
119

Practical Differentially Private and Byzantine-resilient
Federated Learning

ZIHANG XIANG, King Abdullah University of Science and Technology, Saudi Arabia

TIANHAO WANG, University of Virginia, USA

WANYU LIN, The Hong Kong Polytechnic University, China

DI WANG, King Abdullah University of Science and Technology, Saudi Arabia

Privacy and Byzantine resilience are two indispensable requirements for a federated learning (FL) system.

Although there have been extensive studies on privacy and Byzantine security in their own track, solutions that

consider both remain sparse. This is due to difficulties in reconciling privacy-preserving and Byzantine-resilient

algorithms.

In this work, we propose a solution to such a two-fold issue. We use our version of differentially private

stochastic gradient descent (DP-SGD) algorithm to preserve privacy and then apply our Byzantine-resilient

algorithms. We note that while existing works follow this general approach, an in-depth analysis on the

interplay between DP and Byzantine resilience has been ignored, leading to unsatisfactory performance.

Specifically, for the random noise introduced by DP, previous works strive to reduce its impact on the

Byzantine aggregation. In contrast, we leverage the random noise to construct an aggregation that effectively

rejects many existing Byzantine attacks.

We provide both theoretical proof and empirical experiments to show our protocol is effective: retaining

high accuracy while preserving the DP guarantee and Byzantine resilience. Compared with the previous work,

our protocol 1) achieves significantly higher accuracy even in a high privacy regime; 2) works well even when

up to 90% distributive workers are Byzantine.
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1 INTRODUCTION
Federated Learning (FL), a learning framework for preserving the privacy of distributed data [38],

has thrived during the past few years. To comply with the privacy regulations such as General

Data Protection Regulation (GDPR) [25], variants of FL frameworks have been widely studied, and

recently adopted in industry, such as Apple’s “FE&T” [48], Google’s Gboard [24], and Alibaba’s
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FederatedScope [70]. In an FL system, there are several local workers, each holding a dataset for

local training, and a server aggregating gradient vectors from workers for global model updates.

However, current FL frameworks that seemingly can protect privacy (because the original

data never leaves the local workers) are in fact vulnerable to various privacy attacks, such as

membership inference attacks [55] (tries to infer whether some data samples are used in training)

and model inversion attacks [77] (“reverse-engineer” sensitive data samples through gradients).

These vulnerabilities drive the community to design methods that can further preserve the privacy

of data held by workers. Among the privacy-enhancing techniques [22, 23, 52, 60], differential

privacy (DP) [20] is a rigorous mathematical scheme that allows for rich statistical and machine

learning analysis and is becoming the de facto notion for data privacy. Many methods have been

proposed to tackle the problems of integrating DP into machine learning/deep learning from

different perspectives [1, 12, 34, 46, 47, 56, 61, 62, 64]. More recently, DP has been adopted in the

FL setting [2, 26, 59, 66, 73].

Besides privacy risks, FL systems are also vulnerable to adversarial manipulations from Byzantine

workers, which could be fake workers injected by an attacker or genuine workers compromised

by an attacker. Specifically, in a Byzantine attack, the adversary intends to sabotage the collective

efforts by sending false information, such as contrived Byzantine gradients [6, 69]. To mitigate this

issue, recent work proposes Byzantine-resilient machine learning approaches, such as diagnosing

and rejecting gradients with abnormal features [9, 11, 15, 49, 51].

Tremendous progress on privacy and Byzantine resilience have been seen in their own track.

However, all of them are not applicable to the more practical scenario where a privacy attacker

is also Byzantine (a double-role attacker). Being aware of that, some recent work started to focus

on such an issue yet provided unsatisfactory answers. Some of them fail to ensure both DP and

Byzantine resilience simultaneously [30], while some other work tries to explore optimal parameter

setups but still end up with a much-limited solution [29]. We also notice that some work [76] tries

to combine existing variants in both tracks to side-step the seeming incompatibility of DP and

Byzantine security, however, their resistance is retained only when the privacy level is low and the

portion of Byzantine clients is small.

Contributions:We observe that previous solutions fail to give a satisfactory answer for a common

reason: neither the DP algorithm nor the Byzantine defending method is designed against both risks

simultaneously. Our contribution is how we start from a co-design to form a DP and Byzantine-

resilient solution, proving the synergy of combined DP and Byzantine resilience.

1) Co-design: Since random noise introduced by DP impairs the effectiveness of existing

Byzantine-resilient aggregation rules, previous works tend to limit the impact of randomness

by increasing the data batch size [29, 30]. In contrast, we leverage random noise to aid Byzantine

aggregation: we use small batch size and accordingly construct our first-stage aggregation which

effectively rejects many existing attacks.

Moreover, previous works continue to use the standard DP-SGD [1] to bound gradient sensitivity

by clipping, which involves manually tuning the clipping parameter. In contrast, we ensure bounded

sensitivity by normalizing, and it enables our second-stage aggregation, which provides a final

sound filtering.

2) Cherry on top:We are the first to find out that bounding gradient sensitivity by normalizing

is more suitable for DP learning although normalizing itself is not new
1
. Specifically, we analyze

its theoretical implication and also leverage it to construct a learning protocol that saves quadratic

1
Some concurrent work [10, 18, 19, 71] on DP learning use an operation similar to normalizing with different considerations.
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efforts
2
in hyper-parameter-tuning for DP learning, where a smaller amount of queries on gradient

computation is more favored.

In the final evaluation, we conduct experiments to first show our contribution to DP solution

and Byzantine aggregation in their own track. Then, for the core aim to preserve both privacy and

Byzantine security, our experimental results show that in addition to having the DP guarantee,

our protocol also remains robust against strong attackers when there are up to 90% distributive

workers are Byzantine. We have released our code in supplementary material
3
.

2 BACKGROUND AND PRELIMINARIES
2.1 Federated Learning

In a typical setting of machine learning, we have a training dataset {𝑥1, 𝑥2, · · · , 𝑥𝑚} where each
𝑥𝑖 contains a feature vector and a label, and we also have a loss function 𝑓 . We aim to find the best

model parameters𝑤 from a parameter space Θ which minimizes the following function through

stochastic optimization:

min

𝑤∈Θ
𝐹 (𝑤) = E𝑥∼P [𝑓 (𝑥 ;𝑤)] , (1)

In FL, suppose there are 𝑛 workers and the 𝑖-th worker has local and private data𝐷𝑖 , then training

in FL happens in a distributed manner. Specifically, in the 𝑡-th iteration, we have:

1) Model broadcasting: The server broadcasts the current model parameters𝑤𝑡−1 to all workers.

2) Local gradient computation: After receiving the model sent by the server, each worker will use

his/her private data and the model𝑤𝑡−1 to compute his/her gradient vector 𝑔𝑡𝑖 = ∇𝑓 (𝐷𝑖 ;𝑤𝑡−1) :=
1

|𝐷𝑖 |
∑
𝑥∈𝐷𝑖
∇𝑓 (𝑥 ;𝑤𝑡−1). Note that workers can also compute their gradients and update their model

𝑁 times locally, and report the difference between the model they get locally and the last model

they receive from the server. In our framework, we take 𝑁 = 1 and this is due to the constraints of

DP-SGD protocol which will be discussed later. Extending to the cases where 𝑁 > 1 will be left for

future study.

3) Gradient aggregation and model update: The server will perform an aggregation step (denoted

by function Aggregation) on the gradient vectors reported by workers and use the result 𝑔𝑡 =

Aggregation(𝑔𝑡
1
, 𝑔2

2
, · · · , 𝑔𝑡𝑛) to update the model by𝑤𝑡 = 𝑤𝑡−1 − 𝜂𝑔𝑡 , where 𝜂 is the learning rate.

Note that there are variants of aggregation strategies, e.g., 𝑔𝑡 =
∑
𝑖
|𝐷𝑖 |∑
𝑗 |𝐷 𝑗 |𝑔

𝑡
𝑖 [44].

2.2 Differential Privacy for Deep Learning
Definition 1 (Differential Privacy [20]). Given a data universe X, we say that two datasets

𝐷, 𝐷 ′ ⊆ X are neighbors if they differ by only one data sample, which is denoted as 𝐷 ∼ 𝐷 ′. A
randomized algorithm A is (𝜖, 𝛿)-differentially private if for all neighboring datasets 𝐷, 𝐷 ′ and for
all events 𝑆 in the output space of A, we have Pr(A(𝐷) ∈ 𝑆) ≤ 𝑒𝜖 Pr(A(𝐷 ′) ∈ 𝑆) + 𝛿.

An (𝜖, 𝛿)-DP mechanism typically adds calibrated noise to the output of a query. In this paper

we mainly use the Gaussian mechanism to guarantee (𝜖, 𝛿)-DP:

Definition 2 (GaussianMechanism). Given any function𝑞 : X𝑛 → R𝑑 , the Gaussianmechanism

is defined as 𝑞(𝐷) + 𝜉 where 𝜉 ∼ N(0, 2Δ
2

2
(𝑞) log(1.25/𝛿 )

𝜖2
𝐼𝑑 ), where where Δ2 (𝑞) is the ℓ2-sensitivity of

the function 𝑞, i.e., Δ2 (𝑞) = sup𝐷∼𝐷 ′ | |𝑞(𝐷) − 𝑞(𝐷 ′) | |2. Gaussian mechanism satisfies (𝜖, 𝛿)-DP when
𝜖 ≤ 1.

2
Instead of tuning learning rate 𝜂 and clip threshold𝐶 for different 𝜖 , our approach only needs to turn 𝜂 for any instance of

𝜖 .
3
https://github.com/zihangxiang/-Practical-Differentially-Private-and-Byzantine-resilient-Federated.git.
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Another notable property of DP is that DP is closed under postprocessing, i.e., if we post-process
the output of an (𝜖, 𝛿)-DP algorithm, then the whole procedure will still be (𝜖, 𝛿)-DP.

DP in deep learning: Differentially Private SGD (DP-SGD) is a widely used method in machine

learning to ensure DP [1, 7, 57]. It modifies the SGD-based methods by adding Gaussian noise to

perturb the (stochastic) gradient in each iteration of the training, i.e., in the centralized setting,

during the 𝑡-th iteration DP-SGD will compute a noisy gradient as follows:

𝑔𝑡 =
1

|𝐵 | (
∑︁
𝑥𝑖 ∈𝐵

𝑔𝑡𝑖 + N
(
0, 𝜎2𝐶2𝐼

)
), (2)

where 𝐵 is a subsampled data batch used to compute the gradient, 𝜎 is the noise multiplier, 𝑔𝑡𝑖 is the

gradient vector computed by feeding one data sample to𝑤𝑡−1 which is the current model before

the 𝑡-th iteration, and 𝑔𝑡 is the (noisy) gradient used to update the model. The main reason here we

use 𝑔𝑡𝑖 instead of the original gradient vector is that we wish to make the term

∑
𝑔𝑡𝑖 have bounded

ℓ2-sensitivity so that we can use the Gaussian mechanism to ensure DP. The most commonly used

approach to get a 𝑔𝑡𝑖 is clipping the gradient: 𝑔𝑡𝑖 = ∇𝑓 (𝑥𝑖 ;𝑤𝑡−1)min{1, 𝐶
∥∇𝑓 (𝑥𝑖 ;𝑤𝑡−1 ) ∥2 } i.e., each

gradient vector is clipped by 𝐶 (scale those whose ℓ2-norm is greater than 𝐶 to be 𝐶 exactly and

leave the rest untouched). Since the ℓ2-sensitivity of

∑
𝑔𝑡𝑖 is bounded by 𝐶 , after the clipping, we

can add Gaussian noise to ensure DP. To prove the (𝜖, 𝛿)-DP property of DP-SGD, there has been a

line of research [4, 28, 45, 65, 74, 78]. We use TensorFlow Privacy [58] to search for noise multiplier

given 𝜖 and 𝛿 . Other than the DP-SGD framework, we note that there exists others work [16]

tackling the privacy issue in FL by extending the PATE framework [46]. However, their work does

not apply to the case where Byzantine workers exist.

2.3 Byzantine Attacks in FL
The FL protocol is vulnerable to Byzantine attacks, as each worker can report a malicious gradient

vector to deteriorate the model performance [6, 69] and even bias the model in a specific way

[13, 41]. Several Byzantine-robust approaches are proposed to tackle different attacks [9, 11, 15, 31,

49, 51, 72]. And there are also new advanced Byzantine attacks that try to bypass such defenses

[5, 6, 14, 15, 35, 53, 69].

A Taxonomy: To understand the features of those Byzantine attacks, we summarise three

dimensions to capture their properties.

1) Objective: There are generally 2 types of objectives: a) Denial-of-service attack (also called

untargeted or convergence prevention) [6] that tries to destroy the training process and makes the

model unusable. b) Backdoor attack [41] that tries to poison the training data to make the model

predict intended results on inputs with specific triggers while still behaving normally on other

inputs.

2) Capability: Existing attacks assume different attackers’ power. Some work assumes that the

Byzantine attacker is omniscient, i.e., the attacker knows what the honest workers send to the

server [21, 69], while others assume the attacker does not know the honest workers’ data [6]. In

both cases, the attacker knows the aggregation rules.

3) Specificity of targeted defenses: a) Some attacks are defense-specific, i.e., and they are tailored for
specific defense methods [6, 69]. However, it is unclear whether such attacks still remain effective

against other or new defense protocols. b) Some other attacks are universal: these attacks are either

defense-agnostic [11, 76] or have a meta-method [21] that can be instantiated to attack almost all

existing defense strategies upon knowing the defense rules.

Instantiating Existing Attacks: We briefly introduce some existing Byzantine attacks which

have been considered in previous work. They can be categorized by the above 3 dimensions:
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1) Gaussian attack [51, 76] uploads pure Gaussian noise trying to hurt utility. 2) Label-flipping
attack [11, 21] first poisons the local dataset by flipping the original label 𝐼 to 𝐻 − 1 − 𝐼 (𝐻 is the

total number of classes, 𝐼 = 0, 1, · · · , 𝐻 − 1 is the label) and then follows the FL protocol. Note

that we can also adopt other ways to perform the label flipping (such as randomly flipping to a

different label). In fact, the way to flip the label does not matter as long as it tries to reduce the

overall accuracy. 3) Optimized Local Model Poisoning attack [21], the state-of-the-art Byzantine

attack method that can be accordingly instantiated for a specific Byzantine defense method in an

adversarial way given the Byzantine defense protocol first.

For ease of discussion, we use “Byzantine attacker” to refer to a master attacker which can inject

several fake workers into the system and control all of them. Hence, in this sense, attackers who

can send malicious uploads to the server can possibly collude.

3 PROBLEMS AND EXISTING SOLUTIONS
3.1 Problem Setting
Attacker: FL is indeed exposed to threats from two kinds of attackers: privacy attacker and Byzantine
attacker. Note that we will not discuss specific privacy attacks and only focus on Byzantine attacks
for the following reasons.

Protecting privacy with DP: From an information-theoretical view, DP guarantees privacy

in the worst case by limiting the maximum amount of information that any privacy attacker can

extract even with side information and unlimited computational resource [20]. It has also been

shown that by tuning 𝜖 small enough [50], adopting DP effectively rejects strong privacy attackers

[55]. Following the privacy settings as in the previous work [29, 30, 76], we focus on the item-level

privacy for each worker’s dataset; in this case, the gradient needs to be privatized (by adding

random noise) before being uploaded to the server.

Focusing on Byzantine-resilience:We are not interested in tuning 𝜖 to test the algorithm’s

strength to defend against privacy attacks. Since our algorithms are guaranteed to be (𝜖, 𝛿)-DP
theoretically, we only need to focus on Byzantine attacks.
In other words, we treat DP as one of the basic properties that an FL system should possess. In

fact, leveraging our tailored DP protocol to defend against Byzantine attacks is one of our novelties.

Byzantine attacker:
We specify the Byzantine attacker according to the taxonomy mentioned above:

• Objective: Our Byzantine attacker is trying to perform Denial-of-Service (DoS) attacks.

• Capability: Our Byzantine attacker is omniscient; it knows all the data held by honest workers,

information sent by honest workers, and the aggregation rules. We assume such capability

in our framework to show that our protocol still works even when facing such a strong

adversary.

• Specificity of targeted defense:We consider a stronger version of universal attacks. Our protocol

will be made public and the attacker is allowed to instantiate his attack on our protocol.

In other words, we are interested in defending the stronger untargeted attacks and we leave

backdoor attacks as future work.

Defender: Privacy is guaranteed through DP, and each user applies DP to protect its local data.

To defend against Byzantine attacks, the server needs to design new aggregation rules such that

false gradients from Byzantine workers are excluded. Here we assume the server possesses a small
amount of labeled data samples which are kept secret from attackers. Let X be the the data space

and Y be the label space in a classification task. We do not require the server to have direct access

to the local-hold data, instead, we assume the data space X𝑎𝑢𝑥 from which the auxiliary data is
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Methods Privacy > 50%-Resilience

Krum [9] ✗ ✗

Coordinate-wise Median [72] ✗ ✗

Trimmed Mean [72] ✗ ✗

Bulyan [31] ✗ ✗

Zhu et al. [75] ✗ ✗

FLTrust [11] ✗ ✓

Rachid et al. [29] ✓ ✗

Xu et al. [42] ✓ ✗

Heng et al. [76] ✓ ✗

Our work ✓ ✓

Table 1. Comparison with previous work. For privacy, ✓ means the method is guaranteed to be DP while
the ✗ means the converse; for > 50%-Resilience, ✓ means the method remains resilient when the number of
Byzantine attackers exceeds half of the total while ✗ means the method is no longer effective under such
majority Byzantine attack.

sampled is the same as that of local-hold data. Notably, this additional assumption is reasonable

in real applications as getting such a tiny amount of data is relatively cheap, and there is work

on DP learning [8, 27, 32, 39, 46, 47, 63, 79] and Byzantine-resilient learning [11, 51] making this

assumption. In our experiments, we simulate obtaining such data by randomly drawing 2𝐶 sampling

from a validation set where 𝐶 is equal to the number of classes of that dataset (e.g., for the MNIST

dataset, 𝐶 = 10, thus 20 auxiliary data samples will suffice). It is also helpful to consider whether

the server-own data and local-hold data follow the same label distribution Y (with a slight abuse of

notation), accordingly, we also conduct experiments for i.i.d. case (distributions on Y are the same

for both) and non-i.i.d. case (distributions on Y are different).

We also assume the server knows the truth that at least 𝛾𝑛 workers are honest among all 𝑛

workers. It is notable that in the paper we do not need to place any restriction on 𝛾 , while previous

work [21, 72] needs to assume that 𝛾 > 0.5.

In conclusion, each local worker adopts DP to protect privacy, hence, for one worker, the privacy

attacker can be anyone (including the server) except itself. The Byzantine attacker (disguised as

some local workers) contrives its upload and tries to destroy the training to make the model has

low utility. As a Byzantine defender, the server is honest-but-curious, i.e., it wants to have a model

with good utility, thus it follows the protocol. However, it may try to infer sensitive information

from the uploads sent by local workers.

3.2 Existing Solutions
In Table 1, we summarize the previous methods on privacy and Byzantine security issues in FL.

As we can see from the table, our method can defend against more than 50% Byzantine workers

while also achieving DP. In the following, we will provide more details and discuss the limitations

of previous methods.

1) The following lines of work only focus on defending against Byzantine attacks: We first recall

some existing solutions to Byzantine resilience. There is a line of work focusing on designing

robust aggregation rules for corrupted gradients [9, 11, 15, 31, 31, 49, 51, 72] including Krum [9],

RFA [49], coordinate-wise median [72], and Trimmed Mean [72]. We summarise the detail of

these four methods in supp. material. for interested readers. In general, the first two methods

involve computing pair-wise distance between vectors while the latter two concentrate on robust

aggregation on each coordinate of vectors. Due to their intrinsic limitations, all of these methods are
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only applicable when the majority of workers (> 50%) are honest. Recently, Zhu et al. [75] propose

improvements to existing Byzantine-resilient methods to provide a certain level of resilience.

Recently, there is work showing that it is possible to leverage the knowledge of clean gradient

computed from non-private auxiliary data [11, 51] to help the aggregation. Common behavior

in such methods is that the server weights each uploaded gradient according to their similarity

compared to the gradient computed by server-own auxiliary data.

All of the above methods have no DP guarantee because they are designed to defend against

Byzantine attacks ignoring privacy attacks. Hence, local datasets’ privacy is at risk.

2) The following lines of work try to apply Byzantine defending methods on top of DP output:

Some recent work investigates the problem of maintaining both DP and Byzantine resilience in

federated learning [29, 30]. Specifically, they study methods of directly combing DP-SGD with

some existing aggregation methods such as Krum, i.e., by applying the aggregation on the noisy

gradient.

Difficulties in reconciling DP and Byzantine-resilient protocols: Previous work shows that for

these methods, to become Byzantine-resilient when DP noise is injected, the fraction of Byzantine

workers must decrease with

√
𝑑 , where 𝑑 is the size of the model if the batch size is not large

enough [29, 30]. This means such methods achieve good performance only when the number of

Byzantine workers is small. Their experiments also verify that this type of method is unsatisfactory

by showing that the testing accuracy deteriorates significantly even for a small model learned on a

simple dataset [30]. Another line of work is based on robust stochastic model aggregation on the

local workers’ gradients. In these methods, the gradients of each worker are compressed into signs

(1 for non-negative and -1 for negative) with DP [42, 76], however, all of them remain effective

only under < 50% Byzantine attack.

4 OUR APPROACH
Observations and lessons learned : Existing solutions apply off-the-shelf Byzantine methods

on top of noisy gradient to explore optimal parameter setups. They fail to reach satisfactory

performance because neither the Byzantine defending protocol nor the DP protocol is designed for

the scenario where privacy and Byzantine resilience are both needed.

4.1 Method Overview
We first re-design the DP protocol, there are two notable properties we enforce in our DP

protocol: 1) small training batch size for each worker; 2) use normalizing instead of clipping to

bound per-example gradient norm. We are not considering privacy and Byzantine resilience in a
separate manner. We design our first-stage aggregation based on the first property and design a

second-stage aggregation based on the second. As will be seen later, the first property together

with the first-stage aggregation trivially yet effectively rejects some existing attacks. The second

property together with the second-stage aggregation effectively rejects more advanced attacks

which bypasses our first-stage aggregation. As a cherry on top, in our DP protocol, such two

properties themselves enable efficient hyper-parameter tuning.

4.2 Modifying DP Protocol
Our DP protocol is summarized in Algorithm 1. The two notable properties compared with

vanilla DP-SGD [1] are: 1) different from existing works that adopt big batch size (10
2 − 106) [3, 19],

we adopt small batch size 𝑏𝑐 (typically 8 or 16). Note that small batch size is essential for our

first-stage aggregation (see Section 4.3 for details); 2) the second, is to replace the clipping operation

in vanilla DP-SGD by normalization, vanilla DP-SGD method clips the gradients by multiplying
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Algorithm 1 Private and Secure Learning

Input: initial model𝑤0
, number of iteration𝑇 , learning rate 𝜂, datasets held by 𝑛 workers {𝐷𝑖 |𝑖 = 1, 2, · · · , 𝑛},

gradient momentum 𝛽 , noise multiplier 𝜎 , batch size 𝑏𝑐 , loss function 𝑓 (; )
1: Each worker 𝑖 initializes a size-𝑏𝑐 momentum list 𝜙0

𝑖
= [0, · · · , 0]

2: for 𝑡 = 1, 2, · · · ,𝑇 do
3: Server broadcasts model𝑤𝑡−1 to all workers

4: for 𝑖 = 1, 2, · · · , 𝑛 do in parallel
5: Sample a size-𝑏𝑐 mini-batch 𝑑𝑖
6: for 𝑗 = 1, 2, · · · , 𝑏𝑐 do in parallel
7: 𝑔 𝑗 ← ∇𝑓 (𝑥 𝑗 ∈ 𝑑𝑖 ;𝑤𝑡−1)
8: 𝜙𝑡

𝑖
[ 𝑗] ← (1 − 𝛽)𝑔 𝑗 + 𝛽𝜙𝑡−1𝑖

[ 𝑗]
9: end for

10: 𝑔𝑡
𝑖
← 1

𝑏𝑐

( ∑
𝑗∈[𝑏𝑐 ]

𝜙𝑡
𝑖
[ 𝑗 ]

∥𝜙𝑡
𝑖
[ 𝑗 ]∥

2

+ N(0, 𝜎2𝐼 )
)

11: Upload 𝑔𝑡
𝑖
to server, then 𝜙𝑡

𝑖
[ 𝑗] ← 𝑔𝑡

𝑖
12: end for
13: 𝐺𝑡𝑠 ← FilterGradient({𝑔𝑡

𝑖
|𝑖 = 1, 2, · · · , 𝑛},𝑤𝑡−1)

14: 𝑤𝑡 ← 𝑤𝑡−1 − 𝜂 1

𝑛

∑
𝑔∈𝐺𝑡

𝑠

𝑔

15: end for
Output: learned target model𝑤𝑇

the gradient vector 𝑔 by 𝐹𝑎𝑐𝑡𝑜𝑟 = min{1, 𝐶
∥𝑔∥2 } (𝐶 is called the clipping threshold). We modify the

multiplication factor to 𝐹𝑎𝑐𝑡𝑜𝑟 = 1

∥𝑔∥2 , which normalizes the gradients to be of unit length. Also

note that inspired by [17], to have a better convergence behavior, the gradients are processed with

momentum.

We will see in the following why normalizing enables efficient hyper-parameter tuning. In later

sections about defending against Byzantine attacks, we will also see that using small batch size

is essential in our first-stage aggregation, and normalizing also plays an important role in the

second-stage aggregation.

Normalization helps hyper-parameter tuning:We now introduce Theorem 1 which supports

our hyper-parameter tuning strategy. Based on our DP protocol, consider a simpler case where

there is no Byzantine attacker and we only have one honest worker. The model update (without

momentum) in the 𝑡-th iteration has the following form:

𝑤𝑡 = 𝑤𝑡−1 − 𝜂

|𝐵𝑡 |
©­«
∑︁
𝑔𝑡 ∈𝐵𝑡

𝑔𝑡

∥𝑔𝑡 ∥ + 𝑧
ª®¬ , (3)

where 𝐵𝑡 is the current local batch of per-example gradient (we fix the batch size to be |𝐵𝑡 | = 𝑏𝑐 ),
𝑧 ∼ N(0, 𝜎2𝐼 ) is the DP noise and 𝑔𝑡 = ∇𝑓 (𝑥 ;𝑤𝑡−1). Since 𝑔𝑡 is derived from only a batch of

samples, there is a sampling error. Denoting the sampling error by 𝜉𝑡 , we can rewrite ∇𝑓 (𝑥 ;𝑤𝑡−1)
as∇𝐹 (𝑤𝑡−1)+𝜉𝑡 , where∇𝐹 (𝑤𝑡−1) is the gradient of the stochastic function.With some assumptions

4

that: 1) The stochastic function 𝐹 is bounded below with 𝐹 (𝑤) > 0; 2) 𝐹 has 𝐿-Lipschitz continuous

gradient (defined in Assumption 1); 3) The random vector 𝑔𝑡 = ∇𝐹 (𝑤𝑡−1) +𝜉𝑡 has bounded variance,
i.e., E



𝜉𝑡

2 ≤ 𝜈2 with some 𝜈 . We have the following result:

4
In deep neural networks we always have 𝐹 (𝑤 ) > 0, and for the L-Lipschitz continuous and bounded variance assumptions,

they have been commonly used in the previous work for convergence analysis [10, 17, 71, 73].
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Theorem 1. (Convergence Behavior) Given a learning rate 𝜂, and the model is updated according
to Equation 3 (gradient is normalized), we have

1

𝑇

𝑇∑︁
𝑡=1

E


∇𝐹 (𝑤𝑡 )

 ≤ 3𝐹 (𝑤0)

𝑇𝜂
+ 3𝐿𝜂

2

(
1 + 𝜎

2𝑑

𝑏2𝑐

)
︸                           ︷︷                           ︸

𝑀

+8𝜈.

Proof. See supp. material. □

By the above result, we can see that it is sufficient to minimize the term𝑀 , whose expression

provides valuable guidance on choosing𝑇 and 𝜂 that need to be set before training. If the magnitude

of the noise and the batch size 𝑏𝑐 satisfy
𝜎2𝑑

𝑏2𝑐
≫ 1, then by setting the learning rate as

𝜂 =
1

𝜎

√︂
2𝐹 (𝑤0)𝑏2𝑐
𝑇𝐿𝑑

, (4)

we have 𝑀 ≈
√︃

36𝐹 (𝑤0 )𝐿𝑑𝜎2

2𝑏2𝑐𝑇
. Note that since we always have 𝜎 = Ω( 𝑞

√
𝑇 log(1/𝛿 )
𝜖

) where 𝑞 =
𝑏𝑐
|𝐷 |

is the sampling rate (|𝐷 | is the size of data) [1]. Thus, we have𝑀 = Ω
(

1

𝜖 |𝐷 |
√︁
𝐹 (𝑤0)𝐿𝑑 log(1/𝛿)

)
.

This implies that: 1) The lower bound of 𝑀 is getting worse when 𝜖 becomes smaller; 2) We get

this optimal bound by relating 𝑇 and 𝜂 via Equation (4). If we fix one, we can potentially get the

other one analytically instead of going through inefficient hyper-parameter tuning. In practice,

we fix 𝑇 first and decide the learning rate 𝜂. With 𝑇 fixed, Equation (4) suggests that the optimal

learning rate should be set inversely proportional to the DP noise multiplier 𝜎 , and this leads to

our efficient hyper-parameter tuning strategy which outperforms existing methods. Note that the

previous analysis was built on the assumption that
𝜎2𝑑

𝑏2𝑐
≫ 1. Thus, to satisfy the assumption, we

can either use a bigger model (increase 𝑑) or adopt a smaller batch size. Hence, using a small batch

size is preferred for our method and differs from existing work as mentioned before.

Hence, our DP approach saves quadratic efforts and is truly beneficial for DP learning. This is

beyond only considering the running-time complexity.

4.3 First-stage Aggregation
Design strategy: Inspecting existing work on Byzantine resilience, the uploads (𝑑-dimension

vectors) by Byzantine attackers are arbitrary in R𝑑 . Hence, a single faulty inclusion on a malicious

upload can totally destroy model updates. As a strategy, enforcing some constraints on the subspace

where any upload should lie will be beneficial to defend against attacks. From a high-level perspec-

tive, our refactored DP protocol together with first-stage aggregation does the job of “constrain”;
our second-stage aggregation does the job of “complementary aggregation".
Specifically, our choice of small batch size leads to the phenomenon that DP noise dominates

for each upload, which leads to some expected statistical properties. Another phenomenon is that

although for each worker DP noise is dominating, we can still achieve good utility overall. The

reason is that the server takes the average of all aggregated uploads; such an operation reduces the

DP noise variance and averages gradients to its non-zero expectation. Therefore, we can still get

good utility as long as the number of honest workers is sufficiently large. As will be shown in the

experiments section, 10-20 honest workers will suffice and such a number is smaller than that in

previous work of FL systems [11, 21].

Forming first-stage aggregation: As we can see from Algorithm 1, an honest worker will

upload 𝑔 = 𝑔 + 𝑧 to the server where 𝑔 is the sum of some normalized terms, and 𝑧 is the DP noise.
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If DP noise is dominating (∥𝑧∥ ≫ ∥𝑔∥), we can approximately treat vector 𝑔 as each coordinate of 𝑔

is sampled from N(0, 𝜎2). We then have the following conclusion.

Norm test: Note that
∥𝑔∥2
𝜎2

follows the chi-squared distribution with degree 𝑑 . As 𝑑 is very

large, by Central Limit Theorem, we can safely approximate the distribution of ∥𝑔∥2 as Gaussian
distribution: N(𝜎2𝑑, 2𝜎4𝑑). Hence, ∥𝑔∥2 falls in the interval

[
𝜎2𝑑 − 3𝜎2

√
2𝑑, 𝜎2𝑑 + 3𝜎2

√
2𝑑

]
almost

surely.
5

Similarly, we can also conclude other statistical results for higher-order moments leveraging

the property of Gaussian distribution. However, the real situation only allows us to use a limited

number of these statistics. To further enhance the efficiency and the soundness of such checking,

we will leverage non-parametric test methods which test the hypothesis that given samples follow

a reference distribution. We leverage Kolmogorov–Smirnov test (KS test) [37] as described below.

KS test: Treat each coordinate of 𝑔 as a sample and the null hypothesis is that these samples are

sampled from the same distribution N(0, 𝜎2). Suppose that we are currently testing on upload 𝑔

with 𝑑 coordinates (𝑑-dimension vector) and we denote the 𝑖-th coordinate of 𝑔 as 𝑔[𝑖]. KS test will
1) compute the empirical Cumulative Distribution Function as:

𝐶𝑑 (𝑥) =
1

𝑑

𝑑∑︁
𝑖=1

1𝑔[𝑖 ]<𝑥 ,

where 1𝑔[𝑖 ]<𝑥 is the indicator function that takes value on 1 if 𝑔[𝑖] < 𝑥 and 0 otherwise; 2)

compute the KS statistics 𝐷𝐾𝑆 = sup𝑥 |𝐶𝑑 (𝑥) − Φ𝜎 (𝑥) | where Φ𝜎 (𝑥) is the CDF of N(0, 𝜎2); 3)
compute the P-value by 𝐷𝐾𝑆 from Kolmogorov D-statistic table [43] and there are many off-the-

shelf libraries that can compute it. If the P-value is smaller than 0.05,
6
we reject the null hypothesis

(the server then treats 𝑔 as one malicious upload that is not sampled from N(0, 𝜎2) and rejects it).

Algorithm 2 FirstAGG(𝑔)
Input: 𝑔, the upload to be tested

1: if ∥𝑔∥ <
√︁
𝜎2𝑑 − 3𝜎2

√
2𝑑 or ∥𝑔∥ >

√︁
𝜎2𝑑 + 3𝜎2

√
2𝑑 then 𝑔← 0

2: end if
3: if 𝐾𝑆 (𝑔) < 0.05 then 𝑔← 0

4: end if
Output: 𝑔

KS test confines Byzantine subspace: After we set the significance level for the P-value, we
are essentially placing an upper bound on 𝐷𝐾𝑆 (if 𝐷𝐾𝑆 is too large, the corresponding P-value will

be small enough to make 𝑔 to be rejected). And from the definition of 𝐷𝐾𝑆 , we know that such

an upper bound applies to |𝐶𝑑 (𝑥) − Φ𝜎 (𝑥) | for any 𝑥 ∈ R. This can also be interpreted as that the

curve of 𝐶𝑑 (𝑥) will fall into a band bounded by an upper envelop 𝐸𝑢 (𝑥) = 𝑚𝑖𝑛(1,Φ𝜎 (𝑥) + 𝐷𝐾𝑆 )
and a lower envelop 𝐸𝑙 (𝑥) =𝑚𝑎𝑥 (0,Φ𝜎 (𝑥) − 𝐷𝐾𝑆 ). If we set the significance level strictly enough,

𝐷𝐾𝑆 will be small enough such that the band will be narrow, requiring that 𝐶𝑑 (𝑥) almost aligns

with Φ𝜎 (𝑥).
Formally, since 𝐶𝑑 (𝑥) is a step function (with 𝑑 steps) that is monotonously increasing with 𝑑

steps (
𝑖
𝑑
→ 𝑖+1

𝑑
for 𝑖 = 0, 1, · · · , 𝑑 − 1), we have the following theorem.

5
Such interval is narrow, because

𝜎2
√
2𝑑

𝜎2𝑑
≪ 1 when 𝑑 is very large. And by the 68-95-99.7 rule [67], we set such an interval

to span three s.t.d. around the center so that a benign gradient falls into this interval with 99.7% probability approximately.

6
We use the widely adopted significance level.
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Theorem 2. (Byzantine Resilience) If we sort all coordinates of an upload vector into a sequence by
increasing order, to pass the KS test, the 𝑘-th (we count from 1 to 𝑑) element must fall into the interval:[

𝐸−1𝑢

(
𝑘

𝑑

)
, 𝐸−1
𝑙

(
𝑘 − 1
𝑑

)]
(5)

Proof. Let the 𝑘-th element be 𝑥𝑘 , according to the definition of 𝐶𝑑 (𝑥 ) , then we must have

𝐶𝑑 (𝑥𝑘 ) = 𝑘−1
𝑑

and𝐶𝑑 (𝑥𝑘 + 𝑠) = 𝑘
𝑑
where s is some small real number. To pass the KS test,

𝑘−1
𝑑

must

be above 𝐸𝑙 (𝑥𝑘 ) and 𝑘
𝑑
must be below 𝐸𝑢 (𝑥𝑘 ), consequently, 𝑥𝑘 falls into the above interval. □

In essence, our first-stage aggregation enforces that the attacker’s upload must lie in the subspace

of R𝑑 as described by Equation 5. This is different from existing work on Byzantine security, where

the attacker’s upload can be arbitrary in R𝑑 [6, 11, 21, 51, 69].

Ensuring ∥𝑧∥ ≫ ∥𝑔∥: Our first-stage aggregation only keeps those uploads that follow our DP

protocol (approximately with the form 𝑔 = 𝑔 + 𝑧) and this validity builds on the assumption that

∥𝑧∥ ≫ ∥𝑔∥. The good news is that we can always control
∥𝑧 ∥
∥𝑔∥ . Recall that ∥𝑧∥ ≈ 𝜎

√
𝑑 and 𝑔 is just

the sum of 𝑏𝑐 norm-bounded vectors, hence, before the training, we can compute
∥𝑧 ∥
∥𝑔∥ . To increase

∥𝑧 ∥
∥𝑔∥ , we can either 1) use a bigger model (increase 𝑑); or 2) adopt a smaller batch size for local

workers. Thus, as highlighted in Section 4.2, using a small batch size is one of our technical details

that differs from vanilla DP-SGD.

4.4 Second-stage Aggregation
In this part, we present our second-stage aggregation which does the job of “complementary

aggregation”. In total, our first-stage and second-stage aggregation constitute our final protocol

shown in Algorithm 3.

As a complement: According to the resilience analysis for our first-stage aggregation, any

acceptable upload is confined to lie in a special subspace described by Equation 5. To deceive our

first-stage aggregation, the Byzantine attacker can also enforce its upload has the same form as

𝑔 = 𝑔′ + 𝑧 with ∥𝑧∥ ≫ ∥𝑔′∥ where 𝑧 is the DP noise and 𝑔′ is malicious component. Now the

question is:

Is there an effective way for the server to differentiate benign uploads from Byzantine uploads based
on the different nature of 𝑔 and 𝑔′?
The answer is yes if the server can get some estimate on the true gradient. To have such a

capability, we assume that the server has access to some auxiliary data that can be used to compute

the gradient during the training. Our empirical finding shows that two samples per class are enough
for our second-stage aggregation to be effective. The intuition is that benign 𝑔 should update the

model towards roughly the same direction as the true gradient ∇𝐹 while the malicious one does

not. Quantitatively speaking, with high confidence, E ⟨∇𝐹, 𝑔⟩ > E ⟨∇𝐹, 𝑔′⟩. And the server can use

the gradient of non-private data to approximate ∇𝐹 .
Theoretical motivation: For simplicity, based on our DP protocol, at a certain iteration, consid-

ering one honest worker’s upload is
7
:

𝑔 =
∇𝑓 (𝑥 ;𝑤)
∥∇𝑓 (𝑥 ;𝑤)∥ + 𝑧 =

∇𝐹 (𝑤) + 𝜉
∥∇𝐹 (𝑤) + 𝜉 ∥ + 𝑧 (6)

where 𝑧 ∼ N(0, 𝜎2𝐼 ) is the DP noise and ∇𝑓 (𝑥 ;𝑤) can be written as ∇𝐹 (𝑤) + 𝜉 where 𝜉 is random
noise due to data sampling. We compute the expectation of the inner product between𝑔 and the true

gradient ∇𝐹 (𝑤), which has the following inequality (the proof is given by A.5.1 in supp. material.).

7
We assume the batch size is 1. The iteration number is omitted for ease of notation as it is clear from the context.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 119. Publication date: June 2023.

 https://github.com/zihangxiang/-Practical-Differentially-Private-and-Byzantine-resilient-Federated.git


119:12 Zihang Xiang, Tianhao Wang, Wanyu Lin, and Di Wang

E ⟨∇𝐹 (𝑤), 𝑔⟩ =E
〈
∇𝐹 (𝑤), ∇𝐹 (𝑤) + 𝜉∥∇𝐹 (𝑤) + 𝜉 ∥

〉
≥E ∥∇𝐹 (𝑤)∥

3

− 8E ∥𝜉 ∥
3

,

(7)

where the expectation is taken over the randomness of the data sampling and DP noise. Note that

Equation (6) is the special case where the honest worker only uses one data sample to compute

the gradient and in the general case where many data samples are used, Equation (7) still holds

(expectation is linear with respect to sum operation). Again, we do not have such bound if using

clipping.

We then consider E ⟨∇𝐹, 𝑔′⟩ for the attacks we consider: 1) for Gaussian attack, E ⟨∇𝐹 (𝑤), 𝑔⟩ = 0;

2) for Label-flipping attack, we hypothesize that E ⟨∇𝐹 (𝑤), 𝑔⟩ ≤ 0 as such Byzantine gradient is to

destroy our learning; 3) for Optimized Local Model Poisoning attack, we have E ⟨∇𝐹 (𝑤), 𝑔⟩ < 0 as

this is the goal of such attack. In total, for the three attacks, we have E ⟨∇𝐹 (𝑤), 𝑔⟩ ≤ 0.

As E ∥𝜉 ∥2 is bounded, we can be confident that at least at the early phase of training, E ∥∇𝐹 (𝑤)∥
is large enough to satisfy

E∥∇𝐹 (𝑤 ) ∥
3

− 8E∥𝜉 ∥
3

> 0. Our empirical result give positive evidence on the

correctness of
E∥∇𝐹 (𝑤 ) ∥

3
− 8E∥𝜉 ∥

3
> 0. Thus, we can use this to filter Byzantine uploads and this is

the foundation for our second-stage aggregation.

Algorithm 3 FilterGradient({𝑔𝑡𝑖 |𝑖 = 1, 2, · · · , 𝑛},𝑤𝑘−1)
Input: gradients from each worker 𝑖 at the 𝑡-th iteration 𝑔𝑡

𝑖
, model 𝑤𝑡−1, server-hold dataset 𝐷𝑝 , the loss

function 𝑓 (; ), server-maintained score list S, server’s belief of honest worker ratio 𝛾
1: for 𝑖 = 1, 2, · · · , 𝑛 do in parallel
2: 𝑔𝑡

𝑖
← FirstAGG(𝑔𝑡

𝑖
)

3: end for
4: Server computes 𝑔𝑡𝑠 ← ∇𝑓 (𝐷𝑝 ;𝑤𝑡−1)
5: Server initialize S𝑡𝑚𝑝 = [0, 0, . . . , 0]
6: for 𝑖 = 1, 2, · · · , 𝑛 do in parallel
7: S𝑡𝑚𝑝 [𝑖] =

〈
𝑔𝑡
𝑖
, 𝑔𝑡𝑠

〉
⊲ Motivated by our analysis in Section 4.4

8: end for
9: 𝜇 ← average of top ⌈𝛾𝑛⌉ scores in S𝑡𝑚𝑝
10: for 𝑖 = 1, 2, · · · , 𝑛 do in parallel
11: S𝑡𝑚𝑝 [𝑖] ← 0 if S𝑡𝑚𝑝 [𝑖] < 𝜇

12: S [𝑖] ← S [𝑖] + S𝑡𝑚𝑝 [𝑖]
13: end for
14: Select those upload inside {𝑔𝑡

𝑖
|𝑖 = 1, 2, · · · , 𝑛} which correspond to top ⌈𝛾𝑛⌉ scores inside S to form set𝐺𝑡𝑠

Output: 𝐺𝑡𝑠

4.5 Final Byzantine-resilient Protocol
Combining all stages: According to the above statements, we design our second-stage aggre-

gation which is shown in line 4-14 in Algorithm 3. In line 4, the server gets an estimation on ∇𝐹
by computing the gradient using some non-private data; Since the server has a prior belief that at

least ⌈𝛾𝑛⌉ workers are honest, in line 9, server gets the average on top ⌈𝛾𝑛⌉ inner product scores
among all scores computed by current upload of each worker (line 6-8). This average is used as the

threshold to suppress scores lower than it to zero in line 11. By processing all scores by using the

threshold, we can suppress all scores corresponding to Byzantine uploads and preserve the benign

ones; the processed scores are accumulated in line 12 to be used to differentiate benign uploads
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from Byzantine ones which is described in line 14. Then the selected vectors are returned for the

model update.

Novelties:Our first-stage aggregation is the first aggregation rule leveraging the aforementioned

DP properties. Leveraging auxiliary data to aid Byzantine aggregation is not new [11, 51], nonethe-

less, our second-stage aggregation differs from all existing approaches in 1) theoretical support: we

have a solid theoretical explanation while previous work stands on heuristics; 2) differentiation

metric: we use inner product while previous work use cosine similarity (cosine similarity never

leads to the lower bound in Equation 7); 3) the way to integrate any upload into model update: by

a unifying language, in our protocol, the weight assigned to any upload is binary (1 or 0), while

existing work use real-valued weights according to computed similarities, we find that when DP

is enforced (noise is added to the upload), assigning real-valued weights to any upload results in

further biasing gradient which leads to rubbish model update.

4.6 Byzantine Attacks to Our Protocol
Recall that our attacker is the stronger version. In consistency with such consideration and to test

the limit of our protocol’s resilience, we stand in the perspective of an attacker and form possible

attacks based on our already-released protocol.

Attacker’s response: First, the attacker has to pass our first-stage aggregation to possibly have

a malicious impact. Hence, he only has 2 possible guidelines in general:

Guideline 1: The attacker must first generate a 𝑑-element ordered sequence according to Theorem

2. Then, the attacker will form any permuted version of such sequence to be malicious. If the attacker

is content with any permutation, this would be Gaussian attack [51, 76] as mentioned before. If

the attacker aims to find any particular order, he will fail because it incurs O(𝑑!) computation

complexity.

Guideline 2: Just like the honest workers’ upload, the attacker can make his malicious upload has

the form (or can be decomposed to such form)as 𝑔 = 𝑔′ + 𝑧 with ∥𝑧∥ ≫ ∥𝑔′∥ to pass the KS test.

For completeness, we will not only test on Gaussian attack but also test on other attacks which

comply with Guideline 2. Following previous work, we will include Label-flipping attack [11, 21]

and Optimized Local Model Poisoning attack [21]. The former has been described in previous sections

and we will explain how to form the latter attack in the following. The attacker forms Optimized

Local Model Poisoning attack by the following meta procedure:

• Infer the aggregated result 𝑔𝑟 by applying the aggregation rule on all benign uploads;

• Based on the result and the aggregation rule, he forms his Byzantine upload which passes the

aggregation and makes the final aggregated result have the inverse direction compared to 𝑔𝑟 .

Accordingly, the goal of the adversary is to pass the first-stage aggregation to be possibly

malicious further. We formally summarize such strategy as the following optimization problem:

min

{𝑔𝑀𝑖
}

𝑆𝑐

(∑︁
𝑔𝑀𝑖
+

∑︁
𝑔𝐵 𝑗

,
∑︁

𝑔𝐵 𝑗

)
𝑠 .𝑡 .



FirstAGG(𝑔𝑀𝑖
)


 > 0,

(8)

where the constraint means that the Byzantine upload can pass our first-stage aggregation, {𝑔𝑀𝑖
}

are all Byzantine uploads by the Byzantine attacker, and {𝑔𝐵 𝑗
} are all benign uploads by honest

workers. The function 𝑆𝑐 (𝐴, 𝐵) = 𝐴𝐵
∥𝐴∥ ∥𝐵 ∥ calculates the cosine similarity between two vectors.

Suppose all benign uploads are 𝑔𝐵1 , 𝑔𝐵2 , · · · , 𝑔𝐵𝑚 by 𝐵𝑚 honest workers and all Byzantine uploads

are 𝑔𝑀1
, 𝑔𝑀2

, · · · , 𝑔𝑀𝑛
by 𝑀𝑛 Byzantine workers. According to Equation (8), the attacker aims to

reach the following goal:
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∑︁
𝑔𝑀𝑖

= −(1 + 𝜆)
∑︁

𝑔𝐵 𝑗
(9)

where 𝜆 > 0 is a positive number. This leads to the term

∑
𝑔𝑀𝑖
+∑

𝑔𝐵 𝑗
= −𝜆∑

𝑔𝐵 𝑗
results in the

inverse direction compared to

∑
𝑔𝐵 𝑗

. By setting:

𝑔𝑀1
= 𝑔𝑀2

= · · · = − (1 + 𝜆)
𝑀𝑛

∑︁
𝑔𝐵 𝑗

(10)

this goal is reached. And setting 𝜆 =
𝑀𝑛√
𝐵𝑚
− 1 will let Byzantine uploads pass our first-stage

aggregation (one can check that all malicious and benign upload behaves the same when applying

our first-stage aggregation on them).

Note that to be able to perform such an attack, we need𝑀𝑛 >
√
𝐵𝑚 (because 𝜆 > 0), that is, such

a strong attack only exists when the number of Byzantine workers is sufficiently large.

Note that we do not simulate the Optimized Local Model Poisoning attack compromising our

second-stage aggregation because the attacker must know the serve-hold auxiliary dataset, and

this means that the attacker must fully control the server which is unrealistic. Also note that, for

the goal in Equation (8), we set it to be the inverse to the sum of all benign uploads. This is because

such a goal leads to an efficient solution that can be tolerated by the attacker. In fact, the attacker

can choose its goal freely as long as the constraint in Equation (8) is satisfied. However, other goals

may not lead to an efficient solution. For instance, if the attacker chooses it to be orthogonal, the

attacker is faced with the hard problem as discussed in Guideline 1.

Discussion on the adaptive attack: There exists another attack that copies benign uploads by

honest workers for some iterations and suddenly turns to be malicious after that. We call this attack

as adaptive attack. The way the attacker is malicious can be any instantiation of the previous three

attacks we mentioned before. We will also include this attack in our experiment for completeness.

Note that although Optimized Local Model Poisoning attack seems to be more advanced than

Gaussian attack and Label-flipping attack, it is unclear which attack is most successful on our

protocol before the experiment.

Discussion on excluded attacks: Optimized Local Model Poisoning attack performs well

on attacking various existing Byzantine defense methods [21]. Another similar recent work [54]

adopts the attacking intuition (the meta procedure mentioned above) of the Optimized Local Model

Poisoning attack in other cases where the attacker’s power is more limited (the attacker is weaker).

Hence, here we only adopt the Optimized Local Model Poisoning attack in our experiments.

To the best of our knowledge, many other attacks can be trivially defended by our protocol,

such as the attacks that have been considered in the existing work: “A little” attack [6] and “Inner”

attack [69]. “A little” attack involves estimating the coordinate-wise mean and the s.t.d. of benign

uploads to form its attack. However, our learning protocol enforces that the DP noise is dominating,

hence knowing benign uploads gains the attacker no useful information when forming “A little”

attack. Most importantly, naively applying such an attack will end up being rejected by first-stage

aggregation. This shows the power of our protocol.

4.7 Discussions
First-stage aggregation provides critical robustness: Only using our second-stage aggregation

to aggregate all worker’s uploads is not enough, because, due to randomness, it is not guaranteed

that Byzantine upload will never be selected for model update, and selected Byzantine upload

could destroy our model in just one iteration as it is arbitrary. In contrast, there exists no such

concern when we apply our first-stage aggregation, according to previous resilience analysis for

our first-stage aggregation, it enforces any upload (including malicious ones) 𝑔 which passes the

filtering to have the form 𝑔 = 𝑔 + 𝑧 with ∥𝑧∥ ≫ ∥𝑔∥ where 𝑔 is strictly norm-bounded and 𝑧 is the
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DP noise. For all malicious uploads, strictly norm-bounded 𝑔 means their detrimental impact is

bounded.

DP-Byzantine-robustness interaction: we do not consider DP and Byzantine-robustness in

isolation. Instead, our whole protocol is formed by leveraging each other’s properties.

As mentioned previously in our design strategy, we use our first-stage rule to “constrain” the
way that any upload should behave by re-designing our DP protocol so that any Byzantine upload

violating it will be immediately rejected. Hence, other than only protecting privacy, this refactoring

on DP also provides the first-stage Byzantine-robustness. To deal with those Byzantine uploads that

pass our first-stage aggregation, we further design our second-stage rule to do the “complementary
aggregation” by leveraging the properties of our refactored DP protocol. In total, our privacy

protocol and the robust aggregation rule are aware of each other, leading to a solution that is both

privacy-preserving and Byzantine-resilient.

5 THEORETICAL GUARANTEES
We provide theoretical guarantees on privacy, utility, and Byzantine robustness of our protocol

in this section. For convenience, we assume that the dataset of each worker has the same size

which is denoted as |𝐷 |, and the size of non-private data held by the server is |𝐷𝑃 |. We also denote

𝑤∗ = argmin𝑤∈Θ 𝐹 (𝑤).
Privacy guarantee:We have the following privacy guarantee.

Theorem 3. (Privacy Guarantee) There exist constants 𝑐1 and 𝑐2 such that given the sampling rate
𝑞 =

𝑏𝑐
|𝐷 | and the number of iteration steps 𝑇 . For each worker, Algorithm 1 is (𝜖, 𝛿)-DP for any 𝛿 > 0

and 𝜖 < 𝑐1𝑞
2𝑇 if 𝜎 ≥ 𝑐2

𝑞
√
𝑇 ln

1

𝛿

𝜖
.

Proof. See A.5.2 in supp. material. □

Utility and Byzantine robustness: Theorem 4 shows the utility and robustness of Byzantine

resilience of our algorithm. Before formally introducing Theorem4, we present some assumptions,

which are commonly used in the previous work on optimization and Byzantine-robust learning

[11, 15].

Assumption 1. The expected loss function 𝐹 (𝑤) is 𝜇-strongly convex and differentiable over the
space Θ with L-Lipschitz continuous gradient. Formally, we have the following for any𝑤,𝑤 ∈ Θ:

𝐹 (𝑤) ≥ 𝐹 (𝑤) + ⟨∇𝐹 (𝑤),𝑤 −𝑤⟩ + 𝜇

2
∥𝑤 −𝑤 ∥2

∥∇𝐹 (𝑤) − ∇𝐹 (𝑤)∥ ≤ 𝐿∥𝑤 −𝑤 ∥.

Moreover, the empirical loss function 𝑓 (𝐷,𝑤) := 1

|𝐷 |
∑
𝑥∈𝐷 𝑓 (𝑥 ;𝑤) is 𝐿1-Lipschitz continuous with

high probability. Formally, for any 𝜁 ∈ (0, 1), there exists an 𝐿1 such that:

Pr

(
sup

𝑤,𝑤∈Θ:𝑤≠𝑤

∥∇𝑓 (𝐷,𝑤) − ∇𝑓 (𝐷,𝑤)∥
∥𝑤 −𝑤 ∥ ≤ 𝐿1

)
≥ 1 − 𝜁

3

Assumption 2. The gradient of the empirical loss function ∇𝑓 (𝐷,𝑤∗) at the optimal global
model 𝑤∗ is bounded. Moreover, the gradient difference ℎ(𝐷,𝑤) = ∇𝑓 (𝐷,𝑤)− ∇𝑓 (𝐷,𝑤∗) for any
𝑤 ∈ Θ is bounded. Specifically, there exist positive constants 𝜎1 and 𝛾1 such that for any unit vector
𝒗, ⟨∇𝑓 (𝐷,𝑤∗) , 𝒗⟩ is sub-exponential with 𝜎1 and 𝛾1; and there exist positive constants 𝜎2 and 𝛾2 such
that for any 𝑤 ∈ Θ with 𝑤 ≠ 𝑤∗ and any unit vector 𝒗, ⟨ℎ(𝐷,𝑤) − E[ℎ(𝐷,𝑤)], 𝒗⟩/∥𝑤 −𝑤∗∥ is
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sub-exponential with 𝜎2 and 𝛾2. Formally, for all |𝜏 | ≤ 1/𝛾1, |𝜏 | ≤ 1/𝛾2, we have:
sup𝒗∈𝑩 E [exp (𝜏 ⟨∇𝑓 (𝐷,𝑤∗) , 𝒗⟩)] ≤ 𝑒𝜎

2

1
𝜏2/2

sup𝑤∈Θ,𝒗∈𝑩 E
[
exp

(
𝜏 ⟨ℎ (𝐷,𝑤 )−E[ℎ (𝐷,𝑤 ) ],𝒗⟩

∥𝑤−𝑤∗ ∥

)]
≤ 𝑒𝜎2

2
𝜏2/2

where 𝑩 is the unit sphere 𝑩 = {𝒗 : ∥𝒗∥ = 1}

Note that the strongly convex and Lipschitz continuous conditions in Assumption 1 are widely

adopted in the convergence analysis of optimization algorithms, and these conditions indicate the

largest eigenvalue of the Hessian matrix of the loss function is between 𝜇 and 𝐿. Assumption 2

indicates that the gradient ∇𝑓 (𝐷,𝑤∗) is quite close to its expectation E[∇𝑓 (𝐷,𝑤∗)] = 0, and the

difference ℎ(𝐷,𝑤) concentrates to its expectation with high probability.

Theorem 4. For an arbitrary number of Byzantine workers, the difference between the global model
learned by Algorithm 1 and the optimal global model𝑤∗ under no attacks is bounded. Specifically, if
the parameter space Θ ⊆ 𝐵(0, 𝑟

√
𝑑), i.e., it is contained in a ball with radius 𝑟

√
𝑑 and ∇𝐹 (𝑤∗) = 0. Set

𝜎 as in Theorem 3, 𝑇 = O
(
1

𝜌
ln

(√
𝑛 |𝐷 |

√︁
|𝐷0 |

))
and 𝜂𝑡−1 ≤



𝑔𝑡−1𝑠




2
𝜂0 with fixed 𝜂0 ≤ 𝜇

2𝐿2
in the 𝑡-th

iteration in Algorithm 1, then if 𝑛, |𝐷𝑝 | and |𝐷 | are sufficiently large and 𝜂0 is sufficiently small such
that

√
𝑛 ≥ Ω̃

©­­«
√︃
𝑑 ln 1

𝛿

𝜖 |𝐷 | ·max

{√︄
ln

1

𝜉
,

ln
1

𝜉

𝑟𝜌
√︁
|𝐷𝑝 |

}ª®®¬ (11)

and 𝜂0𝜎1√
|𝐷𝑝 |
≤ O

(
𝑟
√
𝑑
𝜌

)
with 0 < 𝜌 < 1. Then, with probability at least 1 − 𝜉 with 𝜉 ∈ (0, 1), we have:

∥𝑤𝑇 −𝑤∗∥ ≤ ˜O
©­­«
1

𝜌2

𝑑 ln 1

𝜁

√︃
ln

1

𝛿
𝜎1

|𝐷 |
√
𝑛𝑏𝑠𝜖

+ 1

𝜌

𝜎1

√︃
𝑑 ln 1

𝜁√︁
|𝐷𝑝 |

ª®®¬ , (12)

where the Big- ˜O and Big-Ω̃ notations omit other logarithmic terms. Here 𝜌 = 1−
√︃
1 − 𝑢2

4𝐿2
− 32𝜂0Δ2 −

3𝜂0𝐿 with Δ2 = 𝜎2

√︃
2

|𝐷𝑝 |
√
𝐾1 + 𝐾2 with 𝐾1 = 𝑑 log

max{𝐿,𝐿1 }
𝜎2

and 𝐾2 =
𝑑
2
log

|𝐷𝑝 |
𝑑
+ log 6𝜎2𝑟

√
|𝐷𝑝 |

𝛾2𝜎1𝜁
.

Proof. In A.5.3 in supp. material. □

Theorem 4 is on the robustness. Briefly speaking, as can be seen from Equation (12), if |𝐷 |, 𝑛 and

|𝐷𝑝 | are large enough (nonetheless, our experiment shows that only a small number of non-private

data will suffice), with some iteration number and stepsize, even there is an arbitrary number of

Byzantine workers, the final model we get will be close to the optimal model (measured by the 𝑙2
distance) with high probability.

6 EXPERIMENTAL RESULTS
6.1 Datasets and System Settings
Datasets and models:We conduct experiments on MNIST [40], Colorectal [36], Fashion [68],

and USPS [33]. Details of all these benchmark datasets with various properties are summarised

in supp. material.. Details of neural network setup are also in supp. material. Each experiment is

repeated with different random seeds {1, 2, 3} and we report the min. max. and mean. All of our

experiments are conducted under the same base learning rate 𝜂𝑏 = 0.2 (which will be explained

later), batch size 𝑏𝑐 = 16 and momentum 𝛽 = 0.1. We set the number of epochs 𝑇 = ⌈10|𝐷 |/𝑏𝑐⌉ for
Colorectal and USPS, 𝑇 = ⌈8|𝐷 |/𝑏𝑐⌉ for MNIST and Fashion.
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Data sample distribution:We consider both i.i.d. and non-i.i.d. settings. To be specific, i.i.d.
is the case where each worker’s local dataset follows the same distribution as the whole data

population while non-i.i.d. is the case where each worker’s local dataset’s distribution is arbitrary

[44]. We simulate both settings following previous work [11, 21, 29, 76], and details are presented

in supp. material.

For generating server-own auxiliary data, we only randomly sample 2 data samples per class

from the validation dataset. As mentioned earlier, obtaining such a tiny amount of data is easy.

Note that generating such auxiliary data is totally agnostic to the distribution of the whole data

population while such data still enables our protocol’s effectiveness (as will be confirmed by our

experiments). Once the auxiliary data is generated, it is vacuous to compare the distribution of such

auxiliary data to distributions of any other datasets, because the size of our auxiliary data is micro.

Byzantine setup: We fix the number of honest workers (20 for MNIST and Fashion, 10 for

Colorectal and USPS), and vary the number of Byzantine workers (0%, 20%, 40%, 60%, 90% of total).

Privacy settings: We do experiments on different privacy settings 𝜖 = {2−3, 2−2, 2−1, 20, 21}
while fixed 𝛿 = 1/|𝐷𝑖 |1.1, where |𝐷𝑖 | is the size of the local dataset possessed by worker 𝑖 .

Reference Accuracy:
The Reference Accuracy is the testing accuracy of FL under the scenario where no Byzantine

threat exists and FL only adopts DP (not adopting any Byzantine defense method). Compare any

private and Byzantine-resilient protocol’s performance to the Reference Accuracy, many useful

conclusions can be drawn:

• Side-effect: Apply a protocol under the scenario where there are no Byzantine threats,

by comparing it with Reference Accuracy, we know how much “side-effect” caused by that

protocol. The ideal case is that we expect the “medicine” causes no additional harm to the

“patient” with no “illness”.

• Efficacy: For the scenario where there is a certain number of attackers, by comparing with

Reference Accuracy, we know how effectively a protocol defends the attack. The ideal case is

that the “medicine” eradicates the “illness” (under such case, the performance should be the

same as Reference Accuracy).

6.2 Claims and Experimental Evidence
All of the attacks we consider have been tested. Based on the observation that our protocol

remains resilient across all attacks and due to space limitation, we arbitrarily only present results

for Label-flipping attack under i.i.d. in the main body. All additional results for other attacks we

consider under both i.i.d. and non-i.i.d settings is in supp. material.

A quick overview: We provide 7 claims with their corresponding evidence. By comparing with

previous work, claim 1-2 show our contribution to DP learning and Byzantine resilience in their

own track. Most importantly, recall our core aim is to ensure privacy and Byzantine resilience

simultaneously, we use claims 3-7 to show its effectiveness.

1) Normalizing is better than vanilla DP-SGD (which uses clipping) at 1) gaining Byzantine

resilience; 2) efficiently tuning hyper-parameter for DP deep learning.

Evidence: A thought experiment will suffice. Recall that clipping is essentially normalizing

gradient vectors with ℓ2-norm greater than𝐶 to be𝐶 exactly and leaving those vectors with ℓ2-norm

smaller than 𝐶 untouched. If we are guaranteed that all gradient vectors’ ℓ2-norm is greater than 𝐶 ,

then normalizing and clipping only differ in the learning rate scale and are essentially equivalent

to each other, i.e., clipping with 𝐶 = 2, 𝜂 = 0.1 is the same as normalizing (to be unit ℓ2-norm) with

𝜂 = 0.2. This means that if we have that guarantee, clipping will also enjoy the lower bound in
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Fig. 1. Byzantine-resilient performance (testing accuracy) under Label-flipping attack. The experiment is
conducted under 3 different attacking levels (20%, 40%, 60% of the total workers are Byzantine).

Equation 7 for gaining Byzantine resilience and will also enjoy our analysis for hyper-parameter

tuning in Theorem 1.

However, it is unfeasible to get a prior bound on the gradient vector’s norm for arbitrary deep-

learning neural networks. Meanwhile, it is unclear whether clipping could lead to similar theoretical

results which serve our purpose. Adopting normalizing circumvents such issues.

2) Our protocol outperforms existing solutions.

Evidence:We compare our protocol to previous work with the same aim (ensure privacy and

Byzantine security simultaneously). We will show that our tailored Byzantine aggregation with DP

outperforms previous solutions whose methodology is to naively apply off-the-shelf Byzantine

aggregation with DP. And our result shows the contribution of our Byzantine aggregation rule.

For a fair comparison, we provide the results for the scenario where our privacy level is similar

and our attacker is the same compared with existing solutions.

Method Byz./ Privacy [6] attack [69] attack

[29]

40%, 𝜖 = 3.46 .61 .75

20%, 𝜖 = 7.58 .78 .79

Ours

60%, 𝜖 = 2.00 .79 ± .010 .80 ± .010
40%, 𝜖 = 2.00 .80 ± .005 .80 ± .005

(a) Testing accuracy comparison with existing
work [29] on Fashion.

Method Byz./ Privacy Gaussian attack

[76]

10%, 𝜖 = .21 .20

10%, 𝜖 = .40 .43

Ours

60%, 𝜖 = .125 .86 ± .010
40%, 𝜖 = .125 .86 ± .010

(b) Testing accuracy comparison with existing
work [76] on MNIST.

Comparison with [29]: We compare our results with [29] in Table 2a. We can see from Table

2a that [29] only reaches 61% accuracy under 40% “a little” Byzantine attack [6] in the privacy

setting (𝜖 = 3.46, 𝛿 = 1.2 × 10−4). We also notice that under the same privacy setting but a different

Byzantine attack, [29] achieves 75% testing accuracy, and [29] makes comments that “a little” attack

is stronger against their defense.

Applying our Byzantine defense method under the same attacks, we get around 80% testing

accuracy when there are 60%, 40% Byzantine workers in the privacy setting (𝜖 = 2, 𝛿 = 1.4 × 10−4).
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Thus, we can gain muchmore utility compared to [29] even when the majority worker are Byzantine

and with even better privacy guarantee (we are ensuring (𝜖 = 2, 𝛿 = 1.4 × 10−4)-DP instead of

(𝜖 = 3.46, 𝛿 = 1.2 × 10−4)-DP). The utility we gain is also better than [29] under its weakest attack

with a much weaker privacy guarantee: (𝜖 = 7.58, 𝛿 = 1.2 × 10−4)-DP.
Comparison with [76]: As can be seen from Table 2b, the method in [76] reaches 43% testing

accuracy on MNIST when there are only 10% Byzantine workers under the privacy setting (𝜖 =

0.4, 𝛿 = 0). As a comparison, our learning protocol provides 86% testing accuracy when there are

60% Byzantine workers under privacy setting (𝜖 = 0.125, 𝛿 = 1.4× 10−4). We gain much more utility

even when the majority of workers are Byzantine, which is impossible for [76] to accomplish due

to their intrinsic limitation of aggregation methods.

MNIST COLOR. FASHION USPS

𝜖 = 𝜖 = 𝜖 = 𝜖 =
1

8

1

2
2

1

8

1

2
2

1

8

1

2
2

1

8

1

2
2

RA .88 .95 .96 .49 .66 .74 .69 .77 .80 .64 .82 .87

zero .85 .94 .96 .44 .67 .74 .69 .77 .80 .58 .81 .87

Table 3. Experimental result on the test for the “side-effect” our protocol brings. RA stands for Reference
Accuracy and zero stands for the scenario where all original 60% Byzantine workers turn to behave honestly
(hence we have zero attackers) while our protocol is still applied. The performance (testing accuracy) results
from taking the average of three runs with different seeds.

3) Our protocol brings no “side-effect” even when there is no Byzantine attack.

Evidence: we design the following experiment to test whether our protocol brings any “side-

effect”. Let 60% of workers be Byzantine, however, those Byzantine workers do not perform any

attack. Instead, they behave just like all honest workers. The server still follows its prior belief that

only 40% of workers are trustworthy. Our results are shown in Table 3.

We can see that other than at the extreme privacy level (𝜖 = 1/8 = .125), our protocol’s

performance is almost identical to the Reference Accuracy, hence incurring no “side-effect”. We

indeed observe a noticeable accuracy drop when at 𝜖 = 1/8 = .125, this is because in such extreme

case, noise becomes so overwhelming that the training itself is not stable.

4) Our protocol eradicates Byzantine attacks if not facing extreme privacy requirements.

Evidence: Figure 1 shows the performance of our method. The testing accuracy almost always

aligns with the Reference Accuracy. Such a phenomenon can be observed not only across different

privacy levels but also across different datasets.

The most discrepant results are observed for USPS and MNIST datasets when there are 60%

Byzantine workers in the high privacy regimewith 𝜖 = 0.125. This is because, at this extreme privacy

level, significant noise is added to the gradient, We are getting less confident in differentiating

benign uploads from Byzantine ones when we are at such a high privacy level, fortunately, our

first-stage aggregation guarantees that malicious upload has limited detrimental impact even if

selected.

We also observe that results for Colorectal present a larger variance than the rest datasets. This is

because the dataset size is much smaller (only 5,000 samples in total) than the rest and it is limited

by the intrinsic limitation that DP learning requires large-scale data.

5) Our protocol remains robust against majority attack.

Evidence: Results are shown in Figure 2. We can observe that even when 90% workers are

Byzantine ( we have also simulated more stringent cases where 95%, 99% workers are Byzantine,

results can be found in supp. material), similar results can be observed compared with the cases

where there are 60%, 40%, 20% Byzantine workers. We observe a noticeable accuracy drop for certain
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Fig. 2. Byzantine-resilient performance (testing accuracy) when 90% workers are Label-flipping Byzantine
attackers.

datasets when 𝜖 = 0.125 and 𝜖 = 0.25 due to overwhelming random noise which guarantees high

privacy. For 𝜖 ≥ 0.5, we still gain privacy and Byzantine resilience without hurting too much

performance.

Fig. 3. Our hyper-parameter tuning results when facing 60% Label-flipping attackers.

6) As a cherry on top, our protocol enables efficient hyper-parameter tuning by saving quadratic

efforts.

Evidence: For a typical DP deep learning task, vanilla DP-SGD’s running task spans on the

3-dimensional tuple (𝜂,𝐶, 𝜖). In contrast, adopting normalizing together with our tuning strategy

only needs to tune 𝜂 for one arbitrary 𝜖 . That is, we only need to tune the learning rate 𝜂𝑏 for

one privacy level 𝜖 with the corresponding noise multiplier 𝜎𝑏 , then we can use the learning rate

𝜂 =
𝜂𝑏𝜎𝑏
𝜎

for any other privacy level with noise multiplier 𝜎 . We call 𝜂𝑏 and 𝜎𝑏 at the privacy level

we are tuning as “base learning rate” and “base noise multiplier”.
To evaluate the effectiveness of such a strategy, it suffices to confirm that if we find the optimal

base learning rate for one privacy level, we also find the optimal learning rate for other privacy levels

by setting the learning rate according to such a strategy. In this sense, we first choose the base case

of 𝜎𝑏 = 0.79 (corresponding to 𝜖 = 2). Then, for each privacy level, we tune the learning rate with

respect to different base learning rates (the actual learning rate is computed according to the above

strategy). In our experiment, we vary the base learning rate among {0.02, 0.04, 0.08, 0.2, 0.4, 0.8, 1},
so the actual learning rate will be { 0.02𝜎𝑏

𝜎
,
0.04𝜎𝑏
𝜎

,
0.08𝜎𝑏
𝜎

,
0.2𝜎𝑏
𝜎
,
0.4𝜎𝑏
𝜎
,
0.8𝜎𝑏
𝜎
,
𝜎𝑏
𝜎
} for a specific privacy

level with noise multiplier 𝜎 .

Results on MNIST are shown in Figure 3, and we can see that for all the privacy levels we

considered, the optimal point is the same (
0.2𝜎𝑏
𝜎

for MNIST), and a similar phenomenon can also be

observed on the other three datasets.

7) Our protocol remains resilient against adaptive attack.
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TTBB

MNIST COLOR. FASHION USPS

𝜖 = 𝜖 = 𝜖 = 𝜖 =

2 .125 2 .125 2 .125 2 .125

0 .96 .82 .74 .45 .80 .68 .86 .60

.2 .96 .82 .74 .41 .80 .68 .86 .60

.4 .96 .81 .73 .45 .80 .68 .86 .57

.6 .96 .81 .73 .44 .80 .69 .86 .57

.8 .96 .82 .73 .43 .80 .69 .86 .60

Table 4. Under Label-flipping attack with different TTBB.

Fig. 4. Byzantine-resilient convergence curves (testing accuracy) under Label-flipping attack (considering
20%, 60% of the total workers are Byzantine, fixing 𝜖 = 1).

Evidence: Our robust and private learning framework is also resilient to adaptive attack. We

evaluate that by letting 60% Byzantine workers be honest via copying the uploads of some random

honest workers from the beginning of training and turning to Byzantine at different iterations to

see if they can possibly have a significant impact. Results are shown in Table 4. The first column

represents the Time To Be Byzantine (TTBB), i.e., if the total iteration is 𝑇 , 0.2 TTBB means that

Byzantine workers behave honestly within the first 0.2𝑇 iterations and then start to send Byzantine

uploads thereafter.

We can see that no matter when the Byzantine workers start to be Byzantine, they all have a

negligible impact on the testing accuracy except for the case with extreme privacy requirements.

We notice that there are some mild performance fluctuations when 𝜖 = 0.125 for Colorectal and

USPS, again, due to the large variance of DP noises.

𝛾
MNIST COLOR. FASHION USPS

𝜖 = 𝜖 = 𝜖 = 𝜖 =
1

8
2

1

8
2

1

8
2

1

8
2

20% .86 .95 .48 .73 .66 .78 .64 .85

35% .87 .96 .47 .74 .69 .79 .63 .86

50% (exact) .88 .96 .49 .74 .69 .80 .64 .87

65% .85 .96 .45 .73 .70 .79 .56 .87

80% .83 .95 .34 .74 .69 .79 .54 .85

Table 5. 𝛾 is treated as a prior belief in this experiment and we study the effect when there is a mismatch
between such belief and the truth. We fix the setting that 50% workers are honest and vary 𝛾 . For the case
where the belief is exactly the truth (𝛾 = 50%), we denote it as “exact”. All results are obtained by taking the
average of three runs with different random seeds.
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6.3 More Experimental Results
Convergence behavior: The convergence curve is presented in Figure 4. As can be seen in

Figure 4, the training converges in the first several epochs. The convergence behavior of our

protocol aligns well with “Reference Accuracy” even when we have 60% Byzantine workers. Similar

to previous results in our CLAIM 4, We observe a larger variance for Colorectal than that of the rest

datasets. As expected, this is due to its significantly small dataset size and the nature of training

with DP.

Ablation study on 𝛾 : Recall that previously we assumed the server knows that at least 𝛾𝑛

workers are honest, what if 𝛾 is only a (prior) belief rather than the truth, and moreover, what if

there is a mismatch between such belief and the truth? We further conduct an ablation study on 𝛾 if

it is only a belief. We can see from Table 5 that, in the case where 50% workers are honest, as long

as the server is conservative (𝛾 ≤ 50%), we can still retain robustness. In contrast, we observe a

notable utility drop for Colorectal and USPS under privacy level 𝜖 = .125 when the server radically

believes that 80% workers are honest, this is because in our protocol, being radical (𝛾 is greater

than the true honest portion) means the server tends to aggregate malicious uploads. Hence, the

more radical, the worse the utility is expected to be. Based on such observation, the learned lesson

is that we can always have robustness if we are not facing extreme privacy requirements and a

conservative 𝛾 is set.

7 CONCLUSION
In this paper, with the aim to ensure both DP and Byzantine resilience for FL systems, we

developed a learning protocol resulting from a co-design principle. We refactor the DP-SGD

algorithm and tailor the Byzantine aggregation process towards each other to form an integrated

protocol. For our DP-SGD variant, the small batch size property enables our first-stage Byzantine

aggregation which trivially rejects many existing Byzantine attacks; the normalization technique

enables our second-stage aggregation which provides a final sound filtering. As a cherry on top,

normalizing also enables our efficient hyper-parameter tuning strategy which saves quadratic

efforts. We also provide theoretical explanations behind the efficacy of our protocol.

In the experiment part, we first provide evidence to support our contribution claim to both DP

learning and Byzantine security tracks in separation, we then provide evidence of the effectiveness

of our protocol tackling the two-fold issue, i.e., an FL system needs to be privacy-preserving

and Byzantine-resilient simultaneously. We have shown that our protocol does not incur “side-

effects” to a system with no Byzantine attacker, and we have also seen that our protocol remains

Byzantine-resilient even when there are up to 90% distributive workers being Byzantine.
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