
Smarter Atomic Smart Pointers
Safe and E�icient Concurrent Memory Management (Abstract)∗

Daniel Anderson
Carnegie Mellon University

Pittsburgh, USA
dlanders@cs.cmu.edu

Guy E. Blelloch
Carnegie Mellon University

Pittsburgh, USA
guyb@cs.cmu.edu

Yuanhao Wei
Carnegie Mellon University

Pittsburgh, USA
yuanhao1@cs.cmu.edu

ABSTRACT
We present a technique for concurrent memory management that
combines the ease-of-use of automatic memory reclamation, and
the e�ciency of state-of-the-art deferred reclamation algorithms.

First, we combine ideas from referencing counting and hazard
pointers in a novel way to implement automatic concurrent ref-
erence counting with wait-free, constant-time overhead. Second,
we generalize our previous algorithm to obtain a method for con-
verting any standard manual SMR technique into an automatic
reference counting technique with a similar performance pro�le.

We have implemented the approach as a C++ library and com-
pared it experimentally to existing atomic reference-counting li-
braries and state-of-the-art manual techniques. Our results indicate
that our technique is faster than existing reference-counting im-
plementations, and competitive with manual memory reclamation
techniques. More importantly, it is signi�cantly safer than manual
techniques since objects are reclaimed automatically.
ACM Reference Format:
Daniel Anderson, Guy E. Blelloch, and Yuanhao Wei. 2023. Smarter Atomic
Smart Pointers Safe and E�cient Concurrent Memory Management (Ab-
stract). In Proceedings of the 2023 ACM Workshop on Highlights of Parallel
Computing (HOPC ’23), June 16, 2023, Orlando, FL, USA. ACM, New York,
NY, USA, 2 pages. https://doi.org/10.1145/3597635.3598027

1 INTRODUCTION
Memory reclamation, the problem of freeing allocated memory
in a safe manner, is essential in any program that uses dynamic
memory allocation. A block of memory is safe to reclaim only
when it can not be subsequently accessed by any thread of the
program. Determining exactly when this is the case is, however,
a di�cult problem, and even more so for mutlithreaded programs
which could be sharing, copying, or modifying references to the
same memory blocks concurrently. Traditional solutions for safe
memory management are �lled with trade-o�s. One choice is to
use a language with automatic garbage collection, but this can
inhibit performance and make it more di�cult for programmers to
implement certain data structures.

*This work appeared in PLDI’21 as “Concurrent Deferred Reference Counting with
Constant-Time Overhead” [1] and in PLDI’22 as “Turning Manual Concurrent Memory
Reclamation into Automatic Reference Counting” [2]

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
HOPC ’23, June 16, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0218-1/23/06.
https://doi.org/10.1145/3597635.3598027

Researchers have developed a broad set of techniques to imple-
ment safe concurrent memory management. The goal is to delay the
destruction and reclamation on an object until it can be ensured that
no thread can still access it. These techniques are generally referred
to as safe memory reclamation (SMR), and include approaches such
as read-copy-update (RCU) [9], epoch-based-reclamation (EBR) [7],
hazard-pointers (HP) [11], pass-the-buck [10], pass-the-pointer [4],
interval-based reclamation (IBR) [16], Hyaline [13].These tech-
niques, however, are di�cult to use and can lead to subtle and
hard to reproduce bugs. As evidence, we [1] noted several instances
where these techniques were used incorrectly.

An alternative approach for memory management in languages
without built-in garbage collection (or even with) is to use reference
counting. Reference counting requires very few modi�cations for
programmers to integrate into their code, and provides memory
safety and leak freedom automatically as long as the program-
mer does not create reference cycles. Owing to the ease of use of
automatic reference counting, there has been increasing interest
in concurrent (atomic) reference-counted pointers (both strong
and weak), as evidenced by their inclusion in the most recent C++
standard (C++20), and recent papers on the topic [4, 15]. Early
approaches [5, 10] su�ered severe performance issues due to con-
tention on the reference counts, but more recent approaches, such
as FRC [15] and OrcGC [4] have developed scalable approaches for
concurrent reference counting.

2 OUR FIRST CONTRIBUTION
In our �rst paper [1], we propose a theoretically and practically
e�cient approach to automatic memory reclamation based on a
novel combination of reference counting and HP. Theoretically,
we show the �rst solution with constant expected time overhead
using only single word compare-and-swap (CAS) and only delaying
$ (%2) decrements. Previous approaches are either only lock-free,
wait-free with $ (%) time per operation, or use double-word fetch-
and-add, which is not available on modern machines.

Our approach is based on a new algorithm that generalizes HP
to allow for multiple retires on the same object. Standard HP [11]
would not be e�cient with multiple retires, requiring potentially
much more space. Our generalization allows us to implement de-
ferred decrements that protect an object’s reference count, delay-
ing decrements (and hence reclamation) while an increment is in
progress. This contrasts with previous reference counting tech-
niques [8, 10] that use HP to delay memory reclamation after a
reference count hits zero. This is a subtle di�erence, but it has
rami�cations both in theory and practice. We further extend the ap-
proach by borrowing the idea of deferred increments from reference-
counted garbage collectors [3]. When a reference to an object is

9

https://doi.org/10.1145/3597635.3598027
https://doi.org/10.1145/3597635.3598027
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597635.3598027&domain=pdf&date_stamp=2023-07-18


HOPC ’23, June 16, 2023, Orlando, FL, USA Daniel Anderson, Guy E. Blelloch, and Yuanhao Wei

� �� �� �� ��� ��� ��� ���
1XPEHU�RI�WKUHDGV

�

��

���

���

7K
UR
XJ
KS
XW
��0
RS
�V
�

Figure 1: Throughput of a concurrent binary search tree with
100K keys, undergoing 90% reads and 10% updates.

short lived, it almost certainly does not need to modify the refer-
ence count. Our technique protects the reference count during the
reference’s short lifetime. In the common case, this avoids both the
increment and the decrement.

3 OUR SECOND CONTRIBUTION
In our second paper [2], we show that reference counting can
be nearly as fast as any manual technique while using a similar
amount of memory (in most cases), thus showing that the ease-of-
use of automatic approaches comes at no signi�cant cost to practical
performance. The technique in our �rst paper was based on HP
and exhibits similar performance to manual application of HP. HP
can be up to twice as slow as techniques such as EBR, though they
also use substantially less memory.

In this work, we show that the technique can in fact be applied to
any manual SMR scheme to yield an automatic version with similar
performance. We apply this to three (very di�erent) state-of-the-
art manual techniques, EBR, IBR and Hyaline, to yield automatic
versions of all three. To the best of our knowledge, this is the
�rst time reference counting has been combined with any manual
technique outside of variations of HP. The resulting algorithms are
lock-free, assuming the SMR scheme being automated is lock-free.

In addition, we show how this framework can be extended even
further to support lock-free atomic weak pointers. We use them to
implement a concurrent doubly-linked-list based queue [14], and
show that our implementation is several times faster than the only
other lock-free atomic weak pointer that we are aware of [17].

A key challenge with weak pointers is supporting the upgrade
to strong pointers e�ciently. This requires being able to atomically
increment the reference count only if it is not already zero. This
operation is typically implemented using a CAS-loop which takes
up to $ (%) amortized time per process if % processes perform this
upgrade at the same time. Instead, we show how to implement a
wait-free increment-if-not-zero operation so that reading and incre-
menting/decrementing take only $ (1) time in the worst case.

4 EXPERIMENTS AND CONCLUSION
We have implemented our technique as a library for C++1 and show
that it is more e�cient than existing optimized libraries for atomic
reference-counted pointers [4, 6, 17]. We also show that our scheme
performs well against state-of-the-art manual SMR techniques from
a recent benchmark suite [12, 16].

Figure 1 shows the throughput of a concurrent tree using eight
di�erent memory management techniques. The �rst four are man-
ual techniques, and the latter four are our automated reference-
counted versions of them. In three out of four cases, our technique
performs competitively with the corresponding manual technique
up to oversubscription (144 threads).

Overall, our theoretical and experimental contributions show
that automatic reference counting can be competitive with state-
of-the-art error-prone manual memory management techniques.

REFERENCES
[1] Daniel Anderson, Guy E Blelloch, and Yuanhao Wei. 2021. Concurrent deferred

reference counting with constant-time overhead. In ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI). 526–541.

[2] Daniel Anderson, Guy E Blelloch, and Yuanhao Wei. 2022. Turning Manual
Concurrent Memory Reclamation into Automatic Reference Counting. In ACM
SIGPLANConference on Programming Language Design and Implementation (PLDI).
526–541.

[3] Henry G Baker. 1994. Minimizing reference count updating with deferred and
anchored pointers for functional data structures. ACM Sigplan Notices 29, 9 (1994),
38–43.

[4] Andreia Correia, Pedro Ramalhete, and Pascal Felber. 2021. OrcGC: automatic
lock-free memory reclamation. In ACM Symposium on Principles and Practice of
Parallel Programming (PPoPP). 205–218.

[5] David Detlefs, Paul Alan Martin, Mark Moir, and Guy L. Steele Jr. 2002. Lock-free
reference counting. Distributed Computing 15, 4 (2002), 255–271.

[6] Facebook. 2020 (accessed June 5, 2020). Facebook Open Source Library. https:
//github.com/facebook/folly

[7] Keir Fraser. 2004. Practical lock-freedom. Technical Report. University of Cam-
bridge, Computer Laboratory.

[8] Anders Gidenstam, Marina Papatrianta�lou, Håkan Sundell, and Philippas Tsigas.
2009. E�cient and Reliable Lock-Free Memory Reclamation Based on Reference
Counting. IEEE Trans. Parallel Distrib. Syst. 20, 8 (2009).

[9] D. Guniguntala, P. E. McKenney, J. Triplett, and J. Walpole. 2008. The read-copy-
update mechanism for supporting real-time applications on shared-memory
multiprocessor systems with Linux. IBM Systems Journal 47, 2 (2008), 221–236.

[10] Maurice Herlihy, Victor Luchangco, Paul Martin, and Mark Moir. 2005. Nonblock-
ing Memory Management Support for Dynamic-sized Data Structures. ACM
Trans. Comput. Syst. 23, 2 (May 2005).

[11] Maged M Michael. 2004. Hazard pointers: Safe memory reclamation for lock-
free objects. IEEE Transactions on Parallel and Distributed Systems 15, 6 (2004),
491–504.

[12] Ruslan Nikolaev and Binoy Ravindran. 2020. Universal Wait-Free Memory Recla-
mation. In ACM Symposium on Principles and Practice of Parallel Programming
(PPoPP). 130–143.

[13] Ruslan Nikolaev and Binoy Ravindran. 2021. Snapshot-free, transparent, and
robust memory reclamation for lock-free data structures. In ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI). 987–
1002.

[14] Pedro Ramalhete and Andreia Correia. [n. d.]. DoubleLink - A Low-Overhead
Lock-Free Queue. http://concurrencyfreaks.blogspot.com/2017/01/doublelink-low-
overhead-lock-free-queue.html.

[15] Charles Tripp, David Hyde, and Benjamin Grossman-Ponemon. 2018. FRC: a
high-performance concurrent parallel deferred reference counter for C++. Acm
Sigplan Notices 53, 5 (2018), 14–28.

[16] Haosen Wen, Joseph Izraelevitz, Wentao Cai, H Alan Beadle, and Michael L Scott.
2018. Interval-based memory reclamation. ACM SIGPLAN Notices 53, 1 (2018),
1–13.

[17] Anthony Williams. 2019 (accessed November 5, 2019). just::thread Concurrency
Library. https://www.stdthread.co.uk.

1Available at https://github.com/cmuparlay/concurrent_deferred_rc

10

https://github.com/facebook/folly
https://github.com/facebook/folly
http://concurrencyfreaks.blogspot.com/2017/01/doublelink-low-overhead-lock-free-queue.html
http://concurrencyfreaks.blogspot.com/2017/01/doublelink-low-overhead-lock-free-queue.html
https://www.stdthread.co.uk
https://github.com/cmuparlay/concurrent_deferred_rc

	Abstract
	1 Introduction
	2 Our first contribution
	3 Our second contribution
	4 Experiments and Conclusion
	References

