
message packet in the corresponding channel packet. During
each time slot, i, we combine two new methodologies to
alleviate the variability. (a) We apply a greedy paradigm
for delaying transmitting the parity symbols associated with
S [i] until the time slot ( i  +  τ ). (b) We define the number

1The lossless-delay constraint was denoted as τ G  in [27].

of parity symbols to be sent in X [ i  +  τ ] while deferring
defining the parity symbols themselves until the time slot
( i  +  τ ) to make use of the sizes of message packets S [ i  +
1], . . . , S[i +  τ −  1]. The construction is rate-optimal, even
for the offline setting. To prove the construction’s optimality,
we show that it cumulatively sends no more symbols by
each time slot than any offline rate-optimal construction that
satisfies the worst-case-delay and lossless-delay constraints.
As such, the results show that non-systematic schemes provide
no advantage. In “Regime 2,” τ L  =  (τ −  b) and b|τ, so τ L  has
its maximum value. Here, we show that a simple scheme that
encodes each message packet separately matches an upper
bound on the rate. Thus, the above results together show that
online coding schemes can match the rate of optimal offline
coding schemes for two broad parameter regimes even though
knowledge about the sizes of future message packets appears
advantageous. In addition, we demonstrate that online coding
schemes necessarily have lower rates than optimal offline
coding schemes for all remaining parameter regimes.

The organization of the paper is as follows. We begin by
introducing the model and background in Section II. We then
present online constructions that match the optimal rate of
offline constructions for two parameter regimes in Section III.
Next, we show that the rate of optimal online schemes cannot
match that of offline schemes for all remaining settings in
Section IV. Finally, we end with a discussion on conclusions
and future directions in Section V.

I I . BAC K G RO UND, S Y S T E M MODEL, AND R E L AT E D WO R K

We begin this section by discussing the background on
streaming codes that led to the model considered in this work.
We then present the model in detail, as well as the notation
used throughout this paper. Finally, we discuss related work
on streaming codes.

A. Background
Martinian and Sundberg proposed the streaming model in

[3]. It captures the setting of real-time communication of a
sequence of message packets of a fixed size over a burst-only
packet loss channel. At each time slot i, a sender receives a
message packet, S [i], comprising k symbols drawn uniformly
at random from a finite field Fq . The sender then transmits
to a receiver a channel packet, X [ i ] ,  consisting of n symbols
from Fq over a burst-only channel. Due to real-time latency
constraints, the receiver must decode S [i] within a delay of
τ time slots (that is, using the channel packets received by
time slot ( i  +  τ )). The lossy channel is denoted C (b, τ ) and
introduces bursts of length at most b followed by guardspaces
of length at least τ . The authors showed an upper bound on
the rate of streaming codes of  τ   and introduced a class of
code constructions applicable to the streaming model, called
“streaming codes,” meeting this bound for some settings of τ
and b. Later, a construction proposed in [4] met this bound,
showing that  τ   is the capacity for the remaining settings of τ
and b.

In applications such as video communication, the sizes
of messages fluctuate considerably. Consequently, in [27] a
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streaming model was introduced that incorporates variable-
size messages. The authors showed that  τ   remains an upper
bound on the rate. The authors also present a streaming code
for this new setting, and via an empirical evaluation, show
that the construction attains a rate of approximately 89.5% of
the upper bound on rate of  τ   for the settings considered in
the empirical evaluation. The authors also bounded the gap
between the construction and  τ       when the sizes of message
packets are drawn independently from a distribution. The
smaller the variance of the distribution, the smaller the gap.
However, the gap is nontrivial, and the sizes of message
packets for real-time streaming applications are typically not
independent.

B. System Model
We consider the streaming model from [27], which consid-

ers variable-size message packets (with a few minor changes
in how time slots are indexed). During each time slot i  the
message packet, S [i], comprises ki � {0, . . . , m} symbols for a
natural number m representing the maximum possible size of
a message packet. The sender transmits a channel packet,
X [i ] ,  comprising ni symbols. The receiver obtains

X [ i ]      if X [ i ]  is received
� if X [ i ]  is lost.

Transmission occurs over a C (b, τ ) channel. Each channel
packet, X [i ] ,  depends only on the symbols of previous mes-
sage packets (i.e. S[0], . . . , S[i]). Similar to the model of fixed-
size message packets, each S [i] must be decoded by time
slot ( i  +  τ ); this requirement is called the worst-case-delay
constraint.

Recall from Section I  that under the setting of variable-size
message packets, spreading message symbols over multiple
channel packets can be advantageous. As such, there is an
inherent tradeoff between the rate of a code and the decoding
delay under lossless transmission (i.e., the number of time
slots needed to decode a message packet when all channel
packets are received). A  new delay constraint capturing this
trade-off, called the lossless-delay constraint, was introduced
in [27]. When there are no losses, the receiver must decode
each message packet S [i] within a delay of τ L  (< τ ) time slots.
The lossless-delay constraint is relevant for applications that
can infrequently tolerate a delay of τ in the worst case but
require faster decoding for most message packets.

The valid value ranges for the parameters b, τ, and τ L  are
1 ≤  b ≤  τ and 0 ≤  τ L  ≤  (τ −  b). A  maximum burst length
of 0 is omitted because coding is unnecessary for lossless
transmission. Furthermore, reliable transmission is impossible
when b exceeds τ , since S [i] cannot be decoded by time
slot ( i  +  τ ) when X [i], . . . , X [i +  τ ] are all lost in a burst.
Intrinsically, τ L  cannot be negative, and S [i] is decoded by
time slot ( i  +  τ −  b) if there are no losses, since a burst can
drop X [ i  +  τ −  b +  1], . . . , X [i +  τ ]. Since b >  0, this means
that τ L  is without loss of generality strictly less than τ .

In the setting where message packets all have size k and
channel packets all have size n [3], the rate is k  . However,
the setting of varying sizes of message packets and channel
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packets, necessitates a new definition of rate. The rate is
defined [27] for a finite stream of (t +  1) message packets
for an arbitrary natural number t as the number of message
symbols divided by the number of transmitted symbols:

P t

R t  =  P i = 0

i = 0       i

Recall that the rate is at most  τ      . However, depending
on the sizes of the message packets, the upper bound can be
loose.

Constructions that during the time slot i  � {0, . . . , t} can
access all future message packets’ sizes (i.e., ki+1, . . . , kt) are
called “offline.” Offline schemes have access to the sizes but
not the symbols of the future message packets. In contrast,
code constructions that do not know the sizes of the future
message packets are dubbed “online.” Specifically, during time
slot i, (ki+1 , . . . , kt ) are unknown for an online construction.
We distinguish between the feasible rates for offline and online
coding schemes. The best possible rate for offline coding
schemes is called the “offline-optimal-rate” and for online
coding schemes is called the “online-optimal-rate.”

Encoding during time slot i  is defined as

X [ i ]  =  Enc (S[0], . . . , S [i]) . (1)

To distinguish between online and offline decoding, we use
the following quantity to denote the last time slot for which
the size of message packets is available to the receiver

t if offline
i arg maxl�{ i , . . . , i + τ }  1 [Y [l] = =  X [l ]]     if online.

The decoding for message packet S [i] is then defined for two
scenarios. First, in a lossless transmission, S [i] is decoded
using (a) the previously decoded message packets, (b) the
(τ L  +  1) channel packets received within lossless-delay, and
(c) the sizes of the first ( i + τ L + 1 )  message packets as follows:

S [i] =  D ec ( L )  S [0], . . . , S[i −  1], X [i], . . . , X [i +  τL ],
k0 , . . . , ki+τ L      . (2)

Second, when losses occur, S [i] is decoded using (a) the
previously decoded message packets, (b) all received channel
packets among the (τ +  1) sent within the worst-case-delay,
and (c) the sizes of the first (λ i  +  1) message packets as
follows:

S [i] =  Dec
 

S[0], . . . , S[i −  1], Y [i], . . . , Y [i +  τ ],
k0 , . . . , kλ i + τ       . (3)

To ensure that the receiver knows the sizes of message packets,
a small header containing ki−b , . . . , ki is added to X [i].2

Finally, we note that our work’s constructions do not need as
much memory as is acceptable under the model. During any
time slot, i, the sizes and symbols of message packets and
channel packets from before time slot ( i  −  τ ) are not used.

The capacity is defined for any given message size
sequence, k0, . . . , kt, as the highest rate that can be attained
while satisfying Equations 1, 2, and 3.

2In the edge conditions, ( i  −  τ )  is set to 0 for i  <  τ  and ( i  +  τ )  is set to
t for ( i  −  τ )  >  (t −  τ ).
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This paper uses the following notation. The term [n] denotes
{0, . . . , n}. All vectors are row vectors. A  vector V has
length v and is indexed as V =  (V0, . . . , Vv−1). For I  =
{i0 , . . . , i l } � [v −  1] where i j      <  i j ′       for j  <  j ′  � [l],
V I  =  (Vi  , . . . , Vi ). Let A  be an n ×  n matrix, and I  �

{0, . . . , n −  1}. Then A I  is A  restricted to the columns in I .
This work refers to k0, . . . , kt as the “message size sequence.”

This work uses the following conventions. The sizes of the
final τ message packets are each 0, and t is at least τ . Thus,
the coding schemes can encode the final message packet of
non-zero size using τ extra channel packets. To satisfy this
restriction, one can append τ message packets of size 0 to the
stream of messages, which will not change the optimal rate.

For i  � {1 − b, . . . , −1}�{t + 1, . . . , t + b + 1}, ki is defined
as 0. For i  � {1 − b, . . . , −1}, a burst loss of X [i ] , . . . , X [ i +
b − 1] denotes a burst loss of X [0], . . . , X [i + b − 1]. Similarly,
for i  � {t − b + 2, . . . , t} a burst loss of X [i] , . . . , X [i + b − 1]
denotes a burst loss of X [i], . . . , X [t].

C. Other Related Works

Numerous existing works have examined different varia-
tions of the streaming model introduced by Martinian and
Sundberg in [3]. These streaming models involve fixing the
sizes of message packets and channel packets in advance.
Badr et al. [5] introduced a new streaming model with fixed-
size message packets and channel packets in which every
sliding window of w channel packets can include (a) a burst of
length b or (b) up to a arbitrary losses. The authors also
showed an upper bound on the rate under this sliding window
model of loss. Several later works [6], [7], [8], [9], [10], [11]
designed streaming codes that matched this upper bound on
the rate. Two previous works [12], [13] studied the setting of
multiplexing two streams of message packets with different
delay constraints. A  few works [14], [15], [22] have considered
streaming codes where there are two different decoding delay
constraints based on two different types of packet loss. In [16],
the authors studied the setting where all or some symbols
of message packets are recovered for short or long bursts,
respectively. Badr et al. investigated [20] streaming codes that
recover only some message packets within the delay con-
straint, depending on the loss patterns. Another work [17]
studied streaming codes in terms of the average decoding
delay rather than the maximum delay. In [25], the authors
evaluate the trade-off between memory, decoding delay, and
decoding probability for random linear streaming codes with
i.i.d. losses. Several works [5], [18], [19] studied models
of streaming codes where multiple channel packets are sent
during each time slot. In [23], the authors presented streaming
codes to recover multiple bursts within (τ +1) channel packets.
Another work [24] considered unequal error protection for a
streaming model with high and low priority messages of two
different fixed sizes when the sequence of the priorities of
the messages is periodic. Several recent works [21], [29], [30]
have applied streaming codes to multi-node relay networks.
Future work could compare online and offline constructions
for these variants of the streaming model after incorporating
message packets of varying sizes.

I I I . ON L I N E CO D E CO N S T RU C T I O N S WITH
OP T I M A L R AT E

In this section, we present the first rate-optimal online
streaming codes, as well as show that they match the offline-
optimal-rate, for two broad parameter regimes: Regime 1:
(τL  =  0 and any b and τ ) and Regime 2: (τL  =  (τ −  b)
and b|τ).

To begin, we consider Regime 1 (i.e., τ L  =  0 and any b
and τ ). In this regime, the lossless-delay constraint, τ L  =  0,
eliminates the choice of distributing symbols corresponding to
a message packet over multiple channel packets. We introduce
a systematic construction that sends each message packet
within the corresponding channel packet. The construction
employs an online greedy paradigm for sending parity sym-
bols. The approach involves (a) identifying during time slot
i  how many parity symbols will be sent during time slot
( i  +  τ ) (i.e., in advance τ time slots), and (b) defining the
parity symbols only during time slot ( i + τ )  based on the sizes
of S [ i  +  1], . . . , S[i +  τ −  1]. To show that the construction is
rate-optimal, we demonstrate via induction that the cumulative
number of symbols sent by each time slot i  � [t] is no more
than that which is sent under an arbitrary offline construction.

We next present the rate-optimal online coding scheme for
any (τ , b) under Regime 1. The scheme builds on top of the
Generalized Maximally Short Codes presented in [5] in such
a way so as to mitigate the adverse effects of the variability of
the message size sequence. We call the proposed scheme the
(τ, b)-Variable-sized Generalized MS Code. The construc-
tion is suitable for any field of size at least 2τm. We first
provide a high-level description, then present a toy example,
and finally present the details of the code construction.

Encoding (high level description). During time slot i, each
message packet S [i] is partitioned into two pieces: S [i] =
(U [i], V [i]). The channel packet X [ i ]  =  (S [i], P [i]) is then
sent, where P [i] comprises parity symbols. The parity symbols
are defined as P [i] =  (U [i −  τ ] +  P ′ [i]) where P ′ [i] consists
of carefully designed linear combinations of the symbols of
(V [i −  τ ], . . . , V [i −  1]). The linear equations are defined so
that that for all i  � [t −  τ −  b +  1], P ′ [ i  +  b], . . . , P ′[i +  τ −
1], V [0], . . . , V [i −  1] are sufficient to decode V [i], . . . , V [i +
b −  1], as will be fully explained in the detailed description.3

We set V [i] to contain as many symbols of S [i] as possible
while meeting the following requirement. For any j  � { i  −

b + 1, . . . , i} and burst loss of X [j ], . . . , X [j  + b − 1],  the sum
of the sizes of V [j], . . . , V [i] is at most the number of parity
symbols in X [ j  +  b], . . . , X [j +  τ −  1] (i.e., the sum of the
sizes of P [ j  +  b], . . . , P [j +  τ −  1]). The remaining symbols
of S [i] are allocated to U [i]. The size of P [i] is set to equal
that of U [i −  τ ].

Decoding (high level description). A  burst loss of
X [i], . . . , X [i +  b −  1] is recovered in two steps. First, for
j  � { i  +  b, . . . , i +  τ −  1}, U [j −  τ ] is subtracted from P [j ] to
obtain P ′ [j ]. Then P ′ [ i  +  b], . . . , P ′[i +  τ −  1] are used to
recover V [i], . . . , V [ i + b − 1]  during the time slot ( i + τ  − 1).
Recovery is possible because (a) P ′ [ i  +  b], . . . , P ′[i +  τ −  1]
contain at least as many symbols as V [i], . . . , V [i +  b −  1] by

3For i  <  τ , P [i] is empty.
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Fig. 2.      A  toy example of the (τ  =  4, b =  2)-Variable-sized Generalized MS
Code. Each message packet, S [i] =  (U [i], V [i]), is transmitted in the
corresponding channel packet, X [ i ] ,  along with parity symbols, P [i], (when
applicable). White boxes with purple dots represent symbols of U [i], white
boxes with an orange grid represent symbols of V [i], and solid red boxes
represent symbols of P [i]. The numbers under the lines at the bottom indicate
the time slots.

dropped in a burst:

i + τ − 1 i − 1

z = min p[l] − k . (4)
j �{ i − b + 1 , . . . , i }  

l = j + b l = j

The first min(ki , zi ) symbols of S [i] are set to V [i]:
V [i] =  

 
S0 [i], . . . , Smin(k i ,z i )−1 [i] (5)

The remaining symbols of S [i] are set to U [i]:
U [i] =  

 
Smin(k i ,z i ) [ i], . . . , Sk i −1 [i]. (6)

Finally,

p[i +  τ ] =  u[i] =  ki −  min(ki , zi ) =  ki −  v[i] (7)

definition, and (b) the linear equations used to define P ′ [ i  +
b], . . . , P ′[i +  τ −  1] are chosen to be linearly independent.
Second, during time slot j  � { i  +  τ, . . . , i +  τ +  b −  1}, V [ j
− τ ], . . . , V [ j  − 1] are used to compute P ′ [j ]. Subtracting P ′ [j ]
from P [j ] yields U [j −  τ ].

Code construction (toy example). We now present a toy
example of (τ =  4, b =  2)−Variable-sized Generalized MS
Code for message size sequence k0 =  3, k1 =  2, k2 =  1,
k3 =  2, k4 =  1, and k5 =  . . . =  k8 =  0, shown in Figure 2.
For i  � [4], S [i] is sent in X [i ] .  This satisfies the lossless-
delay constraint. For i  � {0, 1, 4}, U [i] is defined to equal
S [i], and V [i] is defined to be empty (i.e., of size 0). For
i  � {2, 3}, V [i] is set as S [i], and U [i] is defined to be empty.
Let P ′ [4] =  (S0[2], S0[3], S1[3]) and P ′ [5] =  (S0[3], S1[3]).
Next, P [4] =  (S [0] +  P ′ [4]) is transmitted in X [4], and
P [5] =  (S [1] + P ′ [5]) is sent in X [5]. Finally, P0[8] =  S0[4] is
transmitted in X [8]. The lossless-delay constraint is met, since
each message packet is sent within the corresponding channel
packet. If any symbols of V [2] and or V [3] are lost, they are
recovered using P [4] and P [5] respectively. Any lost symbols
of U[0], U[1], and U[4] are each decoded with delay exactly
4 using P [4], P [5], and P [8] respectively (and subtracting
P ′ [4] and P ′ [5] from P [4] and P [5] respectively). Therefore,
the worst-case-delay constraint is satisfied.

Before presenting the detailed description, we introduce
some notation. For Z  � {S, X , U, V , P , P ′ }  and any i  ≤  j  �
[t], Z [i ]  is a vector of length z[i], and Z [ i  : j ]  =
(Z [i], . . . , Z [j ]).

Code construction (detailed description). During each
time slot i, the channel packet X [ i ]  =  (S [i], P [i]) is sent.
The scheme is formally described in three parts: initialization,
partitioning S [i] into (U [i], V [i]), and defining P [i].

Initialization: For i  � [b −  1], we set U [i] =  S [i] and v[i]
=  0. For i  � [τ − 1] we set p[i] =  0. Let A  be a τm × τm
Cauchy matrix, where m was defined in Section II-B as an
upper bound on the sizes of message packets.

Partitioning S [i]: For any i      ≥      b, we partition S [i]
into S [i] =  (U [i], V [i]) as follows.4     We define an aux-
iliary variable zi     encapsulating the minimum number of
parity symbols available for recovering S [i] when X [ i ]  is

4Recall that partitioning was defined for i  <  b in initialization.

parity symbols are assigned to be sent in the channel packet
X [ i + τ ] ,  although the actual symbols of P [i + τ ]  have not yet
been identified. The size of p[i +  τ ] is never greater than ki

(that is, the maximum possible size of u[i]), therefore p[i + τ ]
is at most m.

Defining P [i]: During time slot ( i  ≥  τ ), we set

P [i] =  (U [i −  τ ] +  P ′ [i]) (8)

where the symbols of P ′ [i] are linear combinations of the
symbols of V [i−τ ], . . . , V [i−1].5 The linear combinations are
chosen from a Cauchy matrix, as described below. Let V �[j ] be
the length m vector obtained by appending (m −  v[j ]) 0’s to V
[j ] for j  � { i  −  τ, . . . , i −  1}. We define a vector of length
τm, E [i],  by placing V �[j ], for j  � { i  −  τ, . . . , i −  1}, into m
consecutive positions of E [ i ]  starting with position ( j  mod
τ )m, as is detailed in Figure 3.6 We use the Cauchy matrix
A  to define

P ′ [i] =  E [ i ] A { ( i       mod τ ) m , . . . , ( i       mod τ ) m + p [ i ]−1 } . (9)

The field size requirement is dictated by the Cauchy matrix
and is at most 2τm.

In Theorem 1 below, we verify that the Variable-sized
Generalized MS Code meets the requirements of the model.

Theorem 1: For any parameters (τ , b) and message size
sequence k0, . . . , kt, the (τ, b)-Variable-sized Generalized MS
Code satisfies the lossless-delay and worst-case-delay con-
straints over any C (b, τ ) channel.

Proof: The lossless-delay constraint is satisfied for i  � [t]
by sending X [ i ]  =  (S [i], P [i]).

We prove that the worst-case-delay constraint is satisfied by
showing for any i  � [t−τ ] that each of S [i], . . . , S [i+b−1] are
recovered within delay τ when X [i] , . . . , X [i + b − 1] are lost.7

First, we show that V [i], . . . , V [ i + b − 1]  are recovered by time
slot ( i + τ  − 1).  Second, we show that U [i], . . . , U [i + b−1] are
recovered by time slots (i + τ ), . . . , (i + τ  + b − 1) ,  respectively.

First, for j  � { i  +  b, . . . , i +  τ −  1}  subtracting U [j −  τ ]
from P [j ] yields P ′ [j ]  (by Equation 8). Combining Equa-
tions 5, 6, 7, and 8 shows that the total number of symbols in

5Recall that p[i] was defined during initialization for i  <  τ .
6For each l  � {i, . . . , i  +  τ  −  1}, V �[i] appears in the same positions of

E [ l ]  as in E [i ] .
7Each message packet S [i] for i  >  (t −  τ )  is of size 0 and is known by

the receiver due to the termination of the message size sequence.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 03,2023 at 18:31:34 UTC from IEEE Xplore. Restrictions apply.



X X

X X X X

X X

�
0

� � �

P P
j = i j = i

P P
l = j l = j + b

X X X X

X X

X X

X X

X X

RUDOW AND RASHMI: ONLINE VERSUS OFFLINE R AT E  IN STREAMING CODES FOR VARIABLE-S I Z E  MESSAGES 3679

Fig. 3.     Illustration for defining E [i] ,  for time slot i  � [t], by placing V �[j ] =  (V [j], 0, . . . , 0), for j  � { i  −  τ , . . . , i −  1}, into m consecutive positions of
E [ i ]  starting with position ( j  mod τ )m.

P ′ [i+ b], . . . , P ′ [i+τ −1] is at least as many as V [i], . . . , V [ i +
b −  1]:

i + τ + b − 1 i + b − 1  p′ [j ] ≥
kj

j = i + b j = i

i + τ − 1 i + τ + b − 1 i + b − 1 i + b − 1

p′ [j ] +                  p′ [j ] ≥             v[j ] +             u[j ]
j = i + b j = i + τ j = i j = i

i + τ − 1 i + b − 1

p′ [j ] ≥ v[j ].
j = i + b j = i

Next, we show that P ′ [ i  +  b], . . . , P ′[i +  τ −  1] suffices to
decode V [i], . . . , V [i +  b −  1]. For j  � { i  +  b, . . . , i +  τ −  1},
recall from Equation 9 and Figure 3 that P ′ [j ] is the product of
distinct columns of A  with a vector consisting of (a) for l �
{i, . . . , i + b − 1},  V [l] in positions ( j  mod τ )m, . . . , ((j mod
τ )m +  v[l] −  1), (b) for l � {i, . . . , i +  b −  1}, zeros in
positions ( ( j  mod τ )m +  v[l]), . . . , ((j mod τ +  1)m −  1),
and (c) a combination of symbols of V [j  −  τ ], . . . , V [i −  1], V
[i +  b], . . . , V [ j  −  1] and zero padding in the remaining
positions. For l � { i + b, . . . , i + τ  − 1 } ,  let E ′ [ l ]  be defined by
first setting it equal to E [l ]  and second replacing the symbols
corresponding to V [i], . . . , V [ i + b − 1]  with 0’s. We note that
for r  � { i + b, . . . , i + τ  − 1 } ,  the receiver can compute E ′ [r ]
during time slot ( i + τ  − 1).  Let P �[r] correspond to (P ′ [ r ] −
E ′ [r ]A).  Then for some l0, . . . , lb−1 which is a permutation
of i, . . . , (i +  b −  1),

�     
P �[i +  b]T � � 

V [l ]T      �T

�.
� =  � .

� A ′  P �[i

+  τ −  1]T                  V [lb−1 ]T

where T denotes transpose, and A ′  is a submatrix of A  with
i + b − 1  v[j ]     rows and at least          i + b − 1  v[j ]     columns.

As such, A ′  is Cauchy and thus has full rank. Hence, P ′ [ i  +
b], . . . , P ′ [i + τ − 1] suffices to decode V [i], . . . , V [ i + b − 1].

Second, for j  � {i, . . . , i +  b −  1}, V [j], . . . , V [j  +  τ −  1]
are used to compute

P ′ [ j  +  τ ] =  E [ j  +  τ ]A { ( j       mod τ ) m , . . . , ( j       mod τ ) m + p [ j + τ ] −1 } .

During time slot ( j  +  τ ), U [j ] =  (P [ j  +  τ ] −  P ′ [ j  +  τ ]) is
then decoded.8

8In the edge case where i  >  ( t − τ ) ,  S [i] is known by the decoder to have
size 0 and this step is not needed.

The following lemma essentially shows that all parity sym-
bols sent in any channel packet under the (τ , b)−Variable-sized
Generalized MS Code are needed to satisfy the worst-case-
delay constraint. This property is later used to prove that the
(τ , b)−Variable-sized Generalized MS Code is rate-optimal in
Theorem 2.

Lemma 1: Consider any parameters (τ , b), message size
sequence k0, . . . , kt, and the (τ, b)-Variable-sized Generalized
MS Code. For all i  ≥  τ where p[i] >  0, �j  � { i  −  τ −  b +
1, . . . , i −  τ }  such that i − τ  kl = i p[l].

Proof: For i  � {τ , . . . , τ +  b −  1}, consider j  =  0. Then
i − τ i − τ i i

kl = u[l] = p[l] = p[l]
l = j                  l = 0                     l = τ                     l = b

due to Equation 7 as well as the initialization defining (a)
p[0], . . . , p[τ −  1] to each be 0, and (b) u[0], . . . , u[b −  1] to be
k0, . . . , kb−1 respectively.

For ( i  ≥  τ +  b), if (p[i] =  u[i −  τ ] >  0) then (v[i −  τ ] <
k i − τ  ). By Equations 4 and 5 and the fact that (v [i−τ ] <  k i − τ  )
there is some j  � { i  −  τ −  b +  1, . . . , i −  τ }  for which for i ′
=  ( i  −  τ )

i ′ + τ − 1 i ′ − 1

v[i′ ] =               p[l] −          kl
l = j + b l = j

i − 1 i − τ − 1

v[i −  τ ] =             p[l] −              kl

l = j + b l = j

i − τ − 1 i − 1

v[i −  τ ] +  u[i −  τ ] + kl =  p[i] + p[l]
l = j                                     l = j + b

i − τ i

kl = p[l].
l = j                 l = j + b

Next, we present Theorem 2, which shows that the
(τ , b)-Variable-sized Generalized MS Code is rate-optimal for
Regime 1.

The proof involves an inductive argument on the time slot.
It will show that the cumulative number of symbols sent by
each time slot under any code construction, even an offline
one, must be at least as many as under the (τ , b)-Variable-sized
Generalized MS Code to satisfy the lossless-delay and worst-
case-delay constraints. The proof technique synergizes with

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 03,2023 at 18:31:34 UTC from IEEE Xplore. Restrictions apply.



τ + b τ + b

b

bP
b

j = 0

τ + b

3680

the greedy paradigm of the (τ, b)-Variable-sized Generalized
MS Code sending for each message packet S [i]: (a) the
minimal number of parity symbols needed to recover S [i]
given any burst assuming that no future message packets needs
to be recovered, and (b) deferring the transmission of the parity
symbols until the decoding deadline for S [i] (i.e., X [ i  +  τ ]).
The methodology for designing a streaming code using a
greedy paradigm and inductively proving that it is rate-optimal
form a suitable template for designing new online coding
schemes in other regimes, as discussed in Section V.

Theorem 2: For any parameters (τ , b, τL = 0), the
(τ, b)-Variable-sized Generalized MS Code is rate-optimal for
transmission over a C (b, τ ) channel.

Proof Sketch:We present the full proof in Appendix A.
For an arbitrary message size sequence k0, k1, . . . , kt, con-

sider any optimal offline construction O. We prove by induc-
tion on time slot i  =  0, 1, 2, . . . , t that the cumulative number
of symbols sent by O is at least as many as that of the
(τ , b)-Variable-sized Generalized MS Code.

In the base case, for each i  � [τ −  1], the channel packet
X [ i ]  under O must contain at least ki symbols to meet the
lossless-delay constraint for message packet S [i]. Under the
(τ , b)-Variable-sized Generalized MS Code, x[i] =  ki .

The inductive step for i  � {τ , . . . , t} has two cases.
First, when no parity symbols are sent in X [ i ]  (that is,

X [ i ]  =  S [i]) under the (τ , b)-Variable-sized Generalized MS
Code, at least s[i] =  ki symbols are sent in X [ i ]  under O to
meet the lossless-delay constraint.

Second, suppose that X [ i ]  =  (S [i], P [i]) is sent under the
(τ , b)-Variable-sized Generalized MS Code where p[i] >  0.
Applying Lemma 1 shows that there is a burst loss starting
at time slot j  � { i  −  τ −  b +  1, . . . , i −  τ }  where the
number of parity symbols received under the (τ, b)-Variable-
sized Generalized MS Code in X [ j  +  b], . . . , X [i] is the
smallest for which it is possible to decode message packet
S [j ], . . . , S [i−τ ]. We combine this fact with the lossless-delay
constraint for S [ j  + b], . . . , S [i]. We then show that at least as
many symbols are sent under O between time slots ( j  +  b)
and i  as are, respectively, sent under the (τ , b)-Variable-sized
Generalized MS Code. Applying the inductive hypothesis for
time slot ( j  +  b −  1) concludes the proof.

We note that for any values of τ and b, the (τ , b)- Variable-
sized Generalized MS Code’s rate (i.e., the optimal rate) is
highly dependent on the precise sequence of the sizes of the
messages. Hence, a closed-form expression is not viable.

Finally, we discuss Regime 2 (i.e., τ L      =  (τ −  b) and
b|τ ). Under Regime 2, for any parameters (τ , b), we show
that a simple online coding scheme applied to each mes-
sage packethas rate  τ      .9     Recall that  τ        is an upper
bound on rate for the streaming model with variable-size
message packets [27]. Hence, the simple construction is
rate-optimal.

9The construction applies when (τ /b)|ki for any i  � [t]. This condition can
be satisfied by padding each message packet with up to (τ /b −  1) symbols.
For real-world live-streaming applications, the amount of padding is typically
negligible (e.g., three orders of magnitude smaller than the average size of a
message packet).
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Under this encoding scheme, each message packet S [i] is
evenly partitioned into τ  components that are transmitted in
channel packets X [ i ] , X [ i  +  b], . . . , X [i +  τ −  b], respectively.
The parity symbols, in the form of the sum of these τ  channel

packets, are sent as X [ i  +  τ ] =
τ − b  

X [ i  +  jb].10 Note
that in this coding scheme, each transmission occurs exactly b
channel packets apart, which is only possible under Regime 2.
As such, each burst over X [i], . . . , X [i +  τ ] drops precisely
one of X [ i ] , X [ i  +  b], . . . , X [i +  τ −  b], and X [ i  +  τ ]. The
remaining channel packets suffice to recover the missing one to
meet the worst-case-delay constraint. Finally, we note that
sending S [i] over X [i], . . . , X [i + τ  − b]  satisfies the lossless-
delay constraint, as ( i  +  τ L )  =  ( i  +  τ −  b).

In this section, we presented rate-optimal online streaming
codes for Regime 1 and Regime 2. We showed in the proof
of Theorem 2 that, for any (τ , b), the (τ , b)−Variable-sized
Generalized MS Code matches the rate of the best offline
construction possible for Regime 1. The simple construction
for Regime 2 matches the upper bound of the rate of  τ      .
Both of these constructions match the best possible rates of
the offline setting, establishing that the online-optimal-rate
equals the offline-optimal-rate in both parameter regimes. The
construction for Regime 1 can be used for any value of τL ,
although it is not necessarily rate-optimal for τ L  >  0. Next,
in Section IV, we show that online codes cannot match the
offline-optimal-rate for all other parameter settings.

I V. I N F E A S I B L I T Y  OF O FFL I N E - O P T I M A L - R AT E
F O R ONL I N E S C H E M E S

In Section III, we presented online code constructions that
matched the offline-optimal-rate under the two broad settings
of Regime 1 and Regime 2. A  natural question is whether
there are any other parameter settings where an online coding
scheme can attain the offline-optimal-rate. In this section,
we show that the online-optimal-rate is strictly less than the
offline-optimal-rate for all other parameter settings.

At a high level, the optimal approach to spreading sym-
bols from a message packet S [i] over channel packets
X [i], . . . , X [i +  τL ]  depends on the sizes of future message
packets (i.e., ki+1, . . . , kt). This dependency enables offline
coding schemes to have higher rates than online coding
schemes in all settings besides Regime 1 and Regime 2, as we
will show in Theorem 3.

Theorem 3: For any parameters (τ , b, τL ) outside of
Regime 1 and Regime 2, the online-optimal-rate is strictly
less than offline-optimal-rate.

Proof Sketch: The proof consists of three mutually exclu-
sive cases shown via illustrative examples in Sections IV-A,
IV-B, and IV-C and in detail in Appendix B, C, and D. In each
case, we present two distinct message size sequences of length
(t +  1), which match for the first several time slots. We show
a lower bound on the offline-optimal-rate for the two message

10 A generalized version of this construction appeared in [27] after the
conference version [1] of our work included the construction presented here. A
recent work employed a similar interleaving approach in designing a low
complexity streaming code with linear field size in the setting of fixed-size
message packets [28].
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size sequences by presenting an offline coding scheme with
rates R ( 1 )  and R ( 2 )  on the first and second message size
sequences, respectively. To attain a rate of at least R ( 1 )  on
the first message size sequence requires sending symbols in a
manner that leads to a lower rate than R ( 2 )  on the second.

Remark 1: Although Theorem 3 is proven for two specific
message size sequences, a similar proof holds if the sizes
of the message packets were only approximately the sizes
corresponding to the message size sequences. As such, the
result establishes a broad class of message size sequences for
which there is a gap between the online-optimal-rate and the
offline-optimal-rate.

A. Case τ L  ≥  b and τ L  =  (τ −  b)
This section presents the proof for parameters (b, τL , τ ) =

(3, 4, 7); the general case, which builds closely on this exam-
ple, is proven in Appendix B.

Consider the following two message size sequences :
1) k(1) =  2 and k(1) =  0 for j  >  0.

2) k(2) =  2, k(2) =  2, k(2) =  10, and k(1) =  0 for j  >  2.
An offline construction for the two message size sequences is
shown in Figures 4 and 5 respectively, over Fq  for any prime
q ≥  83.

For message size sequence 1, the construction sends X [0] =
S0[0], X [3] =  S1[0], and X [6] =  (S0[0] +  S1[0]), as shown in
Figure 4. The lossless-delay constraint is trivially satisfied.
The worst-case-delay constraint is met, as at most one of
X [0], X [3], and X [6] is lost.

For message size sequence 2, the construction sends
X [0]      =       S [0], X [1]      =       S[1], for i       �      {2, . . . , 6}
sends X [ i ] =  S2( i−2) [2], S2( i−2)+1 [2] , X [7] =

S[0] + i = 3  X [ i ]  , X [8] = S[1] + i = 4  2 i −2 X [ i ]  , and

X [9] = 6 3i−2 X [ i ] ,  as shown in Figure 5. The lossless-
delay is clearly satisfied. The worst-case-delay constraint is
met, as will be shown next through a comprehensive case
analysis. For any l � {0, 1} suppose that X [ l ]  is lost, then one
obtains S [l] = X [7  +  l] −       j = 3 + l ( l  +  1 ) j −2 X [ j ] within
7 time slots. When X [2] is lost, S [0] and S[1] are decoded.
Then one can decode

(S4[2], S5[2]) =  2−2   X [8] −  S[1] −  23X [5] −  24X [6]
(S2[2], S3[2]) =  (X [7] −  S[0] −  X [4] −  X [5] −  X [6])

6

(S0[2], S1[2]) =  �X [9] − 3j −2 X [j ]�.
j = 3

When a burst starts with X [3], S[0], S[1], and S0[2] are
decoded, and (S8[2], S9[2]) is received. Combining S[0], S[1],
and X [2], with X [6  : 9] yields X [i] , 2l−2 X [l ],  and

5 3l−2 X [l ].  These three equations are linearly independent
and yield X [3  : 5]. Thus, S[2] is decoded by time slot 9. When
a burst starts with X [4], S[0], S[1], S0[2], S1[2], S2[2], and
S  [2] are received and combined with X [7], X [8], and X [9] to
determine 6 X [ j ] , 6 2 j −2 X [ j ] ,  and 6 3 j −2 X [ j ] .
These three equations are linearly independent and yield
X [4  : 6], which consist of S4[2], . . . , S9[2]. When a burst

Fig. 4. Offline construction for message size sequence 1 for parameters
(b, τL , τ )  =  (3, 4, 7).

Fig. 5. Offline construction for message size sequence 2 for parameters
(b, τL , τ )  =  (3, 4, 7).

starts with X [5], S[1], S0[2], . . . , S5[2] are received and com-
bined with X [8] and X [9] to determine       j = 5  2 j −2 X [ j ] ,  and

3 j −2 X [ j ] .  These two equations are linearly independent
and yield X [5] and X [6], which include S6[2], . . . , S9[2].
When a burst starts with X [6], S0[2], . . . , S7[2] are received,
leading to (S8[2], S9[2]) =  3−4

j = 2  3 j −2 X [ j ]  . When
X [0 : 6] are received, the message packets are received.

The rate of the offline construction for message size
sequence 1 is 2/3, while its rate for message size sequence 2
is 0.7. An online construction must send at most 1 symbol in
X [0] to have a rate of 2/3 on message size sequence 1 because
X [0] can be lost. We next show that any such scheme cannot
attain the rate of 0.7 on message size sequence 2. If message
size sequence 2 occurs, the online construction must send at
least 13 symbols over X [1  : 6] due to the lossless-delay
constraint. At least one of X [1  : 3] and X [4  : 6] must contain
at least 7 symbols and may be lost. At least 14 symbols
must be received. So the rate is at most 14/21 (i.e., less
than 0.7). Therefore, any online construction with a rate of
2/3 on message size sequence 1 cannot attain the rate of
0.7 on message size sequence 2, unlike the proposed offline
construction.

B. Case τ L  <  b and τ L  =  (τ −  b)
This section presents the proof for parameters (b, τL , τ ) =

(2, 1, 3); the general case, which builds closely on this exam-
ple, is proven in Appendix C.

Consider the following two message size sequences:
1) k(1) =  2, k(1) =  2, and k(1) =  0 for j  >  1.
2) k(1) =  2, k(1) =  2, k(1) =  2, and k(1) =  0 for j  >  2.

An offline construction for the two message size sequences
is shown in Figures 6 and 7 respectively over any finite
field, Fq .

For message size sequence 1, the construction sends
X [0] =  S[0], X [1] =  S0[1], X [2] =  S1[1], X [3] =
(S [0] +  (0, S1[1])) , and X [4] =  (S0[1] +  S1[1]), as shown
in Figure 6. The lossless-delay constraint is trivially satisfied.
The worst-case-delay constraint is met for S[0] because either
S[0] is received, or S1[1] and X [3] are received, yielding S[0].
When X [1] is lost, (0, S1[1]) =  (X [3] −  S [0]) is obtained,
leading to S0[1] =  (X [4] −  S1[1]). When X [2] is lost, S0[1]
is decoded, leading to S1[1] =  (X [4] −  S0[1]). As such, the
worst-case-delay is satisfied for S[1].

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 03,2023 at 18:31:34 UTC from IEEE Xplore. Restrictions apply.



τ + b 5

3

5

0 j

0 1 j

P
i = 0

3682

Fig. 6. Offline construction for message size sequence 1 for parameters
(b, τL , τ )  =  (2, 1, 3).

Fig. 7. Offline construction for message size sequence 2 for parameters
(b, τL , τ )  =  (2, 1, 3).

For message size sequence 2, the construction sends X [0] =
S[0], X [1] =  S[1], X [2] =  S[2], X [3] =  (S [0] +  S[2]) , and
X [4] =  (S [1] +  S[2]), as shown in Figure 7. The lossless-
delay is clearly satisfied. The worst-case-delay constraint is
met for S[0] as either X [0] =  S[0] is received, or S[0] =
(X [3] −  X [2]) is obtained. The worst-case-delay constraint
is satisfied for S[1] since either X [1] is received, or S[0]
is decoded, leading to S[2] =  (X [3] −  S[0]), and S[1] =
(X [4] −  S[2]). The worst-case-delay constraint is satisfied for
S[2] because either X [2] is received, or S[1] is decoded,
yielding S[2] =  (X [4] −  S[1]).

The offline construction’s rate for message size sequence
1 is 4/7, while its rate for message size sequence 2 is 0.6.
An online construction with a rate of 4/7 on message size
sequence 1 must send at most 3 symbols in X [0  : 1], since at
least 4 symbols are sent in X [2  : 4] in case X [0  : 1] is lost.
Also, the construction sends at least 2 symbols over X [0  : 1] to
recover S[0] under lossless transmission. Next, we show that
any such scheme cannot attain the rate of 0.6 on message size
sequence 2 due to sending fewer than 4 symbols over X [0  : 2].
Thus, any online construction with a rate of 4/7 on message
size sequence 1 cannot attain the rate of 0.6 on message size
sequence 2, unlike the proposed offline construction.

First, suppose that exactly 2 symbols are sent in
X [0  : 1]. Then X [2  : 3] suffices to recover S[0]. Recall that
the 2 symbols in X [0  : 1] only contain information about S[0],
as they suffice to recover S[0] under a lossless transmission.
Thus, X [0  : 1] are recovered as a function of S[0], leaving the
transmission lossless, so S [1 : 2] are recovered. Thus, X [2  : 3]
contains at least 6 symbols. At least 6 symbols are sent outside
of X [2  : 3] in case X [2  : 3] is lost, so the rate is at most 6/12.

Second, due to the upper bound on the rate of  τ   =  3 and
worst-case-delay, at least 10 =  6� 5 symbols must be sent by
time slot 5. Suppose exactly 3 symbols are sent in X [0  : 1].
Consider the 5 periodic erasure channels, C0, . . . , C4, where
for i  � [4], C i  drops packets X [ j  : j  +  1] for all j  ≡  i
mod 5. Each packet is dropped by 2 of these channels, so the
channels drop at least 2 �10 ≥  4 symbols on average. At least
6 symbols must be received to ensure recovery. If any channel
dropped 5 or more symbols, the rate would be at most 6/11.
Thus, each channel must drop exactly 4 symbols to attain a
rate of 0.6. Therefore, C0  drops exactly 4 symbols—3 over
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Fig. 8. Offline construction for message size sequence 1 for parameters
(b, τL , τ )  =  (1, 1, 3).

Fig. 9. Offline construction for message size sequence 2 for parameters
(b, τL , τ )  =  (1, 1, 3).

X [0  : 1] and 1 in X [5]. Each of C4 , C3 , and C2  must drop
4 symbols (i.e., n4 +n5 =  4, n3 +n4 =  4, n2 +n3 =  4). Hence,
X [4] contains 3 symbols, X [3] contains 1 symbol, and X [2]
contains 3 symbols. In total, ( 3 + 3 + 1 + 3 + 1 )  =  11 symbols
are sent over X [0  : 1], X [2], X [3], X [4], and X [5], leading to
a rate of 6/11, which is less than 0.6.

Therefore, any online construction that matches the rate of
4/7 on message size sequence 1 cannot attain the rate of 0.6 on
message size sequence 2, unlike the offline construction.

C. Case τ L  <  (τ −  b)
This section presents the proof for parameter (b, τL , τ ) =

(1, 1, 3); the general case, which builds closely on this exam-
ple, is proven in Appendix D.

Consider the following two message size sequences :
1) k(1) =  2 and k(1) =  0 for j  >  0.
2) k(1) =  2, k(1) =  4, and k(1) =  0 for j  >  1.

An offline construction for the two message size sequences is
shown in Figures 8 and 9 respectively over any finite field,
Fq .

For message size sequence 1, the construction sends X [0] =
S0[0], X [1] =  S1[0], and X [2] =  (S0[0] +  S1[0]), as is shown
in Figure 8. The lossless-delay constraint is trivially satisfied.
The worst-case-delay constraint is met because at most one of
X [0], X [1], or X [2] is lost and X [2] =  (X [0] +  X [1]).

For message size sequence 2, the construction sends X [0] =
S[0], X [1] =  (S0[1], S1[1]), X [2] =  (S2[1], S3[1]), and
X [3] =  (S [0] +  (S0[1], S1[1]) +  (S2[1], S3[1])), as shown
in Figure 9. The lossless-delay is clearly satisfied. The
worst-case-delay constraint is met, since at most one of
X [0], X [1], X [2], or X [3] = 2 X [ i ]  is lost.

The offline construction’s rate for message size sequence 1
is 2/3, while its rate for message size sequence 2 is 0.75. For
an online construction to attain a rate of 2/3 on message size
sequence 1, it must send exactly 1 symbol in each of X [0] and
X [1] due to (a) the lossless-delay constraint and (b) ensuring
at most 1 symbol is lost—a necessity to attain the rate of 2/3.
Next, we show that any such scheme cannot attain the rate of
0.75 on message size sequence 2. If message size sequence
2 occurs, at least 6 symbols are sent over X [0  : 2] due to the
lossless-delay constraint. The average number of symbols per
packet is at least 2. If X [0] contains one symbol, at least one of
X [1] or X [2] contains at least 3 symbols. At least 6 symbols

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 03,2023 at 18:31:34 UTC from IEEE Xplore. Restrictions apply.



O , j V , j
P P

i = 0 i = 0

O , i V ,i

�

O , l V ,l

+ +

+ +

RUDOW AND RASHMI: ONLINE VERSUS OFFLINE R AT E  IN STREAMING CODES FOR VARIABLE-S I Z E  MESSAGES 3683

must be received to satisfy the worst-case-delay constraint.
Since at least 3 symbols may be lost, at least 9 symbols must
be sent in total. As such, the rate is at most 2/3, which is
less than 0.75. Therefore, any online construction that matches
the rate of 2/3 on message size sequence 1 cannot attain the
rate of 0.75 on message size sequence 2, unlike the offline
construction.

V. CO N C L U S I O N

Real-time streaming applications, such as videoconferenc-
ing, transmit a sequence of messages of varying sizes. These
applications operate in an online setting without access to
future message sizes. However, previously studied upper
bounds on the rate apply to an offline setting with advance
access to the sizes of all messages, leaving the best possible
rate of the online setting an open question. We introduce the
first rate-optimal online coding schemes for two broad
parameter regimes (that is, Regime 1 and Regime 2) which
are optimal even for the offline setting. To do so, we propose a
framework for designing online constructions using a greedy
paradigm for sending parity symbols and inductively analyzing
the rate that is suitable for future works for message packets
of varying sizes. We also show for all other parameter regimes
that the best way to spread the symbols of messages over mul-
tiple transmissions depends on the sizes of future messages.
Consequently, no online coding scheme can match the optimal
rate of offline coding schemes.

The gap between the online-optimal-rate and offline-
optimal-rate prompts three directions of further study for
the parameter settings outside of Regime 1 and Regime 2.
First, how can one design rate-optimal offline code con-
structions? Second, what does it mean to be rate-optimal in
the online setting, given that the rate depends on the
specific sequence of sizes of future messages? Third, can
one use the proposed methodology to design and analyze
online constructions to design rate-optimal or approximately
rate-optimal online streaming codes? These questions have
been partially answered for the smallest lossless-delay where
spreading message symbols can alleviate the variability of the
sizes of message packets (i.e., τ L  =  1) in [31]; the questions
remain open for large values of τL .

AP P E N D I X

A. Proof of Theorem 2
In this section, we will prove Theorem 2. At a high level,

the proof is inductive and shows that the cumulative number of
symbols sent by each time slot under the (τ , b)-Variable-sized
Generalized MS Code is the minimum possible. For time slots
where no parity symbols are sent, it follows immediately by
the lossless-delay constraint. Otherwise, there is some burst
for which every parity symbol in the received channel packets is
needed to recover the burst within the worst-case-delay.

We begin by introducing the preliminary notation for the
proof. We then include a few auxiliary Lemmas used through-
out the proof. Finally, we present the full proof itself.

Let t be an arbitrary natural number, and consider any length
(t + 1) message size sequence k0, . . . , kt. Let O be an arbitrary

offline code construction that satisfies the lossless-delay and
worst-case-delay constraints over a C (b, τ ) channel for the
message size sequence. Let the channel packet transmitted
during time slot j  � [t] under construction O and under the
(τ, b)-Variable-sized Generalized MS Code be labeled as
X O [ j ]  and X V  [j ], respectively. Let the cumulative number of
symbols transmitted through time slot j  under construction
O and under the (τ, b)-Variable-sized Generalized MS Code
be denoted n + = j xO [i] and n + = j xV [i],
respectively. Recall from Section II  that each message packet
comprises symbols drawn independently and uniformly at
random from the finite field Fq . Let S  be a random variable
representing a uniformly random element of Fq .

Next, we show that the lossless-delay constraint necessitates
transmitting at least as many symbols as the size of the
message packet for each time slot.

Lemma 2: Consider any parameters (τ , b, τL =  0), an arbi-
trary message size sequence k0, k1, . . . , kt, and any code
construction which satisfies the lossless-delay and worst-case-
delay constraints over a C (b, τ ) channel. For any j  � [t], nj

≥  kj .
Proof: Follows directly from (a) the independence of

message packets, and (b) the lossless-delay constraint for
τ L  =  0.

Next, we establish that whenever a burst of length b occurs,
all message packets from time slots before the burst must be
decoded before the burst to satisfy both the lossless-delay and
worst-case-delay constraints.

Lemma 3: Consider any parameters (τ , b, τL =  0), an arbi-
trary message size sequence k0, k1, . . . , kt, j  � [t], and any
code construction which satisfies the lossless-delay and worst-
case-delay constraints over a C (b, τ ) channel. When
X [j ], . . . , X [j  +  b −  1] are lost in a burst, S [0 : j  −  1] are
decoded by time slot ( j  −  1).

Proof: By the worst-case-delay constraint, S [0 : j − τ  − 1]
are all decoded by time slot ( j −1) .  Under the C (b, τ ) channel,
when X [j ], . . . , X [j  +  b −  1] are lost, X [ j  −  τ ], . . . , X [j −
1] are necessarily received.11 By the lossless-delay constraint,
S [0 : j  −  τ −  1] and X [ j  −  τ : j  −  1] suffice to decode
S [ j  −  τ : j  −  1].

Finally, we prove Theorem 2 below.
Proof of Theorem 2: Let k0, k1, . . . , kt be an arbitrary

message size sequence. We will show by induction that the
cumulative number of symbols sent through time slot i  � [t]
under an arbitrary offline construction, O, is at least as many
as that of the (τ , b)−Variable-sized Generalized MS Code
(i.e., n + ≥  n +  ). Consequently, the (τ , b)-Variable-sized
Generalized MS Code matches the offline-optimal-rate.

In the base case, we consider j  � [τ −1]. Applying Lemma 2
determines that xO [ j ]  ≥  kj  =  xV [j ] �j  � [τ −  1].

For the inductive hypothesis, we assume that for some ( i  ≥
τ −  1), for all l  � [i�], n +       ≥  n +  .

For the inductive step, consider the
time        slot        ( i             =             i�+       1            ≥ τ ).
By the inductive hypothesis, nO , i−1       ≥  nV ,i−

1 . We will
show that nO , i  ≥  nV ,i using two cases.

11When j  <  τ , X [ 0  : j  −  1] are received.
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Case xV [i] =  ki :
Applying Lemma 2 determines that xO [i]  ≥  ki . Therefore,

(n
Case x

O
[i]  >  ki :

i
We first provide a high-level intuition of

the proof and then the detailed derivation.
High-level summary: Applying Lemma 1 shows that there is a
burst starting in time slot j  � { i−τ −b + 1, . . . , i−τ }  for which
the (τ , b)-Variable-sized Generalized MS Code receives min-
imum required number of parity symbols to decode message
packets S [ j  : i  −  τ ] by time slot i. Combining this fact with
meeting the lossless-delay constraint for S [ j + b  : i] shows that
the number of symbols sent under O between time slots ( j + b )
and i  is at least as many as that of the (τ, b)-Variable-sized
Generalized MS Code.

Detailed derivation: By Lemma 1, there is some j  � { i − τ −
b + 1, . . . , i − τ } such that      l = j + b  p[l] =       l = j  kl . Therefore,
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follows from conditioning, and Equation 21 follows from the
lossless-delay constraint.

For any i  � [t],

H (S [ i ] )  =  H (S )k i                                              (22)
H ( X [ i ] )  ≤  H (S )n i                                             (23)

where S  was defined as a random variable drawn uniformly
at random from the underlying field, Fq . This follows from
the definition of message packets, and the fact that the max-
imum possible entropy of ni symbols is n i H (S ).  Applying
Equation 21 and 19 to Equations 16, 22, and 23 yields

i

H ( S ) X O [ l ]  ≥  H  ( X O [ j  +  b : i]) ≥
l = j + b

H  (S [ j  : i  −  τ ]) +  H  (S [ j  +  b : i]) =

i i − τ i

xV [l] = kl + kl. (10)
l = j + b l = j l = j + b

i − τ i

H ( S ) kl + kl . (24)
l = j l = j + b

Next, we show that at least as many symbols are sent over
X O [ j  +  b : i] as are sent over X V  [ j  +  b : i]. Consider a burst
loss of X [j ], . . . , X [j  + b − 1] .  Applying Lemma 3 shows that
S [0 : j  −  1] are known by the receiver by time slot ( j  −  1).
By the worst-case-delay constraint,

H  
 

S [ j  : i  −  τ ]X O [ j  +  b : i], S [0 : j  −  1]
 
=  0. (11)

We next bound the number of symbols sent over
X  [ j  +  b : i] as

H  (S [ j  : i  −  τ ]) +  H  
 

X O [ j  +  b : i]S [0 : i  −  τ ]
 
= (12)

H  X O [ j  +  b : i], S [j : i  −  τ ]S[0 : j  −  1] = (13)
H  X O [ j  +  b : i]S [0 : j  −  1] + (14)
H  S [ j  : i  −  τ ]S[0 : j  −  1] , XO [ j  +  b : i] =
H  X O [ j  +  b : i]S [0 : j  −  1] , (15)

where Equation 13 follows from the chain rule and indepen-
dence of message packets, Equation 14 follows from the chain
rule, and Equation 15 follows from Equation 11.

Combining Equations 13 and 15 with the fact that condi-
tioning reduces entropy yields

H  ( X O [ j  +  b : i]) ≥  H  
 

X O [ j  +  b : i]S [0 : j  −  1]
 
≥

H  (S [ j  : i  −  τ ]) +  H  X O [ j  +  b : i]S [0 : j  +  b −  1] . (16)

Next, we evaluate the size of H ( X O [ j  +  b : i]
S [0 : j  +  b −  1]) as

H  
 

S [ j  +  b : i ] , X O [ j  +  b : i]S [0 : j  +  b −  1]
 
=         (17)

H  (S [ j  +  b : i]) +  H  X O [ j  +  b : i]S [0 : i] =             (18)
H  (S [ j  +  b : i]) = (19)
H  X O [ j  +  b : i]S [0 : j  +  b −  1] + (20)
H  S [ j  +  b : i]S [0 : j  +  b −  1] , XO [ j  +  b : i] =
H  X O [ j  +  b : i]S [0 : j  +  b −  1] , (21)

where Equation 18 follows from conditioning and indepen-
dence of message packets, Equation 19 follows from the fact
that for l � [t], X O [ l ]  is a function of S [0 : l], Equation 20

Combining Equations 24 and 10 determines that

i i

H  (S ) xO [l ] ≥  H  (S ) xV [l]. (25)
l = j + b                                         l = j + b

By definition, (nO , i      =  n O , j + b −1  +  
P

l = j + b  xO [l ]) and
(nV ,i =  nV , j + b−1  + l = j + b  xV [l]). Applying the inductive
hypothesis to ( j  +  b −  1 <  i )  shows that (nV , j + b−1      ≤
nO , j + b−1 ) .  Combining the above equations with Equation 25
determines that n        ≤  n . The inductive hypothesis is
proven, and the result follows immediately.

B. Proof of Theorem 3 case τ L  ≥  b and τ L  =  (τ −  b)
Let (a =  �τ L  �) and (e ≡  τ L      mod b). Theorem 3 does not

apply when τ =  (τ L  −  b) and b|τ, necessitating that (e >  0).
Let d be an arbitrary multiple of (a +  1).

Consider the following two message size sequences for
which the offline construction will be shown below in
Figures 10 and 11 respectively:

1) k(1) =  . . . =  k(1)     =  d, and k(1) =  . . . =  k(1) =  0.
2) k(2)     =  . . . =  k(2)       =  d, k(2)       =  d(τL  +  1), and

k(2) =  . . . =  k(2) =  0.
Before going into the details of the proof, we note that the
proof applies for any value of d. When d is sufficiently large,
the proof could also be extended to message size sequences
where the message packets’ sizes may only approximately
equal the ones in the message size sequence. More generally,
the proof also applies for any message size sequences for
which there is a subsequence of (a) τ message packets whose
sizes are � d, then (b) one of the two above message size
sequences, then (c) another τ message packets whose sizes
are � d.

We present an offline coding scheme for message size
sequences 1 and 2, which has rates

R ( 1 )  =  
a +  2

, R ( 2 )  =  
τ +  b

(26)
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Fig. 10.     The offline scheme for message size sequence 1 for case τ L  ≤  b
and τ L  =  (τ  −  b). Blue channel packets consist of message symbols, and
red channel packets consist of parity symbols. The numbers under the lines
at the bottom indicate the time slots. The offline scheme sends  d   symbols
in each of the first e channel packets.

Fig. 11.     The offline scheme for message size sequence 2 for case τ L  ≤  b
and τ L  =  (τ  − b ) .  Blue channel packets consist of message symbols and red
channel packets consist of parity symbols. The numbers under the lines at the
bottom indicate the time slots. The offline scheme sends d symbols in each of
the first e channel packets.

on the two message size sequences, respectively. We describe
and then validate the scheme for each message size sequence.
Offline scheme for message size sequence 1: Each message
packet is encoded separately with parameters (τ ′  =  �τ �b, b′ =
b, τ ′ =  τ ′ − b )  as described in Section III, shown in Figure 10,
and detailed below.

• For i  � [e −  1], S [i] is evenly divided into (a +  1)
components of size d each: S (0) [i], . . . , S (a) [i]. For j  �

[a], X [i +  j b] =  S ( j ) [ i ] .
• For i  � [e −  1], X [ i  +  (a +  1)b] = a X [ i  +  zb].

Decoding: For i  � [e − 1], S [i] is sent evenly over X [ i ] , X [ i +
b], . . . , X [i +  ab] where ( i  +  ab) ≤  ( i  +  τ L )  and at most
one of X [ i ] , X [ i  +  b], . . . , X [i +  ab], or X [ i  +  (a +  1)b] =

a X [ i + j b ]  is lost. Each message packet is decoded within
delay τ L  when the transmission is lossless and using a linear
combination of the relevant (a +  1) channel packets within
delay τ otherwise.
Offline scheme for message size sequence 2: The first
(b −  1) message packets are sent with no delay and the
symbols of the next message packet are transmitted evenly
over X [ b  −  1], . . . , X [τ −  1]. The symbols of X [0  : τ −  1]
are used to create d blocks of the rate  τ   systematic block
code from [8]. Each of the d blocks includes b parity symbols
that are sent in X [τ ], . . . , X [τ + b − 1 ]  respectively. The block
code maps τ input symbols (s0, . . . , sτ −1) to (τ + b) codeword
symbols (s0, . . . , sτ −1, p0, . . . , pb−1). For each j  � [τ −1] and
any burst erasing up to b codeword symbols, the non-erased
symbols of (s0 , . . . , sτ −1, p0, . . . , pmin(b−1,j ) ) are sufficient
to decode sj . Therefore, each symbol is recovered within
τ symbols. We note that although we use the block code
from [8], any other block code from [6], [7], [9], [11] also
works. The scheme is described in detail below and shown in
Figure 11:

• For j  � [b −  2], X [ j ]  =  S [j ].
• S [b −  1] is divided evenly into (τ L  +  1) components of

size d: S (0) [b −  1], . . . , S (τL ) [b −  1].
• For j  � {b − 1, . . . , b − 1 + τL },  X [ j ]  =  S ( j −b + 1 ) [b − 1] .
• For each z � [d −  1], an instance of the block code

from [8] is created which maps ( X  [0], . . . , X [τ −  1])
to (Xz [0], . . . , Xz [τ −  1], p(z) , . . . , p(z) ).

• For j  � [b −  1], X [τ  +  j ]  =  (p(0) , . . . , p(d−1) ).

Decoding: Each message packet is transmitted within the
current and next τ L  channel packets and is, thus, decoded when
the transmission is lossless. Each symbol X z [ i ]  for z � [d − 1]
and i  � [τ −  1] is decoded within the delay τ or by time slot
(τ +  b −  1) using the block code ( X  [0], . . . , X [τ −
1], p(z) , . . . , p(z) ). Hence, the worst-case-delay constraint is
met.
Proof of the converse result : The offline-optimal-rate is at
least R ( 1 )  and R ( 2 )  (that is, the rate of the offline scheme from
Equation 26) for message size sequences 1 and 2, respectively.
Next, we show mutually exclusive conditions for the sum of
the sizes of X [0], . . . , X [e −  1] to have rates at least R ( 1 )

and R ( 2 )  on message size sequences 1 and 2 respectively. All
online coding schemes, thus, fail the condition for at least
one message size sequence since they are identical until time
slot e.
Condition for rate R ( 1 )  on message size sequence 1 : Con-
sider any coding scheme for message size sequence 1. At least
de symbols are sent over X [b], . . . , X [t] since X [0], . . . , X [b−
1] could be lost. At most d  e  symbols can be sent over
X [0], . . . , X [b −  1] if the rate is at least R( 1) .

Condition for rate R ( 2 )  on message size sequence 2 : Con-
sider an arbitrary coding scheme for message size sequence 2.
At least dτ symbols are sent in X [0], . . . , X [τ −  1] to meet
the lossless-delay constraint. For each i  � [a], at least dτ
symbols are sent outside of X [ e  +  ib : e +  ( i  +  1)b −  1] in
case X [ e + i b  : e + ( i + 1) b − 1]  is lost. Since the rate is R(2 ) ,
at most db symbols are sent in X [ e  +  ib : e +  ( i  +  1)b −  1].
As such, at least (dτ −  d(a +  1)b =  de) symbols are sent in
X [0  : e −  1].

Summary : Any online scheme whose rate is at least R ( 1 )  on
message size sequence 1 sends at most d  e  symbols in X [0  :
b −  1]. As such, its rate is lower than R ( 2 )  on message size
sequence 2.

C. Proof of Theorem 3 case τ L  <  b and τ L  =  (τ −  b)
Let d be an arbitrary positive even integer. Consider the

following two message size sequences for which the offline
construction will be shown below in Figures 12 and 13
respectively:

1) k(1) =  . . . =  k b − τ L  
=  d, and k b − τ L + 1  =  . . . =  k(1) =

2) k(2) =  . . . =  k(2) =  d, k(2) =  . . . =  k(2)     =  0,
k(2) =  d, and k(2)     =  . . . =  k(2) =  0.

Before presenting the proof in detail, we observe that the
proof could also be extended to similar message size sequences
where the sizes of each message packet is perturbed by a small
amount as long as d is large. More generally, the proof also
applies to any message size sequence that contains one of the
two above message size sequences proceeded and followed by τ
message packets sufficiently small relative to d.

We will present an offline coding scheme for the two
message size sequences with rates

R ( 1 )  =  
2b −  2τL  +  1.5

, R ( 2 )  =  
2b −  2τL  +  3

(27)
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Fig. 12.     The offline scheme for message size sequence 1 for case τ L  <  b
and τ L  =  (τ  −  b). Blue channel packets consist of message symbols, and
red channel packets consist of parity symbols. The numbers under the lines
at the bottom indicate the time slots. The offline scheme sends d  symbols in
X [ b  −  τ L ] .

on message size sequence 1 and 2, respectively. After present-
ing the scheme for each message size sequence, we verify that it
satisfies the lossless-delay and worst-case-delay constraints.

Offline scheme for message size sequence 1: The first ( b−τ L )
message packets are sent in the corresponding channel packets.
The message packet S [b −  τL ]  is divided in half to be evenly
transmitted over X [ b − τ L ]  and X [b]. Each of the next ( b − τ L )
channel packets comprises d parity symbols used to decode
(a) the first (b −  τ L )  message packets if the corresponding
channel packets are lost and (b) X [b] if X [ b  −  τL ]  and X [b]
are both lost. The summation of X [ b  −  τL ]  and X [b] is later
sent in X [2b] to ensure decoding of S [b − τ L ]  within delay τ .
The scheme is detailed below and shown in Figure 12:

• S [0] and S [ b − τ L ]  are each evenly divided into two com-
ponents of d/2 symbols each: S[0] =  (S (0) [0], S (1) [0])
and S [b −  τL ]  =  (S (0) [b −  τL ], S (1) [b −  τL ]).

• For i  � [b −  τ L  −  1], X [ i ]  =  S [i].
• X [ b  −  τL ]  =  S (0) [b −  τL ].
• X [b] =  S (1) [b −  τL ].
• X [ b  +  1] =  (S (0) [0], S (1) [0] +  S (1) [b −  τL ]).
• For i  � {1, . . . , b−τL −1}, X [ i + b + 1 ]  =  (X [ i + b ] + S [ i ] ) .
• X [ b  −  τ L  +  τ ] =  X [2b] =  (S (0) [b −  τL ]  +  S (1) [b −  τL ]).

Decoding: Each message packet is sent within the current
and perhaps next τ L  channel packets and is decoded when the
transmission is lossless. We now discuss how message packets
are recovered within a delay of τ under lossy conditions. Either
X [0] =  S[0] is received, or X [0] is lost. In the latter case, both
X [b] =  S (1) [b − 1] and X [b + 1]  =  (S (0) [0], S (1) [0] + S (1) [b −
1]) are received. Therefore, S[0] is decoded within the delay
of τ . Next, for i  � {1, . . . , b −  τ L  −  1}, either X [ i ]  =  S [i] is
received, or both X [ i + b ]  and X [ i + b + 1 ]  =  (X [ i + b ] + S [ i ] )
are received. Thus, S [i] is recovered within delay (b +  1 ≤
τ ). Either X [ b  −  τL ]  =  S (0) [b −  τL ]  is received, or X [2b −
τL ]  = (S (0) [0], S (1) [0] +  S (1) [b −  τL ])  + b − τ L − 1  S [i] is
received. In the latter case, S [0], . . . , S [b− τL − 1]  are decoded
by time slot (2b − 1) and combined with X [2 b − τ L ]  to decode
S (1) [b −  τL ]. S (1) [b −  τL ]  is then combined with X [2b] =
(S (0) [b −  τL ]  +  S (1) [b −  τL ])  to recover S (0) [b −  τL ]  within a
delay of τ . Therefore, S ( 0 ) [b − τ L ]  is decoded within delay τ .
Either X [b] =  S (1) [b −  τL ]  is received, or X [2b] =  (S (0) [b −
τL ]  +  S (1) [b −  τL ])  is received. Recall that S (0) [b −  τL ]  is
decoded by time slot 2b. Thus, S ( 1 ) [b − τL ]  is recovered within
delay τ .

Offline scheme for message size sequence 2: Each message
packet S [i] is transmitted in the corresponding channel packet
X [i] .  The next τ L  channel packets each comprise d parity
symbols. These dτL  symbols are used to decode (a) the first

IEEE  TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 6, JUNE 2023

Fig. 13.     The offline scheme for message size sequence 2 for case τ L  <  b
and τ L  =  (τ  −  b). Blue channel packets consist of message symbols and
red channel packets consist of parity symbols. The numbers under the lines at
the bottom indicate the time slots. The offline scheme sends d symbols in X [ b
−  τ L ] .

(b −  τ L )  message packets when the corresponding channel
packets are lost, and (b) S[b] when both X [ b − τ L ]  =  S [ b − τ L ]
and X [b] =  S[b] are lost. The sum of S [b −  τL ]  and S[b] is
sent in X [2b] to ensure that S [b − τ L ]  is recovered if X [ b − τ L ]
is dropped. The scheme is described in full detail below and
shown in Figure 13 :

• For i  � [b −  τL ]  � {b} ,  S [i] =  X [i ] .
• X [ b  +  1] =  (S [0] +  S[b]).
• For i  � {1, . . . , b−τL −1}, X [ i + b + 1 ]  =  (X [ b + i ] + S [ i ] ) .
• X [2b] =  (S [b] +  S [b −  τL ]).

Decoding: Each message packet is transmitted within the
corresponding channel packet and is decoded when the trans-
mission is lossless. We now discuss how each message packet is
decoded within a delay of τ under lossy conditions. Either
X [0] =  S[0] is received or both X [b] =  S[b] and X [ b  +  1] =
(S [0] +  X [b]) are received. Consequently, S[0] is decoded
within delay (b +  1 ≤  τ ). For i  � {1, . . . , b −  τ L  −  1}, either
X [ i ]  =  S [i] is received, or both X [ i  +  b] and X [ i  +  b +  1] =
(X [ i + b ] + S [ i ] )  is received. Therefore, each S [i] is recovered
within delay (b +  1 ≤  τ ). Either X [ b  −  τL ]  =  S [b −  τL ]  is
received, or X [2b −  τL ]  =  (S [b] + b − τ L − 1  S [i]) is received.
In the latter case, S [0], . . . , S [b − τL − 1] are decoded by time
slot ( b − τ L + τ )  and combined with X [2 b − τ L ]  to decode S[b].
Then, S[b] and X [2b] =  (S [b] +  S [b −  τL ])  used to recover
S[b −  τL ]. Therefore, S [b −  τL ]  is decoded within delay τ .
Either X [b] =  S[b] is received, or X [2b] =  (S [b] +  S [b −  τL ])
is received. In the latter case, subtracting S [ b − τ L ]  yields S[b].
Hence, S[b] is recovered within a delay of τ .
Proof of the converse result : The offline-optimal-rate is at
least R ( 1 )  and R ( 2 )  on message size sequences 1 and 2, respec-
tively (i.e., the rate of the offline scheme from Equation 27).
Next, we present necessary and mutually exclusive conditions
on the total number of symbols sent in X [0], . . . , X [b − 1] for
a code construction to attain rates at least R ( 1 )  and R ( 2 )  on the
two respective message size sequences. The two message size
sequences are the same until time slot b. Therefore, no online
coding scheme can satisfy the condition for both message size
sequences.

Condition for rate R ( 1 )  on message size sequence 1 : Con-
sider an arbitrary coding scheme for message size sequence 1.
At least d ( b−τ L + 1)  symbols are transmitted in X [b], . . . , X [t]
since X [0], . . . , X [b − 1] could be dropped in a burst. At most,
an additional d(b −  τ +  .5) symbols can be sent over
X [0], . . . , X [b −  1] if the rate is at least R( 1) .

Condition for rate R ( 2 )      on message size sequence 2 :
Consider any coding scheme for message size sequence 2.
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We will show that if

b−1

d′ = ni ≤  d(b −  τ L  +  .5) (28)
i = 0

then the rate is strictly less than R( 2) .  At a high level,
at least d(b −  τ L  +  2) symbols are sent in X [0], . . . , X [b −
1], X [2b], . . . , X [t] to satisfy the worst-case-delay constraint
when X [b], . . . , X [2b −  1] are lost. At least d(b −  τ L  +  1.5)
symbols must be sent in X [b], . . . , X [2b −  1] for the lossless-
delay and worst-case-delay constraints to be satisfied, as will
be shown shortly. In total, d(2b − 2τL  + 3.5) symbols are sent,
whereas at most d(2b −  2τ +  3) symbols are transmitted as
part of a scheme with a rate of at least R( 2) .

Next, the fact that sending at most d(b −  τ +  .5) symbols
over X [0], . . . , X [b −  1] leads to a rate of less than R ( 2 )  on
message size sequence 2 is proven in detail. Let S  be a random
variable drawn uniformly at random from the finite field Fq .
Recall from Appendix A  that for any i  � [t], (a) H (S [ i ] )  =
H (S )k i ,  and (b) H ( X [ i ] )  ≤  H (S )n i  (Equations 22 and 23).

We provide an upper bound on the sizes of the channel
packets as follows

d(b −  τ L  +  2)H (S )  =  H  (S [0 : b]) ≤                   (29)
H  (S [0 : b], X [0 : b −  1], X [2b : b +  τ ]) =            (30)
H  (X [0  : b −  1], X [2b : b +  τ ] ) +
H  S [0 : b]X [0 : b −  1], X [2b : b +  τ ] = (31)
H  (X [0  : b −  1], X [2b : b +  τ ]) ≤ (32)

b−1 b + τ

H  (S ) ni + ni . (33)
i = 0                 i = 2 b

Equation 29 follows from Equation 22, Equation 30 follows
from the definition of entropy, Equation 31 follows from the
chain rule, Equation 32 follows from the worst-case-delay
constraint, and Equation 33 follows from Equation 23.

Next, we will prove that H  (X [ b  : 2b −  1]) ≥  d(b −  τ L  +
1.5)H (S )  as follows

H  (X [0  : b −  1], S[0 : b −  τ L  −  1]) =
H  (X [0  : b −  1]) +  H  S [0 : b −  τ L  −  1]X [0 : b −  1] =

(34)

H  (X [0  : b −  1]) ≤  d ′H (S ) (35)
H  (X [0  : b −  1], S[0 : b −  τ L  −  1]) =
H  (S [0 : b −  τ L  −  1]) +
H  X [0  : b −  1]S[0 : b −  τ L  −  1] =                                  (36)
d(b −  τ L ) H  (S )  +  H  X [0  : b −  1]S[0 : b −  τ L  −  1]      (37)

where Equation 34 follows from the chain rule, Equation 35
follows from the lossless-delay constraint and Equation 28,
Equation 36 follows from the chain rule, and Equation 37
follows from applying Equation 22 to S[0], . . . , S[b −  τ −  1].

Rearranging terms yields
H 

 
X [0  : b −  1]S[0 : b −  τ L

 −  1]
 ≤  (d′  −  d(b −  τ L )) H (S ) (38)

Next, we bound the sizes of X [b], . . . , X [2b −  1] using

d(b −  τ L  +  2)H (S )  ≤  H  (S [0 : b]) ≤                                 (39)
H  (S [0 : b], X [0 : 2b −  1]) ≤                                                 (40)
H  (X [ b  : 2b −  1]) +  H  S [0 : b −  τ L  −  1]X [b : 2b −  1] +
H  X [0  : b −  1]S[0 : b −  τ L  −  1] +
H  S [b −  τ L  : b]X [0 : 2b −  1] = (41)
H  (X [ b  : 2b −  1]) +  H  X [0  : b −  1]S[0 : b −  τ L  −  1]

(42)
≤ H  (X [ b  : 2b −  1]) +  (d ′  −  d(b −  τ L ) ) H  (S ) , (43)

where Equation 39 follows from Equation 22, Equation 40
follows from the definition of entropy, Equation 41 follows
from the definition of conditioning, Equation 42 follows from
the worst-case-delay constraint (i.e., τ =  (τ L  +  b)) and the
lossless-delay (i.e., τ L  <  b), and Equation 43 follows from
Equation 38.

Rearranging terms yields

(d(2b −  2τL  +  2) −  d ′ ) H (S )  ≤  H  (X [ b  : 2b −  1])
2b−1

≤  H  (S ) ni. (44)
i = b

The total number of symbols sent in X [0  : b − 1] and X [2b :
b +  τ ] is at least d(b −  τ L  +  2) by Equations 29 through 33.
At least (d(2b −  2τL  +  2) −  d ′ ) symbols are sent in X [ b  :
2b −  1] by Equation 44. In total, at least
d(3b −  3τL  +  4) −  d′ ≥  

 
d(3b −  3τL  +  4) −  d(b −  τ L  +  .5)

=  d(2b −  2τL  +  3.5)

symbols are sent. Thus, the rate is strictly lower than R( 2) .
Summary : Any online scheme with rate at least R ( 1 )  on
message size sequence 1 sends at most d(b − τ L  + .5)  symbols
over X [0], . . . , X [b −  1]. Consequently, its rate is strictly less
than R ( 2 )  on message size sequence 2.

D. Proof of Theorem 3 case τ L  <  (τ −  b)
Let d be an arbitrary positive even integer. Consider the

following two message size sequences for which the offline
construction will be shown below in Figures 14 and 15
respectively:

1) k(1) =  . . . =  k(1)     =  d, and k(1) =  . . . =  k(1) =  0.
2) k0

2) =  . . . =  k τ − τ
L
− 2  =  d, k τ − τ

L
− 1  =  d(τL  +  1), and

k =  . . . =  k =  0.
Before we present the details of the proof, we point out that a
similar proof applies to when the sizes of the message
packets are approximately equal to those of the message size
sequences, as long as the deviation is small relative to d.
In addition, the proof extends to scenarios where one of the
two above message size sequence occurs at some point in the
transmission proceeded and followed by τ message packets
whose sizes are much less than d.

We will describe an offline coding scheme for message size
sequences 1 and 2 with rates

R ( 1 )  =  
2b −  .5

, R ( 2 )  =  
τ +  b

(45)
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Fig. 14. The offline scheme for message size sequence 1 for case
τ L  <  (τ  −  b). Blue channel packets consist of message symbols, and red
channel packets consist of parity symbols. The numbers under the lines at
the bottom indicate the time slots. The offline scheme sends d  symbols in
X [ b  −  1].

Fig. 15. The offline scheme for message size sequence 2 for case
τ L  <  (τ  −  b). Blue channel packets consist of message symbols and red
channel packets consist of parity symbols. The numbers under the lines at the
bottom indicate the time slots. The offline scheme sends d symbols in X [ b
−  1].

on the two respective message size sequences. We also verify
that the lossless-delay and worst-case-delay constraints are
satisfied.

Offline scheme for message size sequence 1: Each of
S[0], . . . , S[b −  2] is transmitted immediately as part of the
corresponding channel packet. Then S [b −  1] is divided in
half and evenly sent over X [ b  −  1] and X [b]. The next
(b − 1) channel packets each comprise d parity symbols. These
d(b−1) parity symbols are used to decode (a) message packets
S[0], . . . , S [b−2] when the corresponding channel packets are
lost, and (b) X [b] when both X [ b  −  1] and X [b] are lost. The
summation of X [ b  −  1] and X [b] is sent in X [2b] to ensure
that S [b −  1] is decoded within a delay of τ . The scheme is
described in detail below and shown in Figure 14 :

• The message packets S[0] and S [b − 1] are divided in half
into S[0] =  (S (0) [0], S (1) [0]) and S [b −  1] =  (S (0) [b −
1], S (1) [b −  1]).

• For j  � [b −  2], X [ j ]  =  S [j ].
• X [ b  −  1] =  S (0) [b −  1].
• X [b] =  S (1) [b −  1].
• X [ b  +  1] =  (S (0) [0], S (1) [0] +  S (1) [b −  1]).
• For i  � {1, . . . , b −  2}, X [ i  +  b +  1] =  ( X [ i  +  b] +  S [i]).
• X [2b] =  (S (0) [b −  1] +  S (1) [b −  1]).

Decoding: Each message packet is sent within the current
and perhaps next channel packets and is decoded when the
transmission is lossless. We now discuss how each message
packet is decoded within delay τ under lossy conditions.
Either X [0] =  S[0] is received, or both X [b] =  S1[b −  1]
and X [ b  +  1] =  (S (0) [0], S (1) [0] +  S (1) [b −  1]) are received.
Thus, S[0] is decoded within a delay of (b +  1 ≤  τ ).
For j  � {1, . . . , b −  2}, either X [ j ]  =  S [j ]  is received, or
both X [ j  +  b] and X [ j  +  b +  1] =  ( X [ j  +  b] +  S [j ])
are received. Therefore, S [j ]  is decoded within delay (b +  1
≤  τ ). Either X [ b  −  1] =  S (0) [b −  1] is received, or X [2b
−  1] is received. In the latter case, S[0], . . . , S[b −  2] are
decoded by time slot (2b −  1) and are combined with X [2b
−  1] = (S (0) [0], S (1) [0] +  S (1) [b −  1]) + b−2  S [i]
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to recover S (1) [b − 1]. The receiver then decodes S (0) [b − 1] =
(X [2b] − S (1) [b − 1]) within delay (b + 1 ≤  τ ). Either X [b] =
S (1) [b − 1] is received, or X [2b] =  (S ( 0) [b − 1] + S (1) [b − 1]) is
received and combined with S (0) [b − 1] to recover S (1) [b − 1]
within delay τ .

Offline scheme for message size sequence 2: Each of
S[0], . . . , S[τ − τ L  − 2]  is transmitted within the corresponding
channel packet. The symbols of S [τ −  τ L  −  1] are evenly
divided into (τ L  +  1) components sent over X [τ  −  τ L  −
1], . . . , X [τ − 1] respectively. Each of X [τ ], . . . , X [τ + b − 1 ]
comprises d symbols, which creates d blocks of the [τ +  b, τ ]
systematic block codes (described in Section B). The scheme is
presented in detail below and shown in Figure 15:

• For j  � [τ −  τ L  −  2], X [ j ]  =  S [j ].
• The message packet S [τ −  τ L  −  1] is evenly divided

into (τ L  +  1) components of size d: (S (0) [τ −  τ L  −
1], . . . , S (τL ) [τ −  τ L  −  1]).

• For j  � {τ  −τL −1, . . . , τ  − 1 } ,  X [ j ]  =  S ( j − τ + τ L + 1 ) [ τ  −
τ L  −  1].

• For each z � [d −  1], an instance of the block code
from [8] is created that maps ( X  [0], . . . , X [τ −  1]) to
(Xz [0], . . . , Xz [τ −  1], p(z) , . . . , p(z) ).

• For j  � [b −  1], X [τ  +  j ]  =  (p(0) , . . . , p(d−1) ).

Decoding: Each message packet is sent over the current and
perhaps next τ L  channel packets and is decoded when the
transmission is lossless. Under lossy conditions, the block code
(Xz [0], . . . , Xz [τ −  1], p(z) , . . . , p(z) )  is used for decoding.
For z � [d −  1]: (a) Each symbol Xz [ i ] ,  for i  � [b −  1], is
decoded within a delay of τ . (b) Each symbol Xz [ i ] ,  for i  � [τ
− 1] \ [b − 1], is decoded by time slot (τ + b − 1) .  Thus, the
worst-case-delay constraint is satisfied.

Proof of the converse result : The rates R ( 1 )  and R ( 2 )  of
the above construction (Equation 45) for message size
sequences 1 and 2, respectively, serve as a lower bound on
the offline-optimal-rate for the two message size sequences.
Next, we present mutually exclusive conditions on the number
of symbols transmitted in the first b channel packets to have
rates at least R ( 1 )  or R ( 2 )  on message size sequences 1 or 2,
respectively. The online coding schemes cannot differentiate
between the two message size sequences before the time slot b.
Hence, the number of symbols sent in X [0], . . . , X [b −  1]
by any online scheme violates the condition for at least one
message size sequence.

Condition for rate R ( 1 )      on message size sequence 1 :
Consider any coding scheme for message size sequence 1.
At least db symbols are transmitted in X [b], . . . , X [t] in case
there is a burst loss of X [0], . . . , X [b −  1]. The rate is at
least R( 1) ,  so at most d(b − .5) additional symbols are sent in
X [0], . . . , X [b −  1].

Condition for rate R ( 2 )      on message size sequence 2 :
Consider any coding scheme for message size sequence 2.
We will demonstrate that if

b−1

ni ≤  d(b −  .5) (46)
i = 0
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then the rate is strictly less than R ( 2 )       =   τ  in two
steps. First, we will show that all symbols are transmitted by
X [τ  +  b −  1] without loss of generality. Second, we prove
that strictly more than db symbols may be lost. At least
dτ additional symbols are sent to meet the worst-case-delay
constraint, leading to a lower rate than R(2 ) .
Step 1: If X [τ  + b − 1 ]  is lost, then X [0  : τ − 1] are received,
which yields S [0 : τ − τ L  − 1] by the lossless-delay constraint.
Thus, all symbols sent after the time slot (τ +  b) can instead
be sent in X [τ  +  b −  1].
Step 2: Consider the following erasure channels C i  for i  � [τ
+  b −  1]. Each C i  introduces bursts of packet losses in
{X [j ] , . . . , X [ j  +  b −  1] | j  ≡  i  mod (τ +  b)}  and results in
l i  lost (dropped) symbols.12 At least d(τ + b )  symbols are sent
in total due to the upper bound on the rate of τ + b ,  leading to

τ + b − 1

l i  ≥  db(τ +  b) (47)
i = 0

τ + b − 1

l i  ≥  db(τ +  b −  1) +  .5d (48)
i = 1

τ + b − 1

τ +  b −  1 
i = 1      

l i  ≥  db +  
τ +  b −  1

, (49)

where Equation 47 follows from each packet (and hence each
symbol) being dropped by exactly b channels, and Equation 48
follows from Equation 46.

Hence, there is some i  � {1, . . . , τ +  b −  1}  for which
l i  ≥  (db +       .5d      ). In order to satisfy the worst-case-delay
constraint over channel C i ,  at least dτ symbols are received
outside of the channel packets dropped by C i .  Thus, the total
number of symbols sent is at least d(τ + b + τ + b −1 ) .  In contrast,
at most d(τ +  b) symbols are sent if the rate is at least R t

.
Summary : Any online coding scheme with a rate of at least
R ( 1 )  on message size sequence 1 sends at most d(b −  .5)
symbols in X [0], . . . , X [b−1]. Consequently, its rate is strictly
lower than R ( 2 )  on message size sequence 2.
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