


Theory and Practice of Logic Programming 731

about the agent’s world knowledge but also about other agents’ mental state is referred

to as epistemic reasoning, for which a variety of modal logics have been developed (Fagin

et al. 1995). Epistemic modal logic is widely recognized as a specification language for

a range of domains, including robotics, games, and air traffic control (Belardinelli and

Lomuscio 2007).

While a number of sophisticated formal logics have been proposed for modeling such

contexts, from areas such as philosophy, knowledge representation, and game theory,

they do not, to a large extent, address the problem of knowledge acquisition. Classically,

given a set of observations, the most common approach is that of explicit hypothesis con-

struction, as seen in inductive logic programming (Muggleton and de Raedt 1994) and

statistical relational learning (Getoor and Taskar 2007; De Raedt and Kersting 2011).

Here, we construct sentences in the logic that either entail observations or capture as-

sociations in those with high probability. By contrast, a recent line of work initiated

the idea of an implicit knowledge base constructed from observations (Juba 2013). The

implicit approach avoids the construction of an explicit hypothesis but still allows us

to reason about queries against noisy observations. This is motivated by tractability: in

agnostic learning (Kearns et al. 1994), for example, where one does not require examples

(drawn from an arbitrary distribution) to be fully consistent with learned sentences, ef-

ficient algorithms for learning conjunctions in propositional logic would yield an efficient

algorithm for probably approximately correct (PAC)-learning DNF (also over arbitrary

distributions), which current evidence suggests to be intractable (Daniely and Shalev-

Shwartz 2016). Since the discovery of this technique, learning with the PAC semantics

has been extended to certain fragments of first-order logic (Belle and Juba 2019). Given

the promise of this technique, but also taking into consideration the hardness of reasoning

in epistemic logic (PSPACE-complete when there is more than one agent (Fagin et al.

1995)), we continue this line of work for the problem of implicitly learning with epistemic

logic.

The extension to epistemic logics raises numerous challenges not previously considered

by any other work on the PAC semantics. In the first place, we must describe the learning

process in a multi-agent epistemic framework, where previously the PAC semantics had

only been considered as an extension of Tarskian semantics. In addition, implicit learning

generally relies on three steps: first, to argue that the way of accepting the observations

with background theory and accepting a high number of them is correct as per PAC se-

mantics. Secondly, to measure the sample complexity, that is, how many observations are

required to provably assert that the query is entailed given a user-specified error bound.

Finally, we want to look at under what circumstances could this algorithm achieve a

polynomial run time. On the last point, given that reasoning in epistemic logics, espe-

cially in multi-agent epistemic logics is PSPACE-complete (Halpern 1997; Bacchus et al.

1999; Fagin and Halpern 1994; Halpern 2003) it might seem like there is no hope for this

problem. In this article, we provide in fact, concrete results about sample complexity and

correctness, as well as polynomial time guarantees under certain assumptions. Our learn-

ing task is similar to an unsupervised learning model, however, our end task is deciding

query entailment with respect to background knowledge and partial interpretations.

In this work, we show how to extend the implicit learning approach to epistemic modal

formulas, yielding agnostic (implicit) learning of epistemic formulas for the purposes of

deciding entailment queries. We leverage some recent results on the so-called Represen-
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tation Theorem explored for single-agent and multi-agent epistemic logics (Levesque and

Lakemeyer 2001; Belle and Lakemeyer 2014; Schwering and Pagnucco 2019). In these

results, in addition to the standard operator for knowledge, a modal operator for only

knowing is introduced (Levesque 1990), which provides a means to succinctly charac-

terize all the beliefs as well as the non-beliefs of the agent. For example, only knowing

proposition p, denoted as O(p), entails knowing K(p): O(p) � K(p), however, only know-

ing p does not entail another proposition q: O(p) � q, for all p �= q. Thus, this is quite

attractive to capture everything that is known. It can be shown that to check the validity

of O(φ) → K(α) when φ is objective and α can mention any number of Ki modalities

in the presence of negation, conjunction, and disjunction, can be reduced to proposi-

tional reasoning. Although propositional reasoning is already NP-complete, it is known

that there are a number of approaches for tractability including bounded space treelike

resolution (Esteban and Torán 2001) and bounded-width resolution (Galil 1977). In the

multi-agent setting, the natural extension of this to the Representation Theorem is al-

lowing for a knowledge base of this sort OA(φ ∧ OB(ψ ∧ ...) ∧ OC(...)), which specifies

everything that the root agent, say A, knows as well as everything that the root agent

believes agent B knows and C knows and so on. This admittedly can seem like a strong

setting but recent results have shown how this can be relaxed (Schwering and Pagnucco

2019). The other way to motivate this approach is that initially, perhaps nothing is known

or all start with common beliefs, and then new knowledge can be acquired as actions

happen. For example, in a paper by Belle and Lakemeyer (Belle and Lakemeyer 2015),

it is shown how the setting provides a natural way to capture the muddy children puzzle

(Fagin et al. 1995). Under the assumption that you have one of these background theo-

ries, and we are interested in the entailment of KAα, where α can mention any number

of Ki operators for any i and arbitrarily nesting, the Representation Theorem establishes

that this reduces to propositional reasoning. However, even though this holds, the key

concern is because we have specified what is only known, we need a way to incorporate

observations to formalize learning from such observations. We focus on the case where

an agent in the system wishes to use learning to update its knowledge base. We allow for

a new modality, an observational modality [ρ] that we borrow from multi-agent dynamic

logics with a regression operator (Belle and Lakemeyer 2014), and show that this pro-

vides a logically correct approach for incorporating observations and thereby checking

the entailment of the query. Beyond the novelty of our technical results, we also note

that there are very few approaches for knowledge acquisition with epistemic logics de-

spite them being one of the most popular modal logics in the knowledge representation

community. That is, with this paper, we are making advances both in machine learning

as well as the knowledge representation literature.

2 Preliminaries

We define the reasoning problem as follows: in a system of multiple agents, each agent

has some background knowledge encoded in a knowledge base and receives information

about the environment through the sensors, which are encoded as partial observations.

We then ask the root agent queries about the environment. After receiving the partial

observations, the agent returns with some degree of validity the answer for the specified

query. In epistemic reasoning, we distinguish between what is true in the real world and
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what the agents know or believe about the world. For example, the beliefs of agent A

about the world may differ from agent B’s knowledge, and what agent A believes B to

know may differ from what B actually believes. In the context of multi-agent reasoning,

we are interested in deciding the entailment of an input query about the other agents with

respect to a background theory which contains the beliefs of agents in the application

domain.

Syntax. Let Ln be a propositional language which consists of formulas from the finite

set P of propositions and connectives ∧,∨,¬,→. Let OL n be the epistemic language

with additional modal operators. First, Ki: Kiα is to be read as “agent i knows α”,

where i ranges over the finite set of agents Ag = {A,B}, which, for simplicity, assumes

two agents, although this can be extended to many more agents. Second, Oiα is to be

read as “all that agent i knows is α” to express that a formula is all that is known. The

only knowing operator is instrumental in capturing the beliefs as well as the non-beliefs

of agents (Belle and Lakemeyer 2014; Levesque 1990).

Somewhat unusually, as discussed above, borrowing from the dynamic version of OL n

(Belle and Lakemeyer 2014), we introduce a dynamic operator [ρ] such that [ρ]α is un-

derstood as formula α is true after receiving the observation ρ. In particular, assume a

finite set of observations OBS with elements consisting of conjunctions over the set P ,

for example, OBS = {p, p ∧ q, . . . , (p ∧ ¬q) ∧ r}. The elements of OBS are used strictly

within the dynamic operator [ρ]. In order to interpret the action symbol, we will intro-

duce a sensing function, one corresponding to each agent obsi, that takes as argument

the action symbol and returns either the observation it corresponds to or simply returns

true. A well-defined formula is then of the form [ρ]α where α is either propositional or at

most mentions knowledge modalities Ki. For example obsA(p ∧ q) = p ∧ q. It is not nec-

essary that obsA(p∧ q) = obsB(p∧ q). For instance, we may also have obsB(p∧ q) = true

and obsA(p ∧ q) = p. In other words, the agents may obtain different observations from

the same observational action. Suppose agent B looks at a card, he will be able to read

what is written on the card whereas every other agent now knows that B has read the

card but not what the card says. This is a simplified account from previous work by

Belle and Lakemeyer (2014), mainly because we need to deal with a single observation

for the purposes of this paper. It will be straightforward to extend it to a sequence of

observations, however. Moreover, we will be appealing to Regression over sensing actions

from that work in our approach.

Semantics. The semantics is provided in terms of possible worlds and k-structures (Belle

and Lakemeyer 2014). We distinguish the mental state of an agent from the real world

and make use of epistemic states to model different mental possibilities. The standard

literature uses the Kripke structure to model multi-agent epistemic states (Fagin et al.

1995). For this work, we use k-structures (Belle and Lakemeyer 2014) instead, which

deviates from the Kripke structure in the way the epistemic state is defined. The k-

structure uses sets of worlds at different levels, the idea being that the number of levels

corresponds to the number of alternating modalities in the formula. The i-depth is defined

as follows:

Definition 1 (i-depth (Belle and Lakemeyer 2014))

The i-depth of α ∈ OL n where i is the agent’s index, denoted |α|i, is defined inductively

as:
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• |α|i = 1 for propositions;

• |¬α|i = |α|i;

• |α ∨ β|i = max(|α|i, |β|i);

• |[ρ]α|i = |α|i, where ρ ∈ OBS;

• |Miα|i = |α|i,Mi ∈ {Ki, Oi}, and

• |Mjα|i = |α|j + 1,Mj ∈ {Kj , Oj} and i �= j.

Note that the dynamic modality has no impact on the i-depth of the formula, as it

does not refer to the agent’s knowledge. The reason for choosing k-structures instead of

the classical Kripke is because it provides a very simple semantics for only knowing in

the multi-agent case (Belle 2010). Beliefs are reasoned about in terms of valid sentences

of the form: OA(Σ) � KAα, read as “if Σ is all that the agent A believes, then the

agent knows α”. In the interest of simplicity, we focus for the rest of the paper on only

two agents A and B, where moreover A is the root agent, in the sense that we will be

interested in what A knows and what A observes, and the queries will be posed regarding

A’s knowledge. The i-depth of a formula α is agent dependent, so it can have A-depth

k and B-depth j in terms of the nestings of modalities. A formula is i-objective if its

i-depth is 0 and objective if both its A- and B-depths are 0. The k-structure might be

used with a subscript to denote the agent possessing that mental state and a superscript

to represent the depth of the modal operators.

We denote the set of worlds by W and the set of k-structures for an agent A by ekA.

A world w ∈ W is a function from the set P to {0, 1}, that is, a world stipulates which

propositions are true, such that if w[p] = 1 then p is true at the world, and false otherwise.

A k-structure models an agent’s knowledge using the possible worlds approach: an agent

A say, knows the statements that are true in all the worlds they consider possible. To

account for what agent A knows about B’s knowledge, every possible world of A is

additionally associated with a set of worlds that A knows B to consider possible.

Definition 2 (k-structure (Belle and Lakemeyer 2014))

A k-structure ek, where k ≥ 1 is defined inductively as:

• e1 ⊆ W × {{}}; and

• ek ⊆ W ×Ek−1, where Ek is the set of all k-structures.

Therefore, with two agents {A,B}, a (k, j)-model is a triple (ekA, e
j
B , w), where ekA

is a k-structure for A, ejB is a j-structure for B and w is a world. Before introducing

satisfaction, we need to talk about the compatibility of worlds after an observation, and

this is agent-specific1. For any two worlds w,w′ and observation ρ ∈ OBS ∪ {〈〉}, let

us define w ∼i
ρ w′ iff w[obsi(ρ)] = w′[obsi(ρ)] = 1. That is, agent i considers w and w′

to be compatible iff i’s sensory data for the observation ρ is the same in both. When

ρ = 〈〉, then w ∼i
ρ w′ holds, that is, all worlds are compatible if no sensing has happened.

Essentially, either ρ is an action or the empty sequence where no observation has taken

place. Now, we define satisfaction following the work of Belle and Lakemeyer (Belle

and Lakemeyer 2014) but modified to account for the adaptations we have introduced

above:

1 Our theory of knowledge is based on knowledge expansion where sensing ensures that the agent is
more certain about the world (Scherl and Levesque 2003).
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Definition 3 (Satisfaction)

For any z ∈ OBS ∪ {〈〉}, we determine whether a formula is true or false after receiving

the observation z, written as (ekA, e
j
B , w, z) |= α and defined as follows:

• ekA, e
j
B , w, z � p iff w[p] = 1, if p is an atom;

• ekA, e
j
B , w, z � ¬α iff ekA, e

j
B , w, z � α;

• ekA, e
j
B , w, z � α ∨ β iff ekA, e

j
B , w, z � α or ekA, e

j
B , w, z � β;

• ekA, e
j
B , w, z � [ρ]α iff z = 〈〉 and ekA, e

j
B , w, ρ � α;

• ekA, e
j
B , w, z � KAα iff for all w′ ∈ W , w′ ∼A

z w and for all ek−1
B ∈ Ek−1, if (w′, ek−1

B ) ∈

ekA then ekA, e
k−1
B , w′, 〈〉 � α;

• ekA, e
j
B , w, z � OAα iff for all w′ ∈ W , w′ ∼A

z w and for all ek−1
B ∈ Ek−1, (w′, ek−1

B ) ∈ ekA
iff ekA, e

k−1
B , w′, 〈〉 � α;

• ekA, e
j
B , w, z � KBα iff for all w′ ∈ W , w′ ∼B

z w and for all ej−1
A ∈ Ej−1, if (w′, e

j−1
A ) ∈

e
j
B then ekA, e

j−1
B , w′, 〈〉 � α;

• ekA, e
j
B , w, z � OBα iff for all w′ ∈ W , w′ ∼B

z w and for all ej−1
A ∈ Ej−1, (w′, e

j−1
A ) ∈ e

j
B

iff ekA, e
j−1
B , w′, 〈〉 � α;

So the main difference between only-knowing and knowing is the “iff” rather than

“if” which forces every pair of world and (k − 1)-structure where α is satisfied to be

included, and only these to be included in ekA. Note also that on evaluating the epistemic

operators, when z = 〈〉, the compatibility can be fully ignored. But when z ∈ OBS, we

then look at compatible worlds and evaluate α in the corresponding models against the

empty sequence.2 We say α is satisfiable if there is a model of appropriate depth, and

valid if it is true in every such model. Note that it is the property of the logic that if

α is of depth k, and it is valid in all k-structures, it is also valid in all k + n-structures

for n ∈ {0, 1, . . .}. So for all intents and purposes, we can stop caring about the depth of

formulas as any class of semantic structures of the corresponding or higher depth suffice

for reasoning. We often write ekA, e
j
B , w |= α to mean ekA, e

j
B , w, 〈〉 |= α.

3 Sensing

We model the agent receiving information about the world through observations. The

observations received are represented as [ρ], where ρ is an action standing for a proposi-

tional conjunction drawn from OBS, interpreted, say, as reading from a sensor. We now

need to discuss how information from the sensors can be incorporated into the knowledge

of the agent in a formal way. Recall that since we start with agents only-knowing formu-

las, we cannot simply conjoin new knowledge. That is why we leverage an insight from

the dynamic multi-agent only knowing framework: what the agent knows after sensing

is contingent on what was known previously in addition to observing some truth about

the real world (Belle and Lakemeyer 2014). In other words, the following is a theorem in

the logic:

Theorem 4 (Sensing (Belle and Lakemeyer 2014), Th.19 )

Given objective formulas Σ,Σ′, and Γ; a formula α that is either propositional or at most

mentions Ki operators; and an observation ρ, then:

Γ ∧OA(Σ ∧OBΣ
′) � [ρ]KAα iff Γ ∧OA(Σ ∧OBΣ

′) � obsA(ρ) ∧KA(obsA(ρ) → [ρ]α).

2 For the case where k = 1, the recursive level for agent B will be of depth 0, which corresponds to
classical entailment.
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The proof is based on the fact that when the sensing action happens, we only look

at worlds that agree with the sensed observation (in accordance with the semantics for

the dynamic operator). Therefore not only must the sensed observation hold in the real

world, but also knowing this observation must mean that α is known (assuming it was

not known already). Note two points: first, the observations are assumed to not conflict

with what was already known or with Γ, which represents the real world; that is, as

discussed before, we are operating under the setting of knowledge expansion and not

belief revision. The agent may be ignorant about something and the sensing adds more

knowledge to the agent, but it is not possible for the agent to know something which

is then contradicted by an observation. This is the standard setting in the epistemic

situation calculus (Scherl and Levesque 2003). Second, the sensing theorem works very

much like the successor state axiom for knowledge in the epistemic situation calculus

(Scherl and Levesque 2003); however, in the latter, it is a stipulation of the background

theory, whereas here it is a theorem of the logic. The sensing theorem establishes that

[ρ]KAα ≡ o∧KA(o → [ρ]α), where o = obsA(ρ), and it is the RHS that we will make use

of in our learning theorem. Note, however, that in the RHS, the dynamic modality is now

being applied to α. At this point, the sensing theorem applies recursively and stops when

it is in the context of a propositional formula. That is, [ρ]α = α if α is propositional; and

[ρ]α = o′ ∧Ki(o
′ → [ρ]β) if α = Kiβ, where o′ = obsi(ρ).

This is the essence of the Regression Theorem (Belle and Lakemeyer 2014), where the

application of an observational action in the context of a propositional formula yields

the formula itself because sensing does not affect truth in the real world. Only when

it encounters an epistemic operator, it uses the RHS of the sensing theorem. In what

follows, for improving readability, we abuse notation and sometimes use ρ outside the

dynamic operator to mean the corresponding observation w.r.t. the root agent. That is,

we write a formula such as ρ ∧ α to mean obsA(ρ) ∧ α. Likewise, we write KA(ρ ⊃ [ρ]α)

to mean KA(obsA(ρ) ⊃ [ρ]α), that is, inside the dynamic operator ρ is left as is but

everywhere else it is being replaced by the observational formula that it corresponds to.

4 Reasoning

The language in general allows for arbitrary nesting of epistemic operators. And as

already mentioned, at least for formulas not mentioning the dynamic operator and

only knowing, k-structures can be shown to be semantically equivalent to the Kripke

structures with respect to the entailment of a formula. What we are interested in

now is finding a connection between validity and what we require in the learning al-

gorithm. To do this we need to resolve two issues: first, how can observations be in-

corporated into the background knowledge, and second, how can the entailment of

the query with respect to the background knowledge as well as the observations be

evaluated?

It is important to appreciate that the second challenge deserves great attention be-

cause we are dealing with noisy observations. Roughly speaking, the way implicit learning

works (Juba 2013) given a set of noisy observations is that the conjunction of the back-

ground knowledge together with the observation is used to check if the query formula

logically follows. Suppose this happens for a high proportion of the observations. In that

case, the query is accepted by the decision procedure which can be seen as implicitly
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including whatever formula might be captured by the high proportion of observations.

So checking logical validity will be an important computational component of the overall

algorithm. We will only obtain a polynomial time learning algorithm if checking validity

is in polynomial time. It is widely known that reasoning in the weak-S5 is PSPACE-

complete (van Ditmarsch et al. 2015). So what hope do we have? Not surprisingly, with

the only-knowing operator, the reasoning is much harder, at the second level of the poly-

nomial hierarchy even for a single agent (Rosati 2000). However, as it turns out, there

is a very popular and interesting result: if one is interested only in the validity of the

formulas O(Σ) → Kα, this can be reduced to propositional reasoning. (However, this, in

fact, is co-NP hard (Levesque and Lakemeyer 2001), but that is another matter because

much is known about bounded proofs in propositional logic (Juba 2012; 2013). Like-

wise, when we consider multi-agent knowledge bases of the form OA(φ ∧OB(ψ ∧ ...)...),

where φ and ψ are objective formulas, and we are interested in the entailment of KAα,

where α does not mention dynamic “[·]” nor “Oi” operators, we can reduce it to propo-

sitional reasoning (Belle and Lakemeyer 2014). The reduction to propositional reasoning

is achieved using the Representation Theorem denoted by the operator || · ||, first intro-

duced by Levesque and Lakemeyer (Levesque and Lakemeyer 2001). It works by going

through a formula and replacing knowledge of an objective sentence by either true/false

according to whether the sentence is entailed by the given knowledge base Σ. This idea

is then generalized to non-objective knowledge by working recursively on formulas from

the inside out.

Definition 5 (Representation Theorem (Belle and Lakemeyer 2014), simplified from

Def.25 ) Let φ and ψ denote the set of sentences only known by agent A and B respec-

tively. Then for any epistemic formula α, ||α||φ,ψ is defined as follows:

1. ||α||φ,ψ = α, if α is objective;

2. ||¬α||φ,ψ = ¬||α||φ,ψ;

3. ||α ∨ β||φ,ψ = ||α||φ,ψ ∨ ||β||φ,ψ;

4. ||KAα||φ,ψ = φ → ||α||φ,ψ;

5. ||KBα||φ,ψ = ψ → ||α||φ,ψ.

Putting it together, suppose that φ, ψ are objective formulas and α is an epistemic

formula that does not mention {Oi, [·]} operators. Then OA(φ∧OBψ) � KAα if � ||α||φ,ψ,

where ||α||φ,ψ is a propositional formula. The reduction works by slicing up the knowledge

base and query at the modal operator and transforming these formulas into objective

formulas.

Originally, the Representation Theorem used a second operator RES[·, ·] (Levesque

1990) in Cases 4 and 5, but for propositional languages, this operator simplifies to check-

ing entailment w.r.t. the indicated agent’s knowledge base.

Example 6

Suppose we have a query α of the form α = KAKBp and φ, ψ are sets of sentences

believed by the agent A and B respectively, that is, OA(φ ∧ OB(ψ)). Since α contains

modal operators, we apply Cases 4 and 5 recursively: first, since the query has KA

at the outermost position, we refer to the knowledge base believed by A in Case 4,

obtaining ||KAKBp||φ,ψ = φ → ||KBp||φ,ψ. Then, we recursively apply Case 5 to obtain

||KBp||φ,ψ = ψ → ||p||φ,ψ.
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And then because p is an atom, which is objective, ||p||φ,ψ = p, so ||KAKBp||φ,ψ =

φ → ||KBp||φ,ψ = φ → (ψ → ||p||φ,ψ)

which finally results in checking the validity of φ → (ψ → p), or equivalently

(φ ∧ ψ) → p.

Corollary 7

Suppose φ, ψ are sets of sentences believed by the agent A and B respectively and α is an

epistemic formula from OL n that does not mention the {Oi, [·]} operators. Suppose ρ

is a propositional formula. Then, OA(φ ∧OBψ) ∧ ρ � α iff ρ → ||α||φ,ψ, where || · || is as

above.

The following example is adapted and modified from Belle and Lakemeyer (2014):

Example 8 Card game

Suppose two agents A and B are playing a card game with cards numbered from 1 to 4.

The cards have been shuffled and two face-down cards are dealt, one to each agent. A

player picks a card, reads the number on it, and has to decide whether to challenge the

other player or not. Once the other player responds by showing their card, the player

with the highest number on the card wins.

We use the notation NA = #1 to represent that agent A has drawn card number 1

from the deck, and analogously for agent B we use NB . The initial conditions Σ are

represented by:

1. ((NA = #1) ∨ (NA = #2) ∨ (NA = #3) ∨ (NA = #4)) ∧ ((NB = #1) ∨ (NB =

#2) ∨ (NB = #3) ∨ (NB = #4)): each agent draws only one card from the deck;

2. (NA = #4) ≡ (NB = #1) ∨ (NB = #2) ∨ (NB = #3): the card agent A draws must

be distinct from agent B’s card (and likewise for other combinations);

3. WA ≡ (NA = #2 ∧ NB = #1) ∨ (NA = #3 ∧ NB = #1) ∨ (NA = #4 ∧ NB =

#1) ∨ (NA = #3 ∧ NB = #2) ∨ (NA = #4 ∧ NB = #2) ∨ (NA = #4 ∧ NB = #3);

Agent A wins the round if he draws a card with a higher number than agent B, and

analogously when agent B is winning;

4. (¬WA ∧ ¬WB): initially, no agent has won the game; and

5. finally, we also need to introduce the observational actions. For every card picking

action Ni = #n, we assume an action ρin. Clearly, such an action should tell agent i

that his card is n, but should not reveal anything else to the other agent. (Interestingly,

by the above formulas, the agent i should be able to infer that the other agent has

any card but n; we will come to this later.) So, we define obsi(ρin) = (Ni = #n) but

obsj(ρin) = true for j �= i. By extension, define the action ρin,jk to mean i has read

the value n and j the value k, and thus, obsi(ρin,jk) = n and obsj(ρin,jk) = k.

Both agents A and B have the same initial knowledge about the game, encoded by

a formula φ which also includes the sensing rule described above. Let us say that agent

A draws card #4 and agent B draws card #3. These observations are represented by

(NA = #4) ∧ (NB = #3). Since we are making the case for the root agent to be A we

have the initial theory as θ = OA(φ ∧OB(φ)) ∧ [(NA = #4) ∧ (NB = #3)]. We can then

reason about beliefs and non-beliefs. The following properties follow:

1. θ � ¬KA(NA = #1) ∧ ¬KA(NA = #2) ∧ ¬KA(NA = #3) ∧ ¬KA(NA = #4);
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Initially, agent A does not know the card he has.

2. θ � [ρA4]KA(NA = #4); After A picks up his card, and then sensing the card, agent

A knows that the number is 4.

3. θ � [ρA4]KA¬(NB = #4); The logical reasoning allows A to infer that NB is one of

{#1,#2,#3}.

4. θ � [ρA4]KA(¬KB((NA = #1)); Agent A knows that agent B does not know the

number on A’s card, by means of his knowledge of the sensing actions (likewise for

the NA = #2, NA = #3, NA = #4).

5. θ � [ρA4]KAKB(KA(NA = #1) ∨KA(NA �= #1)); Agent A knows that agent B does

not know the number of his card, but nonetheless knows that A knows whether he

has the card.

6. θ � [ρA4]KAWA ∧ KA¬KBWA; By logical reasoning, A infers that he has won but

knows that B does not know this.

7. θ � [ρA4,B3]KA(KB¬(NB = #4));

After both agents see their cards, A knows that B knows his card, which cannot be

NB = #4 since A has the card with the number 4. At this point in the game, if B had

obtained the card with value 1, only then would he know he has lost. But since he has

the value 3, he does not know that he has lost, because, after all, A could have the

card with value 2. By extension, A also does not know that B does not know. This is

because only if B’s card had the value 1, B knows that he has lost. But in all other

circumstances, B could still imagine that he has the higher card.

5 PAC semantics

Various approaches have been proposed in the attempt to gain efficient and robust learn-

ing, including inductive logic programming (Muggleton and de Raedt 1994) and concept

learning (Valiant 1984). Concept learning, also known as PAC learning is a machine

learning framework where the classifier receives a finite set of samples from distribu-

tion and must return a generalization function within a class of possible functions. This

approach aims to produce with high probability (P) a function that has a low generaliza-

tion error (AC). In the context of logic, Valiant (2000) proposed the PAC Semantics, a

weaker semantics (compared to the classical entailment) for answering queries about the

background knowledge, that integrates noisy observations against a logical background

knowledge base. The knowledge is represented on one hand by a collection of axioms

about the world, and on the other, by a set of examples drawn from an (unknown) dis-

tribution. In this way, the algorithm uses both forms of knowledge to answer a given

query, which one may not be able to answer using only the background knowledge or the

standalone examples. The output generated by this approach does not, however, cap-

ture the sense of validity in the standard (Tarskian) sense; rather, validity is defined as

follows:

Definition 9 (1− ε)-validity

Suppose we have a distribution D supported on Ek
A×E

j
B×W and α an epistemic formula

α ∈ OL n, that does not mention {Oi, [·]} operators. Then we say that α is (1− ε)-valid

iff Pr(ek
A
,e

j
B
,w)∈Ek

A
×E

j
B
×W

[(ekA, e
j
B , w) � α] ≥ 1 − ε, where (ekA, e

j
B , w) is a model from

Ek
A × E

j
B × W . If ε = 0, we say that α is perfectly valid.
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It is worth pointing out that the overall thrust of the framework is quite different

from popular approaches such as inductive logic programming (Muggleton and de Raedt

1994) and statistical relational learning (Getoor and Taskar 2007; De Raedt and Kersting

2011), etc. In inductive logic programming, an explicit hypothesis is learned that captures

only the examples currently provided, and rarely is there an explicit account of how the

hypothesis might reflect some unknown distribution from which the examples are drawn.

In statistical relational learning, a hypothesis captures the distribution of the examples

provided in terms of a logical formula or a probabilistic logical formula.

Once again, no accounts are provided about how this formula might capture the un-

known distribution from which the examples are drawn. The key trick is to develop a

decision procedure that checks the entailment of the query against the knowledge base by

conjoining the observations to the background theory and checking the queries. Then, if

for a higher proportion of observations, the query is indeed contained, we conclude that

the explicit knowledge base together with the implicit knowledge base entails the query

and all of this is robustly formalized using the PAC semantics (Valiant 2000). The pro-

portion of times the query formula evaluates to true can be used as a reliable indicator of

the formula’s degree of validity, as guaranteed by Hoeffding’s inequality (Hoeffding 1963).

Theorem 10 Hoeffding’s inequality

Let X1, . . . , Xm be independent random variables taking values in [0, 1]. Then for any

ε > 0,

Pr

[

1

m

m
∑

i=1

Xi ≥ E

[

1

m

m
∑

i=1

Xi

]

+ ε

]

≤ e−2mε2 .

The agent will have some knowledge base encoded in the system, and will also be

able to sense the world around them and receive readings describing the current state

of the world. These readings are generally correct for that environment but are neither

fully accessible nor are they exact. As a consequence, the observations can be noisy or

inconsistent with each other, but they are always consistent with the knowledge base.

So in the spirit of knowledge expansion, the agent may be ignorant about many things

and the agent is informed by the observations it makes. These observations only focus

on a few properties of the world, as would be expected from most physical sensors in

robotics and other applications. Formally we introduce a masking process that randomly

reveals only a few properties of the world (Michael 2010). These readings are conjunctions

of propositional atoms and are drawn independently at random from some probability

distribution MMM over Ln which is unknown to the agent. For example, a smartwatch

might only be getting readings about the heart rate of the person wearing the watch but

not the blood oxygen levels (Rader et al. 2021). In the multi-agent setting, sensors may

only reveal what cards the agent itself holds but may not provide information about the

cards held by the other agents as is intuitive. An agent attempting to sense the same

environment twice could end up with two different observations, and so the masking

process captures this stochastic nature of sensing.

Definition 11 Masking Process

The masking processMMM is a random mapping from a model (ekA, e
j
B , w) to a propositional

conjunction ρ(c) ∈ Ln such that (ekA, e
j
B , w) � ρ(c). ThenMMM(D) is a distribution over the

set OBS, induced by applying the masking process to a world drawn from D .
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The masking process induces a probability distribution MMM(D) over observations

ρ ∈ OBS modeling the readings of an agent’s sensors. We assume from now on that

this modeling is performed on the root agent’s sensors. The masking process can be un-

derstood in two different ways: either the readings are absent due to a stochastic device

failure, or the agent is unable to concurrently detect every aspect of the state of the

world. In essence, the model incorporates unforeseen circumstances like a probabilistic

failure or an agent’s sensors’ inability to provide readings (de C. Ferreira et al. 2005). So

the formalization of the reasoning problem should capture this limitation somehow. The

reasoning problem of interest becomes deciding whether a query formula α is (1 − ε)-

valid. Knowledge about the distribution D comes from the set of examples ρ(c) ∈ Ln.

Additional knowledge comes from a collection of axioms, the knowledge base Σ. We do

not have complete knowledge of the models drawn from D , instead, we only have the

observations ρ sampled from MMM(D) and the knowledge base Σ.

We assume here two agents A and B, but it can be generalized to multiple agents,

from which agent A is the root agent. The background knowledge is represented by

Σ,Σ′ ∈ OL n, where Σ corresponds to agent A and Σ′ corresponds to agent B. The input

query α is of the form M lα′, where M denotes a sequence of bounded modalities, that

is, KAKBKAα
′ = M3α′, the query is of maximal depth of k, j which are the i-depths

of the k-structures for agents A and B. And finally, we draw m partial observations

which are of propositional format ρ(1), ρ(2), ..., ρ(m). In implicit learning, the query α is

answered from observations directly, without creating an explicit model. This is done

by means of entailment: we repeatedly ask whether OA(Σ) � [ρ(c)]KAα for examples

ρ(c) ∈ MMM(D) where c ∈ {1, ...,m}. So this entailment checking with respect to each

observation ρ(c) becomes our best approximation to (1 − ε)-validity. If at least (1 − ε)

fraction of the examples entail the query α, the algorithm returns Accept. The estimation

is more accurate the more examples we use. The concepts of accuracy and confidence

are captured by the hyper-parameters γ, δ ∈ (0, 1), where γ bounds the accuracy of the

estimate and δ bounds the probability the estimate is invalid.

Definition 12 Witnessed formula

The implicit knowledge for agent A’s mental state is the set I of α’s such that with

probability 1 − ε over ρ drawn from MMM(D) (i.e., for a model drawn from D and

passed through MMM), OA(Σ) � [ρ]KA(α). We say that α is witnessed true on ρ in this

event.

Since we are only concerned with entailment and not proof theory here, there is es-

sentially no distinction between the implicit knowledge itself and the provable conse-

quences/entailments of the implicit knowledge. We can just talk about whether or not

α is implicitly known to A. These formulas are witnessed true with probability 1 − ε;

in particular, a proportion of them may still evaluate to false with probability up to ε.

We will now move on and motivate the learning algorithm. As observed before, the key

step in the decision procedure is given the partial observations as discussed above and

the background theory which is of the form OA(φ∧OB(ψ...)) or simply OA(Σ), we check

the entailment of the query given the observations against the background theory. As

we discussed in Theorem 4, this can be reduced to a statement of the following form:

OA(Σ) � ρ ∧KA(ρ → α).
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Algorithm 1: DecidePAC Implicit learning reduction

Input: Σ set of sentences from root agent A; input query α; partial observations:

ρ(1), ρ(2), ..., ρ(m); hyper-parameters: ε, γ, δ ∈ (0, 1).

Output: Accept if there exist formulas I witnessed true with probability at least

(1− ε+ γ) on MMM(D) such that OA(Σ) � KA(I → α) OR Reject if Σ � α

is not (1− ε− γ)-valid under the distribution D .

begin

b ← ⌊ε×m⌋, FAILED ← 0.

foreach c in m do

if ρ(c) ∧OA(Σ) � KA(ρ
(c) → α) then

Increment FAILED.

if FAILED > b then
return Reject

return Accept

Theorem 13 Multi-agent implicit epistemic learning

Let Σ be the epistemic knowledge base of a root agent A, and suppose Σ is perfectly

valid for D . We sample m = 1
2γ2 ln

1
δ
observations {ρ(1), ρ(2), ..., ρ(m)} fromMMM(D), which

represent the partial information sensed by the root agent A. Then, with probability

1− δ:

1. If Σ → α is not (1 − ε − γ)-valid with respect to the distribution D , Algorithm 1

returns Reject;

2. If there exists some implicit knowledge I such that β ∈ I is witnessed true with

probability at least (1 − ε + γ) and OA(Σ) � KA(β → α) then Algorithm 1 returns

Accept.

Proof

Case 1. We assume that α is not (1− ε− γ)-valid and show that the algorithm rejects

with probability 1 − δ. By definition, if Σ → α is not (1 − ε − γ)-valid, then since Σ

is consistent with worlds sampled from D , α is false with probability at least ε + γ;

in turn, since an observation ρ(c) produced by MMM is consistent with this world, it also

must not entail α with probability at least ε + γ, and thus, Σ � ρ(c) → α. In turn,

then, ρ(c) ∧ OA(Σ) � KA(ρ
(c) → α). It follows from Hoeffding’s inequality now that for

m = 1
2γ2 ln

1
δ
, the number of failed checks is at least εm with probability at least 1 − δ,

so DecidePAC returns Reject.

Case 2. Assume that there exists such implicit knowledge I such that β ∈ I is witnessed

true with probability at least 1−ε+γ. By definition, when β is witnessed, ρ(c)∧OA(Σ) |=

[ρ(c)]KA(β). We also have, by assumption, that OA(Σ) |= KA(β → α), and hence ρ(c) ∧

OA(Σ) |= [ρ(c)]KA(α). By Theorem 4, this may be reformulated as ρ(c) ∧ OA(Σ) |=

ρ(c) ∧ KA(ρ
(c) → α). Thus, Hoeffding’s inequality gives that for m = 1

2γ2 ln
1
δ
, β is

witnessed in at least (1 − ε)m observations with probability 1 − δ, and in turn ρ(c) ∧

OA(Σ) � KA(ρ
(c) → α) in fewer than εm observations. The algorithm will therefore

return Accept with probability 1− δ.
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Let us demonstrate the functionality of the PAC framework by going through the example

previously outlined and considering a real-life scenario where some statement that often

(but not always) holds may be inferred from the information available to the agent.

Example 14 Card game with partial observations

Similarly to the previous example, we have the same players and card rules. Let us

start with the first property outlined earlier where after sensing the card, agent A can

reason about what card it holds. The initial knowledge base is the same as previously: θ =

OA(φ∧OB(φ)), and suppose that in four different games, the observations are received in

series as follows: {ρ
(1)
A : NA = #4, ρ

(2)
A : NA = #3, ρ

(3)
A : NA = #4, ρ

(4)
A : NA = #4}. We

will take as an example the second property outlined above, where the root agent is asked

to reason whether he will know that his card number is #4, that is θ � [ρ]KA(NA = #4).

For the first observation, ρ(1), the entailment is straightforward since the observation is

consistent with the query about the agent’s knowledge. The entailment problem for the

second observation ρ(2) becomes θ � [NA = #3]KA(NA = #4). Once NA is observed,

then the question is whether there exist some worlds w′ ∈ W such that w′[NA = #3] =

w[NA = #4]. Such worlds do not exist, since agent A could not have picked both cards 3

and 4 at the same time, so the query is not entailed, and FAILED increments. Similarly,

the next two observations entail the query. After iterating through every observation the

DecidePAC algorithm determines the degree of validity of the query, (1 − ε)-validity.

For this case, if ε was set to a value of 0.25, then the algorithm returns Accept with

0.75-validity for this query.

6 Tractability and future work

One of the main motivations of implicit learning, following the works of Khardon and

Roth on learning-to-reason framework (Khardon and Roth 1997), and Juba on implicit

learnability (Juba 2013), was to enable tractable learning for reasoning by bypassing the

intractable step of producing an explicit representation of the knowledge. Indeed, if the

observations are sufficiently nice, reasoning with the PAC semantics may even be more

efficient than classical reasoning (Juba 2015). The problem is only more acute in multi-

agent settings: in prior work on multi-agent reasoning (Lakemeyer and Lespérance 2012),

Lakemeyer proposed a polynomial time algorithm if the knowledge base was encoded as

a proper epistemic knowledge base which proved to be computationally costly. Indeed,

most prior work on efficient multi-agent reasoning requires such an expensive compila-

tion step in order to introduce a conjunctive observation to an agent’s knowledge base.

By using the Representation Theorem (Belle and Lakemeyer 2014), we can reduce the

entailment checks in Algorithm 1 to propositional queries. In turn, if these propositional

queries are members of an adequately restricted fragment such as Horn clauses or more

generally, those provable using bounded-space treelike resolution, then polynomial-time

algorithms exist for deciding such queries (Kullmann 1999). Similarly, Liu et al. (2004)

proposed a sound and (eventually) complete method for reasoning in first-order logic

that is polynomial in the size of the knowledge base. The tractability is guaranteed us-

ing a notion of mental effort characterized by the parameter k, for example, if k = 0,

then a sentence α is believed only if it appears explicitly in the given knowledge base.

The downside of this approach is that the complexity of converting the entire knowledge
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base to a required CNF formula increases exponentially as the parameter k increases.

What remains to be done, that we leave for future work, is to establish a guarantee

that the propositional reasoning needed to decide a query remains in such a tractable

fragment. Alternatively, it might be sensible to take one of the limited belief reasoning

logics (Liu and Levesque 2005) and integrate it into our learning framework. All of these

are interesting directions for future work.

7 Related work

Several results have been obtained by leveraging PAC semantics’ advantages in order

to obtain implicit learning. After first being formalized by Juba (2013) for the propo-

sitional logic fragments and obtaining more efficient reasoning there (Juba 2015), Belle

and Juba (2019) demonstrated an integration of the PAC semantics with first-order logic

fragments. Later on, work by Mocanu et al. (2020) showed that polynomial reasoning

can be achieved efficiently with partial assignments for standard fragments of arithmetic

theories. They proposed a reduction from the learning-to-reason problem for a logic to

any sound and complete solver for that fragment of logic. On the empirical side, Rader et

al. (2021) proposed an empirical study for learning optimal linear programming objective

constraints which significantly outperforms the explicit approach for various benchmark

problems. Although polynomial guarantees are obtained for various language domain

fragments, they do not offer the expressiveness of a multi-agent language, which is what

our work considered.

On the epistemic logic axis, Lakemeyer and Lesperance have proposed a form of epis-

temic reasoning in which the knowledge base is encoded as a set of modal literals (PEKB)

(Lakemeyer and Lespérance 2012). Although this approach showed some computational

speedup when it comes to reasoning, it did carry along the disadvantage of converting

both the knowledge base and the query to certain formats before entailment is checked.

This conversion becomes computationally costly as the modal depth increases, and al-

though this form of knowledge might be useful for certain applications, it does not han-

dle an important epistemic notion: knowing-whether (Fan et al. 2013). That means that

the language does not cover any form of incomplete knowledge or disjunctions (horn

clauses) and so very limited forms of inference were possible. Although an extension to

knowing-whether was later proposed in work by Miller et al. (2016), it still lacks arbitrary

disjunctions, which our framework can handle fully. In a non-modal setting, Lakemeyer

and Levesque (2004) proposed a tractable reasoning framework for disjunctive informa-

tion. In another work, Fabiano (2019) proposed an action-based language for multi-agent

epistemic planning and implemented an epistemic planner based on it. Work by Muise et

al. (2022) addresses the task of synthesizing plans that necessitate reasoning about the

beliefs of other agents. Learning is not addressed in any of these. Likewise, in research

work by Lakemeyer and Levesque (2020) a logic of limited belief with a possible-worlds

semantics is proposed. Each epistemic state is represented as sets of three-valued possible

worlds, which allows some tractability with epistemic reasoning, but it is limited to the

single-agent case and also does not address learning. In the context of dynamic epis-

temic logic (Baltag and Renne 2016), there is some recent work on “qualitative learning”

(Bolander and Gierasimczuk 2015) which considers learning in the limit for propositional

action models. This is very different in thrust from ours, where we are interested in
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answering queries from noisy observations with robustness guarantees. Although there

are many research works focusing on learning in multi-agent settings for coordination and

competition (Albrecht and Stone 2017), we are not aware of any work that addressed

arbitrary nesting of belief operators in the style of K45n in a learning setting.

8 Conclusion

In this work, we demonstrated new PAC learning results with multi-agent epistemic

logic. We considered the PAC semantics framework which integrates real-time observa-

tions from the current world along with the background knowledge in order to decide the

entailment of epistemic states of the agents. We leveraged some recent results on multi-

agent only knowing, namely the Representation Theorem, in order to reduce modal rea-

soning to propositional reasoning. We have formalized the learning process and discussed

the sample complexity and correctness of an algorithm for learning. The algorithm is in

principle applicable to any multi-agent logic, as long as a sound and complete procedure

is used to evaluate epistemic queries against an epistemic knowledge base. If one did not

take into consideration the time complexity and allow for the full K45n reasoning in-

stead, then we could swap the entailment checking in the algorithm for general validity in

that particular logic. However, this inevitably implies that it would become intractable.

Considering that reasoning in the full K45n is PSPACE-complete, this gave us the in-

centive to focus on the only knowing angle instead, which allows us to at least reduce

entailment to propositional reasoning. As discussed in the related work section, there

are many promising ideas from other approaches that might provide tractability either

in the only-knowing setting (via limited reasoning (Liu and Levesque 2003; 2005)) or a

more general multi-agent knowledge setting, such as Lakemeyer and Lespérance (2012).
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