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Privacy and Byzantine resilience are two indispensable requirements for a federated learning (FL) system.
Although there have been extensive studies on privacy and Byzantine security in their own track, solutions that
consider both remain sparse. This is due to difficulties in reconciling privacy-preserving and Byzantine-resilient
algorithms.

In this work, we propose a solution to such a two-fold issue. We use our version of differentially private
stochastic gradient descent (DP-SGD) algorithm to preserve privacy and then apply our Byzantine-resilient
algorithms. We note that while existing works follow this general approach, an in-depth analysis on the
interplay between DP and Byzantine resilience has been ignored, leading to unsatisfactory performance.
Specifically, for the random noise introduced by DP, previous works strive to reduce its impact on the
Byzantine aggregation. In contrast, we leverage the random noise to construct an aggregation that effectively
rejects many existing Byzantine attacks.

We provide both theoretical proof and empirical experiments to show our protocol is effective: retaining
high accuracy while preserving the DP guarantee and Byzantine resilience. Compared with the previous work,
our protocol 1) achieves significantly higher accuracy even in a high privacy regime; 2) works well even when
up to 90% distributive workers are Byzantine.
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1 INTRODUCTION

Federated Learning (FL), a learning framework for preserving the privacy of distributed data [38],
has thrived during the past few years. To comply with the privacy regulations such as General
Data Protection Regulation (GDPR) [25], variants of FL frameworks have been widely studied, and
recently adopted in industry, such as Apple’s “FE&T” [48], Google’s Gboard [24], and Alibaba’s
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FederatedScope [70]. In an FL system, there are several local workers, each holding a dataset for
local training, and a server aggregating gradient vectors from workers for global model updates.

However, current FL frameworks that seemingly can protect privacy (because the original
data never leaves the local workers) are in fact vulnerable to various privacy attacks, such as
membership inference attacks [55] (tries to infer whether some data samples are used in training)
and model inversion attacks [77] (“reverse-engineer” sensitive data samples through gradients).
These vulnerabilities drive the community to design methods that can further preserve the privacy
of data held by workers. Among the privacy-enhancing techniques [22, 23, 52, 60], differential
privacy (DP) [20] is a rigorous mathematical scheme that allows for rich statistical and machine
learning analysis and is becoming the de facto notion for data privacy. Many methods have been
proposed to tackle the problems of integrating DP into machine learning/deep learning from
different perspectives [1, 12, 34, 46, 47, 56, 61, 62, 64]. More recently, DP has been adopted in the
FL setting [2, 26, 59, 66, 73].

Besides privacy risks, FL systems are also vulnerable to adversarial manipulations from Byzantine
workers, which could be fake workers injected by an attacker or genuine workers compromised
by an attacker. Specifically, in a Byzantine attack, the adversary intends to sabotage the collective
efforts by sending false information, such as contrived Byzantine gradients [6, 69]. To mitigate this
issue, recent work proposes Byzantine-resilient machine learning approaches, such as diagnosing
and rejecting gradients with abnormal features [9, 11, 15, 49, 51].

Tremendous progress on privacy and Byzantine resilience have been seen in their own track.
However, all of them are not applicable to the more practical scenario where a privacy attacker
is also Byzantine (a double-role attacker). Being aware of that, some recent work started to focus
on such an issue yet provided unsatisfactory answers. Some of them fail to ensure both DP and
Byzantine resilience simultaneously [30], while some other work tries to explore optimal parameter
setups but still end up with a much-limited solution [29]. We also notice that some work [76] tries
to combine existing variants in both tracks to side-step the seeming incompatibility of DP and
Byzantine security, however, their resistance is retained only when the privacy level is low and the
portion of Byzantine clients is small.

Contributions: We observe that previous solutions fail to give a satisfactory answer for a common
reason: neither the DP algorithm nor the Byzantine defending method is designed against both risks
simultaneously. Our contribution is how we start from a co-design to form a DP and Byzantine-
resilient solution, proving the synergy of combined DP and Byzantine resilience.

1) Co-design: Since random noise introduced by DP impairs the effectiveness of existing
Byzantine-resilient aggregation rules, previous works tend to limit the impact of randomness
by increasing the data batch size [29, 30]. In contrast, we leverage random noise to aid Byzantine
aggregation: we use small batch size and accordingly construct our first-stage aggregation which
effectively rejects many existing attacks.

Moreover, previous works continue to use the standard DP-SGD [1] to bound gradient sensitivity
by clipping, which involves manually tuning the clipping parameter. In contrast, we ensure bounded
sensitivity by normalizing, and it enables our second-stage aggregation, which provides a final
sound filtering.

2) Cherry on top: We are the first to find out that bounding gradient sensitivity by normalizing
is more suitable for DP learning although normalizing itself is not new!. Specifically, we analyze
its theoretical implication and also leverage it to construct a learning protocol that saves quadratic

1Some concurrent work [10, 18, 19, 71] on DP learning use an operation similar to normalizing with different considerations.
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efforts? in hyper-parameter-tuning for DP learning, where a smaller amount of queries on gradient
computation is more favored.

In the final evaluation, we conduct experiments to first show our contribution to DP solution
and Byzantine aggregation in their own track. Then, for the core aim to preserve both privacy and
Byzantine security, our experimental results show that in addition to having the DP guarantee,
our protocol also remains robust against strong attackers when there are up to 90% distributive
workers are Byzantine. We have released our code in supplementary material 3.

2 BACKGROUND AND PRELIMINARIES
2.1 Federated Learning

In a typical setting of machine learning, we have a training dataset {x;, x2, - - - , X, } Where each
x; contains a feature vector and a label, and we also have a loss function f. We aim to find the best
model parameters w from a parameter space © which minimizes the following function through
stochastic optimization:

rvgeir@lF(W) =Ex-p [f(x;w)], (1)

In FL, suppose there are n workers and the i-th worker has local and private data D;, then training
in FL happens in a distributed manner. Specifically, in the ¢-th iteration, we have:

1) Model broadcasting: The server broadcasts the current model parameters w?~! to all workers.

2) Local gradient computation: After receiving the model sent by the server, each worker will use
his/her private data and the model w’'~! to compute his/her gradient vector g/ = Vf(Dj; w'™?) :=
ﬁ Yxep, Vf(x; w'™!). Note that workers can also compute their gradients and update their model
N times locally, and report the difference between the model they get locally and the last model
they receive from the server. In our framework, we take N = 1 and this is due to the constraints of
DP-SGD protocol which will be discussed later. Extending to the cases where N > 1 will be left for
future study.

3) Gradient aggregation and model update: The server will perform an aggregation step (denoted
by function Aggregation) on the gradient vectors reported by workers and use the result g' =
Aggregation(g!, g5, - - ,g%) to update the model by w’ = w'~! — ng’, where p is the learning rate.

|D; |

Note that there are variants of aggregation strategies, e.g., g' = >; mgf [44].
J f

2.2 Differential Privacy for Deep Learning

DEFINITION 1 (DIFFERENTIAL PRIVACY [20]). Given a data universe X, we say that two datasets
D, D" € X are neighbors if they differ by only one data sample, which is denoted as D ~ D’. A
randomized algorithm A is (e, §)-differentially private if for all neighboring datasets D, D’ and for
all events S in the output space of A, we have Pr(A(D) € S) < e Pr(A(D’) € S) +6.

An (¢, §)-DP mechanism typically adds calibrated noise to the output of a query. In this paper
we mainly use the Gaussian mechanism to guarantee (¢, §)-DP:

DEFINITION 2 (GAUSSIAN MECHANISM). Given any functionq : X" — R%, the Gaussian mechanism

2
is defined as q(D) + & where & ~ N (0, wm), where where Ay (q) is the £,-sensitivity of
the function q, i.e., Ay(q) = supp._p 11q(D) — q(D")||2. Gaussian mechanism satisfies (€, §)-DP when
e<1

%Instead of tuning learning rate r and clip threshold C for different €, our approach only needs to turn 7 for any instance of
€.
Shttps://github.com/zihangxiang/-Practical-Differentially-Private-and-Byzantine-resilient-Federated.git.
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Another notable property of DP is that DP is closed under postprocessing, i.e., if we post-process
the output of an (€, §)-DP algorithm, then the whole procedure will still be (€, §)-DP.

DP in deep learning;: Differentially Private SGD (DP-SGD) is a widely used method in machine
learning to ensure DP [1, 7, 57]. It modifies the SGD-based methods by adding Gaussian noise to
perturb the (stochastic) gradient in each iteration of the training, i.e., in the centralized setting,
during the t-th iteration DP-SGD will compute a noisy gradient as follows:

g = |B|(Z gt + N (0,6°C1)), )

x;€B

where B is a subsampled data batch used to compute the gradient, o is the noise multiplier, g/ is the
gradient vector computed by feeding one data sample to w’~! which is the current model before
the t-th iteration, and ¢’ is the (noisy) gradient used to update the model. The main reason here we
use §: instead of the original gradient vector is that we wish to make the term }; ¢ have bounded
,-sensitivity so that we can use the Gaussian mechanism to ensure DP. The most commonly used
approach to get a ¢! is clipping the gradient: §! = Vf(x;; w'™!) min{1, m} ie, each
gradient vector is clipped by C (scale those whose £,-norm is greater than C to be C exactly and
leave the rest untouched). Since the £-sensitivity of Y, g} is bounded by C, after the clipping, we
can add Gaussian noise to ensure DP. To prove the (¢, §)-DP property of DP-SGD, there has been a
line of research [4, 28, 45, 65, 74, 78]. We use TensorFlow Privacy [58] to search for noise multiplier
given € and §. Other than the DP-SGD framework, we note that there exists others work [16]
tackling the privacy issue in FL by extending the PATE framework [46]. However, their work does
not apply to the case where Byzantine workers exist.

2.3 Byzantine Attacks in FL

The FL protocol is vulnerable to Byzantine attacks, as each worker can report a malicious gradient
vector to deteriorate the model performance [6, 69] and even bias the model in a specific way
[13, 41]. Several Byzantine-robust approaches are proposed to tackle different attacks [9, 11, 15, 31,
49, 51, 72]. And there are also new advanced Byzantine attacks that try to bypass such defenses
[5, 6, 14, 15, 35, 53, 69].

A Taxonomy: To understand the features of those Byzantine attacks, we summarise three
dimensions to capture their properties.

1) Objective: There are generally 2 types of objectives: a) Denial-of-service attack (also called
untargeted or convergence prevention) [6] that tries to destroy the training process and makes the
model unusable. b) Backdoor attack [41] that tries to poison the training data to make the model
predict intended results on inputs with specific triggers while still behaving normally on other
inputs.

2) Capability: Existing attacks assume different attackers’ power. Some work assumes that the
Byzantine attacker is omniscient, i.e., the attacker knows what the honest workers send to the
server [21, 69], while others assume the attacker does not know the honest workers’ data [6]. In
both cases, the attacker knows the aggregation rules.

3) Specificity of targeted defenses: a) Some attacks are defense-specific, i.e., and they are tailored for
specific defense methods [6, 69]. However, it is unclear whether such attacks still remain effective
against other or new defense protocols. b) Some other attacks are universal: these attacks are either
defense-agnostic [11, 76] or have a meta-method [21] that can be instantiated to attack almost all
existing defense strategies upon knowing the defense rules.

Instantiating Existing Attacks: We briefly introduce some existing Byzantine attacks which
have been considered in previous work. They can be categorized by the above 3 dimensions:
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1) Gaussian attack [51, 76] uploads pure Gaussian noise trying to hurt utility. 2) Label-flipping
attack [11, 21] first poisons the local dataset by flipping the original label I to H — 1 — I (H is the
total number of classes, I = 0,1,---,H — 1 is the label) and then follows the FL protocol. Note
that we can also adopt other ways to perform the label flipping (such as randomly flipping to a
different label). In fact, the way to flip the label does not matter as long as it tries to reduce the
overall accuracy. 3) Optimized Local Model Poisoning attack [21], the state-of-the-art Byzantine
attack method that can be accordingly instantiated for a specific Byzantine defense method in an
adversarial way given the Byzantine defense protocol first.

For ease of discussion, we use “Byzantine attacker” to refer to a master attacker which can inject
several fake workers into the system and control all of them. Hence, in this sense, attackers who
can send malicious uploads to the server can possibly collude.

3 PROBLEMS AND EXISTING SOLUTIONS
3.1 Problem Setting

Attacker: FL is indeed exposed to threats from two kinds of attackers: privacy attacker and Byzantine
attacker. Note that we will not discuss specific privacy attacks and only focus on Byzantine attacks
for the following reasons.

Protecting privacy with DP: From an information-theoretical view, DP guarantees privacy
in the worst case by limiting the maximum amount of information that any privacy attacker can
extract even with side information and unlimited computational resource [20]. It has also been
shown that by tuning € small enough [50], adopting DP effectively rejects strong privacy attackers
[55]. Following the privacy settings as in the previous work [29, 30, 76], we focus on the item-level
privacy for each worker’s dataset; in this case, the gradient needs to be privatized (by adding
random noise) before being uploaded to the server.

Focusing on Byzantine-resilience: We are not interested in tuning e to test the algorithm’s
strength to defend against privacy attacks. Since our algorithms are guaranteed to be (€, §)-DP
theoretically, we only need to focus on Byzantine attacks.

In other words, we treat DP as one of the basic properties that an FL system should possess. In
fact, leveraging our tailored DP protocol to defend against Byzantine attacks is one of our novelties.

Byzantine attacker:

We specify the Byzantine attacker according to the taxonomy mentioned above:

e Objective: Our Byzantine attacker is trying to perform Denial-of-Service (DoS) attacks.

e Capability: Our Byzantine attacker is omniscient; it knows all the data held by honest workers,
information sent by honest workers, and the aggregation rules. We assume such capability
in our framework to show that our protocol still works even when facing such a strong
adversary.

o Specificity of targeted defense: We consider a stronger version of universal attacks. Our protocol
will be made public and the attacker is allowed to instantiate his attack on our protocol.

In other words, we are interested in defending the stronger untargeted attacks and we leave
backdoor attacks as future work.

Defender: Privacy is guaranteed through DP, and each user applies DP to protect its local data.
To defend against Byzantine attacks, the server needs to design new aggregation rules such that
false gradients from Byzantine workers are excluded. Here we assume the server possesses a small
amount of labeled data samples which are kept secret from attackers. Let X be the the data space
and Y be the label space in a classification task. We do not require the server to have direct access
to the local-hold data, instead, we assume the data space X, from which the auxiliary data is
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Methods ‘ Privacy > 50%-Resilience

Krum [9] X

Coordinate-wise Median [72]
Trimmed Mean [72]

Bulyan [31]

Zhu et al. [75]

FLTrust [11]

Rachid et al. [29]

Xu et al. [42]

Heng et al. [76]

Our work

WX X X N X X X X X

SN SN % % % % X

Table 1. Comparison with previous work. For privacy, v means the method is guaranteed to be DP while
the X means the converse; for > 50%-Resilience, v' means the method remains resilient when the number of
Byzantine attackers exceeds half of the total while X means the method is no longer effective under such
majority Byzantine attack.

sampled is the same as that of local-hold data. Notably, this additional assumption is reasonable
in real applications as getting such a tiny amount of data is relatively cheap, and there is work
on DP learning [8, 27, 32, 39, 46, 47, 63, 79] and Byzantine-resilient learning [11, 51] making this
assumption. In our experiments, we simulate obtaining such data by randomly drawing 2C sampling
from a validation set where C is equal to the number of classes of that dataset (e.g., for the MNIST
dataset, C = 10, thus 20 auxiliary data samples will suffice). It is also helpful to consider whether
the server-own data and local-hold data follow the same label distribution Y (with a slight abuse of
notation), accordingly, we also conduct experiments for i.i.d. case (distributions on Y are the same
for both) and non-i.i.d. case (distributions on Y are different).

We also assume the server knows the truth that at least yn workers are honest among all n
workers. It is notable that in the paper we do not need to place any restriction on y, while previous
work [21, 72] needs to assume that y > 0.5.

In conclusion, each local worker adopts DP to protect privacy, hence, for one worker, the privacy
attacker can be anyone (including the server) except itself. The Byzantine attacker (disguised as
some local workers) contrives its upload and tries to destroy the training to make the model has
low utility. As a Byzantine defender, the server is honest-but-curious, i.e., it wants to have a model
with good utility, thus it follows the protocol. However, it may try to infer sensitive information
from the uploads sent by local workers.

3.2 Existing Solutions

In Table 1, we summarize the previous methods on privacy and Byzantine security issues in FL.
As we can see from the table, our method can defend against more than 50% Byzantine workers
while also achieving DP. In the following, we will provide more details and discuss the limitations
of previous methods.

1) The following lines of work only focus on defending against Byzantine attacks: We first recall
some existing solutions to Byzantine resilience. There is a line of work focusing on designing
robust aggregation rules for corrupted gradients [9, 11, 15, 31, 31, 49, 51, 72] including Krum [9],
RFA [49], coordinate-wise median [72], and Trimmed Mean [72]. We summarise the detail of
these four methods in supp. material. for interested readers. In general, the first two methods
involve computing pair-wise distance between vectors while the latter two concentrate on robust
aggregation on each coordinate of vectors. Due to their intrinsic limitations, all of these methods are
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only applicable when the majority of workers (> 50%) are honest. Recently, Zhu et al. [75] propose
improvements to existing Byzantine-resilient methods to provide a certain level of resilience.

Recently, there is work showing that it is possible to leverage the knowledge of clean gradient
computed from non-private auxiliary data [11, 51] to help the aggregation. Common behavior
in such methods is that the server weights each uploaded gradient according to their similarity
compared to the gradient computed by server-own auxiliary data.

All of the above methods have no DP guarantee because they are designed to defend against
Byzantine attacks ignoring privacy attacks. Hence, local datasets’ privacy is at risk.

2) The following lines of work try to apply Byzantine defending methods on top of DP output:
Some recent work investigates the problem of maintaining both DP and Byzantine resilience in
federated learning [29, 30]. Specifically, they study methods of directly combing DP-SGD with
some existing aggregation methods such as Krum, i.e., by applying the aggregation on the noisy
gradient.

Difficulties in reconciling DP and Byzantine-resilient protocols: Previous work shows that for
these methods, to become Byzantine-resilient when DP noise is injected, the fraction of Byzantine
workers must decrease with \/E where d is the size of the model if the batch size is not large
enough [29, 30]. This means such methods achieve good performance only when the number of
Byzantine workers is small. Their experiments also verify that this type of method is unsatisfactory
by showing that the testing accuracy deteriorates significantly even for a small model learned on a
simple dataset [30]. Another line of work is based on robust stochastic model aggregation on the
local workers’ gradients. In these methods, the gradients of each worker are compressed into signs
(1 for non-negative and -1 for negative) with DP [42, 76], however, all of them remain effective
only under < 50% Byzantine attack.

4 OUR APPROACH

Observations and lessons learned : Existing solutions apply off-the-shelf Byzantine methods
on top of noisy gradient to explore optimal parameter setups. They fail to reach satisfactory
performance because neither the Byzantine defending protocol nor the DP protocol is designed for
the scenario where privacy and Byzantine resilience are both needed.

4.1 Method Overview

We first re-design the DP protocol, there are two notable properties we enforce in our DP
protocol: 1) small training batch size for each worker; 2) use normalizing instead of clipping to
bound per-example gradient norm. We are not considering privacy and Byzantine resilience in a
separate manner. We design our first-stage aggregation based on the first property and design a
second-stage aggregation based on the second. As will be seen later, the first property together
with the first-stage aggregation trivially yet effectively rejects some existing attacks. The second
property together with the second-stage aggregation effectively rejects more advanced attacks
which bypasses our first-stage aggregation. As a cherry on top, in our DP protocol, such two
properties themselves enable efficient hyper-parameter tuning.

4.2 Modifying DP Protocol

Our DP protocol is summarized in Algorithm 1. The two notable properties compared with
vanilla DP-SGD [1] are: 1) different from existing works that adopt big batch size (10% — 10°) [3, 19],
we adopt small batch size b, (typically 8 or 16). Note that small batch size is essential for our
first-stage aggregation (see Section 4.3 for details); 2) the second, is to replace the clipping operation
in vanilla DP-SGD by normalization, vanilla DP-SGD method clips the gradients by multiplying
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Algorithm 1 Private and Secure Learning

Input: initial model w?, number of iteration T, learning rate 7, datasets held by n workers {D;|i = 1,2,--- , n},
gradient momentum f, noise multiplier o, batch size b, loss function f(;)
1: Each worker i initializes a size-b, momentum list ¢? =10,---,0]
2: fort=1,2---,T do
3: Server broadcasts model w’~! to all workers
4: fori=1,2,---,ndo in parallel
5: Sample a size-b. mini-batch d;
6: for j=1,2,---,b, do in parallel
7: gj < Vf(Xj € di;wt_l)
5 G111 — (1 Prgs +p9t ']
9: end for
. b, 1 ) 2
10: 9 < 1, g (EHTIA + N(0,0°I)
11: Upload gf to server, then ¢It [j] « gf
12: end for
13: Gl « FilterGradient({gfli =1,2,---,n}, w7l
14 wew ol 34
9eGg
15: end for

Output: learned target model w’

the gradient vector g by Factor = min{1, ”g%} (C is called the clipping threshold). We modify the
multiplication factor to Factor = m, which normalizes the gradients to be of unit length. Also
note that inspired by [17], to have a better convergence behavior, the gradients are processed with
momentum.

We will see in the following why normalizing enables efficient hyper-parameter tuning. In later
sections about defending against Byzantine attacks, we will also see that using small batch size
is essential in our first-stage aggregation, and normalizing also plays an important role in the
second-stage aggregation.

Normalization helps hyper-parameter tuning: We now introduce Theorem 1 which supports
our hyper-parameter tuning strategy. Based on our DP protocol, consider a simpler case where
there is no Byzantine attacker and we only have one honest worker. The model update (without
momentum) in the ¢-th iteration has the following form:

t

wt:wt_l—i 9_ +z|, 3)
Z llg*l

t
|B | gteB?

where B’ is the current local batch of per-example gradient (we fix the batch size to be |Bf| = b.),
z ~ N(0,0%I) is the DP noise and g = Vf(x;w’™!). Since ¢’ is derived from only a batch of
samples, there is a sampling error. Denoting the sampling error by &, we can rewrite V£ (x; w'™1!)
as VF(w!™1)+&, where VF(w'™1) is the gradient of the stochastic function. With some assumptions*
that: 1) The stochastic function F is bounded below with F(w) > 0; 2) F has L-Lipschitz continuous
gradient (defined in Assumption 1); 3) The random vector g* = VF(w’~!) + £’ has bounded variance,
ie,E ||§’ ||2 < v? with some v. We have the following result:

4In deep neural networks we always have F(w) > 0, and for the L-Lipschitz continuous and bounded variance assumptions,
they have been commonly used in the previous work for convergence analysis [10, 17, 71, 73].

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 119. Publication date: June 2023.



Practical Differentially Private and Byzantine-resilient Federated Learning 119:9

THEOREM 1. (Convergence Behavior) Given a learning rate n, and the model is updated according
to Equation 3 (gradient is normalized), we have

3F(w) 3L17 o?d
—ZEHVF( )< 20 3 (1+b—g)+8v.

M

PRroOF. See supp. material. O

By the above result, we can see that it is sufficient to minimize the term M, whose expression
provides valuable guidance on choosing T and n that need to be set before training. If the magnitude
of the noise and the batch size b, satisfy %* d > 1, then by setting the learning rate as

1 [2F(w®)b?
n=—\—m (4)
o TLd
we have M ~ ,/%Z)Thwz. Note that since we always have ¢ = (q 'Tlog(l/a ) where g = |

is the sampling rate (|D| is the size of data) [1]. Thus, we have M = Q (m\/F(WO)Ld log(l/é))

This implies that: 1) The lower bound of M is getting worse when € becomes smaller; 2) We get
this optimal bound by relating T and 7 via Equation (4). If we fix one, we can potentially get the
other one analytically instead of going through inefficient hyper-parameter tuning. In practice,
we fix T first and decide the learning rate . With T fixed, Equation (4) suggests that the optimal
learning rate should be set inversely proportional to the DP noise multiplier o, and this leads to
our efficient hyper-parameter tuning strategy which outperforms existing methods. Note that the

previous analysis was built on the assumption that 5;* d > 1. Thus, to satisfy the assumption, we
can either use a bigger model (increase d) or adopt a smaller batch size. Hence, using a small batch
size is preferred for our method and differs from existing work as mentioned before.

Hence, our DP approach saves quadratic efforts and is truly beneficial for DP learning. This is
beyond only considering the running-time complexity.

4.3 First-stage Aggregation

Design strategy: Inspecting existing work on Byzantine resilience, the uploads (d-dimension
vectors) by Byzantine attackers are arbitrary in R?. Hence, a single faulty inclusion on a malicious
upload can totally destroy model updates. As a strategy, enforcing some constraints on the subspace
where any upload should lie will be beneficial to defend against attacks. From a high-level perspec-
tive, our refactored DP protocol together with first-stage aggregation does the job of “constrain”;
our second-stage aggregation does the job of “complementary aggregation".

Specifically, our choice of small batch size leads to the phenomenon that DP noise dominates
for each upload, which leads to some expected statistical properties. Another phenomenon is that
although for each worker DP noise is dominating, we can still achieve good utility overall. The
reason is that the server takes the average of all aggregated uploads; such an operation reduces the
DP noise variance and averages gradients to its non-zero expectation. Therefore, we can still get
good utility as long as the number of honest workers is sufficiently large. As will be shown in the
experiments section, 10-20 honest workers will suffice and such a number is smaller than that in
previous work of FL systems [11, 21].

Forming first-stage aggregation: As we can see from Algorithm 1, an honest worker will
upload g = § + z to the server where g is the sum of some normalized terms, and z is the DP noise.
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If DP noise is dominating (||z|| > ||g]|), we can approximately treat vector g as each coordinate of g
is sampled from N (0, 0%). We then have the following conclusion.

2
Norm test: Note that % follows the chi-squared distribution with degree d. As d is very
large, by Central Limit Theorem, we can safely approximate the distribution of ||g||* as Gaussian

distribution: N'(0%d, 26*d). Hence, ||g||® falls in the interval [azd - 302V2d, 0%d + 302 Zd] almost

surely.®

Similarly, we can also conclude other statistical results for higher-order moments leveraging
the property of Gaussian distribution. However, the real situation only allows us to use a limited
number of these statistics. To further enhance the efficiency and the soundness of such checking,
we will leverage non-parametric test methods which test the hypothesis that given samples follow
a reference distribution. We leverage Kolmogorov-Smirnov test (KS test) [37] as described below.

KS test: Treat each coordinate of g as a sample and the null hypothesis is that these samples are
sampled from the same distribution N (0, o). Suppose that we are currently testing on upload g
with d coordinates (d-dimension vector) and we denote the i-th coordinate of g as g[i]. KS test will
1) compute the empirical Cumulative Distribution Function as:

d
1
Ca(x) = 7 § 140i1<xs
i=1

where 1,[;)<y is the indicator function that takes value on 1 if g[i] < x and 0 otherwise; 2)
compute the KS statistics Dgs = sup, |C4(x) — ®,(x)| where ®,(x) is the CDF of N (0, 0?); 3)
compute the P-value by Dgg from Kolmogorov D-statistic table [43] and there are many off-the-
shelf libraries that can compute it. If the P-value is smaller than 0.05,° we reject the null hypothesis
(the server then treats ¢ as one malicious upload that is not sampled from N (0, %) and rejects it).

Algorithm 2 FirstAGG(g)
Input: g, the upload to be tested

- if |lgll < Vo2d —302V2d or ||g|| > Vo?d +3062V2d then g «— 0
: end if
: if KS(g) < 0.05then g « 0
4: end if
Output: g

W DN e

KS test confines Byzantine subspace: After we set the significance level for the P-value, we
are essentially placing an upper bound on Dgs (if Dks is too large, the corresponding P-value will
be small enough to make g to be rejected). And from the definition of Dgg, we know that such
an upper bound applies to |C4(x) — ®,(x)| for any x € R. This can also be interpreted as that the
curve of Cy(x) will fall into a band bounded by an upper envelop E, (x) = min(1, ®,(x) + Dks)
and a lower envelop E;(x) = max (0, ®,(x) — Dks). If we set the significance level strictly enough,
Dgs will be small enough such that the band will be narrow, requiring that C;(x) almost aligns
with @, (x).

Formally, since Cy4(x) is a step function (with d steps) that is monotonously increasing with d

steps (é — ’%1 fori=0,1,---,d — 1), we have the following theorem.
5Such interval is narrow, because Gi}/? < 1 when d is very large. And by the 68-95-99.7 rule [67], we set such an interval

to span three s.t.d. around the center so that a benign gradient falls into this interval with 99.7% probability approximately.
®We use the widely adopted significance level.
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THEOREM 2. (Byzantine Resilience) If we sort all coordinates of an upload vector into a sequence by
increasing order, to pass the KS test, the k-th (we count from 1 to d) element must fall into the interval:

()

Proor. Let the k-th element be x, according to the definition of Cy4(x), then we must have
Calxp) = ’%1 and Cy(xg +5) = S where s is some small real number. To pass the KS test, % must
be above E;(x;) and § must be below E, (xx), consequently, xi falls into the above interval. ]

In essence, our first-stage aggregation enforces that the attacker’s upload must lie in the subspace
of R as described by Equation 5. This is different from existing work on Byzantine security, where
the attacker’s upload can be arbitrary in R4 [6, 11, 21, 51, 69].

Ensuring ||z|| > ||g]|: Our first-stage aggregation only keeps those uploads that follow our DP
protocol (approximately with the form g = § + z) and this validity builds on the assumption that

|z]] > ||g]|. The good news is that we can always control %. Recall that ||z|| ~ oVd and g is just
llzll

the sum of b, norm-bounded vectors, hence, before the training, we can compute T To increase
E4]

11> We can either 1) use a bigger model (increase d); or 2) adopt a smaller batch size for local
workers. Thus, as highlighted in Section 4.2, using a small batch size is one of our technical details
that differs from vanilla DP-SGD.

4.4 Second-stage Aggregation

In this part, we present our second-stage aggregation which does the job of “complementary
aggregation”. In total, our first-stage and second-stage aggregation constitute our final protocol
shown in Algorithm 3.

As a complement: According to the resilience analysis for our first-stage aggregation, any
acceptable upload is confined to lie in a special subspace described by Equation 5. To deceive our
first-stage aggregation, the Byzantine attacker can also enforce its upload has the same form as
g = ¢’ + z with ||z]| > ||g’|| where z is the DP noise and ¢’ is malicious component. Now the
question is:

Is there an effective way for the server to differentiate benign uploads from Byzantine uploads based
on the different nature of g and g’ ?

The answer is yes if the server can get some estimate on the true gradient. To have such a
capability, we assume that the server has access to some auxiliary data that can be used to compute
the gradient during the training. Our empirical finding shows that two samples per class are enough
for our second-stage aggregation to be effective. The intuition is that benign g should update the
model towards roughly the same direction as the true gradient VF while the malicious one does
not. Quantitatively speaking, with high confidence, E (VF, §) > E(VF, ¢’). And the server can use
the gradient of non-private data to approximate VF.

Theoretical motivation: For simplicity, based on our DP protocol, at a certain iteration, consid-
ering one honest worker’s upload is’:

g= Vf(x;w) e VF(w) +¢& s ©)

IV Ge; w)l IVE(w) + ¢l
where z ~ N (0, 6%I) is the DP noise and Vf(x; w) can be written as VF(w) + £ where & is random
noise due to data sampling. We compute the expectation of the inner product between g and the true
gradient VF(w), which has the following inequality (the proof is given by A.5.1 in supp. material.).

"We assume the batch size is 1. The iteration number is omitted for ease of notation as it is clear from the context.
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B VF(w) +¢&
JENVEWI _ 8E ]l
= 3 3 s

where the expectation is taken over the randomness of the data sampling and DP noise. Note that
Equation (6) is the special case where the honest worker only uses one data sample to compute
the gradient and in the general case where many data samples are used, Equation (7) still holds
(expectation is linear with respect to sum operation). Again, we do not have such bound if using
clipping.

We then consider E (VF, ¢g’) for the attacks we consider: 1) for Gaussian attack, E (VF(w), g) = 0;
2) for Label-flipping attack, we hypothesize that E (VF(w), g) < 0 as such Byzantine gradient is to
destroy our learning; 3) for Optimized Local Model Poisoning attack, we have E (VF(w),g) < 0 as
this is the goal of such attack. In total, for the three attacks, we have E (VF(w),g) < 0.

As E ||€])? is bounded, we can be confident that at least at the early phase of training, E || VF(w)||

EIVF(w _ 8E[£]
3

is large enough to satisfy > 0. Our empirical result give positive evidence on the

correctness of w - % > 0. Thus, we can use this to filter Byzantine uploads and this is

the foundation for our second-stage aggregation.

Algorithm 3 FilterGradient({g!|i = 1,2,--- ,n}, wk_1)

Input: gradients from each worker i at the ¢-th iteration 95 , model w'~1, server-hold dataset Dy, the loss
function f(;), server-maintained score list S, server’s belief of honest worker ratio y

1: fori=1,2,---,ndo in parallel
2 g! « FirstAGG(g})
3: end for
4: Server computes gt « Vf(Dp; wi=1l)
5: Server initialize Stmp = [0,0,...,0]
6: fori=1,2,---,ndo in parallel
7: Stmp [i] = <gf g§> > Motivated by our analysis in Section 4.4
8: end for
9: [ < average of top [yn] scores in S;pm
10: fori=1,2,---,n do in parallel
11 Stmp [i1] & 0if Sgmp [i] < fo
12: S [i] & STi] +Semp [i]
13: end for
14: Select those upload inside {gf|i =1,2,---,n} which correspond to top [yn] scores inside S to form set GL
Output: G!

4.5 Final Byzantine-resilient Protocol

Combining all stages: According to the above statements, we design our second-stage aggre-
gation which is shown in line 4-14 in Algorithm 3. In line 4, the server gets an estimation on VF
by computing the gradient using some non-private data; Since the server has a prior belief that at
least [yn] workers are honest, in line 9, server gets the average on top [yn] inner product scores
among all scores computed by current upload of each worker (line 6-8). This average is used as the
threshold to suppress scores lower than it to zero in line 11. By processing all scores by using the
threshold, we can suppress all scores corresponding to Byzantine uploads and preserve the benign
ones; the processed scores are accumulated in line 12 to be used to differentiate benign uploads
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from Byzantine ones which is described in line 14. Then the selected vectors are returned for the
model update.

Novelties: Our first-stage aggregation is the first aggregation rule leveraging the aforementioned
DP properties. Leveraging auxiliary data to aid Byzantine aggregation is not new [11, 51], nonethe-
less, our second-stage aggregation differs from all existing approaches in 1) theoretical support: we
have a solid theoretical explanation while previous work stands on heuristics; 2) differentiation
metric: we use inner product while previous work use cosine similarity (cosine similarity never
leads to the lower bound in Equation 7); 3) the way to integrate any upload into model update: by
a unifying language, in our protocol, the weight assigned to any upload is binary (1 or 0), while
existing work use real-valued weights according to computed similarities, we find that when DP
is enforced (noise is added to the upload), assigning real-valued weights to any upload results in
further biasing gradient which leads to rubbish model update.

4.6 Byzantine Attacks to Our Protocol

Recall that our attacker is the stronger version. In consistency with such consideration and to test
the limit of our protocol’s resilience, we stand in the perspective of an attacker and form possible
attacks based on our already-released protocol.

Attacker’s response: First, the attacker has to pass our first-stage aggregation to possibly have
a malicious impact. Hence, he only has 2 possible guidelines in general:

Guideline 1: The attacker must first generate a d-element ordered sequence according to Theorem
2. Then, the attacker will form any permuted version of such sequence to be malicious. If the attacker
is content with any permutation, this would be Gaussian attack [51, 76] as mentioned before. If
the attacker aims to find any particular order, he will fail because it incurs O(d!) computation
complexity.

Guideline 2: Just like the honest workers’ upload, the attacker can make his malicious upload has
the form (or can be decomposed to such form)as g = g’ + z with ||z|| > ||g’|| to pass the KS test.

For completeness, we will not only test on Gaussian attack but also test on other attacks which
comply with Guideline 2. Following previous work, we will include Label-flipping attack [11, 21]
and Optimized Local Model Poisoning attack [21]. The former has been described in previous sections
and we will explain how to form the latter attack in the following. The attacker forms Optimized
Local Model Poisoning attack by the following meta procedure:

o Infer the aggregated result g, by applying the aggregation rule on all benign uploads;
o Based on the result and the aggregation rule, he forms his Byzantine upload which passes the
aggregation and makes the final aggregated result have the inverse direction compared to g,.

Accordingly, the goal of the adversary is to pass the first-stage aggregation to be possibly
malicious further. We formally summarize such strategy as the following optimization problem:

min S, (Z gum, + Z 9B, Z gBj)

{gM,}
s.t. HFirstAGG(gMi)H > 0,

®)

where the constraint means that the Byzantine upload can pass our first-stage aggregation, {gas, }
are all Byzantine uploads by the Byzantine attacker, and {gg, } are all benign uploads by honest
workers. The function S.(A,B) = % calculates the cosine similarity between two vectors.
Suppose all benign uploads are gg,, gs,, " - - ,9B,, by Bm honest workers and all Byzantine uploads
are gm,, gm,» " - * » gm, by M, Byzantine workers. According to Equation (8), the attacker aims to
reach the following goal:
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gn =1+ 1) g5, ©)
2. 2.

where A > 0 is a positive number. This leads to the term } gm, + 2. g, = —A 2 gp, results in the
inverse direction compared to . gp;. By setting:

(1+4)
gu, =gm =0 === >, (10)

M,
Bm
aggregation (one can check that all malicious and benign upload behaves the same when applying

our first-stage aggregation on them).

Note that to be able to perform such an attack, we need M, > VB, (because A > 0), that is, such
a strong attack only exists when the number of Byzantine workers is sufficiently large.

Note that we do not simulate the Optimized Local Model Poisoning attack compromising our
second-stage aggregation because the attacker must know the serve-hold auxiliary dataset, and
this means that the attacker must fully control the server which is unrealistic. Also note that, for
the goal in Equation (8), we set it to be the inverse to the sum of all benign uploads. This is because
such a goal leads to an efficient solution that can be tolerated by the attacker. In fact, the attacker
can choose its goal freely as long as the constraint in Equation (8) is satisfied. However, other goals
may not lead to an efficient solution. For instance, if the attacker chooses it to be orthogonal, the
attacker is faced with the hard problem as discussed in Guideline 1.

Discussion on the adaptive attack: There exists another attack that copies benign uploads by

this goal is reached. And setting A =

— 1 will let Byzantine uploads pass our first-stage

honest workers for some iterations and suddenly turns to be malicious after that. We call this attack
as adaptive attack. The way the attacker is malicious can be any instantiation of the previous three
attacks we mentioned before. We will also include this attack in our experiment for completeness.
Note that although Optimized Local Model Poisoning attack seems to be more advanced than
Gaussian attack and Label-flipping attack, it is unclear which attack is most successful on our
protocol before the experiment.

Discussion on excluded attacks: Optimized Local Model Poisoning attack performs well
on attacking various existing Byzantine defense methods [21]. Another similar recent work [54]
adopts the attacking intuition (the meta procedure mentioned above) of the Optimized Local Model
Poisoning attack in other cases where the attacker’s power is more limited (the attacker is weaker).
Hence, here we only adopt the Optimized Local Model Poisoning attack in our experiments.

To the best of our knowledge, many other attacks can be trivially defended by our protocol,
such as the attacks that have been considered in the existing work: “A little” attack [6] and “Inner”
attack [69]. “A little” attack involves estimating the coordinate-wise mean and the s.t.d. of benign
uploads to form its attack. However, our learning protocol enforces that the DP noise is dominating,
hence knowing benign uploads gains the attacker no useful information when forming “A little”
attack. Most importantly, naively applying such an attack will end up being rejected by first-stage
aggregation. This shows the power of our protocol.

4.7 Discussions

First-stage aggregation provides critical robustness: Only using our second-stage aggregation
to aggregate all worker’s uploads is not enough, because, due to randomness, it is not guaranteed
that Byzantine upload will never be selected for model update, and selected Byzantine upload
could destroy our model in just one iteration as it is arbitrary. In contrast, there exists no such
concern when we apply our first-stage aggregation, according to previous resilience analysis for
our first-stage aggregation, it enforces any upload (including malicious ones) g which passes the
filtering to have the form g = § + z with ||z|| > ||§|| where § is strictly norm-bounded and z is the
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DP noise. For all malicious uploads, strictly norm-bounded § means their detrimental impact is
bounded.

DP-Byzantine-robustness interaction: we do not consider DP and Byzantine-robustness in
isolation. Instead, our whole protocol is formed by leveraging each other’s properties.

As mentioned previously in our design strategy, we use our first-stage rule to “constrain” the
way that any upload should behave by re-designing our DP protocol so that any Byzantine upload
violating it will be immediately rejected. Hence, other than only protecting privacy, this refactoring
on DP also provides the first-stage Byzantine-robustness. To deal with those Byzantine uploads that
pass our first-stage aggregation, we further design our second-stage rule to do the “complementary
aggregation” by leveraging the properties of our refactored DP protocol. In total, our privacy
protocol and the robust aggregation rule are aware of each other, leading to a solution that is both
privacy-preserving and Byzantine-resilient.

5 THEORETICAL GUARANTEES

We provide theoretical guarantees on privacy, utility, and Byzantine robustness of our protocol
in this section. For convenience, we assume that the dataset of each worker has the same size
which is denoted as |D|, and the size of non-private data held by the server is |Dp|. We also denote
w* = arg min, e F(w).

Privacy guarantee: We have the following privacy guarantee.

THEOREM 3. (Privacy Guarantee) There exist constants c; and cz such that given the sampling rate
q= I%CI and the number of iteration steps T. For each worker, Algorithm 1 is (€, §)-DP for any § > 0

q\yTln %
—

ande < c1¢°T ifo 2 ¢,

ProoOF. See A.5.2 in supp. material. O

Utility and Byzantine robustness: Theorem 4 shows the utility and robustness of Byzantine
resilience of our algorithm. Before formally introducing Theorem4, we present some assumptions,
which are commonly used in the previous work on optimization and Byzantine-robust learning
[11, 15].

AssuMPTION 1. The expected loss function F(w) is p-strongly convex and differentiable over the
space © with L-Lipschitz continuous gradient. Formally, we have the following for any w,w € ©:

F(W) > F(w) + (VF(w), w — w) + £ || — w||?
[VF(w) = VE(W)]| < L|lw - w]|.

Moreover, the empirical loss function f(D,w) := ﬁ Yvep f (s w) is Ly -Lipschitz continuous with
high probability. Formally, for any { € (0, 1), there exists an Ly such that:

IV Dw) = VF oI )L

Pr —
lw—wl| 3

W, WEB: wEW

AsSUMPTION 2. The gradient of the empirical loss function Vf (D, w*) at the optimal global
model w* is bounded. Moreover, the gradient difference h(D,w) = Vf(D,w)— Vf (D, w") for any
w € O is bounded. Specifically, there exist positive constants o1 and y; such that for any unit vector
0, (Vf (D, w"),v) is sub-exponential with oy and y,; and there exist positive constants o, and y, such
that for any w € © with w # w* and any unit vector v, (h(D,w) — E[h(D, w)],0)/|[|lw — w*|| is
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sub-exponential with o, and y,. Formally, for all |t| < 1/y1, |7] < 1/y,, we have:
Sup,ep B [exp (7 (Vf (D, "), 0))] < e7i7"/2
Supwe&veB E [exp (T<h(D,"\’H)‘;]%EZF(”D,W)],U> )] < eGZZTZ/Z

where B is the unit sphere B = {v : ||v|| = 1}

Note that the strongly convex and Lipschitz continuous conditions in Assumption 1 are widely
adopted in the convergence analysis of optimization algorithms, and these conditions indicate the
largest eigenvalue of the Hessian matrix of the loss function is between p and L. Assumption 2
indicates that the gradient Vf (D, w*) is quite close to its expectation E[Vf(D, w*)] = 0, and the
difference h(D, w) concentrates to its expectation with high probability.

THEOREM 4. For an arbitrary number of Byzantine workers, the difference between the global model
learned by Algorithm 1 and the optimal global model w* under no attacks is bounded. Specifically, if

the parameter space © C B(0, rVd), i.e., it is contained in a ball with radius r\d and VF(w*) = 0. Set
o as in Theorem 3, T = O (% In (\/ﬁ|D|\/|D0|)) and 1 < “92_1“2 no with fixed no < 2#? in the t-th
iteration in Algorithm 1, then if n,|D,| and |D| are sufficiently large and ny is sufficiently small such

that
A [dln 1 Ini
Vn>Q —5-max lnl,—gZ (11)
€|D| & rp\ID, |
and 2L < O (%3) with 0 < p < 1. Then, with probability at least 1 — & with & € (0, 1), we have:

VIDpl
1 dln%ﬂln%ol +10'11,d11’1%

lwr —w*l <O
p* |D|Vnbse P D]

(12)

where the Big-(j and Big-Q notations omit other logarithmic terms. Here p = 1— /1 — % — 3210, -

2
3n0L with Ay = 0y /ﬁ\/[{l + K, with K; = dlog maXiI;,Ll} and K, = glog % +log éaéxa/lléf)pl'

ProOOF. In A.5.3 in supp. material. O

Theorem 4 is on the robustness. Briefly speaking, as can be seen from Equation (12), if |D|, n and
|D,| are large enough (nonetheless, our experiment shows that only a small number of non-private
data will suffice), with some iteration number and stepsize, even there is an arbitrary number of
Byzantine workers, the final model we get will be close to the optimal model (measured by the I,
distance) with high probability.

6 EXPERIMENTAL RESULTS
6.1 Datasets and System Settings

Datasets and models: We conduct experiments on MNIST [40], Colorectal [36], Fashion [68],
and USPS [33]. Details of all these benchmark datasets with various properties are summarised
in supp. material.. Details of neural network setup are also in supp. material. Each experiment is
repeated with different random seeds {1, 2, 3} and we report the min. max. and mean. All of our
experiments are conducted under the same base learning rate n, = 0.2 (which will be explained
later), batch size b, = 16 and momentum f = 0.1. We set the number of epochs T = [10|D|/b.] for
Colorectal and USPS, T = [8|D|/b.] for MNIST and Fashion.
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Data sample distribution: We consider both i.i.d. and non-i.i.d. settings. To be specific, i.i.d.
is the case where each worker’s local dataset follows the same distribution as the whole data
population while non-i.i.d. is the case where each worker’s local dataset’s distribution is arbitrary
[44]. We simulate both settings following previous work [11, 21, 29, 76], and details are presented
in supp. material.

For generating server-own auxiliary data, we only randomly sample 2 data samples per class
from the validation dataset. As mentioned earlier, obtaining such a tiny amount of data is easy.
Note that generating such auxiliary data is totally agnostic to the distribution of the whole data
population while such data still enables our protocol’s effectiveness (as will be confirmed by our
experiments). Once the auxiliary data is generated, it is vacuous to compare the distribution of such
auxiliary data to distributions of any other datasets, because the size of our auxiliary data is micro.

Byzantine setup: We fix the number of honest workers (20 for MNIST and Fashion, 10 for
Colorectal and USPS), and vary the number of Byzantine workers (0%, 20%, 40%, 60%, 90% of total).

Privacy settings: We do experiments on different privacy settings e = {273,272,271, 20 2!}
while fixed § = 1/|D;|"!, where |D;] is the size of the local dataset possessed by worker i.

Reference Accuracy:

The Reference Accuracy is the testing accuracy of FL under the scenario where no Byzantine
threat exists and FL only adopts DP (not adopting any Byzantine defense method). Compare any
private and Byzantine-resilient protocol’s performance to the Reference Accuracy, many useful
conclusions can be drawn:

e Side-effect: Apply a protocol under the scenario where there are no Byzantine threats,
by comparing it with Reference Accuracy, we know how much “side-effect” caused by that
protocol. The ideal case is that we expect the “medicine” causes no additional harm to the
“patient” with no “illness”.

o Efficacy: For the scenario where there is a certain number of attackers, by comparing with
Reference Accuracy, we know how effectively a protocol defends the attack. The ideal case is
that the “medicine” eradicates the “illness” (under such case, the performance should be the
same as Reference Accuracy).

6.2 Claims and Experimental Evidence

All of the attacks we consider have been tested. Based on the observation that our protocol
remains resilient across all attacks and due to space limitation, we arbitrarily only present results
for Label-flipping attack under i.i.d. in the main body. All additional results for other attacks we
consider under both i.i.d. and non-i.i.d settings is in supp. material.

A quick overview: We provide 7 claims with their corresponding evidence. By comparing with
previous work, claim 1-2 show our contribution to DP learning and Byzantine resilience in their
own track. Most importantly, recall our core aim is to ensure privacy and Byzantine resilience
simultaneously, we use claims 3-7 to show its effectiveness.

1) Normalizing is better than vanilla DP-SGD (which uses clipping) at 1) gaining Byzantine
resilience; 2) efficiently tuning hyper-parameter for DP deep learning.

Evidence: A thought experiment will suffice. Recall that clipping is essentially normalizing
gradient vectors with £,-norm greater than C to be C exactly and leaving those vectors with £,-norm
smaller than C untouched. If we are guaranteed that all gradient vectors’ £,-norm is greater than C,
then normalizing and clipping only differ in the learning rate scale and are essentially equivalent
to each other, i.e., clipping with C = 2,7 = 0.1 is the same as normalizing (to be unit £,-norm) with
n = 0.2. This means that if we have that guarantee, clipping will also enjoy the lower bound in
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Fig. 1. Byzantine-resilient performance (testing accuracy) under Label-flipping attack. The experiment is
conducted under 3 different attacking levels (20%, 40%, 60% of the total workers are Byzantine).

Equation 7 for gaining Byzantine resilience and will also enjoy our analysis for hyper-parameter
tuning in Theorem 1.

However, it is unfeasible to get a prior bound on the gradient vector’s norm for arbitrary deep-
learning neural networks. Meanwhile, it is unclear whether clipping could lead to similar theoretical
results which serve our purpose. Adopting normalizing circumvents such issues.

2) Our protocol outperforms existing solutions.

Evidence: We compare our protocol to previous work with the same aim (ensure privacy and
Byzantine security simultaneously). We will show that our tailored Byzantine aggregation with DP
outperforms previous solutions whose methodology is to naively apply off-the-shelf Byzantine
aggregation with DP. And our result shows the contribution of our Byzantine aggregation rule.

For a fair comparison, we provide the results for the scenario where our privacy level is similar
and our attacker is the same compared with existing solutions.

Method H Byz./ Privacy ‘ [6] attack ‘ [69] attack Method H Byz./ Privacy ‘ Gaussian attack
40%, € = 3.4 .61 . 10%, € = .21 .2
[29] 0%, € = 3.46 6 75 [(76] 0%, € 0
20%, € = 7.58 .78 .79 10%, € = .40 .43
Ours 60%, € =2.00 | .79+ .010 | .80*.010 Ours 60%, € = .125 .86 +.010
40%, € = 2.00 | .80 +.005 | .80 +.005 40%, € = .125 .86 +.010
(a) Testing accuracy comparison with existing (b) Testing accuracy comparison with existing
work [29] on Fashion. work [76] on MNIST.

Comparison with [29]: We compare our results with [29] in Table 2a. We can see from Table
2a that [29] only reaches 61% accuracy under 40% “a little” Byzantine attack [6] in the privacy
setting (¢ = 3.46,5 = 1.2 X 10™*). We also notice that under the same privacy setting but a different
Byzantine attack, [29] achieves 75% testing accuracy, and [29] makes comments that “a little” attack
is stronger against their defense.

Applying our Byzantine defense method under the same attacks, we get around 80% testing
accuracy when there are 60%, 40% Byzantine workers in the privacy setting (€ = 2,5 = 1.4 X 107*).
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Thus, we can gain much more utility compared to [29] even when the majority worker are Byzantine
and with even better privacy guarantee (we are ensuring (e = 2,8 = 1.4 X 10™*)-DP instead of
(e = 3.46,8 = 1.2 X 107*)-DP). The utility we gain is also better than [29] under its weakest attack
with a much weaker privacy guarantee: (¢ = 7.58,8 = 1.2 x 10~*)-DP.

Comparison with [76]: As can be seen from Table 2b, the method in [76] reaches 43% testing
accuracy on MNIST when there are only 10% Byzantine workers under the privacy setting (e =
0.4,6 = 0). As a comparison, our learning protocol provides 86% testing accuracy when there are
60% Byzantine workers under privacy setting (¢ = 0.125, 5 = 1.4 X 10~*). We gain much more utility
even when the majority of workers are Byzantine, which is impossible for [76] to accomplish due
to their intrinsic limitation of aggregation methods.

€=

s 13 |2

€=
s 13 |2

€=
s 13 |2

€=

ARIE

| MNIST | COLOR. | FASHION |  USPS
8

RA || 88| .95|.96 | 49| 66 | .74 | .69 | 77 | 80 | .64 | 82 | .87

zero || 85 | 94 | 96 | 44 | 67 | 74 | 69 | .77 | 80 | 58 | .81 | .87

Table 3. Experimental result on the test for the “side-effect” our protocol brings. RA stands for Reference
Accuracy and zero stands for the scenario where all original 60% Byzantine workers turn to behave honestly
(hence we have zero attackers) while our protocol is still applied. The performance (testing accuracy) results
from taking the average of three runs with different seeds.

3) Our protocol brings no “side-effect” even when there is no Byzantine attack.

Evidence: we design the following experiment to test whether our protocol brings any “side-
effect”. Let 60% of workers be Byzantine, however, those Byzantine workers do not perform any
attack. Instead, they behave just like all honest workers. The server still follows its prior belief that
only 40% of workers are trustworthy. Our results are shown in Table 3.

We can see that other than at the extreme privacy level (¢ = 1/8 = .125), our protocol’s
performance is almost identical to the Reference Accuracy, hence incurring no “side-effect”. We
indeed observe a noticeable accuracy drop when at € = 1/8 = .125, this is because in such extreme
case, noise becomes so overwhelming that the training itself is not stable.

4) Our protocol eradicates Byzantine attacks if not facing extreme privacy requirements.

Evidence: Figure 1 shows the performance of our method. The testing accuracy almost always
aligns with the Reference Accuracy. Such a phenomenon can be observed not only across different
privacy levels but also across different datasets.

The most discrepant results are observed for USPS and MNIST datasets when there are 60%
Byzantine workers in the high privacy regime with € = 0.125. This is because, at this extreme privacy
level, significant noise is added to the gradient, We are getting less confident in differentiating
benign uploads from Byzantine ones when we are at such a high privacy level, fortunately, our
first-stage aggregation guarantees that malicious upload has limited detrimental impact even if
selected.

We also observe that results for Colorectal present a larger variance than the rest datasets. This is
because the dataset size is much smaller (only 5,000 samples in total) than the rest and it is limited
by the intrinsic limitation that DP learning requires large-scale data.

5) Our protocol remains robust against majority attack.

Evidence: Results are shown in Figure 2. We can observe that even when 90% workers are
Byzantine ( we have also simulated more stringent cases where 95%, 99% workers are Byzantine,
results can be found in supp. material), similar results can be observed compared with the cases
where there are 60%, 40%, 20% Byzantine workers. We observe a noticeable accuracy drop for certain
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Fig. 2. Byzantine-resilient performance (testing accuracy) when 90% workers are Label-flipping Byzantine
attackers.

datasets when € = 0.125 and € = 0.25 due to overwhelming random noise which guarantees high
privacy. For € > 0.5, we still gain privacy and Byzantine resilience without hurting too much
performance.
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Fig. 3. Our hyper-parameter tuning results when facing 60% Label-flipping attackers.

6) As a cherry on top, our protocol enables efficient hyper-parameter tuning by saving quadratic
efforts.

Evidence: For a typical DP deep learning task, vanilla DP-SGD’s running task spans on the
3-dimensional tuple (7, C, €). In contrast, adopting normalizing together with our tuning strategy
only needs to tune 7 for one arbitrary €. That is, we only need to tune the learning rate n; for
one privacy level € with the corresponding noise multiplier o, then we can use the learning rate
n= % for any other privacy level with noise multiplier 0. We call 1, and o}, at the privacy level
we are tuning as “base learning rate” and “base noise multiplier”.

To evaluate the effectiveness of such a strategy, it suffices to confirm that if we find the optimal
base learning rate for one privacy level, we also find the optimal learning rate for other privacy levels
by setting the learning rate according to such a strategy. In this sense, we first choose the base case
of g, = 0.79 (corresponding to € = 2). Then, for each privacy level, we tune the learning rate with
respect to different base learning rates (the actual learning rate is computed according to the above

strategy). In our experiment, we vary the base learning rate among {0.02, 0.04, 0.08,0.2,0.4,0.8, 1},
0.020p, 0.040p 0.080p 0.20p 0.40p 0.80p Op
o’ o’ o’ o’ o’ o’o

so the actual learning rate will be { } for a specific privacy
level with noise multiplier o.

Results on MNIST are shown in Figure 3, and we can see that for all the privacy levels we
considered, the optimal point is the same (0'%% for MNIST), and a similar phenomenon can also be
observed on the other three datasets.

7) Our protocol remains resilient against adaptive attack.
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TTBB MNIST COLOR. | FASHION USPS
€= €= €= €=

2 125 2 125 2 125 | 2 125
0 96 | .82 | .74 | .45 | .80 | .68 | .86 | .60
2 96 | 82 | .74 | .41 | .80 | .68 | .86 | .60
4 9 | .81 73 45 80 | .68 | .86 | .57
6 96 | .81 | .73 | .44 | .80 | .69 | .86 | .57
8 96 | .82 | .73 | .43 | .80 | .69 | .86 | .60

Table 4. Under Label-flipping attack with different TTBB.
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Fig. 4. Byzantine-resilient convergence curves (testing accuracy) under Label-flipping attack (considering

20%, 60% of the total workers are Byzantine, fixing € = 1).

Evidence: Our robust and private learning framework is also resilient to adaptive attack. We
evaluate that by letting 60% Byzantine workers be honest via copying the uploads of some random
honest workers from the beginning of training and turning to Byzantine at different iterations to
see if they can possibly have a significant impact. Results are shown in Table 4. The first column
represents the Time To Be Byzantine (TTBB), i.e., if the total iteration is T, 0.2 TTBB means that
Byzantine workers behave honestly within the first 0.2T iterations and then start to send Byzantine
uploads thereafter.

We can see that no matter when the Byzantine workers start to be Byzantine, they all have a
negligible impact on the testing accuracy except for the case with extreme privacy requirements.
We notice that there are some mild performance fluctuations when € = 0.125 for Colorectal and
USPS, again, due to the large variance of DP noises.

MNIST | COLOR. | FASHION | USPS
Y € = € = € = € =
1 1 1 1

slelslzlsl] 2 |5]cz
20% 86| .95| .48 |.73] 66| 78 | 64| .85
35% 87|96 | .47 |74 69| 79 | 63| .86
50% (exact) || .88 | 96 | 49 | 74 | 69 | 80 | .64 | 87
65% 85| .96 |.45|.73| 70| 79 | 56| .87
80% 83 95| 34|.74] 69| 79 | 54| .85

Table 5. y is treated as a prior belief in this experiment and we study the effect when there is a mismatch
between such belief and the truth. We fix the setting that 50% workers are honest and vary y. For the case
where the belief is exactly the truth (y = 50%), we denote it as “exact”. All results are obtained by taking the
average of three runs with different random seeds.
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6.3 More Experimental Results

Convergence behavior: The convergence curve is presented in Figure 4. As can be seen in
Figure 4, the training converges in the first several epochs. The convergence behavior of our
protocol aligns well with “Reference Accuracy” even when we have 60% Byzantine workers. Similar
to previous results in our CLAIM 4, We observe a larger variance for Colorectal than that of the rest
datasets. As expected, this is due to its significantly small dataset size and the nature of training
with DP.

Ablation study on y: Recall that previously we assumed the server knows that at least yn
workers are honest, what if y is only a (prior) belief rather than the truth, and moreover, what if
there is a mismatch between such belief and the truth? We further conduct an ablation study on y if
it is only a belief. We can see from Table 5 that, in the case where 50% workers are honest, as long
as the server is conservative (y < 50%), we can still retain robustness. In contrast, we observe a
notable utility drop for Colorectal and USPS under privacy level € = .125 when the server radically
believes that 80% workers are honest, this is because in our protocol, being radical (y is greater
than the true honest portion) means the server tends to aggregate malicious uploads. Hence, the
more radical, the worse the utility is expected to be. Based on such observation, the learned lesson
is that we can always have robustness if we are not facing extreme privacy requirements and a
conservative y is set.

7 CONCLUSION

In this paper, with the aim to ensure both DP and Byzantine resilience for FL systems, we
developed a learning protocol resulting from a co-design principle. We refactor the DP-SGD
algorithm and tailor the Byzantine aggregation process towards each other to form an integrated
protocol. For our DP-SGD variant, the small batch size property enables our first-stage Byzantine
aggregation which trivially rejects many existing Byzantine attacks; the normalization technique
enables our second-stage aggregation which provides a final sound filtering. As a cherry on top,
normalizing also enables our efficient hyper-parameter tuning strategy which saves quadratic
efforts. We also provide theoretical explanations behind the efficacy of our protocol.

In the experiment part, we first provide evidence to support our contribution claim to both DP
learning and Byzantine security tracks in separation, we then provide evidence of the effectiveness
of our protocol tackling the two-fold issue, ie., an FL system needs to be privacy-preserving
and Byzantine-resilient simultaneously. We have shown that our protocol does not incur “side-
effects” to a system with no Byzantine attacker, and we have also seen that our protocol remains
Byzantine-resilient even when there are up to 90% distributive workers being Byzantine.
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