
SecTutor: An Intelligent Tutoring System
for Secure Programming

Ida Ngambeki1 , Matt Bishop2(B) , Jun Dai3 , Phillip Nico4 ,
Shiven Mian2 , Ong Thao3, Tran Ngoc Bao Huynh3 , Zed Chance3 ,

Isslam Alhasan1 , and Motunrola Afolabi1

1 Purdue University, West Lafayette, IN, USA
{ingambek,ialhasan,mafolabi}@purdue.edu
2 University of California, Davis, CA, USA

{mabishop,smian}@ucdavis.edu
3 California State University, Sacramento, CA, USA

{jun.dai,ongthao,tranngocbaohuynh,zchance}@csus.edu
4 California Polytechnic State University, San Luis Obispo, CA, USA

pnico@calpoly.edu

Abstract. SecTutor is a tutoring system that uses adaptive testing to
select instructional modules that allow users to pursue secure program-
ming knowledge at their own pace. This project aims to combat one of
the most significant cybersecurity challenges we have today: individu-
als’ failure to practice defensive, secure, and robust programming. To
alleviate this, we introduce SecTutor, an adaptive online tutoring sys-
tem, to help developers understand the foundational concepts behind
secure programming. SecTutor allows learners to pursue knowledge at
their own pace and according to their own interests, based on assess-
ments that identify and structure educational modules based on their
current level of understanding.

Keywords: Secure programming · Tutoring · Intelligent system

1 Introduction

Secure programming is one of the most fundamental elements of a software
development life-cycle and it’s crucial to develop robust secure coding practices
and procedures. According to a recent survey of professional developers, seventy
percent of companies emphasized the importance of learning secure programming
practices right from the early stages of writing code [6]. This high percentage
indicates that secure programming is becoming synonymous with high quality
code within the software development life cycle. According to a study conducted
by IBM System Science Institute, software defects detected in later phases cost
anywhere from six to fifteen times more than if the same defects were found in
earlier phases [4].

c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
L. Drevin et al. (Eds.): WISE 2022, IFIP AICT 650, pp. 17–28, 2022.
https://doi.org/10.1007/978-3-031-08172-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08172-9_2&domain=pdf
http://orcid.org/0000-0001-7191-2179
http://orcid.org/0000-0002-7301-7060
http://orcid.org/0000-0002-6890-6429
http://orcid.org/0000-0002-7405-2546
http://orcid.org/0000-0002-7730-5254
http://orcid.org/0000-0002-6023-7689
http://orcid.org/0000-0002-9251-8354
http://orcid.org/0000-0003-0546-224X
http://orcid.org/0000-0003-4906-8025
https://doi.org/10.1007/978-3-031-08172-9_2


18 I. Ngambeki et al.

SecTutor is a self-directed learning tool driven primarily by the learner. This
learning tool focuses on the educational aspect of teaching students proper prac-
tices of improving the security and robustness of programs from the early stages.
The fundamental goal of SecTutor is to instill good coding practices into learning
and facilitate teaching secure programming in academic institutions. Learners
can practice and develop robust programming skills and concepts to determine
their current level of knowledge and understanding of secure coding and pro-
gramming techniques.

This paper will first examine the background of self learning, as well as
the benefits of teaching secure programming practices to students in computer
science. Next, the focus and need of a tool to address these practices, SecTutor,
will be described, as well as a comparison of SecTutor to a previously existing
security tool. The layout of SecTutor is given in diagram form, as well as an
example question that a student may see is shown. Implementation details like
how the tool is intelligent and the question approval system are described at a
high level. Finally, the paper will conclude with how SecTutor’s data can help
find common security misconceptions in education.

1.1 Background

SecTutor is based upon self-directed learning theory, known as the attainment
of knowledge partially or entirely driven by the learner. Self-directed learn-
ing comprises four paradigms; self-modification, self-motivation, self-monitoring,
and self-management [5]. Self-modification allows students to change their out-
look on learning and take responsibility for changing their learning behaviours
based on feedback. Self-motivation gives a sense of responsibility for learning
and improving. Self-monitoring evaluates behaviours in learning and identifies
current progress. Self-management controls learning behaviours and allows stu-
dents to follow up on goals and complete assignments. The goal is to enable
a self-directed learning approach to encourage students to overcome reluctance
and present guidance in three different strategies; multiple entry points, gam-
ification, and adaptive testing. Self-directed learning allows students to take
control of their learning behaviors and provides flexibility in enhancing their
skills through new methods of learning to meet their specific learning needs.
SecTutor uses the principles of self-directed learning to allow students to learn
secure programming practices using effective learning tools.

According to the National Research Council (2000), students who focus on
the memorization of topics, rather than taking the time to understand and make
sense of the topic, often have limited opportunities to learning [2]. SecTutor
guides the learning process by developing practice questions and provide feed-
back to identify the learner’s performance and contribute to the student knowl-
edge model, which will inform the intelligent tutoring system the selection of
content and misconceptions that the learner needs to spend more time on. The
educational aspect of SecTutor aims to improve elements of proper secure pro-
gramming practices and prepare learners to apply new skills and concepts. The



SecTutor: An Intelligent Tutoring System for Secure Programming 19

educational assessment deals with measuring the learner’s abilities in robust pro-
gramming, assist students in learning and offer suggestions on areas of improve-
ment. Currently, there is a gap in secure programming education that seeks to
pinpoint knowledge areas to better prepare students the skills of secure coding.
A recent study found that many students majoring in computer science, lack
necessary fundamental knowledge in their abilities to read and write secure code
and graduate without being introduced to any secure programming practices
[9]. Furthermore, research has shown that basic yet important secure program-
ming topics are not covered in the required programming courses [1]. One of the
strengths of this tool is the ability to target the misconceptions students have
regarding secure programming concepts. To build good coding practices, stu-
dents need to have a solid understanding of how to identify and develop secure
software. These primary concepts should be a required practice in all computer
science courses.

Researchers of the SecTutor tool previously collaborated on a project to
develop a secure concept inventory to measure a student’s understanding of con-
cepts in a specific knowledge domain was also developed by the same researchers
to assess how well students were learning secure programming [10]. The goal
of this project is to use the developed assessments to diagnose misconceptions
and structure personalized instruction based on the learner’s current level of
understanding in secure programming. This will be accomplished through con-
structing an adaptive test, constructing the intelligent tutorial system, integrat-
ing the learning analytic space and testing the system. The identified areas of
misconceptions and foundational knowledge can be seen in Table 1.

The three main categories in Table 1 are the overall flow of writing a pro-
gram, looking at the way programs evolve, the principles to guide the software
development, and the artifacts handled during development through execution.
The topics covered in Table 1 are targeting at both undergraduate and graduate
students. For any class in which there is programming, where security miscon-
ceptions may arise, SecTutor would be a great tutoring tool.

1.2 The Focus of the Tool

SecTutor focuses on the educational aspect of teaching robust coding prac-
tices from the beginning of writing programs rather than making programs
robust after they are written. The key is to inculcate good coding practices into
the teaching and practices of programming in institutions where it is taught.
Researchers have developed a concept map that allows users to view the pri-
mary concepts of secure programming practices. The concept map is an excellent
starting point to target specific concepts that will help guide a user’s progress
through different learning modules. SecTutor will also provide practice ques-
tions clustered around knowledge areas calibrated by different difficulty levels.
Based on a user’s selection of questions and performance, SecTutor will guide the
user to appropriate content. Lastly, SecTutor uses a psychometric designed test
that will assess a user’s understanding of secure programming concepts while
providing individualized feedback on performance across specific domains and



20 I. Ngambeki et al.

Table 1. The identified areas of misconceptions and foundational knowledge in secure
programming are broken down into three main categories: Principles, development, and
execution.

Principles Assurance

Complexity/Simplicity

Requirements/Design

Implementation

Programming languages

Representation

Development Threat modeling

C Strings

Crypto algorithms

Random number generation algorithms

Interdependency

Error Handling

Compiling

Linking

Testing/Debugging/Prototyping/Evaluation

Tools

IDE (Integrated development environments)

Execution Library/API/Third party functions

Input

Memory

Runtime

identifying the areas the user is struggling with. The focus will be achieved in 4
stages.

1. The first stage - Establishing the content domain. During this phase, the
primary research questions are: What are the concepts of secure programming
and their relationship? What are the critical/foundational concepts in secure
programming?

2. The second stage - Developing the item pool. In this phase, the primary
research questions are: How do students understand concepts in secure pro-
gramming? What are common misconceptions in secure programming? What
concepts in secure programming do students find difficult?

3. Third stage - Pilot testing and refining items: The primary aim of this stage is
to identify which questions from the item pool best target conceptual under-
standing.

4. The fourth stage - Field testing: Are the scale items valid and reliable across
the target populations? The research question at this stage would be seeking



SecTutor: An Intelligent Tutoring System for Secure Programming 21

to know how effective and reliable the Sec Tutor is by testing with a large
number of participants.

1.3 Why Create the Tool?

There have been several concept inventories in the past, such as:

1. The force concept inventory developed by David Hestenes [7] and his graduate
student between the late 1980 s s and early 1990 s s at the Arizona State
University. In the early version of the concept inventory, students were made
to write out answers and were not multiple choice questions. Instead, multiple
choice wrong answers were built based on common wrong answers, which
Hestenes tagged as distractors.

2. Computer science concept inventory for introductory programming developed
in 2016 [3].

3. The CATS hackathon - cybersecurity inventories in 2019 [11].

This tool was created to successfully implement the development of secure
programming self-efficacy amongst students in a secure programming clinic. One
of the ways to successfully make self-efficacy is from constant practise and expo-
sure, as indicated by results showing a correlation between self-efficacy and
increased secure programming knowledge.

The objectives of this tool are as listed below [8].

1. Defining the content domain in secure programming and creating a concept
map to describe that domain.

2. Identifying the concepts in the content domain that are foundational/critical.
3. Identifying challenging topics and common misconceptions held by students

in secure programming.
4. Developing a pool of items(questions) that specifically target complex con-

cepts and misconceptions in secure programming.
5. Testing and refining the collection of items to establish a draft secure pro-

gramming concept inventory.
6. Test the scale for validity and reliability.

1.4 What Does This Project Propose?

This project is a development of a dual-purpose testing and tutoring system
which will aid students in learning about secure programming at their own pace
while in an extra-curricular environment. This will be done with continuous
access to secure programming knowledge through an online system called Sec-
Tutor. SecTutor uses an assessment-driven approach for individuals to learn
about secure programming through a personalized learning system with rigor-
ous assessments to determine a learner’s level of knowledge and skill, used to
personalize instructions for the learner. It will create a learning guide for stu-
dents and give them access to an adaptive learning platform with a concept map
that has been defined. The platform will also assist teachers with better analysis



22 I. Ngambeki et al.

and adaptation of teaching techniques by identifying, managing and correcting
erroneous beliefs once they manifest.

The primary focus of the results from concept inventories is to improve ped-
agogy while also achieving the below.

1. Helping instructors compare teaching over time.
2. Assisting institutions to rank instructors.
3. Helping other stakeholders make comparisons across institutions.

1.5 The Purpose of the Tool

The design of SecTutor enables it to identify students’ misconceptions through a
unique test tailored to each user and designed so that the questions, administra-
tion, scoring procedures and interpretations are consistent and in adherence to
laid down standards and guidelines. They do not replace examinations or grading
of students’ learning; instead, they diagnose areas of programming misconcep-
tions and help students overcome the challenges. Like textbooks, the students
are motivated to use SecTutor because it will increase their knowledge about
secure programming and make their performance (such as grades) and job skills
better. We will promote the tool, and host workshop(s) to scale up the amount
of questions.

Concept inventories are designed to measure the following. The generated
scores indicate how well a student understands a concept, where low scores may
be indicative of a misconception.

1. Core concepts of a topic.
2. The extent to which students have achieved expert-level thinking in a domain.
3. A concept map of secure programming which will define the content domain

in secure programming and identify the major and minor concepts, while
portraying the relationships among these concepts.

4. Concepts ranked based on their criticality and difficulty.
5. Misconceptions in secure programming better understood.
6. Collection of multiple choice questions designed to identify misconceptions.

1.6 Related Tools

A related tool that aims to close the gap on insecure programming is the Assured
Software Integrated Development Environment (ASIDE) [13]. ASIDE is a inter-
active static code analysis plugin built for Java in Eclipse. ASIDE attempts to
provide secure programming support to developers during the actual develop-
ment phase. So, ASIDE will statically analyze code during development and look
for common security mistakes, and provide solutions to fix those mistakes. This
differs from SecTutor in that it is only used during development, and ASIDE
is geared only toward Java insecurities. SecTutor, on the other hand, is a quiz
based learning site that is programming language independent, and can be used
in conjunction with regular computer science curriculum (similar to using a



SecTutor: An Intelligent Tutoring System for Secure Programming 23

normal tutor, mainly outside of class time to increase areas where students are
slipping) to help find and address insecure programming practices before sending
students off into industry.

2 Layout

The layout of SecTutor, including how the tool is intelligent, how the users
interact with SecTutor, and how SecTutor’s model is implemented follows in
this section.

SecTutor is implemented as a web app, built using the Python web framework
Django. The account model is split into two distinct roles: teachers and students.
The general account layout of SecTutor can be seen in Fig. 1. In short, the
teacher accounts create questions and view results, and the student accounts
take quizzes. An example of a typical question seen in SecTutor follows in Fig. 2.

2.1 How is the Tool Intelligent?

SecTutor uses item response theory [12] to recommend what subject the student
should study. By using past quiz scores, an ability level θ is determined for a
given interest. This ability level is used in a three-parameter model defined as:

P (θ, a, b, c) = c + (1 − c)
exp (θ − b)

1 + exp (a(θ − b))
(1)

where a is item discrimination, which is how well the question can discriminate
between students of low ability and students of high ability. b is item difficulty,
where students with lower ability will have a harder time answering questions
with high difficulty. Finally c is item guessing, which accounts for the student
merely guessing the answer. The range of a, b, c is between 0 and 1.

Using this value, SecTutor is able to predict a probable score for a student
in a given interest. The interest that has the lowest predicted score is the next
area of study that SecTutor will recommend for the student.

Initial item difficulty and discrimination has been determined by testing a
large and diverse population of students. Question difficulty and discrimination
will change over time as the system is used. Newly added questions will deter-
mine their difficulty and discrimination when the question has been answered
by enough students. Question difficulty and discrimination will change over time
with more data.

2.2 The Student’s Point of View

When a student account is newly created, the student picks their interests and
takes a placement quiz. Interests are the main categories that each question
belongs to, see Table 1, and the student will only see questions from their inter-
ests. The placement quiz is populated by 2 random questions from each of the
student’s interests. A student can always add or remove more interests.



24 I. Ngambeki et al.

Fig. 1. The layout of the SecTutor system, from the point of view of the user interface.
As seen here, teacher accounts may add or approve question to the “potential questions”
database. A question is added to the pool after enough approvals, to be used in the
student’s quizzes. When a students gets a recommendation, item response theory (IRT)
is used to determine which area should be studied.

Taking Quizzes. When a student takes a quiz, they first start off by choosing an
interest. The quiz is populated with 10 random questions, starting with questions
that the student hasn’t taken yet. There is no time limit, but the student may
not go back to a previous question. Once the student is finished, a score is shown
along with quiz results.

In the example question seen in Fig. 2, the last answer is correct. This high-
lights the fact that if a buffer overflow occurs, both the contents of memory and
the control flow may be altered unexpectedly. So, students must understand the



SecTutor: An Intelligent Tutoring System for Secure Programming 25

Fig. 2. The student’s view while taking a quiz.

attack surface of the program or system to ensure security. This question falls
under the “Threat Modeling” misconception, seen in Table 1.

SecTutor is designed in a way where each wrong answer can have custom
feedback to further explain to the student why said answer is wrong.

Quiz Subject Recommendation. Each question has both a difficulty and a
discrimination value. These values are used in the quiz recommendation func-
tionality of SecTutor. The student’s ability level (called θ in the item response
theory model, see Eq. 1) is calculated based on a running average of previous
question scores in a given interest. So, SecTutor is able to determine what inter-
ests the student needs to study next by recommending the interest with the low-
est predicted score. If a student decides to add a new interest, and they haven’t
taken any questions that fall in that interest, then SecTutor will immediately
recommend that they take that quiz.

More Resources. SecTutor can link to external resources for each of the stu-
dent’s interests. This external resource takes the form of a concept map created
during a past funded project called the secure programming concept inventory



26 I. Ngambeki et al.

(SPCI) [10]. This provides more reading material for students to study outside
of taking quizzes.

2.3 The Teacher’s Point of View

The questions that the student accounts see in their quizzes are added by teacher
accounts. A teacher account can add new questions, approve potential questions,
and view question score performance.

Viewing Student Performance. Teacher accounts have the ability to see
question performance on a per question basis. A low average score can be indica-
tive of a difficult question, or of a common misconception. This helps teachers
change parts of their curriculum to address low score areas. This data can be
viewed or exported.

Question Approval System. Newly created teacher accounts can always add
potential questions to the pool. However, until an account has permissions, this
newly created account cannot view any other questions. Once the account is
granted permissions, they have the ability to view “potential questions”, that
being questions that have not yet been approved. If the potential question is
approved by 2 separate teacher accounts, then the question will be used in the
generation of quizzes for students. A question will not appear in a quiz for a
student unless it has these 2 approvals.

To help legitimatize a teacher approval, each teacher account has a pro-
file page with stats about their contributions: amount of questions added and
amount of questions approved. A teacher may add a short bio to their profile
page as well, where teachers are encouraged to add their skills.

The bulk of our questions are added by experts among the field of secure pro-
gramming. Another round of question brainstorming and approvals is scheduled
to happen soon, and we’ll be using the SecTutor system to gather and approve
these questions.

3 Conclusion

With security being arguably the most important part of software today, SecTu-
tor hopes to understand where students are failing to learn. SecTutor attempts
to address the lack of curriculum for common security practices by identifying
the weak points.

Since the tool is implemented as a web app via the internet, we hope to
reach an audience of thousands of students and assess their secure programming
knowledge. With a higher volume of students, our tutoring system will result in
a more accurate determination of what misconceptions lie in the field of secure
programming. This data can be very valuable to instructors in this field, as they
can tune their curriculum to match the most common misconceptions.



SecTutor: An Intelligent Tutoring System for Secure Programming 27

With our question approval system, we aren’t limited by the current inventory
of questions, and can slowly expand the database of questions. This also allows
the ability to test out new concepts on a large group of users.

SecTutor can then employ machine learning to understand common behav-
iors that students have. With more data, SecTutor becomes more calibrated to
identify common mistakes employed by students that lead to insecure software.

Acknowledgements. This work was supported by grants DGE-1934279 and DGE-
2011175 from the National Science Foundation to the University of California Davis,
grant DGE-1934269 from the National Science Foundation to Purdue University, and
grant DGE-1934285 to the California State University Sacramento. The opinions, find-
ings, and conclusions, or recommendations expressed are those of the author(s) and
do not necessarily reflect the views of the National Science Foundation, the California
State University, Purdue University, and the University of California Davis.

References

1. Almansoori, M., et al.: How secure are our computer systems courses? In: Proceed-
ings of the 2020 ACM Conference on International Computing Education Research,
pp. 271–281. ACM, New York (2020). https://doi.org/10.1145/3372782.3406266

2. Bransford, J.D., Brown, A.L., Cocking, R.R. (eds.): How People Learn: Brain,
Mind, Experience, and School. National Academy Press, Washington DC, USA,
expanded edn. (2000)

3. Caceffo, R., Wolfman, S., Booth, K.S., Azevedo, R.: Developing a computer science
concept inventory for introductory programming. In: Proceedings of the 47th ACM
Technical Symposium on Computing Science Education, pp. 364–369. ACM, New
York (2016). https://doi.org/10.1145/2839509.2844559

4. Dawson, M., Burrell, D.N., Rahim, E., Brewster, S.: Integrating software assurance
into the software development life cycle (sdlc). J. Inf. Syst. Technol. Plann. 3(6),
49–53 (2010). https://www.researchgate.net/publication/255965523 Integrating
Software Assur-ance into the Software Development Life Cycle SDLC

5. Garrison, D.R.: Self-directed learning: Towards a comprehensive model. Adult
Educ. Q. 48(1), 18–33 (1997). https://doi.org/10.1177/074171369704800103

6. Help Net Security: 70% of organizations recognize the importance of secure cod-
ing practices, March 2021. https://www.helpnetsecurity.com/2021/03/26/secure-
coding-practices/

7. Hestenes, D., Wells, M., Swackhamer, G.: Force concept inventory. Phys. Teach.
30(3), 141–158 (1992). https://doi.org/10.1119/1.2343497

8. Hyder, J.: Electronics systems concept inventory. http://www.esyst.org/PDF/
Concept%20Inventory%20Presentation.pdf

9. Lam, J., Fang, E., Almansoori, M., Chatterjee, R., Soosai Raj, A.G.: Identifying
gaps in the secure programming knowledge and skills of students. In: Proceedings
of the 53rd ACM Technical Symposium on Computer Science Education, vol. 1,
pp. 703–709. ACM, New York (2022). https://doi.org/10.1145/3478431.3499391

10. Ngambeki, I., Nico, P., Dai, J., Bishop, M.: Concept inventories in cybersecurity
education: an example from secure programming. In: Proceedings of the IEEE
Frontiers in Education Conference (FIE), pp. 1–5 (2018). https://doi.org/10.1109/
FIE.2018.8658474

https://doi.org/10.1145/3372782.3406266
https://doi.org/10.1145/2839509.2844559
https://www.researchgate.net/publication/255965523_Integrating_Software_Assur-ance_into_the_Software_Development_Life_Cycle_SDLC
https://www.researchgate.net/publication/255965523_Integrating_Software_Assur-ance_into_the_Software_Development_Life_Cycle_SDLC
https://doi.org/10.1177/074171369704800103
https://www.helpnetsecurity.com/2021/03/26/secure-coding-practices/
https://www.helpnetsecurity.com/2021/03/26/secure-coding-practices/
https://doi.org/10.1119/1.2343497
http://www.esyst.org/PDF/Concept%20Inventory%20Presentation.pdf
http://www.esyst.org/PDF/Concept%20Inventory%20Presentation.pdf
https://doi.org/10.1145/3478431.3499391
https://doi.org/10.1109/FIE.2018.8658474
https://doi.org/10.1109/FIE.2018.8658474


28 I. Ngambeki et al.

11. Sherman, A.T., et al.: The cats hackathon: creating and refining test items for
cybersecurity concept inventories. IEEE Secur. Priv. 17(6), 77–83 (2019). https://
doi.org/10.1109/MSEC.2019.2929812

12. Tay, L., Huang, Q., Vermunt, J.K.: Item response theory with covariates (IRT-C):
assessing item recovery and differential item functioning for the three-parameter
logistic model. Educ. Psychol. Meas. 76(1), 22–42 (2016). https://doi.org/10.1177/
0013164415579488

13. Zhu, J., Xie, J., Lipford, H.R., Chu, B.: Supporting secure programming in web
applications through interactive static analysis. J. Adv. Res. 5(4), 449–462 (2014).
ISSN 2090–1232. https://doi.org/10.1016/j.jare.2013.11.006

https://doi.org/10.1109/MSEC.2019.2929812
https://doi.org/10.1109/MSEC.2019.2929812
https://doi.org/10.1177/0013164415579488
https://doi.org/10.1177/0013164415579488
https://doi.org/10.1016/j.jare.2013.11.006

	SecTutor: An Intelligent Tutoring System for Secure Programming
	1 Introduction
	1.1 Background
	1.2 The Focus of the Tool
	1.3 Why Create the Tool?
	1.4 What Does This Project Propose?
	1.5 The Purpose of the Tool
	1.6 Related Tools

	2 Layout
	2.1 How is the Tool Intelligent?
	2.2 The Student's Point of View
	2.3 The Teacher's Point of View

	3 Conclusion
	References




