Lazy Lifelong Planning for Efficient Replanning
in Graphs with Expensive Edge Evaluation

Jaein Lim
School of Aerospace Engineering
Georgia Institute of Technology
Atlanta, Georgia 30332-0150
Email: jaeinlim126 @gatech.edu

Abstract— We present an incremental search algorithm,
called Lifelong-GLS, which combines the vertex efficiency
of Lifelong Planning A* (LPA*) and the edge efficiency of
Generalized Lazy Search (GLS) for efficient replanning on
dynamic graphs where edge evaluation is expensive. We use a
lazily evaluated LPA* to repair the cost-to-come inconsistencies
of the relevant region of the current search tree based on the
previous search results, and then we restrict the expensive edge
evaluations only to the current shortest subpath as in the GLS
framework. The proposed algorithm is complete and correct
in finding the optimal solution in the current graph, if one
exists. We also show the efficiency of the proposed algorithm
compared to the standard LPA* and the GLS algorithms over
consecutive search episodes in a dynamic environment.

I. INTRODUCTION

The ability to replan quickly and reliably is essential for ev-
ery decision-making agent with partial knowledge operating
in a dynamic or complex environment. Incremental search
methods [1]-[3] allow replanning by storing the previous
search tree in order to identify the inconsistent portion of the
tree when the graph changes in order to efficiently repair the
current tree. Any identified inconsistencies are propagated
onward to make the search tree consistent again with respect
to the current graph changes without having to solve the
problem from scratch. In particular, Lifelong Planning A*
(LPA¥*) [2] efficiently restricts repairs to only the optimal
path candidate guided by a consistent heuristic and a priority
queue similar to that of the A* algorithm [4]. This means
that LPA* heuristically delays the expansion of inconsistent
vertices until repairing becomes necessary in order to find
the new optimal solution with respect to the current graph.

Unfortunately, the design of LPA* is tailored to reducing
the number of vertex expansions to find the new optimal solu-
tion, and it is indifferent to the number of edge evaluations.
LPA* evaluates all changed edges before repairing propa-
gation commences, regardless of whether these changes are
relevant to the current problem or not. Figure 1 illustrates this
point. This property of LPA* often results in unnecessarily
excessive edge evaluations to find the new optimal solution,
causing significant overhead in problem domains where edge
evaluation dominates computation time. For example, in
motion planning problems [5]-[8], an edge evaluation con-
sists of multiple collision checks in the configuration space,
solving two-point boundary value problems, or propagating
the system dynamics with a closed-loop controller.

Siddhartha Srinivasa
School of Computer Science
& Engineering
University of Washington
Seattle, WA, 98195-2355
Email: siddh@cs.uw.edu

Panagiotis Tsiotras
School of Aerospace Engineering
Institute for Robotics & Intelligent Machines
Georgia Institute of Technology
Atlanta, Georgia 30332-0150
Email: tsiotras@gatech.edu

The issue of excessive edge evaluations has been explicitly
addressed within the lazy search framework in order to
reduce the actual number of edge evaluations by delaying
these evaluations as much as possible [9]-[15]. The main
idea of the lazy search framework is to delay the actual
evaluation of the edges using a n-step lookahead (n > 0),
by prioritizing the expansion of the subpath constrained with
an n-number of heuristically evaluated edges.

In [14] it was shown that the number of edge evaluations
decreases as the lookahead steps increase. In fact, using an
infinite lookahead step (LazyPRM [9], LazySP [13]), i.e.,
restricting the edge evaluations to the shortest path to the
goal (instead of subpaths), is proven to be edge optimal,
that is, the number of edge evaluations is minimized. The
edge optimality of LazySP comes at the expense of many
vertex expansions. This is because the heuristic tree is grown
beyond a possibly infeasible edge, and therefore, the subtree
must be repaired when the edge is revealed to be infeasible
upon evaluation. On the other hand, zero-step lookahead
algorithms, such as the A* algorithm, do not grow the subtree
beyond any infeasible edge, therefore minimizing the number
of vertex expansions. In [14] the relationship between the
number of lookahead steps and the total computation time to
solve the problem has been studied extensively to highlight
the tradeoffs between vertex rewiring and edge evaluation
in different problem domains. The Generalized Lazy Search
(GLS) encompasses various lookahead strategies with a
user-defined algorithmic toggle between vertex rewiring and
edge evaluation [15]. With a proper choice of the toggle
from the search and the evaluation, GLS hence reduces to
LazySP [13], LRA* [14] or LWA* [10].

In this paper, we seek to remedy the excessive edge
evaluations of LPA* by borrowing ideas from the lazy
search framework of [9]-[11], [13]-[15]. We extend GLS to
incorporate lifelong planning behavior, by maintaining a lazy
LPA* search tree with non-overestimating heuristic edges. In
other words, we restrict the actual edge evaluations of LPA*
to only those edges that could possibly be part of the optimal
path in the current graph. The proposed algorithm, Lifelong-
GLS (L-GLS) is complete and finds the optimal solution in
the current graph. Compared to GLS, the proposed algorithm
can possibly find the optimal solution faster by reusing
previous search results. Compared to LPA*, our algorithm
reduces significantly the number of edge evaluations.

(m) (n) (0)

(P @ (r)

Fig. 1: The propagation of the LPA* search from (a) to (g) while it searches to find the shortest path from the start vertex (@) to the
goal vertex (m) given the graph. After finding the optimal solution in (h), new vertices and edges are added in (j). The cost-to-come
inconsistencies are propagated in (k) and LPA* finds the new optimal solution in (I). The colored lines are the evaluated edges, where the
bold edges are part of the current search tree and the dashed edges are not. Blue and red represents free and obstacle, respectively. The
expanded vertices are shown with blue dots. All the incident edges of the expanded vertices are evaluated regardless of their relevancy
to the current problem. The L-GLS search is shown from (m) to (r), where edge evaluations are restricted to the heuristically estimated

shortest path candidates in dashed green.

II. PROBLEM FORMULATION

We first introduce the variables and relevant notation that
will be used throughout the rest of the paper.

A. Lazy Weight Function

Let G = (V, E) be a graph with vertex set V and edge set
E. For a vertex v € V, we denote the predecessor vertices of
v with pred(v) and its successor vertices with suce(v). For
each edge e € F, a weight function w : E — (0, co] assigns
a positive real number, including infinity, to this edge, e.g.,
the distance to traverse this edge, and infinity if traversing the
edge is infeasible. Also, we denote an admissible heuristic
weight function with @ : E — (0,00), which assigns to
an edge a non-overestimating positive real number such that
w(e) < w(e) for all e € E. We assume that evaluating the
true weight w is computationally expensive, but the heuristic
edge w-value is easy to compute. Let Fe.a C E be the set
of all evaluated edges, that is, all edges whose w-values have
been computed. Let a lazy weight function @ : E — (0, o0
defined by

Ble) = {w(e), if € € Eeval, 0

w(e), otherwise.

B. Optimal Path

Define a path 7 = (v1,vs,...,0y,) on the graph G =
(V,E) as an ordered set of distinct vertices v; € V, i =
1,...,m such that, for any two consecutive vertices v;, Vi1,
there exists an edge e = (v;,v;4+1) € E. Throughout this
paper, we will interchangeably denote a path as the sequence
of such edges. With some abuse of notation, we denote the

cost of a path as w(w) :=) .. w(e). Likewise, we denote

w(m) =), w(e) for the lazy cost estimate of the path 7.
Let vg,vg € V be the start and goal vertices, respectively. Let
IT be the set of all paths from v to vg in G. Then, the shortest
path planning problem seeks to find 7* := argmin_c w(n).

C. Lazy LPA* Search Tree

We maintain a lazy LPA* search tree to update the
inconsistencies that arise from both graph changes and edge
value discrepancies between the heuristic weight and the
actual weight. The lazy LPA* search tree is identical to
the standard LPA* search tree [2], except that lazy LPA*
uses the lazy weight function w instead of the actual weight
function w. For completeness of discussion, next we define
the variables of the lazy LPA*.

For each vertex, we store the two cost-to-come values,
namely, the g-value and rhs-value to identify the inconsistent
vertices, similarly to LPA*. A vertex v whose g(v) = rhs(v)
is called consistent, otherwise it is called inconsistent. An
inconsistent vertex is locally overconsistent if g(v) > rhs(v)
and locally underconsistent if g(v) < rhs(v). The g-value
is the accumulated cost-to-come by traversing the previous
search tree, whereas the rhs-value is the cost-to-come based
on the g-value of the predecessor and the current w-value of
the current edge. Hence, the rhs-value is potentially better
informed than the g-value, and it is defined as follows:

rhs(v) := N o=
© | mingepreaq) (9(w) + W(u,v)), otherwise.
()

Additionally, the rhs-value minimizing the predecessor of v

is stored as a backpointer, denoted with

bp(v) = argmin (g(u) +W(u,v)). G)
u€pred(v)

Hence, the subpath from v to v is retrieved by following the

backpointers from v to vs. The queue () prioritizes incon-

sistent vertices using the key k(v) = [min(g(v),rhs(v)) +

h(v) ; min(g(v),rhs(v))], with lexicographic ordering,

where h(v) is a consistent heuristic.

III. LIFELONG-GLS ALGORITHM

The proposed algorithm, Lifelong-GLS (L-GLS), consists
of two loops: the inner loop and the outer loop. In the
inner loop, the lazy LPA* search tree updates the new
shortest path from vy toward v, in the current graph G
based on the previous search results. The lazily evaluated
LPA* search tree uses the lazy estimates of the edge values
when it propagates the inconsistencies to find the shortest
subpath to the goal in the current graph. The first unevaluated
edge on the shortest subpath returned by the lazy LPA*
is then evaluated. If the evaluation results in inconsistency,
then the lazy LPA* search tree is updated and returns the
next best subpath for evaluation. If all the edges on the
current shortest path to the goal returned by the lazy LPA*
are already evaluated, then L-GLS has found the optimal
solution and exits the inner loop. In the outer loop, L-GLS
waits for graph changes. When the edges of G change, L-
GLS assigns admissible heuristic values to the corresponding
edges instead of evaluating them, to make sure that the lazy
estimate of the path cost does not overestimate the optimal
path cost. Then, the inner loop begins again to search for
the new optimal path. Hence, only a subset of the changed
edges that could be on the shortest path in the current graph
are actually evaluated.

A. Details of the Algorithm and Main Procedures

Next, we describe the step-by-step procedure of L-GLS
in greater detail. Before the first search begins, all g-values
of the vertices are initialized with co similar to the regular
LPA*, and all lazy estimates of edge values are assigned
with admissible heuristic values. The first search begins by
setting rhs(vs) = 0 and inserting vy in the priority queue
Q. In the main search loop (Line 35-39 of Algorithm 1) the
lazy LPA* search tree is grown with COMPUTESHORTEST-
PATH(EVENT) until an EVENT is triggered by the expansion
of a leaf vertex which just became consistent upon this
expansion (Line 16 of Algorithm 1). Then, the subpath
to this leaf vertex which triggered the EVENT is returned
for evaluation (Line 37 of Algorithm 1). Then, EVALUA-
TEEDGES evaluates the unevaluated edges along the subpath
and updates the lazy estimates with their true weights. If the
evaluation of an edge results in a different value than the
previous lazy estimate, then EVALUATEEDGES returns the
edge for the lazy LPA* to update this change accordingly
by UPDATEVERTEX. The inconsistency is propagated by the
lazy LPA* again until the next time the EVENT is triggered.
If the path to the goal is found, and all the edges along
this path are evaluated in the current graph, then the path is
indeed the optimal path in the current graph. This procedure
repeats again when the graph changes.

Algorithm 1 Lifelong-GLS(G, vs, vg)

9:

10

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

23

24:
25:
26:
27:
28:

29

30:

31:
32:
33:
34
35:
36:
37:
38:
39:
40:
41:
42:
43:
44
45:

1
2
3
4
5:
6
7
8

: procedure CALCULATEKEY(v) return
[min(g(v), 7hs(v)) + h(v) ;min(g(v), rhs(v))];
: procedure UPDATEVERTEX(v)
if v # vs then
bp(’U) = argminuépred(v) (g(u) + m(’“: U))’
rhs(v) = g(bp(v)) + w(bp(v), v);
if v € then Q.REMOVE(v);
if g(v) # rhs(v) then
Q.INSERT((v, CALCULATEKEY (v)));
: procedure COMPUTESHORTESTPATH(EVENT)
while (). TOPKEY < CALCULATEKEY(vg) or
9(vg) # rhs(vg) do
u = Q.Popr();
if g(u) > rhs(u) then
g(u) = rhs(u);
if EVENT(u) is triggered then
return path from vs to u;
for all v € succ(u) do UPDATEVERTEX(v);
else
g(u) = oo;
for all v € succ(u) U {u} do
UPDATEVERTEX(v);
: procedure EVALUATEEDGES(T)
for each e € 7 do
if e ¢ Eeval then
w(e) + w(e);
Eeval <~ Eeval U {e}a
if w(e) # w(e) then return e;
: procedure MAIN()
for all e € FE do w(e) < w(e);
Eeval — I
rhs(vs) = 0;
UPDATEVERTEX (vs);
while true do
repeat
7 <— COMPUTESHORTESTPATH(EVENT);
(u,v) <~ EVALUATEEDGES(T);
UPDATEVERTEX (v);
until vz € T and 7™ C Feval
Wait for changes in F;
L «the set of edges that changed;
for all ¢ = (u,v) € L do
w(e) « w(e);
Feval = Eeval\{e};
UPDATEVERTEX (v);

Algorithm 2 Candidate EVENT Definitions [15]

1
2:
3

AR

: procedure SHORTESTPATH(v)

if v = v, then return true;

: procedure CONSTANTDEPTH(v, depth «)

7 < path from v to v;

a, < number of unevaluated edges in 7;
if &, = o or v = v, then return true;

The procedure UPDATEVERTEX is identical to that
of the regular LPA*. The only difference is that when
UPDATEVERTEX(v) is called, the rhs-value of the vertex
v is updated based on the lazy estimate of the incident edge
values. This is done to avoid edge evaluations of the irrele-
vant incident edges of v. When a minimizing predecessor is
found lazily, then the vertex assigns its backpointer to this
predecessor. Finally, the key of this vertex is updated with
CALCULATEKEY to be prioritized in the queue Q).

The choice of an EVENT function determines the balance
between the vertex expansion (Line 13 of Algorithm 1) and
the edge evaluation (Line 37 of Algorithm 1), as in the GLS
framework. For example, if one chooses the SHORTESTPATH
as the EVENT, then the algorithm becomes a version of
Lifelong-LazySP [13]. That is, the lazy LPA* repairs its
inconsistent part of the tree all the way up to the goal,
then returns the shortest path to the goal for evaluation. This
minimizes the number of edge evaluations of the inner loop.
On the other hand, if one chooses the CONSTANTDEPTH of
GLS as the EVENT, then the algorithm becomes a version
of Lifelong-LRA* [14]. The tree repairing (vertex expan-
sion) of the lazy LPA* is reduced, since the inconsistency
propagation is restricted not to exceed a certain depth before
evaluating the edges. This comes at the expense of possibly
more edge evaluations. Some candidate EVENT definitions
of GLS [15] are reproduced in Algorithm 2.

IV. ANALYSIS

We now present some of the properties of L-GLS. We
also prove the completeness and correctness of the algorithm,
based on the inherited properties from both the LPA* and the
GLS algorithms. First, let us state two facts that are invariant
during the main search loop.

Invariant 1: The lazy estimate of an edge never overesti-
mates the true edge value, that is, w < w.

Proof: Since w(e) = w(e) for all e € Fuya1, and w(e) =
w(e) < w(e) for all € ¢ Eeya, it follows that w(e) < w(e)
foralle € E.

Invariant 2: The output subpath 7 from vs to v of COM-
PUTESHORTESTPATH(EVENT) is optimal with respect to w,
that is, 7 = argmin, .y, w(7), where II,, is the set of paths
from v to v.

Proof: COMPUTESHORTESTPATH with an EVENT re-
turns the path 7 from vs to v, when the triggering vertex
v is expanded. Right before the expansion, v was locally
overconsistent. Theorem 6 of LPA* [2] states that whenever
COMPUTESHORTESTPATH selects a locally overconsistent
vertex for expansion, then the g-value of v is optimal with
respect to w.]

Now we show the completeness and correctness of the
inner loop of L-GLS. The first theorem is due to the
completeness of GLS [15], which we restate here.

Theorem 3: Let EVENT be a function that on halting
ensures there is at least one unevaluated edge on the current
shortest path or that the goal is reached. Then, the inner loop
(Line 35-39) of L-GLS implemented with EVENT on a finite
graph terminates.

Proof: Suppose the path to the goal has not been evalu-
ated, such that COMPUTESHORTESTPATH(EVENT) returns
at least one unevaluated edge to evaluate. Since there is

a finite number of edges, the inner loop will eventually
terminate. []

Theorem 4: L-GLS finds the shortest path with respect
to the current graph when the inner loop (Line 35-39)
terminates.

Proof: Let m* be the optimal path with respect to w
in the current graph, that is, w(7*) = min;en w(7w), where
IT is the set of all paths from v to vg. L-GLS terminates
its inner-loop when vy, € 7 and T C Feya, Where T is
the output subpath of COMPUTESHORTESTPATH(EVENT).
Then, we have

w(T) = Zﬁ(e) < Z w(e') < Z w(e') = w(r"),

e'em*

“4)
where the first inequality holds by Invariant 2, and the second
inequality follows by Invariant 1. Hence, w(7) < w(7w*),
and since T C Feyal, we have w(7) = wW(7) < w(n*). But
w(r*) < w(T), since 7* is the optimal path. Therefore, 7
must be the optimal path with respect to w. []

ecT e'em*

V. NUMERICAL RESULTS

In this section, we present numerical results comparing L-
GLS to LPA* and GLS to demonstrate the efficiency of L-
GLS in scenarios where the shortest path planning problem is
solved consecutively in a dynamic environment. The search
is performed on the same graph with evenly distributed
vertices, in which two vertices are adjacent if they are within
a predefined radius. The graph topology does not change
throughout the experiment, and only the edge values change
due to underlying environment changes. We present search
results of path planning problems in R? for the sake of
visualization, and then we present search results of piano
movers’ problems in R3 and of manipulation problems in
R7 using PR2, a mobile robot with 7D arms.

-

(@) (d)
Fig. 2: LPA*(top row) and L—GLS(bottom row) search results to
find the shortest path from start vertex(®) to goal vertex(m) per
environment change, from left to right: (a) first search, (b) second
search, (c) third search, and (d) final search. Lines(//) are the
evaluated edges, and dots(ee) are the expanded vertices during the
current search. Bold lines(/) are the edges belonging to the current
search tree. Blue and red represents free and obstacle, respectively.

During the 2D experiments, the environment changed
three times after the shortest path was found in each of the
changed environments (see Figure 2). We recorded the num-
ber of vertex expansions and the number of edge evaluations
in each search episode for the three algorithms: LPA*, L-
GLS, and GLS for each search. We chose SHORTESTPATH
for the EVENT function for both L-GLS and GLS.

Piano Movers LPA* L-GLS GLS
First Query in scene 1

Edge Evaluation 24445 1867 1867
Vertex Expansion 124 3612 3612
Total Time (s) 5.08 3.48 3.48
Second Query in scene 2

Edge Evaluation 46384 67 1173
Vertex Expansion 31 277 2266
Total Time (s) 9.46 0.251 2.18

Third Query in scene 3

Edge Evaluation 32312 68 872

Vertex Expansion 23 115 1671
Total Time (s) 6.59 0.112 1.61
PR2

First Query in scene 1

Edge Evaluation 10709 879 879

Vertex Expansion 205 1555 1555
Total Time (s) 6.25 1.04 1.04
Second Query in scene 2

Edge Evaluation 49251 20 81
Vertex Expansion 9 33 139
Total Time (s) 28.4 0.023 0.094

Third Query in scene 1
Edge Evaluation

Vertex Expansion 195 363
Total Time (s) 7.58 0.209

13024 147 879
1555
1.04

TABLE I: Number of edge evaluations, number of vertex expan-
sions, and approximated planning time for different planners over
three consecutive search queries in a dynamic environment.

In the first search, LPA* is equivalent to A*, and L-GLS
is equivalent to GLS (See Figure 2.a). LPA* evaluated 390
edges and expanded 45 vertices, whereas L-GLS and GLS
both evaluated 61 edges and expanded 314 vertices.

After the first search, only a small part of the environment
changed (see Figure 2.b), opening a shorter passage to the
goal. LPA* evaluated 18 edges corresponding to the change,
then expanded 4 inconsistent vertices to find the shortest
path in the current graph. L-GLS evaluated 4 edges that
belong to the new shortest path to the goal, and expanded
4 inconsistent vertices. The GLS evaluated 7 edges and
expanded 6 inconsistent vertices.

When the environment changed in the irrelevant region
(see Figure 2.c), LPA* evaluated 153 edges corresponding to
the environment change, but did not expand any vertices, as
they were irrelevant to the current search. L-GLS did not do
any additional operations to find the shortest path, since the
path was already optimal. GLS was identical to the previous
search with 7 edge evaluations and 6 vertex expansions.

Finally, the environment changed back to the first search
episode with the addition to a new obstacle in the irrelevant
region. The GLS search was identical to the first search
episode with 61 edge evaluations and 314 vertex expansions.
On the other hand, L-GLS evaluated only 11 edges and
expanded 83 vertices. This is because the majority of the
relevant edges were already evaluated during the previous
searches, and the majority of the relevant vertices were al-

(c) Scene 3

Fig. 3: The shortest paths of the Piano Movers’ problems in
dynamic environment.

(a) Scene 1 (b) Scene 2

ready consistent. Similarly, LPA* expanded a fewer number
of vertices and evaluated a fewer number of edges compared
to the first search episode with 273 edge evaluations and
9 vertex expansions, since it utilized the previous search
results.

We also implemented LPA* and L-GLS as an OMPL
Planner [16] with the Movelt! interface [17] for the 3D piano
movers’ problem and for the 7D manipulator experiment.
All the algorithm implementations were in C++, and the
experiments were run on an 2.20 GHz Intel(R) Core(TM)
i7-8750H CPU Ubuntu 16.04 LTS machine with 15.5GB of
RAM.

We find the shortest paths for the piano from the Apart-
ment scenario in OMPL [16] from a start configruation to a
goal configuration without colliding with the moving obsta-
cles (see Figure 3). There were three consecutive searches
in the environment, where the first search was on scene 1
(Figure 3 (a)), the second search was on scene 2 (Figure 3
(b)), and the third search was on scene 3 (Figure 3 (c)). The
search was performed on a prebuilt graph with 8,000 vertices
and 34,327 edges. The vertices were sampled using a Halton
sequence in R3,

Similarly, we find the shortest paths for the right arm of
PR2 robot from a start configuration to a goal configuration
without collision in a dynamic environment where the ob-
stacle moves (see Figure 4). There were three consecutive
searches in the environment, where the first search was on
scene 1 (Figure 4 (a)), the second search was on scene 2
(Figure 4 (b)), and the third search was on scene 1 again.
The search was performed on a prebuilt graph with 30,000
vertices and 168,795 edges. The vertices were sampled using
a Halton sequence in R”, bounded by the PR2 arm’s joint-
angle bounds. Two vertices are adjacent in this graph if the
Euclidean distance between them is less than 0.9 rad.

We compared three algorithms: LPA*, L-GLS, and GLS,
in which the number of edge evaluations and the number
of vertex expansions along with the approximated planning
time are recorded for each search episode and tabulated in
Table I. The approximate planning time was computed as
the weighted sum of the number of edge evaluations and the
number of vertex expansions. In addition, the similar search
results are collected by varying lookahead values to illustrate
their effects and they are plotted in Figure 5. Our proposed
method outperforms the other two algorithms in terms of
planning time.

VI. CONCLUSION

We have presented a new replanning algorithm to find
the shortest path in a given graph efficiently using previous
search results. The proposed algorithm maintains a lazy

(b) Scene 2

Fig. 4: The shortest paths of the right arm of PR2 robot for the
same query in dynamic environment.

5,000

= _ 2,000
E k]
S 4,000 g
2 2 1500
23,000]
o °
=1 21,000
22,000 IS
s s
5 1,000 B 00
E E
z 0 z 0
_ L6E+s _ 12E+4
S : S
z 14ETS Z10E+4
& 12E+s g
£ 10E+s & 80ET3
p P
5 084 5 6oE+3
8 4)
2 00Ew 2 40E+3
S 40E+4 N
£ 20844 £ 2083
2 0.0E+0 2 0.0E+0
Lookahead
140 — 35
mL-GLS ®L-GLS
30 2 GLS
25 LPA*
z ©
- 2 20
£ £
= = 15
’ 7 7
/ 0 2 W ¥ ¥ ¥
0 35 10 0 1 3 5 10 =
Lookahead Lookahead
(a) Piano (b) PR2

Fig. 5: From top to bottom: the total number of edge evaluations,
the total number of vertex expansions, and the total planning time
over three consecutive search of L-GLS and GLS with for different
lookahead values: (a) for the piano movers’ problem and (b) for the
mainpulator problem. LPA* evaluated 103,141 edges and expanded
178 vertices for the piano movers’ problem, and evaluated 72,984
edges and expanded 409 vertices for the manipulator problem.

LPA* tree to efficiently repair the inconsistency of the
existing search that arises either from external environment
changes or internal discrepancies between the lazy estimate
and the real weight of an edge cost. Based on the efficiency
of LPA*, the propagation of vertex rewiring to repair any
vertex inconsistencies is restricted only to the shortest path
candidate. Similar to the GLS framework, only the edges
in the current shortest path candidate are evaluated. The

proposed algorithm reduces by a substantial amount the edge
evaluations per search compared to LPA*, and it can find
a new shortest path significantly faster than GLS, given a
change in the graph.

Acknowledgement: We would like to thank Aditya Man-
dalika for setting up the benchmark testing for the Piano
Movers’ problem. This work has been supported by ARL
under DCIST CRA WO911NF-17-2-0181 and SARA CRA
WO11NF-20-2-0095 and NSF under award IIS-2008686.

REFERENCES

[1] G. Ramalingam and T. Reps, “An incremental algorithm for a general-
ization of the shortest-path problem,” Journal of Algorithms, vol. 21,
pp. 267-305, 1996.

[2] S. Koenig, M. Likhachev, and D. Furcy, “Lifelong planning A*’
Artificial Intelligence, vol. 155, no. 1, pp. 93 — 146, 2004.

[3] S. Aine and M. Likhachev, “Truncated incremental search,” Artificial
Intelligence, vol. 234, pp. 49 — 77, 2016.

[4] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Transactions
on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100-107, July
1968.

[5] L. E. Kavraki, P. Svestka, J. Latombe, and M. H. Overmars, “Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12,
no. 4, pp. 566-580, 1996.

[6] S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path
planning,” Computer Science Department, Iowa State University, Tech.
Rep., 1998.

[7]1 S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”

The International Journal of Robotics Research, vol. 20, no. 5, pp.

378-400, 2001.

D. J. Webb and J. van den Berg, “Kinodynamic RRT*: Asymptotically

optimal motion planning for robots with linear dynamics,” in /IEEE

International Conference on Robotics and Automation, Karlsriihe,

Germany, May 6-10 2013, pp. 5054-5061.

[9]1 R. Bohlin and L. E. Kavraki, “Path planning using lazy PRM,” in
IEEE International Conference on Robotics and Automation, vol. 1,
San Francisco, CA, April 24-28 2000, pp. 521-528.

[10] B. Cohen, M. Phillips, and M. Likhachev, “Planning single-arm
manipulations with n-arm robots,” in Proceedings of Robotics: Science
and Systems, Berkeley, CA, July 12-16 2014.

[11] K. Hauser, “Lazy collision checking in asymptotically-optimal motion
planning,” in IEEE International Conference on Robotics and Automa-
tion, Seattle, WA, May 26-30 2015, pp. 2951-2957.

[12] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Batch informed
trees (BIT*): Sampling-based optimal planning via the heuristically
guided search of implicit random geometric graphs,” in IEEE Inter-
national Conference on Robotics and Automation, Seattle, WA, May
26-30 2015, pp. 3067-3074.

[13] C. M. Dellin and S. S. Srinivasa, “A unifying formalism for shortest
path problems with expensive edge evaluations via lazy best-first
search over paths with edge selectors,” in Proceedings of the Inter-
national Conference on Automated Planning and Scheduling, no. 9,
London, UK, 2016, pp. 459-467.

[14] A.Mandalika, O. Salzman, and S. S. Srinivasa, “Lazy receding horizon
A* for efficient path planning in graphs with expensive-to-evaluate
edges,” in Proceedings of the International Conference on Automated
Planning and Scheduling, Delft, Netherlands, 2018, pp. 476-484.

[15] A. Mandalika, S. Choudhury, O. Salzman, and S. S. Srinivasa, “Gen-
eralized lazy search for robot motion planning: Interleaving search
and edge evaluation via event-based toggles,” in Proceedings of the
International Conference on Automated Planning and Scheduling,
vol. 29, Berkeley, CA, 2019, pp. 745-753.

[16] I. A. Sucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72-82, December 2012, https://ompl.kavrakilab.org.

[17] D. Coleman, I. A. Sucan, S. Chitta, and N. Correll, “Reducing the
barrier to entry of complex robotic software: a Movelt! case study,”
Journal of Software Engineering for Robotics, vol. 5, no. 1, pp. 3-16,
May 2014.

8

[t

https://ompl.kavrakilab.org

	Introduction
	Problem Formulation
	Lazy Weight Function
	Optimal Path
	Lazy LPA* Search Tree

	Lifelong-GLS Algorithm
	Details of the Algorithm and Main Procedures

	Analysis
	Numerical Results
	Conclusion
	References

