LES: Locally Exploitative Sampling for
Robot Path Planning

Sagar Suhas Joshi! Seth Hutchinson?

Abstract— Sampling-based algorithms solve the path plan-
ning problem by generating random samples in the search-
space and incrementally growing a connectivity graph or a tree.
Conventionally, the sampling strategy used in these algorithms
is biased towards exploration to acquire information about the
search-space. In contrast, this work proposes an optimization-
based procedure that generates new samples so as to improve
the cost-to-come value of vertices in a given neighborhood. The
application of the proposed algorithm adds an exploitative-
bias to sampling and results in a faster convergence' to the
optimal solution compared to other state-of-the-art sampling
techniques. This is demonstrated using benchmarking experi-
ments performed for 7 DOF Panda and 14 DOF Baxter robots.

I. INTRODUCTION

Sampling-based motion planning (SBMP) algorithms have
become the default choice for solving complex robotic
planning tasks due to their scalability to higher dimensional
problems. These algorithms do not resort to discretization
or explicit construction of the search-space. Instead, popular
single-query SBMP algorithms such as RRT [1], [2] and
multi-query algorithms such as PRM [3], [4] use a black-box
collision checking function to probe a set of random samples
and local connections to incrementally build a connectivity
graph. These algorithms are probabilistically complete, i.e.,
the probability of finding a feasible solution, if it exists,
approaches unity as the number of samples tends to infinity.

Asymptotically optimal variants of RRT, such as RRT* [5],
converge to the optimal solution almost-surely. These algo-
rithms comprise of two fundamental modules, namely, graph-
growth and graph-processing. The graph-growth module
generates random samples, performs nearest neighbor, local
steering and collision checking calculations to build a con-
nectivity graph during planning time. The graph-processing
module then tries to improve the cost-to-come value of the
vertices by performing operations such as edge rewiring.
The graph is said to be rewired if the parent of a vertex
changes, improving its cost-to-come value. In particular, the
“local rewiring” procedure of RRT* first selects the best
parent for a newly initialized vertex and then checks if this
new vertex can be a better parent for any of the vertices
in its neighborhood. The RRT# [6] algorithm provides an
extension to the RRT* procedure by “globally rewiring” the
graph using dynamic programming. It uses value-iteration [6]
or policy-iteration [7] to optimally connect each vertex in

1,2,3 Institute for Robotics and Intelligent Machines, Georgia Institute of
Technology, USA. Email: {sagarsjoshi94, seth, tsiotras} @gatech.edu

'In this work, convergence implies convergence to the optimal solution,
unless stated otherwise.

Panagiotis Tsiotras®

Fig. 1: Schematic motivating the proposed LES algorithm,
which leverages local information and considers an opti-
mization problem to generate the blue sample. In contrast
to the red sample, the blue sample can initiate rewirings and
improve cost-to-come value of (green) vertices in the graph.

the graph in order to minimize their cost-to-come values.
Recently proposed methods such as BIT* [8] and FMT* [9]
also use ideas from dynamic programming and heuristics to
obtain faster convergence than RRT*.

Using an intelligent sampling strategy in conjunction with
these graph-processing methods is effective for accelerating
the convergence of SBMP algorithms. Uniform random
sampling, a widely used approach, biases the graph growth
towards vertices with larger Voronoi regions in RRT-style
methods [1]. This results in a rapid exploration of the search-
space and is effective for finding an initial solution in single-
query scenarios. However, this strategy, like many others in
the literature (e.g., [2], [10], [11]), prioritizes acquisition of
new information over the improvement of current paths in
the planner’s graph. This bias towards exploration can have
a detrimental effect on convergence, especially in higher
dimensions [12].

The algorithm proposed in this work aims to generate new
samples that can improve the cost-to-come value of vertices
and initiate rewirings. This is in contrast to exploration-
biased techniques. The proposed algorithm first selects a
vertex and then generates a new sample in its vicinity. This
sample is generated by considering an optimization problem,
wherein the objective is to minimize the sum of cost-to-
come value of a chosen vertex and its randomly selected
descendants. The proposed sampling algorithm thus lever-
ages local information to provide an exploitative bias. The
combination of global exploratory and locally exploitative
sampling results in faster convergence for SBMP algorithms,
as demonstrated by several benchmarking experiments.

The following sections include a discussion on related
work and a formal definition of the optimal path planning
problem. This is followed by a description and motivation

behind the optimization problem to generate new samples.
The proposed sampling algorithm is then discussed and is
followed by benchmarking experiments.

II. RELATED WORK

Many approaches have been suggested to address the
exploration-exploitation trade-off in SBMP. Authors in [13]
generate samples near a randomly selected state on the
current solution path. This local biasing technique increases
the probability of improving the current solution at the cost of
exploring other homotopy classes. The RRM algorithm [14]
adds edges to the current roadmap to balance exploration and
refinement. Techniques such as [15], [16], [17], [10], [11] use
heuristics and obstacle information to guide search during
planning. T-RRT [18] and its variants [19], [20] implement
a transition-test to avoid unhindered exploration in high cost
regions. These approaches provide a way to focus search
during planning. However, they do not directly address the
problem of improving the cost-to-come value of vertices
through sampling.

Unlike the above approaches, Informed Sampling [12]
avoids redundant exploration after an initial solution is
discovered. It focuses search onto a subset of the search-
space, called the Informed Set, that contains all the points
that can potentially improve the current solution. Generating
new samples in the Informed Set is thus a necessary (but not
sufficient) condition to improve the current solution. Relevant
Region [21], a subset of the Informed Set, leverages cost-to-
come information from the planner’s graph to further focus
search during planning. The combination of Relevant Region
and Informed Sampling results in accelerated convergence
in uniform and general cost-space environments. However,
these techniques do not generate samples to directly improve
the cost-to-come value of vertices. Hence, some of the
samples may fail to trigger any improvement in the planner’s
graph. The sampling algorithm proposed in this work also
generates new samples in the Relevant Region to avoid
redundant exploration. However, it does so by considering
an optimization problem aimed towards improving the cost-
to-come value of vertices in the graph. Application of the
proposed sampling algorithm thus initiates a higher number
of rewirings and results in a faster convergence. Please see
Fig. 1 for an illustration of this.

Approaches combining sampling-based planning and local
optimizers have also been explored. RABIT* [22] uses
CHOMP [23] to get feasible, high quality edges connecting
any two vertices during a global search performed by BIT*.
However, RABIT* requires pre-computed domain informa-
tion, such as an obstacle potential function, which may
not be available in many practical problems. Volumetric
Tree* [24] addresses this limitation by constructing an
approximation of the obstacle-free configuration space on-
the-fly. However, it relies on uniform random sampling for
graph construction, which may lead to redundant exploration.
DRRT [25] employs a gradient-descent based procedure
in the graph-processing module. However, DRRT incurs
a higher computational cost due to the extra calls to the

Fig. 2: Planning with the proposed LES algorithm on a
potential cost-map. The robot incurs a higher cost if it travels
in the white regions.

nearest-neighbor and collision checking function to ensure
edge feasibility after vertex movement. This work combines
ideas from DRRT and [21] to propose an optimization based
sampling procedure. The proposed method does not require
extra calls to the collision checker/nearest-neighbor and can
be used in conjunction with any graph-processing module.

I1I. PROBLEM DEFINITION
A. Path Planning Problem

Consider the search-space X C R?, with dimension d,
d > 2. Let the obstacle space and free space be denoted
by Xobs and Xjpee respectively. Then Xee = cl(X\ Xobs),
where cl(A) represents closure of the set A C R?. Let the
cost of moving from a point x; € X to xo € X along a
path 7 : [0,1] — X, 7(0) = x3, m(1) = x2 be denoted by
Cr (Xl,Xz),

crlirza) = [) 1T s

S

Here, C : X — R>(denotes a continuous state cost
function. Note that (1) represents the integral of state-cost
(IC) metric as a measure of path quality [18]. The path
m in (1) is assumed to be collision free. The path-cost is
infinite otherwise. The optimal path planning problem can
be formally defined as the search for minimum cost path 7*
from the set of feasible paths II connecting the start state
X5 € Xfree to the goal region Xgoa1 C Xiree,
frnelg Cr(Xs,Xg),
subject to: m(0) = xs, 7(1) =Xy € Xgoul, 2
7(s) € Xeo, s €10,1].

SBMP algorithms solve the above problem (2) by construct-
ing a connectivity graph G = (V, E) with a finite set of
vertices V' C Xpee and a set of edges £ C V x V.
The “geometric” versions of SBMP algorithms ignore the
kino-dynamic constraints of the robot. Conventionally, these
planners construct an edge (u,v) € F using a straight line
path 7(s) = u+ (v —u)s, s € [0,1] connecting u and v.
Using (1), the edge-cost can be denoted as

1
ce(u,v) = Jju— V||2/ C(u+ (v—u)s) ds. 3)
0

Fig. 3: Neighborhood around a vertex v. Here, ny = 4 and
dvyv, =4+ (14+2)=T1.

SBMP algorithms can perform numerical integration to cal-
culate the edge-cost cy(u, v) for any edge (u,v) € E. The
graph G embeds a spanning tree 7 = (V;, E;) with V; =V
and By = {(u,v) € E | v = parent(u)}. Here, parent :
V' — V denotes the function mapping a vertex to its unique
parent in the tree. By definition, we have parent(xs) = Xs.
The cost-to-come value g7 (v) for a vertex v denotes the sum
of edge-costs along the path from v to the root X in 7. The
function g7 : V — R>(can be written recursively as

gT(V) = gT(VP) + Cf(vp7 V)7 (4)

where v, = parent(v). By definition, the recursion ends at
x5 with g7(xs) = 0. Let the set of children for vertex v be
denoted by V;, = {u € V | v = parent(u)} and the number
of children by ny = |V4|. Descendants of a vertex v are
all the vertices u € V whose path from u to the root xg
in 7 contains v. Let D, denote the set of vertices that are
descendants of v and let dy = | Dy|. Then,

dy=ny+ Y du. 5)

ueVy

Note that for a leaf vertex v € V, we have ny = dy = 0. Let
h: X x X — R>o denote a consistent heuristic function.
This function obeys the triangle inequality and gives an
under-estimate of the path-cost ¢, (X1, X2) between any two
points X1,Xs € X. An example of function h is the Lo-norm
(Euclidean distance).

Let B¢(x,) denote an e-ball around x, € X, given by
Be(xo) = {x € X | ||x — Xo]||2 < €}, for € > 0. Finally, let
u(A) denote the Lebesgue measure of the set A C R%.

B. Optimization Problem for Sampling

Given G, the objective of the graph-processing module
is to minimize the cost-to-come value of all vertices. This
objective can be written as

Jr =Y gr(u). 6)
ueV

Let J7(v) denote the terms of J7 that are dependent only on
a particular vertex v € V. The position of vertex v impacts
the cost-to-come value of itself and its descendants. Then,

Jr(v) =gr(V) + > gr(w). (7
weDy

Using (4), the above equation for J7(v) can be written in
terms of the edge-costs c¢(vp, V) and cg(v,u). Here, v, =

Fig. 4: Planning in the joint space of Panda and Baxter ma-
nipulator arms. The start and goal positions for both robots
are indicated in the top and bottom figures respectively.
A video of full robot plan can be found here: https:
//youtu.be/J4B5_L2Ghrs

parent(v) and u is any child of v. The edge-cost c;(vp,V)
will appear 1 + dy times in total, to calculate the cost-to-
come value of v and its descendants. Similarly, the edge-
cost ¢y(v,u) will appear 1 + d, times in total, to calculate
the cost-to-come value of u and its descendants. Then,

Jr(v) = k1 + (14 dy)eo(vp, V) + Y (14 du)eg(v,u). (8)
ueVy

Note that equation (8) for J7(v) only contains terms depen-
dent on v. Other terms are incorporated in the constant k;.
Also, dy and dy in (8) are linked by equation (5). A new
sample can be generated by first selecting a vertex v and
then finding a “better” position for it by optimizing J7 with
respect to v. Note that arg miny J7 = arg miny J7(v).

However, calculating the values of the coefficients dy, dy
in (8) requires a depth-first search with time complexity
of O(]V4]). This may get computationally cumbersome,
especially as the planner tree grows larger with the number
of iterations. Hence, the following objective function is
considered instead,

Trv (V) = ko + (14 dyy;)ee(vp, V) + D (1 + ny)eg(v,w),
ueV,

dyyv, =ny+ Z Ty-
uevV,

-)
Please see Fig. 3. Note that minimizing J7 v, (v) in (9)
with respect to v is equivalent to minimizing the cost-to-
come values of v, the set of children V5 and their children.
The objective J7 v, (v) can be calculated efficiently with
the information contained in the data structure of vertex v,
without recursing deeper down the tree. Effectively, Jr v, (V)

https://youtu.be/J4B5_L2Ghrs
https://youtu.be/J4B5_L2Ghrs

Algorithm 1: LES Algorithm Flow

Algorithm 3: Calculate Step-size

1V {xs}h E<+ ¢, G+ (V,E);
2fori=1:N do

3 ¢; < getBestSolutionCost();

4 Urand ™~ U(O, 1),

5 if Urang < pres and ¢; < oo then
6 v + chooseVertex(V;e1);

7 € + getGradientDirection(v);
8 v < getStepSize(v, e);

9 Xrand <V — ’Yé,
10 else

1 L Xrand < InformedSampling(c;)
12 Extend(X;and);
13 GraphProcessing(G);

14 return G

1 getStepSize (v,e):

Yrel < getMaxStepSize(v, €);

Ymax — Yrels

while v, > 0 do

Upand ~ U(0,1); v

Xrand —V-— ’Yé»

lf J (Xrand) < j\T,
| break,

else

L Ymax < 75

(urand) l/d'\/max 5

7. (v) then

e e N A AW

[y
=)

11 if Ymax < 6 then
12 L Urand ~ U(O, 1)7 Y (urand)l/d"}/rcl;

13 return -y

Algorithm 2: Calculate Gradient Direction

1 getGradientDirection (v):

2 ‘7‘, + getRandomSubset(V});

3 e (1+c?v7‘7v)%04(vp,v)+zue‘7v(l+
nu)%(w(v, u);

4 e« e/|e|2

5 return €

considers descendants of v up to a depth of 2, whereas
J7(v) considers full depth. This can be generalized to depth-
k descendants. R
Finally, a random subset of the children, denoted by V, C
V4, can be selected and a new sample generated by minimiz-
ing JTJZ (v). This serves two purposes. First, it promotes
a desirable randomness in the sampling process. Second,
focusing on the subset Vy effectively assigns a weight of
zero for the terms corresponding to the vertices V \ V4 in
the objective (8), (9). This can lead to a better improvergent
in the cost-to-come value of vertices corresponding to V5.

IV. LOCALLY EXPLOITATIVE SAMPLING

The proposed “Locally Exploitative Sampling (LES)”
procedure first selects a vertex v and then generates a
new sample considering J (). Expansive Space Trees
(EST) [26] and its variants, such as [16], [17], also proceed
by selecting a vertex and generating a random sample in
its vicinity. However, the probability of generating a “good”
sample (that can improve J- o (v)) with such random search
decreases rapidly in higher dimensions. This is illustrated in
the Appendix by considering the problem of minimizing a
quadratic function J,(x) = x'x with random local search.
The probability of generating a sample that can improve J,
diminishes exponentially with the dimension d.

This motivates the LES procedure, given in Algorithm 1.
With probability prgs, LES is used to generate a new sample
Xrand (Algorithm 1, line 6-8). Otherwise, a new sample is
generated using the conventional Informed Sampling tech-
nique given in [12] (Algorithm 1, line 11). This ensures
a balance between exploration-exploitation (controlled by

the parameter prrs) and graph growth in all the relevant
homotopy classes. The Extend function takes this random
sample and performs relevant procedures (nearest-neighbor,
local steering and collision checking) to incorporate a new
vertex in the graph (Algorithm 1, line 12). Finally, the graph-
processing module operates on G considering the addition of
a new vertex (Algorithm 1, line 13).

If the best available solution cost ¢; after ¢ iterations is
finite (indicating that a sub-optimal solution has been dis-
covered), redundant exploration can be avoided by focusing
the search on the Informed or Relevant Region set. As the
Informed Set may be ineffective in focusing the search for
general cost-space problems, LES generates new samples in
the Relevant Region X [21], defined as follows

rel - U Brel (10)
VEViel
where,
Brel()_{XGBG(‘ fV(X) <Ci}a (11)
Fo(x) = co(vix) + g7 (v) + h(x,X,),
and V. denotes the set of “relevant vertices”,
Ve ={veV|gr(") +h(v.x) <} (12)

The value of € in (10) is set to € = 1.5, where 7 is the
range parameter in SBMP algorithms [27], which controls
the maximum edge-length in G. The procedure for selecting a
vertex (chooseVertex), is same as the implementation in [21].
It assigns a weight gy for each v € Vi, and uses a binary
heap data-structure for sorting. Start, goal and leaf vertices
(vertices with no children) are ignored by the chooseVertex
function.

Note thgt, a closed-form solution to the optimization
objective ‘]T,\Z(V) cannot be obtained in general. Hence,
LES proceeds by numerically calculating the gradient of
JT,‘Z (v) and moving an appropriate step-size in the direction
of the gradient. The procedure to calculate the gradient
direction € is given in Algorithm 2. First, a random subset of
children V, is obtained. The gradient JT 7. (v) with respect
to v is calculated numerically using the symmetric difference

Potential 2D <104 Panda
+ T + 1 4 T T T
n n B
o o w12
O 25 ©) g 1
=) =] S 08
5 5
320t g 06
= = S04
3 } 3 =02
©n 15 l‘ L . 1 ®n ' .
05 1 15 1 2 3 4 5 6 7
Seconds Seconds Seconds
Potential 4D = 10t Potential 4D 10* Potential 4D
45 T T T g 14T T T T T T T
Q o 12} u8
O =]
~ O 10t 1 S
8 I 1 %,
= B= -
— Ho4t 1 Q
5 5 ol M =2
3 2
n é . ;
1 2 3 4 5 1 2 3 4 5
Seconds Seconds Seconds
Potential 6D = xio Potential 6D 10t Potential 6D
) T T T T T T T o T T T T T T T T
% 25 ¢ - g 4t g 5
© U g4
= o0)
.9 20N Aol g $
= g g2
S g =
wn 15 ¢ L L L L L L L Y 0 L . e L L L L L L L
1t 2 3 4 5 § 7 w~ 1 2 3 4 5 6 7 1 2 3 4 5 6 7
Seconds Seconds Seconds
Baxter = xi0? Baxter 7 10 Baxter
fj} T T : 4 [T T T 8 [T T
S 10 ° z
@) (@) - 8 6l
S s Do I S 24l
£] s 5
= — [g | . .. 2f
i 1+ % i H—"t— =
2 4 6 8 M 2 6 8 2 4 6 8
Seconds Seconds Seconds

‘—Informed ——Relevant Region —LES—2

LES—8 —LES—oc0

Fig. 5: Benchmarking plots for the numerical experiments. Solid lines indicate the value averaged over 100 trials and the
error bars represent standard deviation. Application of the proposed LES (red, cyan, black) leads to a faster convergence and
a larger number of tree rewirings in higher dimensions. However, it incurs a higher computational cost and hence executes
a lesser number of iterations compared to Informed (magenta) and Relevant Region (blue) sampling.

formula (Algorithm 2, line 3). Having obtained the gradient
direction e, the algorithm to calculate the step-size is given in
Algorithm 3. As finding the optimal step-size v* by solving
argmin, J- > (v — ~€) is intractable, approaches such as
backtracking line search [28] have been suggested. However,
executing backtracking line search is computationally not
viable for the current application, as it requires a higher
number of expensive calls to calculate ‘]Tﬁv . Instead, LES
uses a procedure given in Algorithm 3, which is similar to
the Hit-and-Run Sampler implemented in [29]. First, given
a vertex v and the travel direction —e, the procedure in
[21] is used to calculate the maximum step-size ~yye. This
ensures that a candidate v — e € X, for any v € (0, Vre1).
Variable vmax 1S set to .. Next, a random step-size -y
is sampled from the interval (0,7max). The exponent of
1/d in Algorithm 3, line 5 biases v towards Ymax- If the
candidate v — ~ye results in an improvement for JT,VV , step-
size 7y is returned. Else, ymax is updated to ~. Thus, the
search interval is sequentially reduced until a suitable step-
size is discovered. Theoretically, a travel of infinitesimal

magnitude in the direction of the gradient always results in an
improvement. However, if yy,ax is less than a small quantity
d < 1, then a random ~ in the interval (0,7,q) is returned
(Algorithm. 3, line 11-12) to avoid clumping of new vertices
around v.

V. NUMERICAL EXPERIMENTS

Numerical experiments consider three variations of the
proposed LES algorithm, namely LES-2, LES-8 and LES-
0o. LES-2 and LES-8 consider descendants up to a maximum
depth of 2 and 8 respectively, whereas LES-co considers full
depth up to the leaf nodes. Benchmarking was performed
against Informed sampler and Relevant Region sampler de-
scribed in [12] and [21] respectively. Note that LES and Rele-
vant Region sampler share a similar chooseVertex procedure.
However, the Relevant Region sampler only generates ran-
dom samples in X, and does not consider the optimization
problem corresponding to (8) or (9). All the algorithms were
implemented using C++/OMPL [27]. Data was gathered over
100 trials for each experiment using the standardized OMPL

benchmarking tools [30]. All experiments were performed
on a 64 bit laptop running Ubuntu 16.04 OS, with 16 GB
RAM and an Intel i7 processor. The parameter prrs and
an analogous parameter p,.; for Relevant Region sampler
were both set to 0.5. The parameter § was set to 1074,
All sampling strategies used a goal bias of 5% and were
paired with RRT#’s global rewiring for graph-processing. A
description of the different benchmarking environments is
given below.

Potential Cost-map: This environment, illustrated in Fig. 2,
has the state-cost function

C@):1+9§:mm(—nﬁ—x@) (13)

Here, x{ represent the center points of the high cost white
regions. The objective for the robot is to plan a path to the
goal while avoiding these soft obstacles. The range parameter
n was set to 0.4, 0.6 and 1.5 for the 2D, 4D and 6D versions
of environment respectively.
Robot Manipulator: A planning problem for a 7 DOF
Panda and a 14 DOF Baxter arm is illustrated in Fig. 4. The
objective was to find the minimum length path (C'(x) = 1 for
all x € &) in the configuration-space with strict joint limits
(X C R7 for Panda, X C R'* for Baxter). These joint limits
and collision checking calculations were implemented with
the help of Movelt! [31]. The range parameter 7 was set to
1.2 and 2 for the Panda and Baxter experiments respectively.
Results from the numerical experiments are illustrated in
Fig. 5. The proposed LES variations outperform Informed
and Relevant Region samplers in higher dimensional settings
(Potential 6D, Panda, Baxter) in terms of cost convergence.
While the performance of all three LES variants is similar,
LES-co and LES-8 perform slightly better than LES-2 in
case of Potential 6D and Panda. LES also initiates a larger
number of rewirings in 7. However, similar performance
gains are not seen in the lower dimensional environments
(Potential 2D, 4D). The Relevant Region sampler, with its
focusing properties, performs better than Informed sampling.
LES incurs a higher computational cost due to the numerical
gradient calculations in Algorithm 2 and expensive function
evaluations of JT,\Z in Algorithm 3. Thus, the application
of LES leads to a lesser number of iterations executed in
a given time period compared to the other two methods.
This might slow down convergence in lower dimensions.
However, random search techniques are affected by the
“curse of dimensionality” as illustrated in the Appendix.
This justifies the computationally more costly procedures
of LES which lead to an accelerated convergence in higher
dimensions.

VI. CONCLUSION

This work proposes a “Locally Exploitative Sampling”
algorithm, that generates new samples to improve the cost-
to-come value of vertices in a neighborhood. LES numer-
ically calculates the gradient of J - (v) and decides an
appropriate step-size to obtain a new sample. Although
computationally costlier than other methods, LES adds an

Fig. 6: Schematic for the analysis in Appendix. Black
and magenta circles illustrate the set B/*l2(0) and B¢(x,)
respectively. The intersection B¢(x,)NBI*llz (0) can be over-
approximated by hyper-sphere centered at x. with radius r..

“exploitative-bias” that can accelerate convergence of SBMP
algorithms, especially in higher dimensions. LES generates
new samples in the Relevant Region, a subset of the Informed
Set, to avoid redundant exploration after an initial solution is
discovered. As discussed earlier, Informed Sampling is a nec-
essary condition to improve the current solution. However, it
is not sufficient, as an “Informed sample” is not guaranteed
to bring about improvements in the current solution or the
cost-to-come value of vertices. LES can be seen as a way to
address this limitation of Informed Sampling.

LES presents many openings for future research. For
instance, LES can be extended to kino-dynamic settings and
be used with planners such SST [32]. Ideas from [10] can
also be used to have an “obstacle-aware” version of LES.

APPENDIX

The following analysis is similar to the one provided
in [33]. Consider the problem of minimizing a quadratic
objective function J,(x) = x'x with random local search.
Let the starting state be x, € R¢ with the corresponding
objective cost J,(x,). Random search generates samples
in the set B¢(x,) to find a new state with cost less than
Jq(X5). Assume € < [|X,||2. The set of states that provide an
improvement over J,(x,) satisfy x"x < x!x,. This set can
be denoted as Bl*l2(0), where 0 is the origin. The set of
good samples thus lie in the set B¢(x,) N BI*I2(0). Please
see Fig. 6. This intersection between two hyper-spheres can
be over-approximated by B"<(x.), where

€2
re =€4/1 — ——.
TV I3

The probability of generating a good sample using random
search is given by

(14)

(B (x,) N B 1= (0))

P(x € B(x,) N BlFll2(0)) =

(B (%))
WBe(x) @ g
WB) TR

15)
Thus, the probability of generating a good sample decreases
exponentially with the dimension d.
Acknowledgements: This work has been supported by NSF
awards IIS-1617630 and IIS-2008686.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

(13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

REFERENCES

S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic plan-
ning,” The International Journal of Robotics Research, vol. 20, no. 5,
pp. 378-400, 2001.

J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” in /EEE International Conference on
Robotics and Automation., vol. 2, San Franciso, CA, April 24-28 2000,
pp. 995-1001.

L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, ‘“Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” Transactions on Robotics and Automation, vol. 12, no. 4, pp.
566-580, 1996.

R. Bohlin and L. E. Kavraki, “Path planning using lazy PRM,” in
IEEE International Conference on Robotics and Automation, vol. 1,
San Franciso, CA, April 24-28 2000, pp. 521-528.

S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846-894, June 2011.

O. Arslan and P. Tsiotras, “Use of relaxation methods in sampling-
based algorithms for optimal motion planning,” in IEEE International
Conference on Robotics and Automation, Karlsruhe, Germany, May
6-10 2013, pp. 2421-2428.

——, “Incremental sampling-based motion planners using policy
iteration methods,” in IEEE 55th Conference on Decision and Control,
Las Vegas, NV, Dec. 12-15 2016, pp. 5004-5009.

J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Batch informed
trees (BIT*): Sampling-based optimal planning via the heuristically
guided search of implicit random geometric graphs,” in /IEEE Inter-
national Conference on Robotics and Automation, Seattle, WA, May,
25-30 2015, pp. 3067-3074.

L. Janson, E. Schmerling, A. Clark, and M. Pavone, “Fast marching
tree: A fast marching sampling-based method for optimal motion
planning in many dimensions,” The International Journal of Robotics
Research, vol. 34, no. 7, pp. 883-921, May 2015.

T. Lai, P. Morere, F. Ramos, and G. Francis, “Bayesian local sampling-
based planning,” IEEE Robotics and Automation Letters, vol. 5, no. 2,
pp. 1954-1961, 2020.

S. Rodriguez, X. Tang, J.-M. Lien, and N. M. Amato, “An obstacle-
based rapidly-exploring random tree,” in IEEE International Confer-
ence on Robotics and Automation, Orlando, FL, May 15-19 2006, pp.
895-900.

J. D. Gammell, T. D. Barfoot, and S. S. Srinivasa, “Informed sampling
for asymptotically optimal path planning,” IEEE Transactions on
Robotics, vol. 34, no. 4, pp. 966-984, Aug. 2018.

B. Akgun and M. Stilman, “Sampling heuristics for optimal motion
planning in high dimensions,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, San Francisco, CA, Sept. 25-30
2011, pp. 2640-2645.

R. Alterovitz, S. Patil, and A. Derbakova, “Rapidly-exploring
roadmaps: Weighing exploration vs. refinement in optimal motion
planning,” in /IEEE International Conference on Robotics and Automa-
tion, Shanghai, China, 2011, pp. 3706-3712.

C. Urmson and R. Simmons, “Approaches for heuristically biasing
RRT growth,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems., vol. 2, Las Vegas, NV, Oct. 27-31 2003, pp.
1178-1183.

J. M. Phillips, N. Bedrossian, and L. E. Kavraki, “Guided expansive
spaces trees: a search strategy for motion-and cost-constrained state
spaces,” in IEEE International Conference on Robotics and Automa-
tion, New Orleans, LA, April 26-30 2004, pp. 3968-3973.

S. M. Persson and I. Sharf, “Sampling-based A* algorithm for
robot path-planning,” The International Journal of Robotics Research,
vol. 33, no. 13, pp. 1683-1708, 10 2014.

L. Jaillet, J. Cortés, and T. Siméon, “Sampling-based path planning
on configuration-space costmaps,” IEEE Transactions on Robotics,
vol. 26, no. 4, pp. 635-646, 8 2010.

D. Devaurs, T. Siméon, and J. Cortés, “Enhancing the transition-
based RRT to deal with complex cost spaces,” in IEEE International
Conference on Robotics and Automation, Karlsrithe, Germany, May
6-10 2013, pp. 4120-4125.

——, “Optimal path planning in complex cost spaces with sampling-
based algorithms,” IEEE Transactions on Automation Science and
Engineering, vol. 13, no. 2, pp. 415-424, 2015.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]

[33]

S. S. Joshi and P. Tsiotras, “Relevant region exploration on general
cost-maps for sampling-based motion planning,” in International Con-
ference on Intelligent Robots and Systems (IROS). Las Vegas, NV:
IEEE/RSJ, Oct. 25-29 2020.

S. Choudhury, J. D. Gammell, T. D. Barfoot, S. S. Srinivasa, and
S. Scherer, “Regionally accelerated batch informed trees (RABIT*): A
framework to integrate local information into optimal path planning,”
in International Conference on Robotics and Automation (ICRA).
IEEE, 2016, pp. 4207-4214.

M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith,
C. M. Dellin, J. A. Bagnell, and S. S. Srinivasa, “CHOMP: Covariant
Hamiltonian optimization for motion planning,” The International
Journal of Robotics Research, vol. 32, no. 9-10, pp. 1164-1193, 2013.
D. Kim, M. Kang, and S.-E. Yoon, “Volumetric tree*: Adaptive sparse
graph for effective exploration of homotopy classes,” in International
Conference on Intelligent Robots and Systems (IROS). 1EEE/RSJ,
2019, pp. 1496-1503.

F. Hauer and P. Tsiotras, “Deformable rapidly-exploring random trees.”
in Robotics: Science and Systems, Cambridge, MA, July 12-16 2017.
D. Hsu, J.-C. Latombe, and R. Motwani, ‘“Path planning in expansive
configuration spaces,” in IEEE International Conference on Robotics
and Automation, vol. 3, Albuquerque, NM, April 25-29 1997, pp.
2719-2726.

I. A. Sucan, M. Moll, and L. E. Kavraki, “The open motion planning
library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72-82, Dec. 2012.

S. Boyd and L. Vandenberghe, Convex Optimization.
University Press, 2004.

D. Yi, R. Thakker, C. Gulino, O. Salzman, and S. Srinivasa, “Gen-
eralizing informed sampling for asymptotically-optimal sampling-
based kinodynamic planning via Markov Chain Monte Carlo,” in
IEEE International Conference on Robotics and Automation (ICRA),
Brisbane, Australia, May 21-25 2018, pp. 7063-7070.

M. Moll, I. A. Sucan, and L. E. Kavraki, “Benchmarking motion
planning algorithms: An extensible infrastructure for analysis and
visualization,” IEEE Robotics & Automation Magazine, vol. 22, no. 3,
pp. 96-102, 2015.

S. Chitta, I. Sucan, and S. Cousins, “Moveit![ROS topics],” IEEE
Robotics & Automation Magazine, vol. 19, no. 1, pp. 18-19, 2012.
Y. Li, Z. Littlefield, and K. E. Bekris, “Sparse methods for efficient
asymptotically optimal kinodynamic planning,” in Algorithmic Foun-
dations of Robotics XI. Springer, 2015, pp. 263-282.

J. Watt, R. Borhani, and A. K. Katsaggelos, Machine Learning
Refined: Foundations, Algorithms, and Applications, 1st ed. USA:
Cambridge University Press, 2016.

Cambridge

	INTRODUCTION
	RELATED WORK
	PROBLEM DEFINITION
	Path Planning Problem
	Optimization Problem for Sampling

	LOCALLY EXPLOITATIVE SAMPLING
	NUMERICAL EXPERIMENTS
	CONCLUSION
	References

