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Abstract—Low-Earth-orbit (LEO) satellite networking is a
promising way of providing low-latency and high-throughput
global Internet access. Unlike the static terrestrial network
infrastructure, LEO satellites constantly revolve around the
Earth and thus bring instability to their networks. Understanding
the dynamics and properties of a LEO satellite network and
developing mechanisms to address the dynamics become crucial.
In this work, we first introduce a high-fidelity and highly
configurable real-time emulator called LeoEM to capture detailed
dynamics of LEO satellite networks. We then present SATCP, a
cross-layer solution that enables TCP to avoid overly conservative
congestion control and improve its performance under high
LEO link dynamics. As an upgrade to CUBIC TCP, SATCP
forecasts the time of disruptive events (i.e., satellite handovers or
route updates) by tactfully utilizing the predictability of satellite
locations, taking into account the prediction inaccuracy, and
informs TCP to adapt its decision accordingly. Experiments
across various scenarios show SATCP increases the goodput
by multi-folds compared with state-of-the-art protocols while
preserving fairness.

I. INTRODUCTION

LEO satellite networks (satnets) hold the potential to fill in
the last coverage holes of the broadband Internet. Their ad-
vantages are decisive: a highly available, high-throughput, and
low-latency network that can largely cater to various delay-
sensitive services and demands of underrepresented regions.
Industry giants like SpaceX [1], Amazon [2], and OneWeb [3]
have been deploying their LEO satnet infrastructures. Among
them, Starlink by SpaceX is particularly notable, as it has
already provided preliminary yet reliable service for many
rural areas lacking cable access.

One crucial and intrinsic challenge for LEO satnets is the
dynamics due to satellite mobility. The satellites need to
revolve around the earth at an extremely high speed (around
7.5km/s [4]) to combat the gravitational force and stay in their
orbits. Such fast movements, along with the corresponding
handover and topology dynamics, can cause various types of
instabilities on different layers of the network stack. More
specifically, the transport layer will be highly vulnerable to
such dynamics. TCP in particular, is unaware of satellite han-
dovers, and will misinterpret the resulting surge of RTT and
packet loss rate as a sign of congestion. The TCP sender will in
turn cut its transmission rate aggressively or even reset it to the
minimum level, leading to an underutilization of the network
capacity as shown in Fig 1. While MPTCP may mitigate
such issues [5], each of its subflows may still experience
conservative congestion control and significant throughput
drop during handovers. Also, it requires non-trivial network
infrastructure support. Prior research also explored TCP over

satnets [6], [7], yet focusing on geostationary systems without
any handover issues. Whereas certain access networks such
as cellular networks also experience handover, the impact
on the transport layer is relatively small, because handover
occurs only on a single last-hop link, and also because of
their relatively shorter RTT (and hence faster recovery) [8].

In this paper, we first conduct an in-depth measurement
study to investigate the limitations of TCP in highly dynamic
LEO satnets. To facilitate the measurement, we develop a
LEO satnet emulator called LeoEM. LeoEM allows real-
time full-stack emulation of dynamic LEO network paths,
and can run unmodified applications on the host OS. We
populate the LeoEM link layer with real-world measurement
statistics and specifications, to enable accurate representation
of the low-level dynamics (e.g., satellite handovers). With
LeoEM, we examine Starlink–the currently most promising
and representative LEO satellite network. In particular, we
analyze the link-level dynamics of the Starlink constellation,
and examine the corresponding interruption and performance
degradation on the transport layer. Our experimental results
show that the popular CUBIC TCP experiences an extremely
low bandwidth utilization (around 23.3%) over long-distance
LEO satnet paths due to frequent rate fallback in response to
the high dynamics and link fragility.

Based on the measurement insights, we propose a mech-
anism called SATCP that can enhance TCP amid the LEO
dynamics. SATCP builds on two design principles. First, it
advocates link-layer informed TCP adaptation, i.e., the TCP
should discriminate link-layer dynamics from real congestion
events. Second, SATCP follows speculative congestion adap-
tation. Rather than reacting to link dynamics post hoc, SATCP
leverages the relative predictability of satellite locations and
handover events, to proactively prepare for the dynamics. More
specifically, SATCP predicts when an upcoming handover will
occur and signals the client node to freeze its congestion
window size for a very short instance. It is worth noting that
the satellite location is not fully deterministic due to various
turbulence and forces [9]–[11], and hence the actual handover
event times can deviate from the planned ones. SATCP takes
the prediction inaccuracy into account and properly schedules
its reactions. Our evaluation results show SATCP can effec-
tively prevent unnecessary throughput degradation caused by
misjudgments of loss events and varying satenet latency, hence
achieving consistent high bandwidth utilization over a wide
range of LEO satellite network scenarios.

In summary, the main contributions of this paper include:
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Figure 1: Example downlink TCP throughput using Starlink.
Handovers cause network interruptions and TCP transmission
rate fallback.

(i) A high-fidelity and highly configurable LEO satellite
network emulator. We have developed LeoEM, which allows
real-time full-stack emulation of any LEO satellite network.
Arbitrary applications and protocols can be used to customize
the network and test various scenarios, hence offering a flex-
ible platform for researchers to develop solutions to specific
challenges in LEO satellite networking. LeoEM is available at
https://github.com/XuyangCaoUCSD/LeoEM.

(ii) A solution to improve TCP performance in dynamic
LEO satellite networks. We have designed SATCP, a cross-
layer solution that follows a rigorous procedure to predict
and report upcoming satellite handovers to clients, whose
congestion control will then be temporarily inhibited to prevent
unnecessary throughput fallback. SATCP largely improves
classical TCP’s performance, inherits the fairness property, and
is applicable to any mainstream LEO satellite network.

II. RELATED WORK

Experimental tools for LEO satellite networks. Several
recent projects have developed tools to investigate main-
stream LEO satellite networks. Through mathematical mod-
eling, StarPerf [12] can assess various metrics of a LEO
satellite network, including resilience of constellation upon
satellite failures, satellite coverage rate, and theoretical latency.
However, it lacks the actual network protocol simulation.
Hypatia [13] is a ns-3 based LEO satnet simulator that can cap-
ture essential network details like RTT and TCP throughput.
However, it lacks the flexibility to test arbitrary applications
as the traffics are internally simulated rather than generated
by native network stacks. Also, Hypatia takes non-trivial time
to complete a simulation. In contrast, our LeoEM emulator
allows running any real programs over emulated dynamic LEO
satnets with real-time observability.

LEO satellite network characterization and evaluation.
Existing research mainly profiled LEO constellations with
bent-pipe links and inter-satellite links (ISLs), as shown in
Fig. 2. Satnet paths formed by ISLs can achieve much lower
latency than the bent-pipe versions or terrestrial networks [14],
[15]. However, careful constellation design and connection
fine-tuning are required in order to effectively utilize ISLs. For
example, with the current Starlink topology, paths formed by
fixed ISLs can experience a high zig-zag latency variation due
to LEO dynamics and occasional lack of optimal path [13],
[15]. At the peak, the latency can still exceed its terrestrial
counterpart. This paper confirms such phenomenon and takes

further steps to characterize the impacts on state-of-the-art
transport layer protocols.

Using the Hypatia simulator, [13] examined the impact of
LEO constellation dynamics on end-to-end network paths.
For both bent-pipe-link and ISL cases, the dynamics lead
to frequent route re-selections and thus varying bandwidth-
delay product (BDP), which triggers overly conservative TCP
congestion windows. However, Hypatia does not address the
prominent handover issue that has been widely observed by
LEO satellite network users (e.g., [16]–[18] and Fig 1). In
contrast, we aim to profile the impact of link-level dynamics,
i.e., handover interruptions, and design the corresponding
solutions.

Handover in satellite networks. Non-geostationary satel-
lite handover can be categorized into two types: (1) intra-
satellite spot-beam handover, and (2) inter-satellite handover.
For (1), the ground node will switch its connection to a
different spot beam of the same satellite, since a spot beam
may fix its angle and only serve a particular cell within the
coverage. For (2), the ground node will switch its connection
to a different satellite. Various network protocols and resource
allocation principles have been proposed to achieve effective
handovers [19], [20]. Standardization efforts are underway
[21] to incorporate such solutions and integrate the LEO
network as an extension to the 5G infrastructure. The present
work focuses on the latter due to the limited mobility of ground
nodes in the current LEO satnets and the adoption of steerable
spot beams, for example, by Starlink [22].

TCP amendments for dynamic networks. Congestion
control protocols for dynamic networks have been extensively
explored. Earlier work [23] proposed to use single-packet loss
in an RTT as signs of handover or transmission errors in
LEO satnets. But such approaches cannot distinguish high
dynamics produced by thousands of satellites at today’s scale
from real congestion events. In contrast, SATCP utilizes
validated link-layer information to make such distinctions.
Another recent work uses link-layer feedback to quickly ramp
up TCP throughput upon adoption of high-bandwidth circuit-
switch paths [24]. However, it relies on explicit congestion
notification (ECN), which requires in-network support and
router hardware upgrade. Likewise, to align with the end-to-
end principle, SATCP avoids using any active queue man-
agement (AQM) techniques, and requires no modification to
LEO satnet backbones. Physical or link layer informed TCP
enhancements have also been explored in cellular networks
[8], [25], but to realize a similar principle, LEO satnet-specific
designs are needed, which we explore through SATCP.

III. PRELIMINARY

In this section, we will cover the essentials of LEO satnets.

A. LEO Satellite Network Topology

LEO satnets use dish-like user terminal (UT) on the ground
to communicate with one satellite overhead (referred to as
ingress satellite). The ingress satellite further wirelessly con-
nects to the gateway ground stations which in turn join the
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wired backbone. Fig. 2 shows a typical network topology,
where the UT, ingress satellite, and nearby ground station to-
gether form the access network. End hosts, or user equipment
(UE), access the Internet via the UT.

To unlock the full potentials of the LEO satnets, it is crucial
to have a backbone network consisting of multiple satellite
relays and ground stations. The backbone network can adopt
either the bent-pipe (BP) links or inter-satellite laser links
(ISLs) as shown in Fig. 2. The former interleave a series of
LEO satellite and ground stations using high-frequency radio
to form an end-to-end path, whereas the latter leverage high-
bandwidth laser beams among satellites. LEO satellites are
organized into one or more shells which collectively form
a constellation. Satellites of the same shell have the same
altitude.

B. Satellite handovers

Ground equipment in a LEO satnet needs to periodically
switch its association from one satellite to another. Such
handover can be categorized into two types, both referred to
as a disruptive event.

End (hard) handover: handover from one ingress satellite
to another for a UT. Often equipped with only one antenna, the
UT needs to first disconnect from its current ingress satellite
before connecting to a new one. Such hard handover can
cause a short but non-negligible network interruption. The
interruption, reasonably quantified by [21], can last for 1.5
RTT between the UT and the old ingress satellite, plus 1.5 RTT
between the UT and the new ingress satellite. This is because
the UT needs to first query for the spot beam availability in
the new satellite, plan to release the current spot beam to
the old satellite, reserve the new spot beam, and finally fully
disconnect from the old satellite. During the handover, packets
can accumulate at the ingress queues of the UT and possibly
get dropped. Also, because of the handover, the old end-to-
end route can get dismantled due to link breakage or delayed
routing updates. Flowing packets in the old route thus can get
lost too.

Intermediate (soft) handover: handover from one satellite
to another for a gateway ground station for bent-pipe links.
To aggregate and redistribute traffics, the ground stations
are equipped with multiple antennas which in turn can con-
nect to adjacent satellites simultaneously and allow relatively
seamless soft handover. Such intermediate handover instructs
ground stations to redirect certain traffics to new paths before
dismantlement of old routes, during which packet loss can
still occur. Note ISLs usually adopt fixed connectivity, so
intermediate handovers for satellites in ISL paths often come
with only path re-selection, without any link dismantlement.

C. Starlink Shell 1 Properties

To date, Starlink shell 1 is the very LEO satellite network
that has provided experimental yet decent Internet service
to a good number of users. The shell consists of 72 orbits,
each containing 22 satellites [27], with altitude of 550km and
an orbital period of only 1.59 hours. Fig. 3 visualizes the

shell. Starlink satellites are equipped with steerable spot-beam
antennas [22] which are dynamically assigned.

Currently, the default residential Starlink [1] only provides
access networks. Nonetheless, periodic (hard) handovers and
network interruptions have been experienced by users. We
showcase the problem through a measurement benchmark. We
deploy a Starlink client on the rooftop of a tall building in San
Diego. Then we dump CUBIC TCP traffic from an AWS EC2
in Oregon to the Starlink client using iPerf. Meanwhile, we log
the network uptime time series obtained from the client debug
console. As shown in Fig. 1, the presence of uptime drops,
which essentially denote handovers, causes misinformed TCP
CWND and throughput drops. The speed test from debug
console indicates 139Mbps available bandwidth, yet the ex-
perienced average TCP throughput across the 300 seconds is
only 28.8Mbps. The impact of the dynamics on the network
is thus nontrivial.

Theoretically, a shell-1 satellite can cover a ground node for
at most 2.5 minutes, given its coverage radius of 580km [4].
However, due to practical reasons like line-of-sight blockages,
low signal strength, or dismantlement of the current route, UTs
may undergo frequent handovers. Specific to Starlink, the net-
work needs to consider handoffs on a 15-second interval [28].
Advanced services like Starlink Maritime [29] or Aviation [30]
will have the backbone fully or partially supported by its own
infrastructure, adopting bent-pipe links or ISLs [31], [32].

We emphasize that the moving trajectories and schedules
of satellites are not fully deterministic, as they are constantly
subject to turbulence and uneven gravitational forces [9]–[11],
causing deviation from their planned orbits. Therefore, each
satnet, including Starlink, is required to have a telemetry,
tracking, and control (TT&C) subsystem [22], which can fine-
tune a satellite’s orbit if any trajectory deviation occurs.

IV. THE LEOEM SATELLITE NETWORK EMULATOR

Existing satnet simulation tools like Hypatia and StarPerf
[12], [13] do not support the experimentation of arbitrary
protocol suites, particularly at the transport layer or above.
LeoEM is built to fill this gap. It faithfully represents not
only the LEO satnets but also the host OS, so any program
can be natively run and evaluated over the dynamic links
in real time. Not constrained by application-level simulation,
the network has a high degree of real-time observability.
For example, video streams can be exchanged between two
ends of an emulated satnet path, isolated by two network
namespaces. Meanwhile, the media quality can be directly
monitored through the playback. Therefore, LeoEM provides
a powerful and flexible platform for researchers to experiment
their innovations targeting LEO satellite networks.

LeoEM architecture. LeoEM consists of several stages
glued by data pipelining. In the first stage, users specify the
shell to be analyzed through the constellation parameters (e.g.
shown in Fig. 3). Then location data of each satellite in the
shell are generated at a certain sampling rate. The timeline of
location data spans across one orbital period, as they repeat
afterwards.
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Figure 3: Starlink shell 1 visualization, generated by the
CesiumJS framework [13], [26].

The second stage computes the route at each sampled
frame between a source node and a destination node, adopting
either bent-pipe links or ISLs along the backbone. The former
requires the user to provide a list of ground station locations.
For the latter, LeoEM uses the fixed +Grid connectivity pattern
[33], where each satellite has four laser links connecting to
its two adjacent peers on the same orbit and two on the
neighboring orbits. To establish the route between the source
and destination, we adopt the classical shortest path routing.

Notice LEO satellite networks, as proprietary systems, will
likely tunnel user traffics and hide their internal network
nodes. For example, tracerouting Starlink does not show any
internal hop except the draining points to terrestrial backbones
(e.g., [34], [35] and Fig. 7). Given the lack of transparency,
we refer satellites and ground stations both into switching
nodes without clear layering, in which their network-level
information is hidden from users.

The third stage of LeoEM emulates the LEO satnet stack
using Mininet [36]. Through Mininet APIs, virtual switching
nodes and links are spawned in the host OS to represent satel-
lites, ground stations, UTs, and their connections. The routes
precomputed from the second stage are used to continuously
update link properties such as propagation latency. In our
default configuration, the UTs refresh their ingress satellites
every 15 seconds, as suggested by Starlink’s FCC filing [28].
To faithfully emulate the end handover, we make the UT seek a
new ingress satellite of the shortest distance. During each end
handover, LeoEM tears down the link for 1.5 RTT between
the UT and the old ingress satellite and 1.5 RTT between the
UT and the new ingress satellite, as explained in section III-B.
Intermediate handovers are determined by comparing routes at
two consecutive time frames, and we turn the corresponding
nodes’ network interfaces off and on to produce the churn
effect and possible packet loss in the dismantled old route.
Different Linux namespaces are attached to UTs, where users
can run arbitrary programs and evaluate the network in real
time.

V. SATCP SYSTEM DESIGN

Traditional TCP, like the widely deployed CUBIC, is vul-
nerable to LEO satellite networks’ strong dynamics and link
fragility, as shown in Fig 1. To enhance TCP, SATCP lever-
ages the predictability of disruptive events in LEO satellite
networks to adaptively perform congestion control. By taking
satellite link-level information, SATCP manages to distinguish

between real congestion events and disruptive events and in-
form client nodes to avoid unnecessary fallback of congestion
window.

A. SATCP Methodology

To materialize the design rationale of SATCP, we exploit a
few salient properties of LEO satnets.

1. Predictability of satellite locations. Despite the high
mobility, LEO satellites usually try to follow predefined orbit
paths. Remarkably, the LEO satellite trajectories are relatively
predictable but not fully deterministic. Due to the uneven grav-
itational forces over different points of the Earth and various
disturbance, a satellite can still deviate from its trajectory and
the error can accumulate over time [9]–[11].

2. Computability of a disruptive event time. Given certain
satellite locations and the handover scheme, we can compute
when a disruptive event will occur for a specific user, namely
when the UT or an intermediate switching node will update
its next hop and adopt a new route.

Based on the above properties, we introduce 2 key mecha-
nisms in realizing SATCP.

How should the system effectively determine and report
the upcoming disruptive event time to the UE in advance?

Intuitively, the UT should be the only ideal candidate for
tracking end handover times, as it participates in the handover
process and periodically collects information from various
viewable satellites (e.g., relative locations or signal strengths).
Also, since the UT and UEs are co-located, the UT should be
able to report end handover times readily and reliably.

In addition, we select the nearby ground station which the
ingress satellite connects to as the component for tracking
and reporting any intermediate handover time to a UE. The
ground station may need the dynamic global satellite locations,
and constantly tracking them may be unrealistic for an infras-
tructure except the TT&C system. However, benefiting from
the predictability of celestial objects, it only needs to have one
snapshot of the constellation and forecast its future state, at
trivial computational cost. Note that for either bent-pipe or ISL
backbone, a ground station should always be available nearby
so the user can connect to the Internet.

After the UE receives the report, what should it do to
mitigate the negative impacts of the disruptive events?

A simple relay application in the UE can listen to reports
and pass it to the network stack. The TCP logic can be
modified such that the congestion window reduction will be
inhibited for a short duration upon receiving a report. When
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a disruptive event occurs, it will take some time for the
congestion control module to react. Therefore, the duration
of the congestion window freeze should cover the point when
the congestion control would otherwise start reacting. In this
way, the unnecessary throughput drop can be prevented.

We emphasize that, the inhibition period of congestion
window reduction is very short, typically on the order of one
or two RTTs, even taking into account the additional time
needed to tolerate report timing errors (Sec. V-B). Even in
the rare case when a real congestion occurs rightly within this
period, SATCP can react immediately after this short period,
when it reverts to the default TCP behavior.

Note LEO satnets, represented by Starlink [1], provision
network resources accordingly. Therefore, the SATCP sender,
with preserved CWND value, should not congest the new links
after a handover. Resource management components, usually
at the edge of the network, will throttle excessive amount of
traffics from a particular user. Otherwise it becomes a service
quality problem.

B. Tolerating Error in Orbital Prediction
The predicted satellite location can be inaccurate, deviating

from the actual one. This inaccuracy can negatively impact the
effectiveness of SATCP.

We utilize the publicly available two-line element set (TLE)
for Starlink from CelesTrak [37] as an example to quantify the
error of satellite location prediction and how the inaccuracy
actually affects the SATCP effectiveness. A TLE records
satellite locations at a certain moment and their trajectories,
which can be used to predict their future locations. The public
Starlink TLEs are updated every 3 hours.

We use a TLE snapshot to predict the satellite locations
3 hours later, and the results will then be compared against
the actual TLE measured 3 hours later. Given the difference
between the predicted satellite location and the actual one, we
can quantify the amount of time a satellite will take in order for
its corresponding predicted coverage area to overlap with that
of the actual satellite (or conversely, the time needed for the
actual coverage area to catch up the predicted one). This time
derivation essentially decides how long the disruptive event
report can get delayed or occur ahead of the right moment.
We refer to this gap as report timing error.

We compute the report timing errors for a total of 1605
satellites, using MATLAB Satellite Communications Toolbox
that supports satellite orbit determination. Fig. 4 shows the
eCDF of the absolute report timing errors. We can observe
that around 90% of satellite location predictions produce a

report timing error within the range of ±0.6 seconds, namely
around 90% of disruptive event reports should be sent no more
than 0.6 seconds earlier or later than the right moment.

To counteract the report timing error, the ground station
can report the disruptive event in advance and the congestion
window freeze time can be extended, as shown in Fig. 5.
Specifically, given estimated report timing error ±Terr and
congestion control time R (the time TCP sender takes to
realize packet loss/link dynamics), the ground station can send
the report Terr earlier than the estimated disruptive event time
(after also considering communication latency). Upon receipt
of the report, the UE will also set the duration of congestion
control inhibition to slightly greater than 2 ∗ Terr +R. In this
way, any delayed or early report by no more than Terr error can
be corrected. Based on Fig. 4, setting Terr to 0.6 seconds and
applying the adjustment should neutralize around 90% effect
of the report timing inaccuracy.

We note that the report timing errors illustrated in Fig. 4
should represent the upper bound, for several reasons. First,
rather than the 3-hour update interval of the TLEs, practical
LEO satellite systems have TT&C, allowing for a much finer-
grained location update. Second, the TT&C system can fine-
tune the movement of a satellite and maneuver it back to
the planned path and location, which should further mitigate
the prediction error. Finally, in reality, the satellite may drift
away along any direction from the expected location. Given
the same drift distance, the parallel drift we consider yields
the maximized absolute report timing errors.

C. SATCP Workflow

We now introduce the SATCP system architecture and
workflow, based on the key design elements in section V-A
and section V-B.

As shown in Fig. 6, the UT notifies the UE about upcoming
end handovers. The UT also periodically tracks the latency be-
tween itself and the UE, denoted as LUT (e.g., with Ping utility
or by piggybacking on ongoing packets). For an anticipated
handover that occurs at t, the UT will send the report at t−LUT
to ensure timely actions.

Similarly, with the cached global satellite location data,
the nearby ground station will be responsible for estimating
the upcoming intermediate handover times for its nearby
users and notify them. It also periodically receives satellite
location updates from the TT&C and tracks LGS–its latency
to a UE. To alleviate the effect of unavoidable report timing
error, TT&C periodically computes the report timing error
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Figure 6: SATCP architecture, components that require mod-
ifications, and data flows.

distribution using the technique described in section V-B and
chooses the aforementioned high-percentile value Terr. The
ground station uses Terr as the estimated report timing error.
Therefore, for an intermediate handover at t, the ground station
will report it to the UE in advance, at t−LGS−Terr, following
the discussion in section V-B.

Upon receiving the disruptive event reports, the UE will
instruct the TCP senders to properly inhibit their window re-
duction. Following the discussion in section V-B, the inhibition
period is 2∗Terr+TCP_RTO_MIN+0.1s, where Terr is shared
by the ground station, TCP_RTO_MIN is the time a TCP
sender waits to retransmit an unacknowledged packet for the
first time, and 0.1s is a small buffer period. Notice the presence
of an intermediate handover is specific to where the data flows.
Therefore, the UE also needs to share the destinations of its
current TCP connections with the nearby ground station. The
ground station can in turn estimate whether an intermediate
handover will impact the end-to-end path and issue a report
accordingly.

The workflow is very similar if the TCP connection is from
terrestrial networks to a satnet user. The UT and draining
ground station can see the sender’s IP address and hence
notify it about upcoming disruptive events, given the SATCP
upgrade in the sender. SATCP largely conforms to the end-
to-end design principle [38]. The solution requires no in-
network upgrade. Sharing end handover information with UEs
can be realized through a small software-level update at the
UT. Computing and reporting intermediate handovers can
be carried out by auxiliary services at the ground station
and TT&C, independent to the network backbone. SATCP
enhancements can be added to the UEs through OS patching,
and we will show that the modification takes only several lines
of code.

D. Implementing SATCP in the network stack
Without loss of generality, we use the widely deployed

TCP CUBIC as an example to explain how existing
TCP protocols can incorporate the SATCP mechanisms.
Algorithm 1 shows the pseudo-code, where lines annotated
with for-SaTCP are added to implement SATCP. A
netlink socket is initialized through netlink_create()

in cubictcp_register() to allow communications
between the kernel and the report relay program. The boolean
variable SaTCP_flag will determine whether at this moment
the congestion window should be frozen. The callback
function on_report is passed to netlink_create()
so the relay application can instruct the CUBIC module to
turn on and off the congestion control inhibition, based on the
inhibition duration 2∗Terr+TCP_RTO_MIN+0.1s mentioned
in section V-C. In cubic_update(), whenever a packet
loss is detected and SaTCP_flag is true, we reduce K to its
1
9 so cwnd reduction will be skipped. Given the CUBIC’s
cwnd growth model, we set K to its 1

9 instead of 0 to
also avoid increasing cwnd and congesting the UT’s ingress

Algorithm 1: SATCP-enabled CUBIC on Linux
C ← 0.4, β ← 0.2
satcp flag ← false // for-SATCP
Procedure on report(report) // for-SATCP

if report = 1 then // for-SATCP
satcp flag ← true // for-SATCP

if report = 0 then // for-SATCP
satcp flag ← false // for-SATCP

Procedure cubictcp register()
... (initialize CUBIC TCP data structures)
netlink create(on report) // for-SATCP

Procedure on receive loss()
epoch start← 0;
if cwnd < Wlast max then

Wlast max ← cwnd ∗ 2−β
2

else
Wlast max ← cwnd;

ssthresh← cwnd← cwnd ∗ (1− β)

// Triggered on each ACK
Procedure cubic update()

// If packet loss just occurred
if epoch start ≤ 0 then

epoch start← tcp time stamp
if cwnd < Wlast max then

K ← 3

√
Wlast max−cwnd

C

origin point←Wlast max

if satcp flag then // for-SATCP
K ← 1

9K // for-SATCP

else
K ← 0;
origin point← cwnd

t← tcp time stamp+ dMin− epoch start
target← origin point+ C(t−K)3

... (update cwnd based on target value)
Procedure timeout()

if satcp flag then // for-SATCP
return() // for-SATCP

cubic reset()
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queue in case of end handovers. Similarly, in timeout(),
if SaTCP_flag is true, we skip unnecessary TCP reset.

VI. EVALUATION

In this section, we evaluate SATCP, in comparison with the
widely deployed CUBIC TCP and the state-of-the-art BBR
[39], across a wide range of scenarios.

A. Experimental Setup
Our experiments focus on Starlink shell 1, emulated through

LeoEM on a commodity laptop. The ground station locations
are obtained from the live Starlink satellite and coverage
map [40]. We experiment with 6 pairs of source-destination
locations corresponding to different path lengths: San Diego
(SD) and New York City (NY), Seattle (SEA) and New York
City, San Diego and Seattle, San Diego and Shanghai (SH),
New York City and London (LDN), and Seattle and Buenos
Aires (BA). ISLs are available for all 6 pairs. However, only
the first 3 intra-continental pairs can adopt bent-pipe links
as ground stations are available only along their paths. The
different path lengths and links type can lead to different levels
of dynamics.

In order to represent the disruptive event report from UTs
and ground stations illustrated in Fig. 6, LeoEM notifies
upcoming disruptive events with the virtual test hosts at proper
time. The CUBIC module in the test hosts with Ubuntu 20.04
and Linux kernel 5.4.143 is modified based on Algorithm
1. To create report timing error, LeoEM adjusts the report
time by a random amount based on the eCDF in Fig. 4.
According to discussion at section V-C, we set the estimated
report timing error Terr to 0s, 0.3s, 0.5s, and 1s, and pick
a reasonable constant value 0.2s for TCP_RTO_MIN to see
how effective SATCP counteracts the report time estimation
inaccuracy, using different configurations. To match Starlink’s
claimed network throughput of 100Mb/s to 200Mb/s [1],
we use Linux tc to cap the upload/download bandwidth of
emulated links to 150Mb/s. The data streams are generated
through an iPerf server and client which reside at the two
test hosts. We leave tc’s default 1000-packet queue length
untouched. Given our 5KB iPerf payload size, switching nodes
should be able to buffer data up to 260ms, much longer than
any handover duration. In this way, packet loss is caused
mostly by path dismantlement due to actual link fragility,
rather than avoidable queue length inadequacy.

Fig. 7 presents some 200-second time series to illustrate the
latency and the occurrences of disruptive events in two test
cases. Due to flexible connectivity between ground stations
and satellites, bent pipe links tend to be more fragile and
dynamic, as manifested by an increasing number of disrup-
tive events. For ISLs, the default +Grid topology fixes the
connectivity between every node and its four neighbors, so
route updates occur mostly during last-hop handovers. While
the relatively low dynamics of +Grid ISLs is desirable, Fig. 7
shows they produce a very problematic, highly varying latency
pattern, aligned with the results from a recent study [15]. For a
significant amount of time, the RTT of +Grid ISLs far exceeds
even the terrestrial counterparts. The root cause is that due

to inflexible connectivity, sometimes even the shortest ISL
path may need to traverse through the other side of the Earth,
leading to very high latency. In contrast, the bent-pipe links
offer lower latency than their terrestrial counterparts. Indeed,
since satellites and ground stations can freely connect with
each other, a relatively straight path can be easily obtained.
However, higher flexibility leads to greater dynamics. In Fig. 7
we also presented 200-second RTT between an actual Starlink
client in SD and an AWS EC2 in Ohio and the visual
traceroute. We can see the current access-only Starlink already
demonstrated high latency dynamics similar to those from
LeoEM. However, due to the access-only nature, relatively
inefficient route, and extra processing time, the latency is still
relatively high compared to the terrestrial ping.

B. Performance Evaluation

For the six pairs of locations, traffics of BBR, CUBIC, and
SATCP with different report time adjustments are generated
and measured for one entire orbital period using ISLs, and if
allowed, bent-pipe links.

As we can observe from the results in Table I, CUBIC
performs poorly over the SD ↔ NYC and SEA ↔ NYC
BP-link paths, achieving only 22.9% and 30.0% capacity
utilization. According to Fig. 7, the bent-pipe links exhibit a
much higher number of disruptive events than others. The high
dynamics lead to frequent packet losses and CUBIC’s constant
congestion window backoffs, which is further illustrated in
Fig. 8.

However, for the SEA ↔ SD bent-pipe path, CUBIC pre-
forms relatively well, achieving an average of 138.9Mbps with
92.6% utilization. This is because the shorter path involves a
smaller number of links, and the occurrences of link breakages
are infrequent enough such that TCP can ramp to the capacity
limit before the next disruption. Likewise, CUBIC exceeds
135Mbps on average for the six ISL paths. As shown in Fig. 7,
there are much fewer disruptive events in ISLs than in their
bent-pipe counterparts. The underlying reason again lies in the
fixed +Grid connectivity patterns and hence rare intermediate
handovers.

As for SATCP, even without the report timing adjust-
ment (and with the shortest duration of CWND freeze), the
throughput has already been enhanced to 1.74× of CUBIC
and 1.47× for SD ↔ NYC and SEA ↔ NYC over the
bent-pipe links. However, the absolute throughput, namely
59.8Mbps and 66.3Mbps, is still far away from the link
capacity limit. The reason lies in the report timing errors
caused by the non-deterministic satellite locations and hence
prediction inaccuracy (Sec. V-B). This makes the congestion
control inhibition, in many cases, fail to cover the point where
the TCP sender actually reacts to packet losses and cuts its
window size.

Fig. 8 shows one such case in SD ↔ NYC bent-pipe path,
where the disruptive event report (up triangle symbol) arrives
too early at the UE before the actual disruptive event occurs
(pentagon symbol) and the inhibition duration is insufficient,
leading to pointless congestion window size reduction.
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The effectiveness of SATCP is largely amplified after tak-
ing report timing errors into consideration. For instance, by
sending disruptive event reports 0.5s earlier and extending the
inhibition duration to 1.3 seconds, SaTCP achieves 135Mbps+
near-optimal throughput over SD↔ NY and SEA↔ NY bent-
pipe paths. We counted 91.7% and 92.1% undesired conges-
tion window reduction have been prevented respectively.

In Fig. 8, we can see that the disruptive events around
3616s and 3617s have been gracefully handled by the two
timely report signals, after sending reports 0.5s earlier and
extending the congestion window freeze to 1.3s. Because of
the preserved CWND value, the throughput quickly ramps up
from the unavoidable drop caused by network interruption,
recovering to 150Mbps link limit. Further increasing the
inhibition duration, e.g., to 2.3 seconds as shown in Table I,
leads to little improvement.

As shown in Table I, BBR has very high throughput over
all BP-link paths, similar to SATCP with adjusted report
time and extended CWND freeze period. Indeed, BDP-based
BBR adjusts its throughput based on observed delay gradient
instead of packet loss, and thus it is immune to high bent-pipe
link fragility. However, for ISL scenarios, the performance of
BBR is comparatively mediocre. For example, BBR has only
130Mbps average over NY ↔ LDN and SD ↔ SH long-
distance ISL paths, around 10Mbps less than their SaTCP
counterparts.

While the average seems decent, we found out BBR attains
very low transient throughput. The root case, illustrated in
Fig. 9, is BBR’s delay-based feedback and ISLs’ high latency
variation. Around 2719s, the NY ↔ LDN ISL path under-
goes an end handover and adopts a new route with much

higher latency. BBR, perceiving the latency spike as queue
congestion, drastically slows down its pace and under-utilizes
the bandwidth for around 15s until its next ProbeRTT. The
transient throughput drops can negatively impact real-time
applications, e.g., resulting in several seconds’ freeze in a
video telephony session. On the contrary, SaTCP maintains
near full bandwidth utilization. Note the throughput spike
is because of packet accumulation at the UT during the
end handover, along with iPerf’s coarse throughput sampling.
Overall, across all such transient periods over ISLs, we found
out SATCP achieves an average throughput gain of 2.34×
over BBR and 1.22× over CUBIC.

Recall that the report timing errors we derive and use
should form an upper bound, as explained in section V-B.
Therefore, in practical scenarios, the effective duration of
congestion control inhibition likely can be further reduced. The
SATCP results for some test cases are not presented because
CUBIC already achieves a near-optimal throughput and the
improvements become insignificant.

SATCP fairness. To see if SATCP can behave in an
exceedingly aggressive manner to gain unfair advantages, we
initiate two concurrent SATCP flows in highly dynamic SD
↔ NYC bent-pipe path. The duration of CWND freeze is
configured to be 0.3s, 0.9s, 1.3s, and 2.3s respectively, which
represents increasing levels of aggressiveness. Table II shows
that the two flows achieve very similar average throughput in
all settings. Concurrent SATCP and CUBIC flows are also
tested. We can see with 0.9s inhibition duration, SATCP
flow gives up around 12Mbps and CUBIC flow gives up
around 17 Mbps compared with the results in Table. I. With
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Protocol Location Pair Link Type Inhibited Congestion
Control Duration

Report Timing
Adjustment

Avg. Throughput
(max 150Mbps)

Throughput Improvement
to CUBIC

Intra-Continental Paths
BBR SD ↔ NY Bent Pipe N.A. N.A. 136.7Mbps 3.98×

CUBIC SD ↔ NY Bent Pipe N.A. N.A. 34.3Mbps 1.0×
SATCP SD ↔ NY Bent Pipe 0.3s 0s 59.8Mbps 1.74×
SATCP SD ↔ NY Bent Pipe 0.9s -0.3s 123.4Mbps 3.60×
SATCP SD ↔ NY Bent Pipe 1.3s -0.5s 138.1Mbps 4.03×
SATCP SD ↔ NY Bent Pipe 2.3s -1.0s 139.4Mbps 4.06×

BBR SD ↔ SEA Bent Pipe N.A. N.A. 138.3Mbps 0.99×
CUBIC SD ↔ SEA Bent Pipe N.A. N.A. 138.9Mbps 1.0×

BBR SEA ↔ NY Bent Pipe N.A. N.A. 137.6Mbps 3.05×
CUBIC SEA ↔ NY Bent Pipe N.A. N.A. 45.1Mbps 1.0×
SATCP SEA ↔ NY Bent Pipe 0.3s 0s 66.3Mbps 1.47×
SATCP SEA ↔ NY Bent Pipe 0.9s -0.3s 123.9Mbps 2.75×
SATCP SEA ↔ NY Bent Pipe 1.3s -0.5s 135.0Mbps 2.99×
SATCP SEA ↔ NY Bent Pipe 2.3s -1s 139.8Mbps 3.10×

BBR SD ↔ NY ISL N.A. N.A. 130.1Mbps 0.94×
CUBIC SD ↔ NY ISL N.A. N.A. 138.3Mbps 1.0×

BBR SD ↔ SEA ISL N.A. N.A. 138.5Mbps 0.97×
CUBIC SD ↔ SEA ISL N.A. N.A. 142.8Mbps 1.0×

BBR SEA ↔ NY ISL N.A. N.A. 136.1Mbps 0.96×
CUBIC SEA ↔ NY ISL N.A. N.A. 141.8Mbps 1.0×

Inter-Continental Paths
BBR NY ↔ LDN ISL N.A. N.A. 131.0Mbps 1.02×

CUBIC NY ↔ LDN ISL N.A. N.A. 128.5Mbps 1.0×
SATCP NY ↔ LDN ISL 0.3s 0s 135.1Mbps 1.05×
SATCP NY ↔ LDN ISL 0.9s -0.3s 140.4Mbps 1.09×

BBR SD ↔ SH ISL N.A. N.A. 130.4Mbps 0.99×
CUBIC SD ↔ SH ISL N.A. N.A. 131.3Mbps 1.0×
SATCP SD ↔ SH ISL 0.3s 0s 133.4Mbps 1.02×
SATCP SD ↔ SH ISL 0.9s -0.3s 139.7Mbps 1.06×

BBR SEA ↔ BA ISL N.A. N.A. 136.3Mbps 0.97×
CUBIC SEA ↔ BA ISL N.A. N.A. 139.9Mbps 1.0×

Table I: Evaluation result of each test case.
Two Concurrent SATCP Flows

Inhibition
Duration

SATCP Flow 1
Avg. Throughput

SATCP Flow 2
Avg. Throughput

0.3s 47.9Mbps 50.0Mbps
0.9s 67.9Mbps 68.5Mbps
1.3s 69.9Mbps 68.7Mbps
2.3s 68.2Mbps 70.1Mbps

One SATCP Flow and One CUBIC Flow
Inhibition
Duration

SATCP Flow
Avg. Throughput

CUBIC Flow
Avg. Throughput

0.9s 111.9Mbps 17.2Mbps
2.3s 131.3Mbps 8.4Mbps

Table II: Throughput of concurrent flows.

2.3s inhibition duration, the highest level of aggressiveness,
CUBIC still achieves a decent 8.4Mbps throughput. Note
CUBIC throughput is already capped at around 34.3Mbps due
to its unnecessary CWND reductions, as shown in Table. I.
Concurrent flows over less dynamic ISLs show even better
results.

Indeed, while SATCP momentarily increases its aggressive-
ness at critical points to avoid unnecessary CWND reduction,
the altruism inherited from CUBIC TCP is still well main-
tained. Two SATCP flows equally divide the bandwidth, and

SATCP also gives up a decent amount of throughput for the
concurrent CUBIC flow.

VII. CONCLUSION AND FUTURE WORK

This paper makes two major contributions: LeoEM, a high-
fidelity and highly configurable LEO satellite network emula-
tor, and SATCP, a cross-layer mechanism for improving TCP
performance under highly dynamic satellite networks. Using
LeoEM, we validate SATCP on an emulated Starlink network,
and observe superior performance gains in comparison with
the widely deployed loss-based CUBIC, and the state-of-the-
art BBR which combines bandwidth and delay metrics. Our
experiments adopted standard shortest-path algorithm to select
the routes for end-to-end paths. Certain routing protocols may
incur less frequent routing table updates, albeit at the cost of
suboptimal routes. In our future work, we will explore such
routing strategies and evaluate the tradeoffs in depth.
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