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ARTICLE INFO ABSTRACT

People living in walkable areas are more likely to maintain a physically active lifestyle. Adverse
elements of the built environment (e.g. demolished houses, damaged sidewalks) can cause phys-
ical or emotional distress, and negatively affect walkability patterns. Individuals are likely to
perceive walkability of a place in distinct ways and can be differentially impacted by the built en-

Communicated by

Keywords: vironment. This paper quantifies walkability perception of the built environment using data from
Walkability Perception “in-the-moment” interactions between pedestrians and the built environment, captured by wear-
Physiological Saliency able physiological and accelerometry sensors. Prominent temporal change patterns in physiologi-
Human-Built Environment Interac- cal reactivity (i.e., electrodermal activity, heart rate) and gait are captured through a physiological
tion saliency cue (PSC), which comprises the input of a machine learning model automatically esti-
Public Health mating pedestrians’ perceived walkability. Contextual information from user’s location is further
Sustainable Cities used to augment the features. Results obtained on 25 participants in a field experiment indicate

that the PSC measures can reliably detect individual perception of walkability, often more ac-
curately compared to the aggregate measures from the corresponding raw signals. Inclusion of
contextual information further improves the performance. Findings from this study can enhance
our understanding on the association between walkability and the built environment, and lead to
more effective planning and public health strategies that contribute to community health.

1. Introduction

Physical activity is an important health variable with wide ranging effects on physical and mental health(WHO (2010)). Regular physical
activity can reduce the risks of developing chronic conditions, such as coronary heart disease, hypertension, diabetes, colon cancer, and breast
cancer in women, as well as decrease premature mortality risk(Bouchard et al. (2012)). Individuals reporting regular exercise are less likely to
meet mental health diagnosis criteria for depression and a range of anxiety disorders(Saxena et al. (2005)). Physical activity further comprises an
effective strategy to promote health in the elderly, and preserve, or even improve, their cognitive performance(Vogel et al. (2009)). In addition,
physical activity in adolescence comprises an important contributing factor of physically active adults(Hallac et al. (2019)).

Walkability has been identified both as a means and an indicator of promoting public health due to its potential to complement individual
strategies in addressing key health concerns(Sallis et al. (2012)). Walking is the most common form of physical activity and a highly effective
way to help people improve their health. Research demonstrates that the way a community is designed, built, and maintained, directly affects
walkability(Berke et al. (2007); Burdette & Hill (2008)). Walkable communities can promote physical activity and social interactions, improve

*Corresponding author: E-mail address: nirjhar71 @tamu.edu
!Both authors contributed equally to this research.

http://dx.doi.org/10.1016/j.smhl.XXXX.XX.XXX

2352-6483/© 2022 Elsevier B.V. All rights reserved.


http://www.sciencedirect.com
http://www.elsevier.com/locate/smhl

E.H. Nirjhar and J. Kim et al. Smart Health (2022)

residents’ feelings of safety, and contribute to reducing air pollution, through pedestrian-friendly community layout, rich and diverse natural
features and open spaces, and mixed land uses that provide diverse everyday destinations(King et al. (2011); Kwon et al. (2017)). Thus, walkable
communities comprise a better place to live(Sallis et al. (2015)) and hold the key to sustainable cities(Zhu et al. (2014)).

One’s decision to walk can be made easier by improving elements of the built environment. Behavioral and urban scientists have identified
transportation and recreation as the two primary motivations for walking(Zuniga-Teran et al. (2017b)). While walking for transportation has been
mostly associated to the neighborhood design, recreational walking has been linked with a variety of factors. Among others, these include the
street connectivity (i.e., the extent to which the community layout provides short routes to reach different destinations), diversity of land usage
(e.g., commercial, residential), traffic safety (e.g., sidewalks, traffic lights, hazardous objects, barking dogs), and aesthetic, thermal, and physical
experience (e.g., trees, shade, graffiti, trash, broken houses, streetscaping)(Karb (2010); Gebreab et al. (2017)). Adverse elements of the built
environment, also called physical disorders, can cause residents’ discomfort and emotional distress, therefore preventing them from walking in
the community(Sales et al. (2013)). Physical disorders can introduce physical and cognitive demands in the built environment, being the source
of physical and emotional distress. Physical distress can be manifested as gait difficulty, fatigue, or balance problem(Jun & Hur (2015); Mayne
(2020)). Emotional distress refers to the negative affect occurring when a pedestrian perceives a situation in the built environment as threatening
or harmful(Mayne et al. (2018); Mayne (2020); Zuniga-Teran et al. (2017a)). Capturing pedestrians’ physical and emotional distress can provide a
way to track walkability in a cost-effective manner with high spatio-temporal resolution, contributing to monitoring adverse and decaying elements
of the built environment and providing residents with personalized route planning suggestions.

Walkability is typically measured through questionnaires and focus group discussions(Lockett et al. (2005); Gallagher et al. (2010)), as part of
which researchers or community stakeholders administer surveys and conduct discussions to identify walkable areas in the community(Rosenberg
et al. (2013)). For example, the Walk Score(WalkScore.com (2014)) is a scale that captures important aspects of neighborhood walkability(Brown
et al. (2013); Hirsch et al. (2014)), such as density of retail destinations, recreational open spaces, street intersections, and residential land uses.
Questionnaires and focus group discussions can reveal elements of the built environment that are generally challenging to the public. Yet, they
also depict several limitations, since the collection of self reports and coordination of focus group discussions is a lengthy process that requires
significant human resources. Moreover, people are often reluctant to answer long surveys, which can result in unreliable or missing data(Short et al.
(2009)). Finally, individuals may perceive an identical stimuli from the built environment in different ways, thus creating large inter-individual
variability, which adds to the complexity of the nature of human-built environment interactions(Geller (1980)). Surveys and focus groups fail
to record “in-the-moment” reactions which may vary from person to person(Khusainov et al. (2013)). These limitations call for a sensor-based
approach that allows to capture residents’ momentary motion-based and physiological reactions to elements of the built environment providing
estimates of physical and emotional distress in a personalized manner(Talen & Koschinsky (2013)).

Previous work has leveraged advances in mobile computing and wearable technologies to estimate the walkability of the built environment(Kim
et al. (2016); Deakin & Al Waer (2011); Zanwar et al. (2021); Lee et al. (2020c); Zanwar et al. (2020)). Many efforts rely on computer vision
techniques to detect negative visual stimuli that hinder walkability(Ahn et al. (2020); Ham et al. (2016)). Most of the time, such computer vision
methods focus on a “one-size-fits-all" approach that fails to capture individual perception of walkability, which can differ across pedestrians(King
et al. (2016)). Other researchers have used radar and GPS signals to quantify pedestrians’ general motion patterns and detect physical disor-
ders(Kanhere (2013)). Grounded on the evidence that physical and emotional distress can affect one’s perception of walkability(Jun & Hur (2015);
Mayne (2020); Marquet & Miralles-Guasch (2015); Zuniga-Teran et al. (2017a)), a new line of research has utilized wearable devices to capture
physical and emotional distress toward elements of the built environment through tracking pedestrians’ physiology (e.g., Electrodermal Activity
(EDA), Heart Rate (HR)) and accelerometry(Lee et al. (2020b); Yadav et al. (2018); Yates et al. (2017); Kim et al. (2020c,a)). EDA is an indicator
of emotional distress(McCorry (2007); Boucsein (2012)), as it captures the increased sweat activity from the activation of sweat glands of the
sympathetic part (i.e., “flight-or-fight” ) of the autonomic nervous system (ANS)(Gordan et al. (2015)). HR is a measure of heart activity, which
tends to rise at the onset of emotional distress(Kudielka et al. (2004); Sarker et al. (2016)). Accelerometry signals include gait parameters that are
indicative of motion and balance difficulty(Ahn et al. (2019); Yang et al. (2017); Jebelli et al. (2016)). Yadav ef al. and Kim et al. utilized the
EDA, HR, and gait signals to capture pedestrians’ distress while walking and subsequently, identify stressful elements of a neighborhood(Yadav
et al. (2018); Kim et al. (2020b, 2019b)). In these studies, a physiological saliency cue (PSC) was introduced to capture relative differences in
physiological reactivity and gait patterns between different locations of the neighborhood. While this work has explored the use of physiological
measures to capture elements of the built environment that are generally adverse to pedestrians, the automatic estimation of one’s walkability
perception from such measures—as in the work presented here—is not yet addressed.

Prior work on mobile computing supports that the integration of context in ambulatory measurement can contribute to the better understanding
of sensor data in everyday settings(Chen & Kotz (2000)). Context refers to “any information used to characterize the situation” of a user or an
entity(Abowd et al. (1999)). Contextual information usually comprises of user location or activity, time of day, nearby people or devices, and
environment characteristics, such as season and temperature(Musumba & Nyongesa (2013)). Machine learning methodologies have the ability
to perform context reasoning and deduct knowledge of a user’s surroundings in order to better explain his/her current state(Perera et al. (2013)).
User location, specifically, plays a significant role in context-aware computing and has demonstrated significant performance improvements when
estimating human outcomes related to physical health(Pourhomayoun et al. (2015)) and emotional well-being(Wang et al. (2014); Timmons et al.
(2017)). This work considers user location as the contextual information used to augment the proposed automatic walkability estimation system.
Our rationale behind this is that user location encodes physical characteristics of the built environment, which can directly affect one’s perceived
walkability and complement physiology and accelerometry measures.

Here, we propose an automatic method to estimate pedestrians’ individual perception of walkability in the built environment using physiology
and accelerometry signals, captured in-the-moment by wearable physiological sensors and inertial measurement unit (IMU) devices. We leverage
the PSC extracted based on the EDA, HR, and gait signals to quantify differences in physiology and accelerometry across several points of interest
(POI) in a predefined route, each with various perceived levels of walkability. The PSC features comprise the input to a machine learning model that
automatically estimates each participant’s perceived walkability (i.e., high/low) over each POI of the built environment. We integrate contextual
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Fig. 1. Overview of proposed method. (1) Physiological signals captured using wearable devices, while participants are walking along the Point of Interests (POI) of the neighborhood.
(2) Physiological saliency cue (PSC) extracted from various signals reflects perceived walkability in the POL (3) PSC values obtained from each POI, used to classify between low and
high perceived walkability.

information through an additional input index to the machine learning model that includes the POI’s location. We further compare the performance
of the proposed PSC measures against aggregate measures that rely on the mean of EDA, HR, and gait signals. Figure 1 presents an overview of the
proposed approach, which is evaluated through data obtained from 25 participants in a field experiment. Our results indicate that the PSC features
can reliably detect individual perception of walkability, often more accurately compared to the aggregate measures from the raw signals. Inclusion
of contextual information further improves the predictive performance. This work lays the foundation of utilizing physiology and accelerometry
signals from wearable devices combined with signal processing and machine learning methods to automatically identify perceived walkability of
the built environment, which can contribute to the design of applications for personalized route suggestion, and ultimately promote physical activity
and contribute to healthy communities and sustainable cities.

2. Related Work

The last decade has experienced a significant increase in research focusing on the effect of the built environment on physical, emotional,
and mental health. This is largely attributed to the growing interest in smart cities(Deakin & Al Waer (2011); McLaren & Agyeman (2015)) and
digital twin city models(Mohammadi & Taylor (2017); Ahn et al. (2020)). Smart cities incorporate the use of information and communication
technology within all their functional activities—from designing sustainable cities to promoting the health and well-being of its citizens. Digital
twin city models facilitate this process by leveraging the knowledge obtained from big data and Internet-of-Things (IoT) to create a dynamic digital
representation of the built environment and its interaction with humans( Cooper (2018)). Therefore, it is evident that a better understanding of the
interplay between humans and the built environment contributes to the planning and design of walkable environments, which in turn can benefit
physical and emotional health. An important part of this process includes estimating individuals’ perceived walkability in the built environment,
which directly affects one’s choice and motivation to walk and therefore engage in physical activity( Zuniga-Teran et al. (2017b); Kwon et al.
(2017)).

Early research on walkability has employed qualitative measures, such as questionnaires, interviews, and focus group discussions, to un-
derstand residents’ perception of the built environment(Rosenberg et al. (2013); Lockett et al. (2005); Gallagher et al. (2010)). Rosenberg et al.
conducted interviews with residents of King County, Washington to identify physical disorders within the community and their impact on walka-
bility(Rosenberg et al. (2013)). Participants wore a GPS sensor for three days prior to their interview. The recorded GPS locations were discussed
during the interview, then coded by the researchers. Lockett et al. (2005) used crowdsourced photographs from Ottawa, Canada as touchstones for
discussion with the city’s residents. Through several rounds of discussions, distress eliciting elements impacting the walkability of the correspond-
ing neighborhood were identified. A similar approach by Gallagher et al. (2010) leveraged focus groups discussions and photos of the community
to identify barriers to walkability in Detroit, Michigan. Despite the valuable insights, qualitative measures are confounded by recall bias Wright
et al. (2012), since participants need to remember and retrospect upon their experience with the built environment.

Sensor-based measures captured in real-time (i.e., while participants are interacting with the built environment) can provide complementary
information to self-reports Bell et al. (2018), therefore improving our understanding on factors of walkability. Prior work has leveraged multiple
modalities, including images, location, accelerometry, and physiology, to quantify walkability patterns. Ham et al. (2016) discussed the use of
camera-equipped unmanned aerial vehicles for monitoring civil infrastructure systems. Kanhere (2013) explored participatory sensing by crowd-
sourcing data from smartphone devices in order to estimate road conditions (e.g., potholes, bumps) through accelerometry and positioning system
data. In an effort to quantify pedestrians’ momentary responses to elements of the built environment, King et al. (2016) used accelerometry from
smartphone devices to measure and visualize residents’ physical activity in neighborhoods of California, upstate New York, Arizona, Mexico,
Israel, Colombia, and Chile. Beyond accelerometry, a recent line of work has quantified residents’ interaction with and emotional distress toward
elements of the built environment through physiological signals. Grounded on knowledge from neurophysiology that evidences the association of
physiological reactivity and emotional distress(Hoehn-Saric & McLeod (1988); Dawson et al. (2017)), Chrisinger & King (2018) explored the use
of EDA for identifying positively and negatively perceived POIs in the urban environment (i.e., low traffic versus high traffic, open space versus
deteriorated buildings). Tilley et al. (2017) and Neale et al. (2017) assessed pedestrians’ neural response in different scenarios of urban settings
(i.e., urban green space, busy urban environment) using electroencephalography (EEG) signals. Lee et al. (2020b) measured the collective stress
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Fig. 2. Predefined walkway used for data collection purposes.

perceived by elderly adults in the built environment and pinpointed locations of environmental barriers through EDA measurements and geocoding.
This work further addressed the issue of automatically detecting pedestrian distress elicited by physical disorders in the built environment through
machine learning methodologies (e.g., bagging tree). The physiological measures employed in these studies include well-examined time- and
frequency-based indices, such as the average level of the EDA signal Chrisinger & King (2018) and energy content of the EEG Tilley et al. (2017);
Neale et al. (2017).

While aggregate measures of physiology and accelerometry provide a reliable estimate of one’s overall physical and emotional distress, they
do not always allow to capture the fine-grain temporal fluctuation in the corresponding signals, which is inherently associated with momentary
responses to stimuli of the built environment. Saliency detection approaches have been introduced in computer vision and have the ability to
focus on objects of the image that “stand out” by capturing contrast within a visual neighborhood(Fu et al. (2013); Cong et al. (2018)). Motivated
by the intuitiveness and effectiveness of saliency detection in computer vision, this method can be extended in capturing prominent responses in
physiological signals by identifying distinctive areas of the input. Yadav et al. (2018) and Kim et al. (2019b) proposed a physiological saliency
measure to capture the general perception of physical disorders in the built environment across participants. PSC quantifies the difference or
prominence of a target segment in a physiological signal compared to others. PSC measures were computed using EDA and gait signals, and
were found indicative of the physical disorders in the built environment through statistical analysis. This paper leverages the PSC measure in
combination with machine learning models to automatically estimate pedestrians’ perceived walkability in the built environment.

With the emergence of mobile sensor networks in the last decade, context awareness has been an integral part of ubiquitous computing systems
allowing to fully leverage information captured by wearable devices(Perera et al. (2013)). Contextual factors refer to situational information about
an event or an entity (e.g. time of the day, location, weather)(Abowd et al. (1999); Musumba & Nyongesa (2013)). Prior work has incorporated
contextual factors with physiological and accelerometry signals to augment the estimation performance of human outcomes. Gjoreski et al. (2017)
proposed a stress detection method using the EDA, HR and accelerometry data obtained from a wrist-worn sensor. The combination of contextual
features (e.g. time of the day, day of the week, prior high intensity physical activity) with physiological data exhibited significant boost in the
performance of the stress detection task. Bavaresco et al. (2020) prototyped a context-aware system for psychotherapy assistance in the wild using
physiological and accelerometry signals, where location and time were used as contextual features. Inspired by this prior work, the current paper
uses the location of participants as a contextual feature to augment the feature space resulting from the physiological and accelerometry signals.

The contributions of this work compared to previous approaches(Lee et al. (2020a); Kim et al. (2020b)) are as follows: (1) We examine the
PSC measure computed from EDA, HR, and gait signals as an input to machine learning models and present a detailed analysis of its predictive
performance for estimating perceived walkability in the built environment; (2) We enrich the physiological feature space with contextual informa-
tion for improving the accuracy of distress estimation; and (3) We consider individual differences in terms of walkability perception (i.e., through
individual-specific ratings) and pedestrian experience (i.e., by learning physiological reactivity patterns of a given individual).

3. Data Description

The data analyzed in this paper come from 30 participants (i.e., 15 men, 15 women) walking in the Havelock neighborhood in Lincoln,
Nebraska. Data collection was performed in a field experiment(Kim et al. (2020b)) conducted during November 11, 2017 to November 18, 2017
between 10 am and 4 pm, with an average temperature of 64.2° Fahrenheit (17.92° Celsius). Participants were instructed to walk along a predefined
path of the neighborhood. This path contained several physical disorders that might elicit distress and physical discomfort, such as broken housing,
absence of sidewalk, dead tree branches, and barking dogs, thus impacting perceived walkability (Figure 2).

Participants’ physiological responses were recorded from the wrist-mounted Empatica E4 sensor(Empatica), while gait patterns were captured
by the right ankle-mounted APDM Opal IMU sensor(Inc.). Participants also carried a smartphone that registered their GPS location using the Geo
Tracker app(Tracker). The Empatica E4 device collected EDA sampled at 4 Hz through two dry electrodes and HR data sampled at 1 Hz through
a photoplethysmogram (PPG) sensor. The Opal sensor acquired IMU data at a sampling rate of 125 Hz. All data streams were synchronized using
the GPS coordinates and timestamps from the sensors along the corresponding time and location.

The predefined path that participants were asked to walk for this experiment was 1.24 km (0.77 miles) in length and included 60 points
of interest (POI), which contained various physical disorders (Figure 2). POIs were identified by the research team conducting the experiment
and may include built environment elements of common interest(Kim et al. (2020b)), such as uneven sidewalk, no sidewalk, dead branches and
leaves overhanging a sidewalk, demolished house, barking dogs, tree limb, and a container for gas storage. Participants were instructed to walk
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Fig. 3. Distribution of walkability ratings provided by participants for each point of interest (POI).

along this path twice. Their physiological and gait signals were recorded in the first round. During the second round, a research team member
accompanied the participants along the same path and solicited their ratings on the walkability of each POI on a scale of 0 to 10, where 10
indicates the least walkable(Kim et al. (2019a); Yadav et al. (2018)). The scale of rating is explained with the help of the National Highway Traffic
Safety Administration’s walkability checklisttNHTSA.gov). These ratings serve as the ground truth of perceived walkability from each participant
(Section 4). Figure 3 presents the distribution of these ratings. Most participants rated POIs 18-25 the least walkable, while POIs 5-6 the most
walkable. However, inter-individual differences appear in the way participants rate other POIs (e.g., POI 45-50, which is an area with no sidewalk),
indicating that subject-specific factors might influence these walkability ratings(Chrisinger & King (2018)).

4. Methodology

In this section, we present the different steps of the proposed sensor-based method for estimating perceived walkability for each pedestrian.
The pre-processing of the data is described in Section 4.1. Section 4.2 provides the description of the physiological saliency detection measures
from the sensor-based data, while Section 4.3 presents the calculation of the aggregate measures used as a baseline. The description of contextual
features is provided in Section 4.4. Finally, the detailed explanation of the machine learning model for estimating perceived walkability is presented
in Section 4.5.

4.1. Data Pre-processing

Sensors administered in this experiment are often prone to noise, temperature effects, and motion artifacts. Therefore, physiological data
collected using these sensors require thorough inspection and pre-processing. Visual inspection of the EDA signals indicated that data from five
participants depicted no fluctuation, which is typically due to loss of contact between the skin and the sensor. For this reason, signals from these
five participants were excluded from the analysis, resulting in data from a total of 25 participants. To further remove the high frequency noise from
the EDA signal, a Bateman low-pass filter was used(Dawson et al. (2017)). The window length of the filter is set to 24 samples (i.e., 6 seconds).
IMU data was pre-processed through a Butterworth low-pass filter of 4 Hz cut-off frequency(Wang et al. (2011)).

4.2. Physiological saliency cue (PSC)

In this subsection, we will describe the method that was used to calculate the PSC measures, which comprised of the signal segmentation step,
the feature extraction from the EDA, HR, and gait signals, and the measurement of the distinctiveness of a target signal segment compared to the
others.

4.2.1. Signal segmentation

We follow a data-driven segmentation process to determine segments in the collected signals. Instead of identifying intervals through pre-
defined temporal criteria (e.g., analysis window of predefined length), data-driven segmentation can contribute to extracting physiology and ac-
celerometry features over meaningful segments of the signals without artificially constraining their boundaries. We employ a bottom-up segmen-
tation method, which is commonly used in time series analysis(Truong et al. (2019)) and numerous fields, such as climate forecasting(Reeves
et al. (2007)), computer networks(Tartakovsky et al. (2006)), financial pattern analysis(Keogh et al. (2001)), and physiological time-series cluster-
ing(Kim et al. (2019b)). According to this, the number and position of change points within a time series are randomly initialized and subsequently,
estimated in an iterative way. The internal similarity of each segment compared to the other segments is used as a criterion to refine the signal
segmentation(Kim et al. (2020b)). Figure 4(a) presents the outcome of the bottom-up segmentation process (blue vertical lines) for a sample EDA
signal (black line).
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Fig. 4. Example of a bottom-up segmentation process, followed by the physiological saliency cue (PSC) calculation from raw electrodermal activity (EDA) signal. PSC from signal
segments are mapped to the physical points of interest (POIs) in the built environment.

4.2.2. Feature extraction

Table 1 presents the features computed from the EDA, HR, and gait signals over the segments extracted from the bottom-up segmentation
(Section 4.2.1). We capture the tonic component (i.e., general levels) of the EDA signal through the skin conductance level (SCL), and the
phasic (i.e., fluctuations) component via the frequency and mean amplitude of the skin conductance responses (SCR)(Dawson et al. (2017)), as
commonly used in prior work(Lee et al. (2020a); Kim et al. (2020b)). Automatic detection of SCRs in the EDA signal was conducted using the
Ledalab software(Benedek & Kaernbach (2010b,a)). We further calculate the mean HR for each signal segment, which is a widely used measure of
distress(Mashhadi et al. (2015); Bisadi et al. (2017)). Finally, four spatio-temporal features are extracted from the gait signal, including the stride
time, stride distance, average velocity, and maximum foot clearance(Yang et al. (2020); Yang & Ahn (2019); Duchowny et al. (2019); Kim et al.
(2017)).

4.2.3. Measurement of physiological saliency cue (PSC)

PSC measurements were obtained in order to capture prominent temporal patterns in signal segments. PSC quantifies the “distinctiveness”
of a segment compared to the other segments in the signal(Fu et al. (2013)). We adopt the approach used by Kim et al. (2020b) and Yadav et al.
(2018), where the PSC of feature f;; from the j™ signal segment of participant i is calculated as follows:

a
tij fij— fix
psC; =Y 1 ST Tk 1

0= M

where a is the number of signal segments, 7; is duration of entire signal, and #;; is the duration of the j-th segment for the i" participant. A
signal segment with significantly different feature values compared to the other segments, exhibits higher distinctiveness, and therefore larger PSC
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Table 1. List of features obtained from various sensor-based signals.
Modality Feature
Skin conductance level
Electrodermal activity | Skin conductance response amplitude
Skin conductance response frequency

Heart rate Mean heart rate

Stride time

Stride distance

Average velocity
Maximum foot clearance

Gait

measure. We note that the PSC measure in (1) also takes directionality into account. Thus, we obtain large positive (or negative) PSC measure if
a target segment depicts substantially higher (or lower) feature values compared to the other segments of the signal. Figure 4(a) presents the PSC
values (red line) of a sample EDA signal. In this example, prominent changes in the EDA signal occurring around the 90" second are also reflected
in the PSC measure.

Perceived walkability is measured for each POI along the predefined route (Section 3), which is not necessarily aligned with the data driven
signal segmentation (Section 4.2.1). A signal segment might span more than one POIs (Section 3), or vice-versa, a POI might include more than
one signal segments. For this reason, we assign a PSC score to each POI as follows. If a POI contains multiple signal segments, the PSC of the
larger signal segment is taken into account for this POL If a signal segment spans multiple POIs, then the corresponding PSC values will be the
same across the POIs. Figure 4(b) presents an example of the PSC features being mapped from the signal segments to the POIs. The features
extracted with this approach will be referred to as “PSC features” in the rest of the paper.

4.3. Aggregate measures as baseline features

As a baseline to the PSC features, we extract aggregate statistical measures from the raw physiological signals. We calculate the mean value
of each feature (Table 1) over the length of each POI, which is referred to as “Aggregate measures.” This is a common practice in previous work
that uses physiological signals to detect individual distress(Lee et al. (2020b); Chrisinger & King (2018); Koldijk et al. (2014)).

4.4. Contextual features

We further integrate contextual information that augments the sensor-based PSC features and the Aggregate measures. Similar to prior
work(Bavaresco et al. (2020); Gjoreski et al. (2017)), the ID of each POI, which reflects the location of the POI for the predefined route in our
experiment, is used as a contextual feature. From a practical perspective, the proposed contextual feature can be easily obtained through GPS
coordinates in real-life applications. We expect that the machine learning models (Section 4.5) will learn interactions between the physical location
and the sensor-based features in association to the outcome of interest (i.e., perceived walkability).

4.5. Estimation of perceived walkability

The goal of the machine learning model is to estimate participants’ perceived walkability in each POI. Each participant provided a perceived
walkability rating for each POI on a scale of 0 to 10 (Section 3). This resulted in 60 ratings per participant and 1500 ratings for all 25 participants.
We formulate a binary classification problem and convert the provided ratings into 2 classes (i.e., high perceived walkability, low perceived
walkability) in two different ways.

e Participant-dependent walkability score: Grounded on prior work indicating inter-individual differences in the way individuals perceive
and rate a target stimulus(Koldijk et al. (2014); Metallinou & Narayanan (2013)), low and high perceived walkability is determined on the
basis of the median walkability rating computed for each participant. Samples for a specific participant with higher rating than the threshold
are considered to be in the low walkability class for that participant, while the remaining samples are assigned to the high walkability class.
This results in 465 samples with low walkability and 1035 samples with high walkability, which will be used in the machine learning
experiments.

e Participant-independent walkability score: To compare with the above subject-dependent setting, we further introduce a participant-
independent walkability score. According to this, the median of the ratings computed over all participants for a specific POI is considered
as a threshold value for binarizing the ratings. Samples for a specific POI with ratings lower than the corresponding threshold are assigned
to the high walkability class, and the remaining ones contribute to the low walkability class. This method results in 517 samples with low
walkability and 983 samples with high walkability.

‘We use a decision tree to classify between high and low walkability due to its interpretability and effectiveness in relatively small datasets(Lee
et al. (2020a,b)). We experiment with the two different settings of binarizing the perceived walkability (i.e., Participant-dependent walkability
score, Participant-independent walkability score). The input to the decision tree comprises of the PSC features or the Aggregate measures, both
computed based on the three different modalities (Sections 4.2, 4.3), as well as their combination with the contextual information (Section 4.4).
The depth of the decision tree is determined through hyperparameter tuning by examining different values between 1 and 50 via cross-validation.
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Fig. 5. Performance of the decision tree model that classifies between low and high perceived walkability classes using various depth sizes.

We investigate the performance of the model through two types of cross-validation. First, a stratified 5-fold cross-validation is conducted,
where the training and testing sets are split such that there is no participant overlap across folds. This is referred to as Participant-independent cross-
validation. In this approach, samples from a given participant are either in the training or in the testing set, therefore evaluating the classification
model in a subject-independent scenario. Next, a 10-fold cross-validation is performed, according to which the data samples are randomly split into
folds. In this case, different samples from the same participant can be in the train and test set, therefore this is referred to as Participant-dependent
cross-validation, contributing to the model learning subject-specific physiology and gait patterns related to walkability perception. The unweighted
average recall (UAR) serves as a performance metric, as the low and high walkability classes are not fully balanced. UAR is computed as the
average recall of the low and high walkability classes and is a commonly used evaluation metric for classification in the case of unbalanced class
distributions, where simple accuracy might provide misleading results(Schuller et al. (2013); Polzehl et al. (2009)).

5. Results

5.1. Hyperparameter Tuning

The depth of the decision tree is selected through hyperparameter tuning. Depth values between 1 to 50 are examined. Classification is
performed using both types of labels (i.e., Participant-dependent walkability score, Participant-independent walkability score), as described in
Section 4.5. The result of hyperparameter tuning is shown in Figure 5, where the recall of the high and low perceived walkability classes are
presented. Detecting cases in which participants perceive low walkability of the built environment is important for our domain, therefore hyperpa-
rameters that yield higher recall for the low perceived walkability class will be more beneficial for the purposes of this application. We observe that
with an increasing tree depth, the recall of the low perceived walkability class increases, while the recall of the high perceived walkability class
slightly decreases. These evaluation metrics start to saturate with a tree depth of 20, therefore we select this as the tree depth for further analysis.

5.2. Classification between low and high perceived walkability

The results from the classification experiments between the low and high perceived walkability classes are provided using both types of labels
(i.e., Participant-dependent walkability score, Participant-independent walkability score) and both cross-validation frameworks (i.e., Participant-
independent cross-validation, Participant-dependent cross-validation), as described in Section 4.5. Figures 6 and 7 present the UAR results for
each modality and their combinations.

5.2.1. Participant-specific effects

We first examine the effect of participant-specific information in terms of determining the low and high perceived walkability classes. The clas-
sification experiments conducted using the Participant-dependent walkability score yield on average higher UAR compared to the ones conducted
using the Participant-independent walkability score, suggesting the inter-individual differences in terms of walkability perception. This pattern is
most prominent in the Participant-independent cross-validation framework (Figure 6), where the UAR yielding from the Participant-independent
walkability score is close to chance level (i.e., 50%), while the corresponding UAR for the Participant-dependent walkability score reaches 60%
(e.g., combination of Context and Aggregate measures, combination of Context and PSC features). Table 2 presents the result of a paired t-test
comparing the UAR metrics obtained using the Participant-independent walkability score and the Participant-dependent walkability score. The
UAR based on Participant-dependent walkability score is significantly higher than their independent counterpart for the majority of modalities. We
also note that the Participant-dependent cross-validation framework (Figure 7), outperforms the Participant-independent cross-validation (Fig-
ure 6), which further indicates the present of subject dependencies in the physiology and gait information. It is likely that the decision tree trained
using the Participant-dependent cross-validation is able to learn subject-specific patterns of the corresponding input data that contribute to the
walkability perception.
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5.2.2. Comparison between Aggregate measures and PSC features

Next, we compare the performance between Aggregate measures, which are computed as the statistical mean of physiology and gait signals
(Section 4.3), and PSC features, which represent the distinctiveness (or prominence) of features for each POI in comparison to the others (Sec-
tion 4.2). PSC features perform slightly better than Aggregate measures when EDA, HR, or their combination are used as modalities. A potential
reason for this might be due to the fact that Aggregate measures rely on statistical aggregates of the corresponding physiological data, therefore
important temporal information about signal fluctuations is often lost. PSC features can likely capture finer-grain information from the original
EDA and HR signal, which is also reflected in the results. Table 3 further shows the results of a paired t-test when comparing the UAR metrics
between the Aggregate measures and the PSC features for the Participant-dependent cross-validation. Statistical results indicate a significant dif-
ference in UAR between the two with the PSC features outperforming the Aggregate measures in the majority of cases. The Aggregate measures
computed solely on the gait measures perform better compared to the PSC features for the same measures. We suspect that the reason for this is
that raw gait features are already strongly associated with the movement of participants, therefore saliency calculation based on the gait measures
does not contribute much to accurately estimating the walkability perception. In contrast, EDA and HR are much more subtle in nature. Therefore,
the corresponding Aggregate measures do not capture subtle variations in the signals, which are likely quantified by the PSC features.

5.2.3. Comparison of different modalities

We next investigate differences in performance between the various modalities. HR appears to perform worse compared to the EDA and gait
modalities. Gait patterns individually and in combination with others perform the best exhibiting 65-68% UAR for both Participant-independent
walkability score and Participant-dependent walkability score. When all three modalities are combined, we further obtain improved UAR of 70.3%
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Table 2. Results of two-sided paired t-tests comparing unweighted average recall (UAR) obtained from PSC features with context using Participant-independent walkability score and
Participant-dependent walkability score in 10 folds of Participant-dependent cross-validation.

Modality UAR (Participant-independent score) | UAR (Participant-dependent score) t-test result
EDA 69.62 71.97 1(9) = -2.19
Gait 64.53 68.49 1(9) = -2.63"
HR 54.33 64.44 19) = —6.84™"
EDA+Gait 66.79 70.67 19) = -1.17
EDA+HR 67.32 70.71 19) = -2.28"
Gait+HR 58.87 66.82 #9) = =3.71""
EDA+Gait+HR 65.49 70.1 1(9) = =3.217

*: p <0.05, "*: p <0.01

Table 3. Results of two-sided paired t-tests comparing unweighted average recall (UAR, %) obtained from Aggregate measures and PSC features in 10 folds of Participant-dependent
cross-validation.

Farticipant-independent walkability score Participant-dependent walkability score
Modality UAR UAR t-test UAR UAR t-test
(Aggregate) | (PSC) result (Aggregate) | (PSC) result
EDA 55.84 7031 | #9) = —6.85" 53.92 64.85 | 1(10) = —5.87"
Gait 72.14 65.21 1(9) = 3.58™" 68.79 59.78 | #(10)=7.71"
HR 49.45 55.54 #(9) = -2.97" 49.64 53.07 | «(10) =131
EDA+Gait 71.71 66.75 1(9) = 2.18 66.88 64.63 #(10) = 2.27°
EDA+HR 61.46 66.89 #(9) = -2.38" 56.98 62.52 | #(10)=-2.25
Gait+HR 70.4 58.56 1(9) = 474" 66.08 54.84 | 1(10) = 547"
EDA+Gait+HR 70.39 64.45 1(9) = 3.70™" 66.37 62.26 #(10) = 3.10

*: p <0.05, "*: p <0.01

for the Participant-dependent cross-validation (Figure 7).

5.2.4. Effect of Context

Results exhibit the usefulness of the context in correctly classifying between the low and high perceived walkability classes. Table 4 shows
the results of paired t-tests that compare the UARs with and without the use of context, where the decision trees are trained using Participant-
dependent cross-validation framework with PSC features and the Participant-dependent walkability score. Results depict significant improvement
over all modalities when context is added in the feature set. The use of context increases the UAR for both the Participant-dependent walkability
score and Participant-independent walkability score (Figure 7), further signifying the importance of this element. When all modalities are used
in combination with context for the Participant-dependent walkability score, the Aggregate measures exhibit 74.85% UAR, while PSC features
present 70.1% UAR. This is the best performance yielding from the raw features across all settings. The best performance from PSC features is
obtained by combining EDA and context, where 71.97% UAR is achieved.

6. Discussion

This paper demonstrates the potential of using physiology and gait signals to estimate perceived walkability in the built environment. Walk-
ability is a key factor to physical activity(Sallis et al. (2012); Fulton et al. (2018)), positive health outcomes(WHO (2010)), and healthy commu-
nities(Berke et al. (2007); King et al. (2011)). The subjectivity and inherent inter-individual variability of perceived walkability, the unbalanced
distribution of low and high walkability classes, and the inherently complex feature spaces yielding from sensor-based measures collected “in-the-
wild”, render the task of perceived walkability estimation quite challenging. This paper addressed these challenges in the following ways.

To examine subject-dependent effects in perceived walkability, we introduced two types of labels (i.e., Participant-independent walkability
score, Participant-dependent walkability score) and two types of frameworks (i.e., Participant-independent cross-validation) in the classification
experiments. We observed high subject dependency in terms of the model’s ability to capture physiology and gait patterns of walkability with the
Participant-dependent cross-validation consistently outperforming the Participant-independent cross-validation. Results further depicted some
dependency of walkability perception to the individual-level, since the UARs obtained using the Participant-dependent walkability score are
many times higher compared to the ones yielding by the Participant-independent walkability score. Prior work depicts similar results, since
environmental barriers in daily trips are found to be perceived in a highly subject-specific manner(Lee et al. (2020a); Dewulf et al. (2012); Ariffin
& Zahari (2013); Lee & Shepley (2020)). Perception of distress also varies across individuals, and therefore, physiological responses can be
also highly diverse(Koldijk et al. (2014); Can et al. (2019); Schmidt et al. (2018)). Thus, integrating knowledge about individual perception may
comprise a useful approach to address this issue.

In order to tackle the inherent complexity of the task of interest, we examined a multimodal set of features representative of both ANS reactivity
and physical motion parameters. EDA and gait patterns emerged as the most discriminative indices in estimating perceived walkability, while HR
appeared to be the least effective. This might be caused by the motion artifacts in the data obtained from the PPG sensors. A robust motion artifact
cancellation process may help in increasing the predictive performance of HR. The combination of all measures increased the UAR, which suggests
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Table 4. Results of two-sided paired t-tests comparing unweighted average recall (UAR) obtained from PSC features (with and without context) in 10 folds of Participant-dependent
cross-validation with Participant-dependent walkability score.

Modality UAR (PSC) | UAR (PSC+Context) t-test result
EDA 64.85 71.97 1(9) = -3.85"
Gait 59.78 68.49 1(9) = —4.34™
HR 53.07 64.44 1(9) = -7.81""
EDA+Gait 64.63 70.67 19) = —4.77""
EDA+HR 62.52 70.71 1(9) = -8.79™
Gait+HR 54.84 66.82 19) = =7.73"
EDA+Gait+HR 62.26 70.1 1(9) = -6.71""

*: p <0.05, **: p <0.01

that a multimodal approach can be beneficial for detecting distress in the urban environment. Beyond aggregate statistical measures of physiology
and gait, which are commonly used in prior work(Lee et al. (2020b); Yates et al. (2017); Yang et al. (2019); Jebelli et al. (2016)), we further examine
saliency-based measures to capture the distinctiveness of the input signal for a POI of interest. PSC features tend to capture subtle differences in
HR and EDA due to the adverse environmental stimuli of physical disorders, with the proposed PSCs outperforming the statistical indices when
computed using the physiological measures of HR and EDA. Aggregate measures seem not to be able to achieve that, potentially due to the fact that
they provide aggregate measures over a signal segment and fail to capture fine-grain signal fluctuations. Similar findings related to the limitation of
aggregate statistical measures computed from physiological signals have been found in previous work(Chaspari et al. (2016, 2017); Nirjhar et al.
(2020)). On the contrary, statistical measures perform well for the gait, potentially due to the fact that this signal is highly inter-connected with
motion-based walkability patterns(Ahn et al. (2019); Yang et al. (2017, 2019); Jebelli et al. (2016)). We further added contextual information for
augmenting the performance of the machine learning models that estimate perceived walkability in the built environment. Our results indicate that
context plays a vital role in this task, since the integration of context in the feature space significantly improved performance in all experimental
settings. These are in line with previous work, that has also demonstrated the importance of using contextual information for estimating human
outcomes(Fox et al. (2017); Koldijk et al. (2014)).

To address the unbalanced distribution of classes, we used a decision tree whose hyperparameters were tuned through a balanced recall metric,
rather than unbalanced accuracy. High recall for the low perceived walkability class is ensured in the hyperparameter tuning process, so that
the model is able to accurately detect low perceived walkability instances with reduced false-negatives. Grounded on prior work, suggesting the
importance of low perceived walkability in inhibiting physical activity and ultimately contributing to poor health outcomes(Sallis et al. (2012);
Fulton et al. (2018); WHO (2010)), we highlight here the significance of designing an automated system with high recall for the low perceived
walkability class in real-life applications. Although there are still several hurdles in terms of applying the current research to real-life practice,
we envision that implications of this work can contribute to accurately diagnosing physical disorders in the built environment that affect perceived
walkability in a personalized manner. The proposed models can offer a basis for monitoring the condition of the built environment, which could
be utilized by government policymakers, urban practitioners, private operators, and citizens. Furthermore, this approach can be leveraged to cater
to specific demographic groups (e.g., children, disabled people, and elderly) by means of mobility planning (e.g., daily walking trips in a safe and
comfortable manner) and leisure. Currently, our model estimates perceived walkability from offline data. A successful model derived from these
experiments can help in creating an online algorithm, which can be integrated into a personalized intervention module. Therefore, this work can
contribute to urban bioinformatics, since crowdsourcing of physiological data from wearable devices is likely to be widely used in the not too
distant future(Rumsfeld et al. (2016); Guo et al. (2015)).

Despite the encouraging results on estimating distress in the urban environment, the methodology proposed in this paper presents several
limitations. The number of participants in this experiment (N = 25) is fairly limited, therefore the design of a generalized model may require
additional data. The participants of this study did not belong to a sensitive population (e.g., elderly, disabled), therefore further experimentation
with populations of interest can highlight specific needs and contribute to modifying community and public health policies related to the built
environment in an informed data-driven manner. In addition to these, the estimation of perceived walkability has been formulated as a binary
classification problem. A multi-class setup or a regression model can be more helpful in designing a system with increased resolution at the
output. Moreover, the features related to the heart activity are computed based on the time domain. Measures extracted on the frequency domain
or other domains (e.g., Wavelets) can potentially increase the predictive power of the models. Finally, contextual information was integrated using
a simple, but effective, measure that reflects the location of a POI in the urban environment. Additional contextual information from visual cues
(e.g., visual-based saliency detection of elements of the built environment) and audio (e.g., ambient noise) might be particularly beneficial as part
of future experimentation.

7. Conclusion

This paper examined a machine learning model that used physiology and gait to detect perceived walkability in the built environment with
implications in physical activity and overall community health. A field experiment was conducted to collect physiology, gait, and self-reported
walkability ratings. We presented a comparative analysis with 25 participants that considered the predictive power of physiological saliency
features, statistical measures, and contextual information for accurately detecting perceived walkability. A decision tree model was used in a
Farticipant-independent cross-validation and a Participant-dependent cross-validation framework with two types of perceived walkability labelling
methods. Our results indicate that the multimodal approach that combines both physiology and gait measures is more useful in classifying
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between low and high perceived walkability compared to the unimodal approach. Moreover, PSC measures based on the EDA and HR signals
performed better compared to the corresponding aggregate measures, signifying the importance of capturing fine-grain temporal fluctuations in the
signals. Integration of context further significantly benefited classification performance. This work sets the foundation for future experiments of
personalized online detection of urban distress elements to ensure walkability and promote healthy communities.
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